STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-240 |

STAN-CS-74-444

PROGRESS REPORT ON PROGRAM-UNDERSTANDING SYSTEMS

. BY

C.CORDELL GREEN, R.J. WALDINGER, DAVID R. BARSTOW,
ROBERT ELSCHLAGER, DOUGLAS B. LENAT, BRIAN P. McCUNE,
DAVID E. SHAW, AND LOUIS I. STEINBERG

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 2494

AUGUST 1974

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSITY

STANFORD ARTIFICTAL INTELLIGENCE LABORATORY ~ AUGUST 1974
MEMO AIM-240

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-Th4-lLlh

PROGRESS REPORT ON PROGRAM-UNDERSTANDING SYSTEMS

by
C. Cordell Green, Richard J. Waldinger,
David R. Barstow, Robert Elschlager, Douglas B. Lenat,

Brian P. McCune, David E. Shaw, and Louis I. Steinberg

Abstract This progress report covers the first year and one half of

work by our automatic-programming research group at the Stanford Artificial
Intelligence Laboratory. Major emphasis has been placed on methods of
program specification, codification of programming knowledge, and
implementation of pilot systems for program writing and understanding.

List processing has been used as the general problem domain for this work.

This research was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under contract

DAHC 15-73-C-0435, in part by the National Science Foundation through
an NSF Graduate Fellowship, and in part by the State of California
through a California State Fellowship. Richard J. Waldinger was
affiliated with the Artificial Intelligence Center of the Stanford
Research Institute during the period of this research.

The views and conclusions in this document are those of the authors and
should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the Advanced Research Projects
Agency or the US Govermment.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

r—-ﬂ»\

-

r-—-

ree

e

ACKNOWLEDGMENTS

The authors gratefully acknowledge the helpful criticisms of
drafts of this report given by D. Bruce Anderson, Avra J. Cohn, and
C. A. R. Hoare. Computer time for much of the research reported herein
was made available by the Artificial Intelligence Center of the Stanford
Research Institute and the Information Sciences Institute of the

University of Southern California.

ii

=

S

TABLE OF CONTENTS

-~
. Section
_ peCL1on
1. Introduction .
. 1.1 Goals
1.2 Progress

~ 1.3 Organization of the Report
. 2. Methods of Program Specification .

| 2.1 Example Input-output Pairs
L_ 2.2 Program Traces . . . « « . .
: 2.5 Generic Examples .
- 2.4 Generic Traces .
l' 2.5 Graphical Descriptions

2.6 Conceptual Descriptions
o 2.7 Natural-language Descriptions
{ 2.8 User-machine Dialog
- 2.9 Information Necessary to Complete the
, Specification of a Program .
Q 2.10 A Comparative Example
3. Codification of Programming Knowledge
- L. Implementation of Program-understanding Systems
; 4.1 Schema Instantiation to Fit Example Input-output
b Pairs . .
{ 4.2 Sequence-extrapolator Writer
- 4.3 Ellipsis Translator
i_ 4.4k Our Simplest Program-understanding Program .
{ 4.4.1 Interchange of Elements
L h.h.2 Z-element Sort
4.4.3 Integer Square Root

N -

iii

Page

o (=

O @ oo =N N

10

12
12

16

19

19

22
ok
25
26
31

Section

4.5 Examples Program .
4.6 Synthesis of Large Inductive-inference Programs

4.7 Sorting

Bibliography

iv

1. TINTRODUCTION

1.1 Goals

The object of this research is to pursue the question of whether it
is possible to develop an intelligent computer system that both understands
and writes programs. The research includes high-level methods of specifying
programs, codification of programming knowledge, and implementation of
working program-writing systems. The domain of programming knowledge
ranges from the fundamentals of programming through list processing to
sihple searching, sorting, and inductive-inference programs. Much of this
knowledge is more-or-less pure programming knowledge, along with such
domain-dependent knowledge as is necessary. A major emphasis is the
codification of the considerable body of list-processing and fundamental
programming knowledge. In the implementation aspect of our research, an
eventual target system is expected to have a deep understanding of
programming as demonstrated by its program-writing ability, its line of
reasoning in creating a program, and its own discussion of why it made

each choice and what factors were invoived.

1.2 Progress

One of our earliest efforts was an exploration of more "human" methods
of program specification, such as example input-output pairs, program
traces, and generic examples. In the area of codification of programming
knowledge, we have Qeveloped sets of rules for program synthesis that
cover low-level list and register operations, several types of generate
and process paradigms, and simple searching and sorting programs. We have

implemented 7 different programs that do all or part of the job of program

1

[

synthesis. The more recent programs have been moderately suécessful. In
particular, they can (1) write list-transformation programs, given
example input-output pairs; (2) write low-level list- and register-
manipulation programs; (3) write 3 sorting and permutation programs;

and (4) write a concept-formation program.

1.3 Organization of the Report

The reader should note that material in this progress report is
presented roughly chronologically and that some of our false starts have
been included for historical completehess. Consequently, our later (and
hopefully more successful) work is presented towards the end of the paper.
Some readers might wish to scan the first parts and focus on Sections L.L
through 4.7. |

Section 2 of this report represents our initial explorations into
declarative methods for specifying procedures. These methods include both
individual and generic examples of input-output pairs to which the program
being specified must conform; traces of the input(s), output, and perhaps
intermediate values throughout the execution of the program; high-level
programming operations and concepts expressed in English words and phrases;
and combinations of these. As a result of the conciseness of such program
descriptions, they are offen incomplete or ambiguous. Some of the methods
of Section 2 are utilized in the running systems discussed in Section k.

Section 3 is a brief discussion of what we view as one of the most
important aspects of research in automatic programming: the codification
of programming knowledge so that it can be used by a system which understands
and writes programs. Concrete examples of such knowledge are given in

Section L4 for some of the systems currently implemented.

2

=

Section 4 embodies the history of actual program-understénding
systems which have been implemented by our group over the past year and
one half. These systems span a wide range of input-specification types,
built-in programming and task-domain knowledge, and target-program
complexity, but they all have the programming domain of list processing
in common. Although the systems are discussed in chronological order
for the sake of continuity, the reader should note that our most recent

and continuing efforts involve the final 3 systems [see Sections 4.5-L4.7].

—

-

r—

2. METHODS OF PROGRAM SPECIFICATION

One of our goals is to find better ways for people to specify programs.
A central question is whether or not there exist any methods or languages
that are better than those that currently exist. It is possible that,
say, ALGOL is the best language for specifying a particular algorithm.
However, it seems that for certain programs we can find new descriptions
that are easier for people to use. Certainly, very good special-purpose
languages can be designed for particular application areas.

We will present a few methods for épecifying list-processing programs.
It is not yet clear which methods are suited to which classes of programs.
Some methods considered so far are examined below. Most of these have
evolved from discussions within our group. McCune has contributed the
most recent efforts at analyzing and cataloging them.

In general, our target user is a person familiar with programming and
the subject domain of the desired program, but not necessarily with the

details of that program or the language in which it is to be implemented.

2.1 Example Input-output Pairs

Grammatical inference and the inference of automata from ordered pairs
representing example input;output behavior have been investigated
[3,4,7,12,17]. Example input-output pairs can similarly be used to
describe low-level list-transformation algorithms [1,14].

Consider the program that "flattens'" a list. An example of its

behavior is as follows:

input output
(A(BC (D) E)) > (ABCDE)

This example pair is quite simple to write and to most people specifies

the desired effect of the program, but not the detailed operation. Note

that if we add the phrase "remove inner parentheses” to the input-output pair
description, the intent is even clearer. Of course, we still don't

know whether to create a new list or modify the input list unless this,

too, is specified.

Another list transformation that is easily specified by example is

input - output
(A BC D) —> ((AB)(AC)(AD)(BC)(BD)C D))

which describes the generation of all 2-element combinations from a list.

A simple observation is that several I/O pairs may be required to
specify a program (actually a class of equivalent programs) unambiguously.
One disadvantage of this method is that the program inferred by the system
may not be the intended program. Also, examples have to be carefully
chosen. Hopefully the program-writing program will have some model of
human preferences and will not infer, say, the function having the constant
output (A BC D E) from the‘ flatten example given above. In cases
where it is difficult to disambiguate the intended program using only examples,
other information sources could be used. These include programming context
and simple descriptors like "a recursive function, not merely table look-up".
The program-writing program should verify with the user that its choice
of program is what the user intended. One way to do this is to automatically
generate for the user a new I/O pair that disambiguates among the major

candidates.

r—

r-—

[

r—

In any program-specification method that requires some inference on
the part of the computer, there will be a chance that the computer will
synthesize the wrong program. This lack of control is especially upsetting
to good programmers. However, high-level specifications are invariably
inexact, which leads to the need for inference to fill in details. More
research on this problem area is required, but any solution would seem to

require a high degree of 2-way dialog between the user and the system.

2,2 Program Traces

Some work has been done on the inference of programs from traces [2].
This method is more complete than example I/O pairs in that it tends to
describe the algorithm used to compute the output, as well as the input-

output relation. Thus the pair

input output
(314 2) = (L23L)

specifies a sort. But the trace of the input and output

input output
initially: (314 2) ()
next: (14 2) (3)
next: (4 2) (13)
next: (2) (13 k)
finally: 0 (123 L)

implies an insertion-sort algorithm, with details omitted.
_ We would like to emphasize a new aspect of program inference from
traces, namely, the utilization of several knowledge sources to write the

program. These sources include the subject domain for which the program

is written, a knowledge of what the common operations are, and other

specifications that are given for the program. The user could supply
further information by annotating the traces to provide disambiguation
or further specification, as is discussed in Section 2.9. An example of
additional specification of the sort program above might be the word

"recursive'".

2.5 Generic Examples

Generic examples lie somewhere between example I/O pairs and formal
predicate-calculus I/0 specifications [13,32] in explicitness. The

ellipsis notation is used to specify an indefinite number of elements.

For example, the specification

input output
(xl Xy Xz oo xn) —_— (xn X 1 X o v xl)

gives the reverse function. The alternate function may be specified by

input output

(xl X, X3 X), Xg ves) — (xl X5 Xg cel)

This notation is, of course, ambiguous, and a verification phase would

have to confirm the hypothesized program.

2.4 (Generic Traces

- Similarly, the ellipsis notation can be used in a trace. As an
example, here is a generic trace which specifies the combinations of

elements of a set taken 2 at a time:

-

=

car(input) cdr(input) output

Xy &ﬁﬁwﬁ Wﬁﬂﬁ@%ﬁWJ

X, (x5), cel) ((xl xg)(xl XB)(XI xu)...(x2 X5)(X2 Xh)"'

2.5 Graphical Descriptions

. Pictures of input and output are obviously well suited for depicting
simple list transformations in which the structures are difficult to describe
in linear strings, yet easy to describe in 2 dimensions [19]. We have not

investigated any of these methods.

2.6 Conceptual Descriptions

High-level program description is, of course, the most convenient
specification technique if the right high-level primitives are available.

In the extreme case we would just give the name (or number) of the desired
program. More interesting cases for automatic-programming studies are
those in which there is some distance from the primitives to the program
description.

For the domain being considered (list transformations), nice conceptual
descriptors (primitives) include "element conserving", "order preserving',
"represents a set", "represents a tree", "represents a graph", "permutation",
"table iook—up", etc. These can be embedded in either inherently ambiguous
or unambiguous languages (ranging from versions of English to unambiguous
high-level, but conventional, programming languages) and can either partially

or completely specify the program. We would like to emphasize partial

descriptions, ambiguous languages, and primitives that are not quite
high-level enough to make the task too easy for the system. By combining
several ambiguous partial descriptions with knowledge of the programming
domain, a system may be able to decipher descriptions that humans can
easily produce. (Conventional programming languages that are completely
descriptive and unambiguous, but lacking primitives of a high enough level,

are still of interest.)

2.7 Natural-language Descriptions

As used by documentors and describers of algorithms [19], natural
(English) language mixed with mathematical and programming jargon can be
an effective method for communicating an algorithm. Good English-like
program descriptions can be easily understood by humans, although again
it's not clear under what circumstances they are the easiest descriptions
to generate. English descriptions can, of course, describe input-output
relations or algorithms, be partial or complete, high-~level or low-level,
interactive or not, etc. Here is an example of a partial algorithm

specification [20]:

An exchange sort. If two items are found to be out of

order, they are interchanged. This process is repeated
until no more exchanges are necessary.

We intend to examine the issues of when English is a useful adjunct
in program description and how a programming system might deal with it.
Eléchlager is studying natural-language descriptions of programs in order
to develop an appropriate internal representation for them. From this has

come a representation which is primarily relational, but also has

qualification and quantification primitives. Possible inputs.into this
system might be either a limited subset of English or a more rigidly
structured "parenthesized" English. Future work includes relating this
internal representation of a program to the programming concepts and

data structures it will use.

2.8 User-machine Dialog

A simple and useful vehicle for embedding the various methods of
program specification is conversational interaction or dialog between
the user and the automatic-programming—system. Such a style was used by
Floyd [10] in his suggestion for a system aimed at interactive program
verification and synthesis. With such a system there is a need for a
large amount of programming knowledge of both a domain-specific and
general nature. The system would draw on this knowledge in order to
understand the user's remarks and pose meaningful questions.

One could imagine a conversation beginning with the user's specification
of the general program desired and proceeding in a basically top-down
manner. As the system needed more precise information, it would ask for
it. Presumably the user could indicate a preference for a particular
programming decision (e.g., choice of data representation) or possibly a
lack of preference, in whiéh case the system would make its own reasonable
choice. A variety of methods of specification (e.g., examples, traces,
formal specifications, etc.) might play a role in such a conversation.
This yields a paradigm similar to that of structured programming [6], but
one in which the computer fills in the details.

A typical low-level dialog might proceed as follows (for readability

the dialog is mostly English):

10

r— -

USER: Please write me a program which extracts
information from pairs in an input list.

MACHINE: What will the input be?

USER: The input will consist of 2 parts: an
atom and a list of pairs.

MACHINE: What should the output be?

USER: A list of the other half of the pairs which
contain the input atom.

MACHINE: What do you mean by "the other half of
the pairs"?

USER: If the first element of one of the pairs
is the input atom, I want the second
element; if the second element is the
input atom, I want the first element.

MACHINE: What shall be done if one of the pairs
is (x x) , where x is the input atom?

USER: Then the output list should include x .
MACHINE: OK, I think that's enough.
[pause]

MACHINE: Wait a minute. Does the order of the
elements in the output list matter?

USER: No, not at all.

MACHINE: Then I will simply use the order in which
the pairs occur in the input list, since
that is the easiest. In this case T could
overwrite the input Iist. Should T do that,
or would you rather that the list be preserved?

USER: Preserve it.
[pause]

MACHINE: Do you want this written as a function
of the 2 input arguments?

-USER: Sure, call the function f .

11

MACHINE: How's this:

f(x, y) « if null(y) then nil else
if x = caar(y) then cons(cadar(y), f(», cdr(y))) else
if x = cadar(y) then cons(caar(y), f(x, cdr(y))) else
T(x, cdr(y));

USER: Looks good to me.

The above dialog is at such a low level that it is completely dependent
upon the fact that LISP lists are being dealt with, thus requiring the user
to have some familiarity with LISP. Higher-level dialogs of domain-specific
programs can be less representation dependent and can be carried on in the
vocabulary of the particular problem dom;in.

S

2.9 Information Necessary to Complete the Specification of a Program

In completing the specification of a program, we can imagine a
"checklist" that a program-writing system might have for each type of
program it can handle. It might work on completing its checklist by
inference from partial specifications, interactions with the user, context,
and default conditions. Such a checklist might include terminating |
conditions, auxiliary functions, restrictions on input (e.g., whether a
list has constant or variable length), what data representations are
available, etc. Certainly a program-understanding system needs to ask
many questions about the target progfam. (But not, "What's the first

instruction? Now, what's the second? ...")

2.10 A Comparative Example

Let's consider the specification of a simple program as a vehicle for
discussion of the merits of various methods of description. Consider the

following example of the association search synthesized in Section 2.8:

12

input 1 input 2 output
B ((AB)BCDE)...) —> (AC ...)

Note that we've incorporated the ellipsis notation of generic examples
into an example input-output pair. Subjectively, this specification seems
not as thorough as we might wish. Can input 1 be non-atomic? What if
(B B) occurs in input 2? What if an element of input 2 is atomic? Etc.

As the complexity of the transformation increases, example input-output
pairs begin to require more inference to determine the intended transformations.
One way out is to clarify the intended function by describing more elementary
relations between input and output eléments, namely, '"The letters A and C
are in the output because they occur in theAsecond input paired with B
(the first input)". If we allow a higher-level concept, it is even easier
to describe: '"a commutative LISP assoc operation". This phrase
describes the function fairly clearly (to a LISP programmer). The added
description, "order preserving'", explains why C follows A in the output,
but a reasonable program should assume. (and test) order preservation in the
absence of other information. Obviously the conceptual descriptions alone,
without the example, do not clearly determine the intended program.

Together they do a reasonable job.

As another more expliéit technique, McCune and Lenat have suggested

describing the lower-level relations for the above example graphically

as, say,

15

implies

member

implies

A

member J

1
/——/_\

’

W Y—

(DY oo

same

]

k\/—'JR/_J

.. A C
T I
same

I follows I

implies

I

This scheme clarifies why each element of the output is where it is

and from where in the input it came.

Of course, a partial or even complete,

be given in predicate calculus [13,32].

Here is one possibility:

(Y v, w, x, y, 2) [input(x, y) A output(z) A atom(x)
A list(y) A list(z) A sublist(w, y) A length(w, 2)

A member(x, w) A member(v, w) A (x #

= member(v, z)

(Y t, u, v, w, x, v, 2) [input(x, y) A output(z) A list(y)
z) A member(w, z) A sublist(t, y)

A list(z) A member(v,

A sublist(u, y) A member(v,
A before(t, u, y)] = before(

(where before(t, u, ¥) means element t

list y).

1k

t) A member(w, u)
v, W, z)

occurs before element u

but precise description can

v V Vu[member(u, w) o u

in

At this low level the above formal description, which may or may not
be correct, appears to be at least as difficult to write correctly as the

program itself. The program (in an imaginary version of Meta-LISP) is

merely

f(x, y) « if null(y) then nil else
if member(x, car(y)) then

append(delete(x, car(y)), f(x, cdr(y))) else
f(x, cdr(y));

The low-level LISP program (Which_doesn't make use of the functions

member , append , and delete) is just

f(x, y) « if null(y) then nil else
if x = caar(y) then cons(cadar(y), f(x, cdr(y))) else
x = cadar(y) then cons(caar(y), f(x, cdr(y))) else

TX: cdr(y));

As another alternative, a program trace is a fair way to describe

the program:

input 1 car(input 2) output

B (
B (
B (

O w e
= QW

)
) (4 c)
. (ac)

15

-

5. CODIFICATION OF PROGRAMMING KNOWLEDGE

The easy part of codifying programming knowledge is the now more-or-less
conventional formal specification of the semantics of each operation in
one's programming language [9, 15, 23]. The more interesting aspect is
the concrete specification of high-level programming constructs (e.g., a
loop with an exit), and those programming methods that are used in the
process of designing a program, but never appear explicitly in the program.
An example is the detailed specification of sufficient methods for performing
a generate-and-test operation on an impiicit representation of a set.
Newell [24] has presented a fairly high-level (non-programmable) description
of 5 common artificial=-intelligence problem-solving methods, including
generate and test, heuristic search, hill climbing, match, and induction.
Much of the work in structured programming [6] has been aimed at
explicating such programming methodology, but has generally been at too

high a level for implementation, being aimed at human programmers. We

‘have begun to codify and embed this type of knowledge in 2 of our systems

[see Sections 4.6 and L4.7].

How big a body of knowledge are we interested in, and how much detail
is needed? Our crude preliminary estimate is that something like a few
thousand "facts" (any convenient chunks of knowledge, such as production
rules, axioms, or goal statements) could enable a program to understand
simple list-processing programs. We have generated a proposed set of
facés necessary for a program-understanding system to understand very
simple insertion- and selection-sort programs. 100 to 200 facts seem

adequate, without counting either the semantics of LISP or any efficiency

or optimization knowledge. Including these other knowledge sources would

16

[r—

bring us to several hundred. Manna and Waldinger's experience [22] with
the domain of pattern matching indicates that about 75 facts are sufficient
to enable the construction of a unification algorithm (leaving out
efficiency, programming-language semantics, and high-level program-
construction concepts).

Such estimates, crude as they are, give us an idea of how smart a
program-understanding system might become in the next few years; that is,
we can expect a system to deeply understand a very small set of programs.

Our plans are to finish the characterization of simple sorting and
then to consider simple tree searching; table look-up, and set operations.
At the same time we will increase our emphasis on the automatic selection
of representations. These areas all involve more-or-less "general'
programming knowledge and are not too domain specific. Our first more
domain-specific area under attack is that of concept-formation programs
[18, 34], a class of inductive-inference programs that encompasses enough
general programming knowledge to be interesting for that reason. We are
currently defining a set of increasingly complex concept-formation
programs to pace our efforts. PUP5 [see Section 4.6] indicates that there
are about 75 units of knowledge necessary to write a concept-formation
program, where each unit qontains about a dozen facts.

It would be nice to know the éize of the body that constitutes the
"core" of programming knowledge. As yet, we can only guess. Finding the
knowledge is still a more-or-less linear process; that is, to add a new
c;pability to an understanding system requires about as much time and

effort as it took to add the previous capability. We are beginning to

find some commonality in the utilization of previously codified knowledge,

17

but it's too early yet to make any claims of great insight. However,
we do have a fair degree of faith that there is a subject-independent

core that we will slowly extract and refine.

18

L. IMPLEMENTATION OF PROGRAM-UNDERSTANDING SYSTEMS

For the sake of historical completeness, we will discuss 3 early
implementations that are of limited significance before discussing our
later, more successful systems. DPerhaps the main conclusion to be drawn
from these is that small efforts seem inadequate for serious progress in
program-understanding systems. Good programming systems will be very

large and complex and will take many man-years of work.

4.1 Schema Instantiation to Fit Example Input-output Pairs

The first running system in our group was Lenat's PWl, which was
implemented in MLISP [30]. It takes as input several example input-output
list pairs and produces as output LISP programs. The idea is simple:
most elementary programs in the class of interest have 1 or 2 termination
conditions followed by a recursive call. The structure of such a program
can be given by a few high-level schemata.

The system infers the number and type of arguments by examining the
example input-output pairs. From the number of arguments either the

l-input schema or the 2-input schema is selected. The l-input schema is

f(x) «~ : .
if fl(x) = ¢, then fe(x) else [line 1]
if fa(x) = ¢, then fu(x) else [line 2]
£ (£5(2, (), T5(2o(0))3 [1ine 3]

where fl through f9 are functions and cl and c2 are constants,
all to be determined later. Lines 1 and 2 correspond to termination

conditions, and line 3 corresponds to a recursive call.

19

The user is asked if the function is recursive. (If it is not,

line > is not used.) The default condition is to assume a recursive
function, but no attempt is made to guess that the function is recursive.
The automatic program writer next determines, again by asking, whether
there are 1 or 2 terminating conditions (i.e., line 1 only or both lines
1 and 2) and whether the user wants to suggest either the test or the
value for lines 1 or 2.

Whatever pieces are not supplied by the user are filled in by a
cohstrained search process that also fills in the functions in line 5.

The search proceeds as follows. First, an ordered set of candidates is
formed for each subfunction and constant. The user can give advice in the
form of suggested subfunctions that are likely to occur. A second
information source is the type (atom, list, or number) of each argument.
These factors are combined, using a rating table containing the probability
of each known function appearing in a particular schema position, to yield
a final ordering. Then the candidate instances of the schema are generated
one by one, in accordance with the orderings of the subfunctions.

Several tricks prune the search space. A function is not applied to
the wrong number or type of arguments. To check this the instantiated
schema is run on the examples; and checking occurs at every step of
execution. Infinite recursions are detected and prevented. "Infinity"
is a parameter set in advance, usually to a number between 17 and 100.
The‘fUpction being defined may only occur in line 3, the recursion step,
and its arguments in the recursive call cannot be the same arguments it
receives in the original call. Some check should be made that the

arguments are somehow moving toward the termination form, but actually any

20

o

perceived change is allowed. Several special subfunctions, such as the

identity function and a

projection (or selection) function, are provided

to enable the desired program to be forced into one of the 2 given

procrustean beds.

The program is known to have generated at least 8 correct programs,

but run out of time on most other attempts. Among the programs FWl

wrote are

function name

sub?2

last

reverse

Fibonacci

factorial

insert

sort

flatten

function operation

subtract 2 from the (numeric) argument
[from 2 examples: 2 - O and 7 -5]

produce a l-element list containing only
the last element of the input list
[from 2 examples: (A B) ——> (B) and
(ABCDE) — (E)]

reverse a list [from 1 example:
(ABCDE) — (EDC B A)]

the obvious [from 3 examples: 1-1,
6 -8, and T - 13]

the obvious [from 2 examples: 1 -1
and 4 - 2L]

insert a number into its proper place in
an ordered list of numbers
[from 3 examples: 2, (13 8) —y (123 8);
2, (8) —— (28) ; and
7, (15) — (157)]

sort a list of numbers, given insert as
a primitive function
[from 4 examples: (2 3) —3 (2 3) ,
(52)-—"—‘) (25):
(L1764 — (LL6T7), and

~ (8125%9) —>» (123589)]

change a tree into a single-level list of
the atoms in the tree [from 1 example:
(A(BC (DE))) —> (ABCDEF)]

" This approach appeared to have limited potential, so no controlled

experiments were run.

The main disadvantage was that the program had a

limited model of its task and little programming knowledge, so it

consequently engaged in large searches.

21

k.2 Sequence-extrapolator Writer

This was an INTERLISP [31] program by Lenat. The question was
whether it is possible to write a highly specialized program writer that
produces programs for a given sub-area of inductive inference, in this
case sequence extrapolation [25, 29]. Other specialized program-writing
programs, like compilers and compiler-compilers, have been around for
a while. This new task turned out to te easy.

The program begins with a schema for a generalized sequence-
extrapolation program consisting of 5 subparts. The user describes, via
a dialog directed by a decision tree, which capabilities are to be
included for each subpart. (Not all choices are independent, however.)
The system then includes the appropriate pieces of program or data that
meet this description. For example, for tﬁe subpart of known sequences,
the user indicates which sequences should be immediately recognizable by
exact match.

Not much was learned, except that it is possible to write a highly
specialized program writer for this dqmain. We can guess that it would be
easy to turn out specialist program writers for other simple, well-structured
domains. The system had little of the character of what we call an

understanding system.

4.3 Ellipsis Translator

This was a small study and INTERLISP program by Shaw designed to
translate a class of ambiguous generic examples into a list of candidate
unambiguous internal representations. For example, the program translates

(x2 AR ST xn) into the 2 unambiguous interpretations

22

oo

2 XA and 2 X .
. 21 . i
1<i<n/2 1<ig<log,n 2

(although the 2 interpretations are not represented internally in a form
isomorphic to the above). The experimental program was not pushed, so it
never left the nearly debugged stage. However, there are a few comments
and observations we can make.

The notation seems to be useful, and the intent of the user is often
easy to guess by straightforward techniques. First, observe that finding
én interpretation reduces to sequence. extrapolation on the indices of the
variables. Sequence-extrapolation techniques [25, 29], including successive
differences, successive quotients, and tests for common sequences, have
allowed the construction of relatively powerful sequence extrapolators
that behave well and usually produce the desired interpretation, although
a non-cooperative user can often evoke a false interpretation. A more
serious problem is that of communicating to a cooperative user the
algorithm used to interpret the ellipsis notation and either verifying.
that the first candidate is the intended interpretation or else finding
it by some interactive procedure.

The internal representation of the meaning does not appear to be a
problem, and good ones should fall out naturally when an ellipsis-
translating mechanism is incorporated into a larger program-understanding
system.

B An ideal system should, of course, be forgiving. For example, it

should produce the same interpretation for the following 4 styles:

25

(X, + X, + X, + ..+ xn)

1 2 3
(2, + x, + Xzt .. Xn)
(xl X, t X, + xn)
(xl MRS xn)

If the user provides a meaningfully subscripted last element, that information

should be used. For example, in (x2 X) .. X n) the last element should
2

resolve the ambiguity in the sequence beginning 2, 4, Our ideal

system should also handle interleaved sequences (say, from different

sources), such as (xl Yo %5 yu-...) s specified intermediate elements,
such as (xl x5 - Xpsiq ...) 3 deleted elements, perhaps represented
as (xl Xy oo XL e xn) or in other ways; and various operators, such

as + , -, etc.

Waldinger has suggested that a more powerful induction mechanism be
used to allow '"formula extrapolation', e.g., to handle examples such as
(A, B, AA, AB, BA, BB, ...) . Such a mechanism could be of use in
specifying more complex, but frequently used, enumeration algorithms.

Fusaoka [11l] has implemented an embryonic formula extrapolator.

L.4 Our Simplest Program-understanding Program

The next program showed some rudimentary program-understanding behavior.
It dealt with simple list manipulation, assignment operations, and
arithmetic. The 2 versions of the program were Lenat's PUPL and a
revised version, PUP2, by Steinberg. Both versions of PUP were written

in QLISP [26] (the successor to QA4 [27]) and INTERLISP.

2k

e i i

>

The specification of the program to be written is basically a

formal input-output relation. The program is structured around QLISP
goal statements, which specify both the desired state and an "apply"

list of subprograms that may be able to achieve that state. A subprogram
may achieve the goal state directly or may decompose the goal into
subgoals and use goal statements to achieve these.i We'll describe
several of the tasks PUP accomplished, along with a description of the

stored facts used in each case.

L.4.1 Interchange of Elements This is a simple problem,

similar to one solved by Simon's Heuristic Compiler [28]. The problem

statement is

initial state final state
contents(x) = a contents(x) = b
contents(y) = b contents(y) = a

The initial state is assumed and the final state taken as the goal.
One of the programs on the apply list decomposes goals of the form o A 8
into the separate conjuncts and uses goal statements to attain first one,
then the other, in a more-or-less depth-first manner.

The program that handles the subéoal contents(x) = b sees that
contents(y) = b is true and so adds x « y to the program being written.
It also adds a comment " x previously contained a " at that point in the
program and updates the world model to say that contents(x) = b now holds.
Next, this same program is given the subgoal contents(y) = a and finds
that a no longer exists, so it looks back in the program to find where a

was destroyed. It finds the comment " x previously contained a " and so

25

- patches the program to save a 1in a temporary variable before it is
destroyed. The program now looks like
begin

temp « x;
x « y; comment x previously contained a ;

Now a exists in temp ; so the program can achieve contents(y) a by

y « temp; comment y previously contained b ;
end;

The interesting issue here is whether to look ahead when a is
destroyed and predict that it will be needed again, or to go back and
patch if the need is discovered. In this case patching was much easier
than predicting, largely because a comment was made in order to facilitate
any needed patching. (Far better programmers than PUP use many comments

for just that purpose.)

4.4.2 3-element Sort This problem, sorting the contents of 3 cells

without using recursion or iteration, is non-trivial even for humans.
Experienced programmers can take several minutes and often come up with

incorrect programs. Formally, the problem is

initial state final state
contents(x) = a contents(x) < contents(y)
contents(y) =D contents(y) < contents(z)
contents(z) = ¢ contents of x, y , and z are, in
- some order, a , b, and c
No information is given about the ordering of a , b, and c¢ . The

third conjunct of the goal is presently handled by a kludge: nothing

26

PUP knows how to do in achieving the rest of the goal changes this
condition. Thus the goal PUP gets is actually Just
contents(x) < contents(y) A contents(y) < contents(z) .

The basic method is to use case analysis, which is adequate (although
a more clever approach is possible). The AND handler begins by decomposing
the main goal into its 2 subgoals. To achieve contents(x) < contents(y)

PUP knows to try 2 things:

(1) Is contents(x) < contents(y) already true? PFJP can
prove that it is true if it has been explicitly
stated or, since PUP knows that < is transitive,
if there is a simple transitivity chain such that
contents(x) = ¥ <B < ... <7y = contents(y) . In
either case, if contents(x) < contents(y) is
already true, PUP is done.

(2) Is contents(y) < contents(x) ? PUP can know this too
by having it explicitly stated or from a transitivity
chain. PUP also knows that — (@ <B) DB <Qa, so
that if it knows —(contents(x) < contents(y)) , then
it can deduce contents(y) < contents(x) . In any
case, if it decides contents(y) < contents(x) is
true, PUP interchanges x and y . To do this TP
calls itself recursively, giving itself the interchange
problem discussed above in Section L.L4.1. (Some future
version of PUP should probably save some information
about each problem it solves, so that when it is given
another similar problem it has an easier time. At
present, however, PUP completely redoes the interchange.)
After the interchange, PUP interchanges everything it
knows about x and y that depends on their contents.
That is, every fact that refers to the contents of x
is modified to refer to the contents of y and vice
versa. ’

Unfortunately, from the initial state none of the relevant ordering
information is known, so the goal of contents(x) < contents(y) fails
to be achieved and the AND handler fails. (A smarter program might have
first noticed that no ordering information was given about a , b,

and c¢ , and not attempted either of the above steps.)

27

—

r—

Failure of the AND handler causes the goal-statement mechanism to

try further programs on the apply list. One of these is a case-analysis
handler. This program picks one of the subgoals, say
contents(x) < contents(y) , and constructs a program of the form
if x <y then subprograml else subprograme;

We note that the implicit assumption here that the < predicate is
computable should be made explicit. 4 smarter system might recognize
this program as a sort program and go on to produce a nice algorithm.

To find subprogra.ml » contents(x) < contents(y) is assumed and
the entire goal retried. Again the AND handler faiis. (Although the
first subgoal succeeds since it is assumed, the second subgoal,
contents(y) < contents(z) , fails.) Again we enter the case-analysis
handler. This time since the first subgoal is true (by assumption), it

will not be picked; so the second subgoal is picked. By now, the first

part of the program being constructed looks like

if x <y then
begin
if y < z then

The entire goal"is again retried. Since both subgoals are assumed, the
AND handler succeeds this time, and this case is done.

A point to note is that as each subgoal of the AND goal is achieved,
it is added to a list of "protected" facts. After each operation this
list is checked to see that none of the facts on it has been altered.

If any have, an immediate attempt is made to restore them. This can,

of course, lead to infinite loops in which restoring one alters another,

28

restoring that alters the first, ad infinitum. To prevent this, at

some arbitrary level of restoring within restoring, a cutoff is made
and failure reported. The importance of the process of restoring
protected facts will be shown shortly.

Now we do the else part of the innermost if. To do this the
assumption contents(y) < contents(z) is removed, and the assumption
—(contents(y) < contents(z)) is made. Then the whole goal is retried.
The first subgoal, still assumed, succeeds and is added to the protected
list. The second subgoal is tried, and since contents(z) < contents(y)
now holds, y and z are interchanged. A side effect of this
interchange is to modify the fact contents(x) < contents(y) to be
contents(x) < contents(z) . 7

After the interchange the protection list is checked, and because of
the interchange PUP no longer has the fact contents(x) < contents(y) .
So an attempt is made to restore that condition. As before, direct methods
fail, and the case-analysis handler is invoked. As before, a conditional
statement is added to the program, and the true and false branches are
written by assuming the truth and falsehood, respectively, of the
condition. The true case results in the null program, and the false
case results in an interchange. The attempt to restore
contents(x) < contents(y) succeeds, so the else part of the innermost

if succeeds and thus the whole innermost if does too. The program now

looks like this (without comments):

29

if x <y then
begin
if y < z then else
begin
temp, < ¥
y < 23

if x <y then else

begin

temp2 - X3

X <Y

y < temp,

end.

end

end
else i
subprograme;

Finally subprogra.m2 is written. All assumptions and deductions

specific to the process of writing subprogram. are removed, and

1
—(contents(x) < contents(y)) is assumed. An interchange is needed to
establish the first subgoal, but otherwise the process is similar to that

of writing subprogram The final program is

7

30

P

r,— r...A r\-—-—-

if x < ¥y then else
begin
temp2 - X3
X «y;
¥ < temp,
end
end
end -
else
begin
temp5 - X3
X <ys
y = temp,;

if ¥ < z then else
begin
temp) « y;
Yy < z;
Z temph;

if x <y then else
begin
temp5 - X3

X <y;

- tem
y P5
end

end
end;

L.y, 3 Integer Square Root In this example the desired program
should_find L/kj » the floor of the Square root of input x . This
task was chosen to coincide with Manna's tutorial on automatic
brogramming [21], which compared the abilities of existing systems to

synthesize or verify such a brogram. PUP's performance was gained by

51

sacrificing formal methods -- and the associated formal guaraﬁtees.

PUP has just the right knowledge about numeric functions, number
systems, ordering, mexima and minima, searching, and the real square-root
function to make the problem interesting yet doable. For example, PUP
does not know any program which directly computes the square root of x .
However, it does know how to test if an input is equal to the square root
of x , by comparing the square of the input to x . And PUP does have a
program to compute the square of a number: multiply it by itself.

Let us investigate the dialog now. The user asks for the integer
square root of some number, say isqrtf82) . Since PUP doesn't recognize
the function isqrt , it assumes the user either made a typographical
error or wants PUP to write a new function. The user settles that
question in favor of the latter alternative,‘and PUP notices that there
is 1 numeric argument. The knowledge of numeric functions is sufficient
to realize that the domain and range of the function should be pinpointed
if possible. The user indicates that both domain and range are the
natural numbers. PUP now picks names for the input and output variables,
say x and y , respectively, and asks the user to describe the function

in terms of these variables. The user replies with
isqrt(x) « max y- such that y < square root(x);

PUP first considers whether or not the condition y < square root(x)
is directly testable given x and y , i.e., whether PUP already has a
prégram which can do it. Knowledge of the < relation says that the
test can be done if and only if each side is computable. We trivially
have the left side, given x and y . But PUP doesn't have an algorithm

to compute square root(x) , so we must look deeper for the right side.

32

Knowledge of inequalities says to fix this up by finding an inverse
function of square root , say 1 , and by replacing the old inequality

by i(y) <x . A warning note says that such an inverse must be computable
(and in addition both the inverse and the original function must be
monotone) ; otherwise, we're no better off than before. The main fact

about square root is that its inverse is achieved by squaring. Both

the square root and square functions have tags indicating monotonicity.
Also, square 1s known to be computable, so the problem statement is now

reformulated as
isgrt(x) < max y such that square(y) < x;

The second problem is whether an algorithm is already known which
computes the maximum element in the range of a given predicate. Knowledge
about max includes only 1 algorithm: start by choosing the upper bound
of the range and then iterate, decrementing the candidate each time, until
the predicate is satisfied. Knowledge of the natural numbers says that an
upper bound does not exist, so this stréightforward method won't work.
Fortunately, max knows a transformation of itself when the predicate
is monotone and the range is a segment of the integers:
max y such that p(y) becomes min y such that —p(y + 1) . Both
the conditions are verified in our case, so the change is tentatively

made, and the problem statement becomes
isqrt(x) -~ min y such that —(square(y + 1) < x);

(Notice that PUP implicitly assumes that the negation of a computable

predicate is computable. This should probably be made explicit.) Knowledge

33

of negation allows the replacement of —< by > at this point, and

we get

isqrt(x) « min y such that square(y + 1) > x;

Now algorithms for computing min are examined. The only one says
to start at the lower bound of the range and repeatedly increment until
the predicate is satisfied. Knowledge of natural numbers informs us that

a lower bound is O . PUP converts this to the final code:

isqrt(x) ~ isqrtl(o, X) -

isqrtl(y, x) « if square(y + 1) > x then y else isqrtl(y + 1, x)3

PUP enters the program in its records, recalls the original request
for isqrt(82) , and runs the new program on it.

Notice the flavor of PUP's operation: locating relevant information,
which either provides some of the final code or points to more information
which is needed. It is the structuring of this knowledge which beats the

combinatorial explosion of searching for relevant facts.

4.5 Examples Program

This program,>called EXAMPLE, infers recursive LISP functions from
single example input-output pairs. The program was written in INTERLISP
by Shaw and later revised by William Swartout. The inductive inference
of functions from example I/O pairs has also been explored by

J. C. R. Licklider [1] and Hardy [1k4].

3L

As a typical problem solved by EXAMPLE, given the example I/O pair

input output
(ARCD) — (DDCC BBAA)

it synthesizes the "reverse and double" function

f(x) « if null(x) then nil else
append(f(cdr(x)), list(car(x), car(x)));

EXAMPLE can infer a class of funcﬁions which can be approximately
characterized as simple list-to-list transformations. A somewhat more
precise characterization of the class is that each function recurs along
an input list (or lists) and produces some part of the output (possibly
empty) for each step of the recursion. These pieces of the output are
assembled into the output list without any reordering (with the possible
exception of completely reversing the output). At each step of the
recursion, a similar recursive subfunction can be used to produce that
step's portion of the output. There can be several input arguments, and
the function written can be recursive in any number of arguments.

As an example, consider the I/O pair

input output-

(ABCD) —> ((A B)(A C)(AD)(BC)(BD)(C D))
—ce——I e
1 2 3

The output is produced in 3 steps as indicated. A recursive subfunction

produces the sublists (1, 2, and 3 shown above) in successive steps, and

55

\
the main function appends them together. EXAMPLE can syntheéize this
function and variations, such as having the output reversed or the same
output but with each sublist reversed.

The program works as follows. Consider the synthesis of the function
discussed above. Call it f . First EXAMPLE decides how much of the
output is produced in the first step of the recursion (referred to as the

recursive head). Thus, in the example above, it decides that the first

sublist (A B)(A C)(A D) is produced in the first step and is the recursive
head. (The heuristic by which it decides this is interesting and is
discussed later.) Next it sets up the subproblem of synthesizing the

code that produces the head. This can be thought of as specifying a
subfunction, although in-line code may be used if no recursion is necessary.
In our example a recursive subfunction, call it fl , is required. First
the arguments of f., are selected. In this case EXAMPLE chooses 2

1

arguments for f car of the input, A , and cdr of the input,

12
(BC D) . Obviously £, Just lists car of the input with each of the
elements of the cdr . After the inputs are set up, the subfunction is
written in the same manner as the main function, by a recursive call to
EXAMPLE. Returning to the synthesis of the main function, there are 3
remaining steps: (1) the terminating conditions are selected;

(2) the results from eacﬁ recursive step are joined properly, using
either cons or append ; and (3) the recursive call of the main
function is formed. The recursive call can be on the cdr , cddr ,

cdddr , etc. For example, in (A BC D EF) —> (A C E) the recursive

call is on the cddr of the input.

56

The program written for (A BC D) =3 ((A B)(AC)(AD)(BC)(BD)(C D))
is ‘
f(x) « if null(x) then nil else

if null(edr(x)) then nil else
append(fl(car(x), cdr(x)), f(edr(x)));

fl(y, z) < if null(z) then nil else
cons(1list(y, car(z)), f;(y, cdr(z)));

EXAMPLE is fairly complex, but we will describe one interesting part,
namely the heuristic that decides where to break the output list into the
rgcursive head and the rest. The output list is scanned left to right (and
possibly right to left if necessary), -looking for a simple progression.
When a large change is encountered, this point is proposed as the break.
In our example, (A BC D) — ((AB)(AC)(AD)(BC)(BD)(C D)) , the
pattern (A next input) , where next_input- signifies the successive
elements in the input past A (i.e., B, C , and D), is discovered
to match the first 3 elements of the output but not (B C) , so the break
occurs before (B C) . This heuristic, along with many others, such as
determining when to write a subfunction and the number of arguments for
a subfunction, works fairly well.

The following examples are ones for which a reasonable program was

automatically generated. Some l-input examples are

input output

(ABCD) ——> (DC BA)

(A BC) —— (AABBCC)

(ABC D) —— (DDCCBBAA)
(ABCDEF) —s (ACE)
(ABCDEF) —— (EC A)
(ABCDEF) —s (BDF)

(ABCD) — ((8)(B)(C)(D))

(A BCD) ——> ((AB)(AC)(AD)(BC)(BD)(C D))
(A BC D) ——> (ABCDBCDCDD)
(A BC D) ——> (DCBADCBDCD)
(ABCDEF) —y (BADC FE)

W
i)

Some 2-input examples are

input 1 input 2 output

FN (ABCD) ——> ((FV A)(FN B)(FN C)(FN D))

(A BC) (D E F) SU— (ADBECF)

(A BC) (D E) - (ADBDCDAEBECE)
(ABC) (D E) —> ((AD)(A E)(BD)(BE)(C D)(C E))
(ABC) (D EF) —s ((AD)(BE)(C F))

The limitations of the system are

(1) Only the position of an element, and not its identity,
is considered in deciding what to do with it. Thus a
reverse program can be written, but a sort cannot.

(2) On the input, only top-level list recursions, as opposed
to tree recursions, are attempted. Thus the flatten
function [e.g., (AB(C (DE) F) G) —» (ABCDEFG)]
is not possible.

(3) The organization of the program makes extension into new
areas reasonably difficult. We plan to reorganize the
program and to add cleverer, domain-specific facts to
increase its power.

4.6 Synthesis of Large Inductive-inference Programs

Our next system, PUP5 by Lenat, represents an attempt at the synthesis
of larger, more domain-specific programs. The system was designed to
write concept-formation programs, a_ class of programs which inductively
infer the definition of a concept from a number of instances of that
concept [18]. The original target program to be synthesized
semi-automatically was SPOT, a small version of Winston's concept-formation
program [34] without its fancy graph-matching algorithm, written by
Peter Gadwa at Stanford University. SPOT was specifically designed to

be a simple (5-page), yet still interesting program. During the course

38

s e e

of the design of PUP5, the target program evolved into a somewhat
different program.

PUPS is still only an experimental vehicle, but it has proved
moderately successful. Tt has indeed written a concept-formation program
similar to the intended one, although augmented by self-documentation.
PUPS5 is being revised to write a wider class of inductive-inference
programs. The next target program is a simple grammatical-inference
program, upon which work should be completed shortly.

Although the system is written entirely in INTERLISP, many ﬁopular
AI-language features [5] (e.g., patterﬂ matching, assertions, goal
direction, apply teams, backtracking, special data types, demons, etc.)
were hand coded expressly for this system. The entire 100 pages of code
is organized as an interacting community of small units, called beings.
Although complex, the structure of each being is the same: a set of answers
to about 30 fixed questions. These questions, called the being parts,
represent "everything you always wanted to know about a small program'".
Neither the exact set chosen nor the numﬁer 30 is very important; the
approximate size of the set is relevant to automatic programming, however.
Each being part is itself a little program which knows what the 30 questions
are and which may ask any being any question it wants to. Since some
beings must write target code; we choése to have each being x write all
code similar to x . For example, the sort being contains a costly
"big switch" hooked to various sorting algorithms, but the code it writes
in any specific instance will be a tailor-written implementation of a
particular sort algorithm.

Although PUP5 insists on doing structured programming (hence uses

something like macro expansion), its control structure employs feed forward,

59

feedback, backtracking, and a contextual assertion base. One bit of
inherent philosophy is that the system should defer making all decisions
as long as possible. We hope that by this deferral, along with careful
record keeping, we can eliminate most of the carelessness 'bugs'" that
typically arise in humans as a result of brain-hardware limitations. This
is in contrast to earlier versions of FUP [see Section 4.4], which viewed
debugging as the predominant part of programming. Thus, PUP5 rarely
believes it is finished if in fact it has overlooked some details.

We now present (most of) the current parts of a being:

name description

identity how the being is referenced in English
sentences

arguments which arguments are required and which

argument check

evaluate arguments

are optional

predicate which examines each argument
for suitability

which arguments of the being and in the
code generated by the being should
be evaluated

what brief summary of what the being does

why Jjustification for the being's existence:
why it is called

how summary of the method(s) used by the
being to do its thing

effects postconditions which will be true after
calling the being

when factors and weights telling how apropos
the being is right now

meta_code body of the code, but with uninstantiated
subparts

comments aid to filling in the meta code

requisites what must be actively satisfied just
before (prerequisites), during
(corequisites), and just after
(postrequisites) the being is
executed

demons which demons should be enabled during
the being's execution

affects which other beings might be called by

this being

Lo

———T Y

name description

complexity vector describing such features as
recursiveness, overall cost,
chance of failing, transparency
to user, etec.

specializations what must be known to write a streamlined
version of this being

alternatives equivalent beings in case this one
doesn't work

generalizations more general beings in case none of the
alternative beings works

predicate what type of values the being returns

data_structure if being is a data structure, how it

is initialized and accessed, how
elements are inserted and deleted

encodable description of the flow of control in
writing a specialized new being

inhibit_current enable/inhibit mechanism for demons

" demons

form changing where in the being tree this being can

directly return to

Although each being has about 30 answers, each of which might contain
-several facts, only about 10 facts from any given being are actually
employed during the course of the program-writing dialog. A typical
Programming being is obtain_psable_inforhation . Its when being part
says that calling this being is generally undesirable, but may be the
only reasonable course to follow if there exists new information which is
not directly usable. Its how being part says to choose (creating a
non-deterministic backtrack point) from among these: translate, get
totally new raw information, extract a small subset of existing raw
information to concentrate upon, or analyze the implications of a small
set of existing raw information. A typical domain-specific being is
partition a domain . It specializations being part says to find out
whether the partition is partial or total, whether it is weak or strong,

and whether it is built by repeatedly accepting (element, class name)

L1

pairs and/or accepting an element (then guessing and verifying its
class name) and/or accepting a class name (then guessing and verifying
its element(s)).

The dialog involved in a PUP5 run is carried on in a miniscule
subset of English. Since it encompasses precisely the sentences which
the user wants to say, the dialog gives the illusion of being unconstrained.
However, the term "the user" is not generic as there has only been 1 user
so far. The interaction system works by each being recognizing and
processing phrases referring to it. The dialog for synthesizing the
concept-formation program takes severél hours of console time. Much
of the interaction is unnecessary: PJP5 asks the user to name things
which are never referenced again. This annoyance is being worked on.

A promising sign of programming-knowledge convergence is that out of
67 programming beings 50 are used by PUP5 during the course of writing
both of the target programs (concept formation and grammatical inference).
Future plans for PUP5 work include studying the various types of knowledge
needed for programming, inductive inference, and specific target programs.
This will (hopefully) be done by extending PUP5 to handle more and bigger

tasks.

4.7 Sorting
During the past year, Green and Barstow have attempted to isolate
and codify those "facts" of programming knowledge which are necessary for

a system which can understand and write simple iterative sorting programs.

To keep the working domain small, such techniques as recursion and exchange

L2

I

sorting (e.g., bubble sort) and such fast algorithms as quicksort [16]
and heapsort [8, 23] were explicitly excluded from consideration. TIn the
course of this attempt, it became apparent that many concepts were
involved and needed to be analyzed. The present set of facts is a list
of 100 rules which deal with sorting and permutations, generators for
explicitly given sets, set constructors, and several types of generate-
and-test methods. The rules allow for either array or list representations

of sets. There are at present no rules regarding efficiency considerations

or formal verification of correctness. This we consider a shortcoming,

and Elaine Kant has recently begun studying the addition of rules for
optimization.

One interesting aspect of our list of rules is that it covers a wide
range of levels. As an example of the range covered, there are rules

dealing with the choice between selection and insertion sorts, with

" state-saving schemata for generators, with the choice of variable names,

and with the addition of elements to the front of a list. One initial
goal of our work was to have each rule be relatively simple and explicit;
we feel that we have been moderately successful in this regard. Thus,
these rules provide a knowledge base for a program-writing system, and it
is the interaction of these rgles which provides the foundation for the
system's "understanding" of sort progfams.

The rules have been organized in a goal/subgoal fashion, with the
capabilities of disjunctive and sequential subgoals and subgoaling by
cases. A preliminary implementation of a system based upon these rules
has been completed. FEach rule has been written as an INTERLISP function.
The control system consists of several other functions which describe

the efforts of the system as it writes a program, ask for choices at

43

GR-rule junctures, and provide limited additional explanatory information

- on request (e.g., a why function to explain the purpose of a section of
the final program). The traces tend to be overly verbose, but confirm
our belief that the rules can form the basis of an understanding system.

It should be emphasized that this system was primarily a '"quick and
dirty" effort, intended as a device for testing and refining rules, rather
than as a program-writing system. One test of the rules is, of course,
adequacy, and the system has successfully written 3 substantially different
pfograms: a reverse program, a selection sort, and an insertion sort.
Although not all of the variations have been completed to date, we expect
that with perhaps 20 additional rules our system should be capable of
generating a few dozen distinct (although in many cases similar) programs.
The programs produced are generally about 1 page in length (using the
INTERLISP prettyprint function as a standard of measurement) .

We feel that this line of research has been fruitful and plan to
continue it in the future. It is our expectation that such a structuring
of knowledge will make possible the incremental addition of rules for

other aspects of low-level programs and that any additional rules will

use many of the present rules as subgoals.

Ll

(1]

(4]

(5]

(el

(8]

(9]

(10]

BIBLIOGRAFHY

"Automatic Composition of Functions from Modules", Project MAC
Progress Report X: July 1972 -July 1973, Section III.E.1,
Project MAC, Massachusetts Institute of Technology, Cambridge,
Massachusetts, pages 151-156.

Biermann, A. W., Baum, R., Krishnaswamy, R., and Petry, F. E.,
Automatic Program Synthesis Reports, OSU-CISRC-TR-73-6, Department
of Computer and Information Science, The Chio State University,
Columbus, Ohio, October 1973.

Biermann, A. W., and Feldman, J. A., "On the Synthesis of Finite-
state Machines from Samples of Their Behavior", IEEE Transactions
on Computers, Volume C-21, Number 6, June 1972, pages 592-597
(also On the Synthesis of Finite-state Acceptors, Memo AIM-11k4,
Artificial Intelligence Laboratory, Computer Science Department,
Stanford University, Stanford, California, April 1970).

Blum, L., and Blum, M., "Inductive Inference: A Recursion Theoretic
Approach", Information and Contrdl, to appear (also Memorandum
ERL-M3%86, Electronics Research Laboratory, College of Engineering,
University of California, Berkeley, California, 13 March 1973).

Bobrow, Daniel G., and Raphael, Bertram, "New Programming Languages

for AT Research", Computing Surveys, Volume 6, Number 3, September 197k
(invited tutorial lecture, Third International Joint Conference on
Artificial Intelligence, Stanford University, Stanford, California,
20-2% August 1973; also Report CSL-73-2, Xerox Palo Alto Research
Center, Palo Alto, California, 20 August 1973; also Technical Note 82,
Artificial Intelligence Center, Stanford Research Institute, Menlo Park,
California, August 1973).

Dahl, 0.-J., Dijkstra, E. W., and Hoare, C. A. R., Structured
Programming, Academic Press, Inc., New York, New York, 1972.

Feldman, J. A., and Shields, P. C., Total Complexity and the Inference
of Best Programs, Memo AIM-159, Report STAN-CS-72-253, Artificial
Intelligence Laboratory, Computer Science Department, Stanford
University, Stanford, California, April 1972.

Floyd, Robert W., "Algorithm 245: TREESORI3", Communications of
the ACM, Volume 7, Number 12; December 1964, page T701.

Floyd, Robert W., "Assigning Meanings to Programs", in Schwartz, J. T.,
editor, Mathematical Aspects of Computer Science, Proceedings of
Symposia in Applied Mathematics, Volume 19, American Mathematical
Society, Providence, Rhode Island, 1967, pages 19-32.

Floyd, Robert W., "Toward Interactive Design of Correct Programs",
in Freiman, C. V., editor, Foundations and Systems, Information
Processing 71l: Proceedings of IFIP Congress 71, Volume 1,
North-Holland Publishing Company, Amsterdam, The Netherlands,
1972, pages 7-10 (also Memo AIM-150, Report STAN-CS-71-235,
Artificial Intelligence Laboratory, Computer Science Department,
Stanford University, Stanford, California, September 1971).

5

[11] Fusaoka, Akira, and Wsldinger, Richard, "Program Writing using

[18]

[19]
[20]
[21]

[22]

(23]

Sequences", Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, January 1974.

Gold, E. Mark, "Language Identification in the Limit", Information
and Control, Volume 10, Number 5, May 1967, pages 4h7-4Tk,

Green, Claude Cordell, The Application of Theorem Proving to
Question-znswering Systems, Ph.D. thesis, Electrical Enginecering
Department, Memo AIM-96, Report STAN-CS-69-138, Artificial
Intelligence Laboratory, Computer Science Department, Stanford
University, Stanford, California, June 1969.

Hardy, Steven, "Automatic Induction of LISP Functions", AISR Swnmmer
Conference, University of Sussex, Brighton, England, July l§7h,'
pages 50-62

Hoare, C. A. R., "An Axiomatic Basis for Computer Programming",
Communications of the ACM, Volume 12, Number 10, October 1969,
pages 576-580, 583. -

Hoare, C. A. R., "Quicksort", The Computer Journal, Volume 5, 1962,
pages 10-15.

Horning, James Jay, A Study of Grammatical Inference, Ph.D. thesis,
Memo ATM-98, Report STAN-CS-69-139, Artificial Intelligence Laboratory,
Computer Science Department, Stanford University, Stanford, California,
August 1969.

Hunt, Earl B., Concept Learning: An Information Frocessing FProblom,
John Wiley and Sons, Inc., New York, New York, 1962.

Knuth, Donald E., The Art of Computer Programming, Volumes 1-3,
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1973,
1969, 1973.

Knuth, Donald E., Sorting and Searching, The Art of Computer
Programming, Volume >, Addison-Wesley Publisting Company, Inc.,
Reading, Massachusetts, 1973, page T73.

Manna, Z., "Automatic Programming", invited tutorial lecture,
Third International Joint Conference on Artificial Intelligence,
Stanford University, Stanford, California, 20-2> August 1975.

Manna, Zohar, and Waldinger, Richard, "Knowledge and Reasoning in
Program Synthesis”, in preparation.

McCarthy, J., "Towards a Mathematical Science of Computation"”, in
Popplewell, Cicely M., editor, Information Processing 1062

Proceedings of IFIP Congress 62, North-l{olland Tublishing Comiviny,
Amsterdam, The Netherlands, 1963, pages 21-28.

L6

[26]

27]

[31]

[32]

[33]

[3k]

Newell, Allen, "Heuristic Programming: Ill-structured Problems",

in Aronofsky, Julius S., editor, Relationship between Operations
Research and the Computer, Progress in Operations Research, Volume 5,
John Wiley and Sons, Inc., New York, New York, 1969, pages 361-41lk.

Persson, Staffan, Some Sequence Extrapolating Programs: A Study
of Representation and Modeling in Inquiring Systems, Ph.D. thesis,
School of Business Administration, University of California,
Berkeley, California, Memo AIM-46, Report STAN-CS-66-50, Artificial
Intelligence Laboratory, Computer Science Department, Stanford
University, Stanford, California, 26 September 1966.

Reboh, Rene, and Sacerdoti, Earl, A Preliminary QLISP Manual,
Technical Note 81, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, August 1973.

Rulifson, Johns F., Derksen, Jan A., and Waldinger, Richard J.,
QAL: A Procedural Calculus for Intuitive Reasoning, Technical
Note 73, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, November 1972.

Simon, Herbert A., "Experiments with a Heuristic Compiler",
Journal of the Association for Computing Machinery, Volume 10,
Number L, October 1963, pages L493-506.

Simon, Herbert A., and Kotovsky, Kenneth, "Human Acquisition of
Concepts for Sequential Patterns", Psychological Review, Volume 7O,
Number 6, November 1963, pages 53L-5L6.

Smith, David Canfield, MLISP, Memo AIM-135, Report STAN-CS-70-179,
Artificial Intelligence Laboratory, Computer Science Department,
Stanford University, Stanford, California, October 1970.

Teitelman, Warren, INTERLISP Reference Manual, Xerox Palo Alto
Research Center, Palo Alto, California, 1974,

Waldinger, Richard J., Constructing Programs Automatically using
Theorem Proving, Ph.D. thesis, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, May 1969.

Williams, J. W. J., "Algorithm 232: HEAPSORT", Communications of
the ACM, Volume 7, Number 6, June 1964, pages 347-3L3.

Winston, Patrick H., Learning Structural Descriptions from Examples,
Ph.D. thesis, Department of Electrical Engineering, TR-76, Project
MAC, TR-231, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, Massachusetts, September 1970.

b7

