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. 1. INTRODUCTION

~ 1.1 Goals

| The object of this research is to pursue the question of whether it

) | is possible to develop an intelligent computer system that both understands -

and writes programs. The research includes high-level methods of specifying

programs, codification of programing knowledge, and implementation of

. working program-writing systems. The domain of programming knowledge

ranges from the fundamentals of programming through list processing to

" simple searching, sorting, and inductive-inference programs. Much of this

knowledge is more-or-less pure programming knowledge, along with such

domain-dependent knowledge as is necessary. A major emphasis is the

.. codification of the considerable body of list-processing and fundamental |

programming knowledge. In the implementation aspect of our research, an

) - eventual target system is expected to have a deep understanding of

programming as demonstrated by its program-writing ability, its line of

| reasoning in creating a program, and its own discussion of why it made

_ each choice and what factors were involved.

. 1.2 Progress

One of our earliest efforts was an exploration of more "human" methods

of program specification, such as example input-output pairs, program

traces, and generic examples. In the area of codification of programming

knowledge, we have developed sets of rules for program synthesis that

~- cover low-level list and register operations, several types of generate

and process paradigms, and simple searching and sorting programs. We have

) implemented 7 different programs that do all or part of the job of program |



. | N

- synthesis. The more recent programs have been moderately successful. In

particular, they can (1) write list-transformation programs, given

B example input-output pairs; (2) write low-level list- and register-

g manipulation programs; (3) write 3 sorting and permutation programs;

and (4) write a concept-formation program.

| 1.5 Organization of the Report

The reader should note that material in this progress report is

_ presented roughly chronologically and that some of our false starts have

| been included for historical completeness. Consequently, our later (and

_ hopefully more successful) work is presented towards the end of the paper.

Some readers might wish to scan the first parts and focus on Sections LL

= through 4.7. | |

| Section 2 of this report represents our initial explorations into

declarative methods for specifying procedures. These methods include both

_ | individual and generic examples of input-output pairs to which the program
being specified must conform; traces of the input(s), output, and perhaps

= intermediate values throughout the execution of the program; high-level

programming operations and concepts expressed in English words and phrases;

and combinations of these. As a result of the conciseness of such program

_ descriptions, they are often incomplete or ambiguous. Some of the methods

| of Section 2 are utilized in the running systems discussed in Section k.
= Section 3 is a brief discussion of what we view as one of the most

important aspects of research in automatic programming: the codification )

BN of programming knowledge so that it can be used by a system which understands

~ and writes programs. Concrete examples of such knowledge are given in

| Section 4 for some of the systems currently implemented.



- Section 4 embodies the history of actual program-understanding

| systems which have been implemented by our group over the past year and

one half. These systems span a wide range of input-specification types,

| built-in programming and task-domain knowledge, and target-program |

complexity, but they all have the programming domain of list processing

= in common. Although the systems are discussed in chronological order

for the sake of continuity, the reader should note that our most recent
_ |

and continuing efforts involve the final 3 systems [see Sections 4.5 -L4.7].

.

Co : | |

~ —-

|.

“



. N.

i 2

= 2. METHODS OF PROGRAM SPECIFICATION

3
| One of our goals is to find better ways for people to specify programs.

g | A central question is whether or not there exist any methods or languages |

] that are better than those that currently exist. It is possible that,

~ say, ALGOL is the best language for specifying a particular algorithm.

| However, it seems that for certain programs we can find new descriptions

) that are easier for people to use. Certainly, very good special-purpose
_ languages can be designed for particular application areas.

| We will present a few methods for specifying list-processing programs.
h. It is not yet clear which methods are suited to which classes of programs.

| | Some methods considered so far are examined below. Most of these have
=~ evolved from discussions within our group. McCune has contributed the |

3 most recent efforts at analyzing and cataloging them.

: In general, our target user is a person familiar with programming and

o | the subject domain of the desired program, but not necessarily with the

details of that program or the language in which it is to be implemented.
-

1 2.1 Example Input-output Pairs
, Grammatical inference and the inference of automata from ordered pairs

C representing example input-output behavior have been investigated

[3,4,7,12,17]. Example input-output pairs can similarly be used to

- describe low-level list-transformation algorithms [1,1k]. |

1 Consider the program that "flattens" a list. An example of its
| behavior is as follows:

C CT " |



SE input output

- (A (BC (D) E)) —> (ABC DE)

This example pair is quite simple to write and to most people specifies -

the desired effect of the program, but not the detailed operation. Note

that if we add the phrase "remove inner parentheses" to the input-output pair

description, the intent is even clearer. Of course, we still don't

“ know whether to create a new list or modify the input list unless this,

| too, is specified.

~ | Another list transformation that is easily specified by example is

i input output |
| (ABCD)—> ((AB)(AC)(AD)(BC)(B D(C D))

| which describes the generation of all 2-element combinations from a list.
- . A simple observation is that several I/O pairs may be required to

specify a program (actually a class of equivalent programs) unambiguously.

] | One disadvantage of this method is that the program inferred by the system
may not be the intended program. Also, examples have to be carefully

chosen. Hopefully the program-writing program will have some model of

human preferences and will not infer, say, the function having the constant

output (A BC DE) from the flatten example given above. In cases

where1t is difficult to disambiguate the intended program using only examples,

other information sources could be used. These include programming context

and simple descriptors like "a recursive function, not merely table look-up".

The program-writing program should verify with the user that its choice

of program is what the user intended. One way to do this is to automatically

generate for the user a new I/0 pair that disambiguates among the major

} candidates. |

p)



= In any program-specification method that requires some inference on

| the part of the computer, there will be a chance that the computer will

synthesize the wrong program. This lack of control is especially upsetting

- | to good programmers. However, high-level specifications are invariably

inexact, which leads to the need for inference to fill in details. More

~ research on this problem area is required, but any solution would seem to

| require a high degree of 2-way dialog between the user and the system.

9 2,2 Program Traces

Some work has been done on the inference of programs from traces [2].

~ This method is more complete than example 1/0 pairs in that it tends to

| describe the algorithm used to compute the output, as well as the input-
“ |

output relation. Thus the pair

~ - input output

(3 1 4 2) =p (1234)
-

specifies a sort. But the trace of the input and output |
“

input output |

~ initially: (3 14 2) ()
| next: (1 4 2) (3)

next: (4 2) (1 3)
- next: (2) (13 4)

| finally: () (123 4)

impliesan insertion-sort algorithm, with details omitted.

_ We would like to emphasize a new aspect of program inference from |
traces, namely, the utilization of several knowledge sources To write the

. program. These sources include the subject domain for which the program

is written, a knowledge of what the common operations are, and other

1 |
| :

|

|—-



- specifications that are given for the program. The user could supply

| further information by annotating the traces to provide disambiguation

or further specification, as is discussed in Section 2.9. An example of

- | additional specification of the sort program above might be the word

"recursive".

2.5 Generic Examples |

Generic examples lie somewhere between example I/0 pairs and formal |

. predicate-calculus I/O specifications [13,32] in explicitness. The

ellipsis notation is used to specify an indefinite number of elements.

- F'or example, the specification

— input output | |

| (x, Xp Xz ooo x) (x, %,_1 Xo cee Xp)

gives the reverse function. The alternate function may be specified by

| input output |

(x4 Xo, X5 X) Xc Cee) — (x4 X53 Xg cel) |

B This notation is, of course, ambiguous, and a verification phase would

have to confirm the hypothesized program.

.. 2.h Generic Traces

| - Similarly, the ellipsis notation can be used in a trace. As an

= example, here is a generic trace which specifies the combinations of

| elements of a set taken 2 at a time:

7 |



CC —————————————SS—SSSS———————

| car{ input) cdr{ input) output
oo xq (x, Xz X), col) ((x; x5) (xg Xz) (x; x)).-)

| x, (x5 X), cel) ((x, x5) (24 x3) (24 xy) «ee (%5 x3) (%, x)).-)

| 2.5 Graphical Descriptions

. Pictures of input and output are obviously well suited for depicting

simple list transformations in which the structures are difficult to describe

- in linear strings, yet easy to describe in 2 dimensions [19]. We have not

| investigated any of these methods. | | |

2.6 Conceptual Descriptions

High-level program description is, of course, the most convenient

! Specification technique if the right high-level primitives are available.

| In the extreme case we would just give the name (or number) of the desired
program. More interesting cases for automatic-programming studies are

i those in which there is some distance from the primitives to the program
description. :

- For the domain being considered (list transformations), nice conceptual
g descriptors (primitives) include "element conserving", "order preserving’,

" "represents a set", "represents a tree", "represents a graph", "permutation",

| "table Look-up", etc. These can be embedded in either inherently ambiguous
or unambiguous languages (ranging from versions of English to unambiguous

high-level, but conventional, programming languages) and can either partially

or completely specify the program. We would like to emphasize partial |

8



i ) descriptions, ambiguous languages, and primitives that are not quite

| high-level enough to make the task too easy for the system. By combining
several ambiguous partial descriptions with knowledge of the programming

| domain, a system may be able to decipher descriptions that humans can

| easily produce. (Conventional programming languages that are completely

| descriptive and unambiguous, but lacking primitives of a high enough level,

| are still of interest.) |

| i 2.7 Natural-language Descriptions

As used by documentors and describers of algorithms [19], natural

| ] (English) language mixed with mathematical and programming jargon can be

| an effective method for communicating an algorithm. Good English-like

| ) program descriptions can be easily understood by humans, although again |
| it's not clear under what circumstances they are the easiest descriptions

to generate. FEnglish descriptions can, of course, describe input-output

: | relations or algorithms, be partial or complete, high-level or low-level,

interactive or not, etc. Here is an example of a partial algorithm |

| | specification [20]: |

Lo An exchange sort. If two items are found to be out of
| ~~ order, they are interchanged. This process is repeated
| until no more exchanges are necessary.

| | We intend to examine the issues of when English is a useful adjunct

| in program description and how a programming system might deal with it.

| Flschlager is studying natural-language descriptions of programs in order

| to develop an appropriate internal representation for them. From this has

| come a representation which is primarily relational, but also has

9 |



| | qualification and quantification primitives. Possible inputs into this

] | system might be either a limited subset of English or a more rigidly
| structured "parenthesized" English. Future work includes relating this

| internal representation of a program to the programming concepts and

| data structures it will use.

2.8 User-machine Dialog |

= A simple and useful vehicle for embedding the various methods of

= program specification is conversational interaction or dialog between

| the user and the automatic-programmingsystem. Such a style was used by

i ] Floyd [10] in his suggestion for a system aimed at interactive program

| verification and synthesis. With such a system there is a need for a
| | large amount of programming knowledge of botha domain-specific and |

general nature. The system would draw on this knowledge in order to

| understand the user's remarks and pose meaningful questions.

| | One could imagine a conversation beginning with the user's specification

| of the general program desired and proceeding in a basically top-down

u manner. As the system needed more precise information, it would ask for

it. Presumably the user could indicate a preference for a particular

programming decision (e.g., choice of data representation) or possibly a

| : lack of preference, in which case the system would make its own reasonable |

choice. A variety of methods of specification (e.g., examples, traces,

formal specifications, etc.) might play a role in such a conversation.

This yields a paradigm similar to that of structured programming [6], but

one in which the computer fills in the details.

| A typical low-level dialog might proceedas follows (for readability

the dialog is mostly English): |

| 10 :



Lo USER: Please write me a program which extracts
information from pairs in an input list.

MACHINE: What will the input be? |
USER: The input will consist of 2 parts: an

atom and a list of pairs.

MACHINE: What should the output be?

USER: A list of the other half of the pairs which
contain the input atom. |

MACHINE: What do you mean by "the other half of
the pairs"?

. | USER: If the first element of one of the pairs
1s the input atom, I want the second

. element; if the second element is the
_ input atom, I want the first element.

MACHINE: What shall be done if one of the pairs |
| is (x x) , where x is the input atom?-

USER: Then the output list should include x .

| ) MACHINE: OK, I think that's enough.
| [pause]
" MACHINE: Wait a minute. Does the order of the

elements in the output list matter?

- USER: No, not at all. |

MACHINE: Then I will simply use the order in which
. the pairs occur in the input list, since

that is the easiest. In this case T could
- overwrite the input list. Should TI do that,
j or would you rather that the list be preserved?

USER: Preserve it. | |

[pause]

MACHINE: Do you want this written as a function
of the 2 input arguments?

"USER: Sure, call the function f .

11



oO MACHINE: How's this: |
| f(x, y) « if null(y) then nil else
u if x = caar(y) then cons(cadar(y), f(x, cdr(y))) else

if x = cadar(y) then cons(caar(y), f(x, cdr(y))) else
fx, car(y)); So

oC : USER: Looks good to me.

| The above dialog is at such a low level that it is completely dependent

upon the fact that LISP lists are being dealt with, thus requiring the user

to have some familiarity with LISP. Higher-level dialogs of domain-specific

programs can be less representation dependent and can be carried on in the

vocabulary of the particular problem domain.
| N

2.9 Information Necessary to Complete the Specification of a Program |

In completing the specification of a program, we can imagine a

"checklist" that a program-writing system might have for each type of

program it can handle. It might work on completing its checklist by

| inference from partial specifications, interactions with the user, context,

| and default conditions. Such a checklist might include terminating |

| conditions, auxiliary functions, restrictions on input (e.g., whether a
list has constant or variable length), what data representations are

avallable, etc. Certainly a program-understanding system needs to ask

many questions about the target program. (But not, "What's the first

instruction? Now, what's the second? ...")

_ 2.10 A Comparative Example |
Let's consider the specification of a simple program as a vehicle for

discussion of the merits of various methods of description. Consider the

~~ following example of the association search synthesized in Section 2.8: |

| | 12 |
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BN input 1 input 2 output

| B ((AB)YBCDE...) —> (AC ...)

} Note that we've incorporated the ellipsis notation of generic examples

into an example input-output pair. Subjectively, this specification seems

; not as thorough as we might wish. Can input 1 be non-atomic? What if

(B B) occurs in input 2? What if an element of input 2 is atomic? Etc.

As the complexity of the transformation increases, example input-output

pairs begin to require more inference to determine the intended transformations.

One way out is to clarify the intended function by describing more elementary

relations between input and output elements, namely, ''The letters A and C

are in the output because they occur in the second input paired with B

. (the first input)". If we allow a higher-level concept, it is even easier

to describe: "a commutative LISP assoc operation". This phrase

describes the function fairly clearly (to a LISP programmer). The added

- | description, "order preserving", explains why C follows A in the output,

but a reasonable program should assume. (and test) order preservation in the

absence of other information. Obviously the conceptual descriptions alone,

without the example, do not clearly determine the intended program.

Together they do a reasonable job.

As another more explicit technique, McCune and Lenat have suggested

describing the lower-level relations for the above example graphically

’ as, say, |

| 1%



implies

member

| implies

member |

| TTT TN

B , ( (AB) "(BC) DE) oh ) — 4 ¢ ... 0)
| same |

— |
same

5 | follows
| follows

{ implies

| This scheme clarifies why each element of the output is where it is
and from where in the input it came. |

| Of course, a partial or even complete, but precise description can
| be given in predicate calculus [13,32]. Here is one possibility:

} (Y v, Ww, x, y, 2) l[input(x, y) A output(z) A atom (x)
| A list(y) A list(z) A sublist(w, y) A length(w, 2)
. A member(x, w) A member(v, w) A (x £ Vv V Yu[member(u, w)> u = v])]

| = member(v, z) |

(Vt, u, v, w, x, vy, z) [input(x, y) A output (z) A list(y)
A list(z) A member(v, z) A member(w, z) A sublist(t, y)

- A sublist(u, y) A member(v, t) A member(w, u)
A before(t, u, y)] = before(v, w, Z)

(where before(t, u, y) means element + occurs before element wu in
list vy ).

1h



) | At this low level the above formal description, which may or may not

be correct, appears to be at least as difficult to write correctly as the

program itself. The program (in an imaginary version of Meta-LISP) is

merely |

- f(x, y) « if null(y) then nil else
if member (x, car(y)) then

append(delete(x, car(y)), f(x, cdr(y))) else
. f(x, cdr(y));

| The low-level LISP program (which doesn't make use of the functions

member , append , and delete ) is just

f(x, y) « if null(y) then nil else | |
NB if x = caar(y) then cons(cadar(y), f(x, cdr(y))) else

if x = cadar(y) then cons(caar(y), f(x, cdr(y))) else
f(x, cdr(y));

As another alternative, a program trace is a fair way to describe

the program: | |

input 1 car(input 2) output |

: B (A B) (A)
B (B C) (AC)
B (D E). (A C)

15
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1

5. CODIFICATION OF PROGRAMMING KNOWLEDGE

| The easy part of codifying programming knowledge is the now more-or-less

conventional formal specification of the semantics of each operation in :

: one's programming language [9, 15, 23]. The more interesting aspect is

N the concrete specification of high-level programming constructs (e.g., a

| | loop with an exit), and those programming methods that are used in the
process of designing a program, but never appear explicitly in the program.

. An example is the detailed specification of sufficient methods for performing

a generate-and-test operation on an implicit representation of a set.

: Newell [24] has presented a fairly high-level (non-programmable) description

of 5 common artificial-intelligence problem-solving methods, including |

generate and test, heuristic search, hill climbing, match, and induction.

_ Much of the work in structured programming [6] has been aimed at

explicating such programming methodology, but has generally been at too

S | high a level for implementation, being aimed at human programmers. We

| ‘have begun to codify and embed this type of knowledge in 2 of our systems

[see Sections 4.6 and 4.7]. |

. How big a body of knowledge are we interested in, and how much detail

is needed? Our crude preliminary estimate is that something like a few

: thousand "facts" (any convenient chunks of knowledge, such as production

rules, axioms, or goal statements) could enable a program to understand

simple list-processing programs. We have generated a proposed set of

. facts necessary for a program-understanding system to understand very
| simple insertion- and selection-sort programs. 100 to 200 facts seem

. adequate, without counting either the semantics of LISP or any efficiency

or optimization knowledge. Including these other knowledge sources would

| 16 | |



oo bring us to several hundred. Manna and Waldinger's experience [22] with

the domain of pattern matching indicates that about 75 facts are sufficient

to enable the construction of a unification algorithm (leaving out

. : efficiency, programming-language semantics, and high-level program- |

construction concepts).

Such estimates, crudeas they are, give us an idea of how smart a

program-understanding system might become in the next few years; that is,

we can expect a system to deeply understand a very small set of programs.

| Our plans are to finish the characterization of simple sorting and

then to consider simple tree searching, table look-up, and set operations.

At the same time we will increase our emphasis on the automatic selection

of representations. These areas all involve more-oreless general" |

programming knowledge and are not too domain specific. Our first more

domain-specific area under attack is that of concept-formation programs

[18, 34], a class of inductive-inference programs that encompasses enough

- general programming knowledge to be interesting for that reason. We are

currently defining a set of increasingly complex concept-formation |

| programs to pace our efforts. PUPS [see Section 4.6] indicates that there

are about 75 units of knowledge necessary to write a concept-formation

program, where each unit contains about a dozen facts.

It would be nice to know the size of the body that constitutes the

"core" of programming knowledge. As yet, we can only guess. Finding the

| knowledge is still a more-or-less linear process; that is, to add a new

| capability to an understanding system requires about as much time and
effort as it took to add the previous capability. We are beginning to

find some commonality in the utilization of previously codified knowledge,

| 17 |



but it's too early yet to make any claims of great insight. However,

~ we do have a fair degree of faith that there is a subject-independent

core that we will slowly extract and refine.

- 18 |



oo 4. IMPLEMENTATION OF PROGRAM-UNDERSTANDING SYSTEMS

= For the sake of historical completeness, we will discuss 3 early

| implementations that are of limited significance before discussing our

| later, more successful systems. Perhaps the main conclusion to be drawn

from these is that small efforts seem inadequate for serious progress in

| program-understanding systems. Good programming systems will be very

large and complex and will take many man-years of work.

| 4.1 Schema Instantiation to Fit Example Input-output Pairs

. The first running system in our group was Lenat's PWl, which was

implemented in MLISP [30]. It takes as input several example input-output

- list pairs and produces as output LISP programs. The idea is simple: |

most elementary programs in the class of interest have 1 or 2 termination

| conditions followed by a recursive call. The structure of such a program
can be given by a few high-level schemata.

The system infers the number and type of arguments by examining the

) example input-output pairs. From the number of arguments either the

l-input schema or the e-input schema 1s selected. The input schema 1s

f(x) «

if f(x) = c, then f(x) else [line 1]
if f(x) = c, then f) (x) else [line 2]
Fo (f5(£,(x)), fa(fg(x))); [line 3]

where fr, through fy are functions and cy and c, are constants,
all to be determined later. Lines 1 and 2 correspond to termination

|

| conditions, and line 5 corresponds to a recursive call.

oo oo 19 |
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5 | The user is asked if the function is recursive. (If it is not,
| line 5 is not used.) The default condition is to assume a recursive
| function, but no attempt is made to guess that the function is recursive.
CC : The automatic program writer next determines, again by asking, whether

there are 1 or 2 terminating conditions (i.e., line 1 only or both lines

1 and 2) and whether the user wants to suggest either the test or the
value for lines 1 or 2.

Whatever pieces are not supplied by the user are filled in by a

- constrained search process that also fills in the functions in line 3.

The search proceeds as follows. First, an ordered set of candidates is

: formed for each subfunction and constant. The user can give advice in the |
] form of suggested subfunctions that are likely to occur. A second

information source is the type (atom, list, or number) of each argument.

. These factors are combined, using a rating table containing the probability

| of each known function appearing in a particular schema position, to yield
| a final ordering. Then the candidate instances of the schema are generated

i one by one, in accordance with the orderings of the subfunctions.
several tricks prune the search space. A function is not applied to

. the wrong number or type of arguments. To check this the instantiated

: schema is run on the examples, and chécking occurs at every step of

: execution. Infinite recursions are detected and prevented. "Infinity"
1s a parameter set in advance, usually to a number between 17 and 100.

The function being defined may only occur in line 5, the recursion step,
and its arguments in the recursive call cannot be the same arguments it

receives in the original call. Some check should be made that the

arguments are somehow moving toward the termination form, but actually any
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Lo perceived change is allowed. Several special subfunctions, such as the

| identity function and a projection (or selection) function, are provided

- to enable the desired program to be forced into one of the 2 given

procrustean beds.

| | The program is known to have generated at least 8 correct programs,

but run out of time on most other attempts. Among the programs PWl

wrote are

function name function operation

~ | sub? subtract 2 from the (numeric) argument
[from2 examples: 2 —- 0 and 7 - 5 ]

| last produce a l-element list containing only |
_ the last element of the input list

[from 2 examples: (A B) —— (B) and
(ABCDE) —— (E) ]

| reverse reverse a list [from 1 example: |
(ABCDE)— (EDC BA) ]

| Fibonacci the obvious [from 5 examples: 1-1,
| 6 -8 , and T - 13 ]

- ] factorial the obvious [from 2 examples: 1 - 1
and Lb - 2b]

insert insert a number into its proper place in

_ an ordered list of numbers
| [from 3 examples: 2, (138) — (123 8) ;

| 2, (8) ——>(2 8) ; and
7, (15) — (157)1

sort sort a list of numbers, given insert as

a primitive function |

[from 4 examples: (2 3) — (2 3) ,

(176L4)— (LL 67), and
: (8125%9)—>» (123589) ]

k flatten changea tree into a single-level list of
the atoms in the tree [from 1 example:

(A(BC (DE)) F) —> (ABCDETF)]

| " This approach appeared to have limited potential, so no controlled

- experiments were run. The main disadvantage was that the program had a

limited model of its task and little programming knowledge, so it

consequently engaged in large searches.

1



_ L.2 Sequence-extrapolator Writer oo

| This was an INTERLISP [31] program by Lenat. The question was

BN whether it is possible to write a highly specialized program writer that

produces programs for a given sub-area of inductive inference, in this |

| | case sequence extrapolation [25, 29]. Other specialized program-writing
. programs, like compilers and compiler-compilers, have been around for

a while. This new task turned out to ce easy.

) The program begins with a schema for a generalized sequence-

| extrapolation program consisting of 5 subparts. The user describes, via

a dialog directed by a decision tree, which capabilities are to be

_ included for each subpart. (Not all choices are independent, however.)

The system then includes the appropriate pieces of program or data that

R meet this description. For example, for the subpart of known sequences, |

the user indicates which sequences should be immediately recognizable by

| exact match.

Not much was learned, except that it is possible to write a highly

specialized program writer for this domain. We can guess that it would be

easy to turn out specialist program writers for other simple, well-structured

domains. The system had little of the character of what we call an

understanding system.

~ 4.3 Ellipsis Translator

: This was a small study and INTERLISP program by Shaw designed to

translate a class of ambiguous generic examples into a list of candidate

) unambiguous internal representations. For example, the program translates

| (x, + x) + ooo + x) into the 2 unambiguous interpretations

| 22
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oo 2. pS and 2 X .
; 1<i<n/2 °F 1<ic<log,n 2

| (although the 2 interpretations are not represented internally in a form
| | isomorphic to the above). The experimental program was not pushed, so it

| i never left the nearly debugged stage. However, there are a few comments
and observations we can make.

: The notation seems to be useful, and the intent of the user is often

| easy to guess by straightforward techniques. First, observe that finding

an interpretation reduces to sequence.extrapolation on the indices of the

| | variables. Sequence-extrapolation techniques [25, 29], including successive
differences, successive quotients, and tests for common sequences, have

| - allowed the construction of relatively powerful sequence extrapolators |

that behave well and usually produce the desired interpretation, although

| ) - a non-cooperative user can often evoke a false interpretation. A more

| serious problem is that of communicatingto a cooperative user the

| algorithm used to interpret the ellipsis notation and either verifying.

that the first candidate is the intended interpretation or else finding
| it by some interactive procedure. |

B The internal representation of the meaning does not appear to be a

problem, and good ones should fall out naturally when an ellipsis-

| | - translating mechanism is incorporated into a larger program-understanding
Fo system.

| ; An ideal system should, of course, be forgiving. For example, it

: should produce the same interpretation for the following U4 styles:
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- (x, LIE x) |
| (x, + x, + Xz +o. x) | |

BN (2) + x, + x5 coe tox)

| | (x, + Xo + Xz en x) |

| If the user provides a meaningfully subscripted last element, that information

should be used. For example, in (x, STEER * n) the last element should
| resolve the ambiguity in the sequence beginning 2, 4, ... . Our ideal

| system should also handle interleaved sequences (say, from different

| sources), such as (x, Vp Xz yy cee) ; specified intermediate elements,

: such as (x x4 co Xps4q ...) 3 deleted elements, perhaps represented

as (2, Xp eve TK en x) or in other ways; and various operators, such

as +, - , etc. | |

Waldinger has suggested that a more powerful induction mechanism be

| © used to allow "formula extrapolation’, e.g., to handle examples such as

(A, B, AA, AB, BA, BB, ...) . Such a mechanism could be of use in

specifying more complex, but frequently used, enumeration algorithms.

) Fusaoka [ll] has implemented an embryonic formula extrapolator.

| L.L Our Simplest Program-understanding Program

oo The next program showed some rudimentary program-understanding behavior.
It dealt with simple list manipulation, assignment operations, and

arithmetic. The 2 versions of the program were Lenat's PUPL and a

revised version, PUP2, by Steinberg. Both versions of PUP were written

- in QLISP [26] (the successor to QAL [27]) and INTERLISP.
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Lo The specification of the program to be written is basically a
: | formal input-output relation. The program is structured around QLISP
| goal statements, which specify both the desired state and an "apply"

list of subprograms that may be able to achieve that state. A Subprogram

may achieve the goal state directly or may decompose the goal into

subgoals and use goal statements to achieve these. We'll describe

several of the tasks PUP accomplished, along with a description of the

stored facts used in each case.

oo L.4.1 Interchange of Elements This is a simple problem,
] similar to one solved by Simon's Heuristic Compiler [28]. The problem

statement is | |

L

| initial state final state
} contents(x) = a contents(x) = b

contents(y) =b contents(y) = a

| |
| The initial state is assumed and the final state taken as the goal.

| One of the programs on the apply list decomposes goals of the form a A 8
N into the separate conjuncts and uses goal statements to attain first one,

then the other, in a more-or-less depth-first manner.

| The program that handles the subgoal contents(x) = b sees that
contents(y) = b is true and so adds x « y to the program being written.

It also adds a comment " x previously contained a " at that point in the

program and updates the world model to say that contents(x) =b now holds.

Next, this same program is given the subgoal contents(y) = a and finds

that a no longer exists, so it looks back in theprogramto find where a

was destroyed. It finds the comment " x previously contained a " and so

. ..



Lo patches the program to save a in a temporary variable before it is

2 destroyed. The program now looks like

begin

{ temp «X;

pF | Xx « vy; comment x previously contained a ; |

Now a exists in temp ; so the program can achieve contents(y) = a by

FE y «temp; comment y previously contained b ;
1 end;

| The interesting issue here is whether to look ahead when a is

| destroyed and predict that it will be needed again, or to go back and

| patch if the need is discovered. In this case patching was much easier

than predicting, largely because a comment was made in order to facilitate

FE any needed patching. (Far better programmers than PUP use many comments

| for just that purpose.)

| 4.4.2 3-element Sort This problem, sorting the contents of 3 cells

without using recursion or iteration, is non-trivial even for humans.

| Experienced programmers can take several minutes and often come up with

incorrect programs. Formally, the problem is

| initial state final state

contents(x) = a contents(x) < contents(y)
contents(y) =D contents(y) < contents(z)
contents(z) = ¢ contents of x, vy, and z are, in

- some order, a , b , and cc

No information is given about the ordering of a , bb, and ¢ . The

third conjunct of the goal 1s presently handled by a kludge: nothing
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PUP knows how to do in achieving the rest of the goal changes this

2 condition. Thus the goal PUP gets is actually Just

| | contents(x) < contents(y) A contents(y) < contents(z) .

The basic method is to use case analysis, which is adequate (although

| a more clever approach is possible). The AND handler begins by decomposing

| the main goal into its 2 subgoals. To achieve contents(x) < contents(y)

PUP knows to try 2 things:

(1) Is contents(x) < contents(y) already true? FIP can
| prove that it is true if it has been explicitly

stated or, since PUP knows that < is transitive,
if there is a simple transitivity chain such that

contents(x) = A <B < ... <7 = contents(y) . In
Lo either case, if contents(x)< contents(y) is

already true, PUP is done.

| (2) Is contents(y) <contents(x) ? PUP can know this too |
§ by having it explicitly stated or from a transitivity

chain. PUP also knows that — (ax <B) Dp <a, sO
| that if it knows —(contents(x)< contents(y)) , then

. it can deduce contents(y) < contents(x) . In any
case, if it decides contents(y) < contents(x) is
true, PUP interchanges x and y . To do this HP

| calls itself recursively, giving itself the interchange
| problem discussed above in Section 4.4.1. (Some future

version of PUP should probably save some information |

| about each problem it solves, so that when it is given
another similar problem it has an easier time. At

present, however, PUP completely redoes the interchange.)
After the interchange, PUP interchanges everything it

2 knows about x and vy that depends on their contents.

That is, every fact that refers to the contents of x
is modified to refer to the contents of y and vice

| versa. |

= Unfortunately, from the initial state none of the relevant ordering

information is known, so the goal of contents(x) < contents(y) fails

to be achieved and the AND handler fails. (A smarter program might have

| | first noticed that no ordering information was given about a , Db ,

and c¢ , and not attempted either of the above steps.)

: 2 |



I Failure of the AND handler causes the goal-statement mechanism to

3 try further programs on the apply list. One of these is a case-analysis
handler. This program picks one of the subgoals, say

| | contents(x) < contents(y) , and constructs a program of the form

ifx <y then subprogram, else subprogram,, ;

| We note that the implicit assumption here that the < predicate is
| computable should be made explicit. A smarter system might recognize

this program as a sort program and go on to produce a nice algorithm.

To find subprogram, >» contents(x) < contents(y) is assumed and

| the entire goal retried. Again the AND handler fails. (Although the |

. first subgoal succeeds since it is assumed, the second subgoal,
] contents (y) <contents(z) , fails.) Again we enter the case-analysis

| handler. This time since the first subgoal is true (by assumption), it
| will not be picked; so the second subgoa.l is picked. By now, the first
: part of the program being constructed looks like

i

if x <y then

- if y <2 then

; The entire goal is again retried. Since both subgoals are assumed, the

| AND handler succeeds this time, and this case is done.
A point to note is that as each subgoal of the AND goal is achieved,

it is added to a list of "protected" facts. After each operation this

list is checked to see that none of the facts on it has been altered.

If any have, an immediate attempt is made to restore them. This can,

of course, lead to infinite loops in which restoring one alters another,
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I restoring that alters the first, ad infinitum. To prevent this, at

some arbitrary level of restoring within restoring, a cutoff is made

and failure reported. The importance of the process of restoring |
| protected facts will be shown shortly.

| Now we do the else part of the innermost if. To do this the
: assumption contents(y) < contents (z) is removed, and the assumption

—(contents(y) <contents(z)) is made. Then the whole goal is retried.

The first subgoal, still assumed, succeeds and is added to the protected

| list. The second subgoal is tried, and since contents(z) < contents(y)

now holds, y and z are interchanged. A side effect of this

s interchange is to modify the fact contents(x) < contents (y) to be |
i contents(x)< contents(z) . |

After the interchange the protection list is checked, and because of

| the interchange PUP no longer has the fact contents(x) < contents(y) .
So an attempt is made to restore that condition. As before, direct methods

. | fail, and the case-analysis handler is invoked. As before, a conditional
statement is added to the program, and the true and false branches are

: written by assuming the truth and falsehood, respectively, of the
condition. The true case results in the null program, and the false

case results in an interchange. The attempt to restore

contents(x) < contents(y) succeeds, so the else part of the innermost

if succeeds and thus the whole innermost if does too. The program now
| looks like this (without comments):

} .



— if x <y then
begin

if y < z then else
- begin

temp, ~ ¥;
y © 2;

: z «~ temp,;
| if x <y then else

begin

- temp, “- X;
X <Ys

y ~ temp,
end.

end

| end

: else ]
subprogram,, ;

Finally Subprogram, is written. All assumptions and deductions

| or specific to the process of writing Subprogram, are removed, and

—(contents(x) < contents(y)) is assumed. An interchange is needed to

establish the first subgoal, but otherwise the process is similar to that

. of writing subprogram, . The final program is

. 20 |



; if x <y then
a begin

| if y < z then else
begin |temp, « y;

| zZ + temp, ;
| if x <y then else

begin

| temp, - X3
X “yy;

x y «= temp,
end

end

. | end
else

begin

| temp, - X;
X « ¥y; | | |
y «= temp; |L if y < z then else

begin

( temp) « y;
} y < z;

vA temp, ;

| if x <y then else | |
| | begin |

i temp, - X;
| X <y;
- ~ tem

y Pg :- end
| end
d end ;

L.h. 3 Integer Square Root In this example the desired program——o-- WHual'e noot

should find Vx | » the floor of the Square root of input x . This
task was chosen to coincide with Manna's tutorial on automatic

programming [21], which Compared the abilities of existing systems to
synthesize or verify such sa program. PUP's performance was gained by
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| _ sacrificing formal methods -- and the associated formal guarantees.
5 PUP has just the right knowledge about numeric functions, number
LL systems, ordering, maxima and minima, searching, and the real square-root

: function to make the problem interesting yet doable. For example, PUP |
3 | | does not know any program which directly computes the square root of x .

| However, it does know how to test if an input is equal to the square root

| of x , by comparing the square of the input to x . And PJP does have a

program to compute the square of a number: multiply it by itself.

| Let us investigate the dialog now. The user asks for the integer

| | square root of some number, say 1isqrt{82) . Since PUP doesn't recognize

| } the function isqrt , it assumes the user either made a typographical
| error or wants PUP to write a new function. The user settles that

| - question in favor of the latter alternative, and PUP notices that there |

| 1s 1 numeric argument. The knowledge of numeric functions is sufficient

| ~ to realize that the domain and range of the function should be pinpointed

a if possible. The user indicates that both domain and range are the

| natural numbers. PUP now picks names for the input and output variables,

say X and y , respectively, and asks the user to describe the function

| in terms of these variables. The user replies with

| isqrt(x) «max y- such that y < square root(x);

PUP first considers whether or not the condition y < square root(x)

is directly testable given x and y , i.e., whether PUP already has a

] program which can do it. Knowledge of the < relation says that the
test can be done if and only if each side is computable. We trivially

oo have the left side, given x and y . But PUP doesn't have an algorithm

to compute square root(x) , so we must look deeper for the right side.



oo Knowledge of inequalities says to fix this up by finding an inverse

} function of square root , say i , and by replacing the old inequality

by i(y) <x . A warning note says that such an inverse must be computable

- | (and in addition both the inverse and the original function must be

monotone); otherwise, we're no better off than before. The main fact

) about square root is that its inverse is achieved by squaring. Both

} the square root and square functions have tags indicating monotonicity.

Also, square is known to be computable, so the problem statement is now

~ reformulated as

= isqrt(x) «max y such that square(y) <x;

- The second problem is whether an algorithm is already known which |

| computes the maximum element in the range of a given predicate. Knowledge

] © about max includes only 1 algorithm: start by choosing the upper bound

of the range and then iterate, decrementing the candidate each time, until

the predicate is satisfied. Knowledge of the natural numbers says that an

. upper bound does not exist, so this straightforward method won't work.

Fortunately, max knows a transformation of itself when the predicate

- is monotone and the range is a segment of the integers:

1 max y such that p(y) becomes min y such that —p(y + 1) . Both
the conditions are verified in our case, so the change is tentatively

y made, and the problem statement becomes

. isqrt(x) ~ min y such that —(square(y+ 1) < x);

. (Notice that PUP implicitly assumes that the negation of a computable

| predicate is computable. This should probably be made explicit.) Knowledge
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- of negation allows the replacement of —~< by > at this point, and

B we get |

isqrt(x) «min y such that square(y + 1) >x;

| Now algorithms for computing min are examined. The only one says

to start at the lower bound of the range and repeatedly increment until

| the predicate is satisfied. Knowledge of natural numbers informs us that

| a lower bound is O . PUP converts this to the final code:

| isqrt(x) « isqrt, (0, X) 3 -

) isqrt, (v, x) «if square(y + 1) > x then y else sqrt. (vy + 1, x);

- PUP enters the program in its records, recalls the original request |

for isqrt(82) , and runs the new program on it.

- Notice the flavor of PUP's operation: locating relevant information,

which either provides some of the final code or points to more information

| which is needed. It 1s the structuring of this knowledge which beats the

combinatorial explosion of searching for relevant facts.

: L.5 Examples Program

This program, called EXAMPLE, infers recursive LISP functions from

| ~ single example input-output pairs. The program was written in INTERLISP

| by Shaw and later revised by William Swartout. The inductive inference

offunctions from example 1/0 pairs has also been explored by

- J. C. R. Licklider [1] and Hardy [1k].



2a As a typical problem solved by EXAMPLE, given the example I/O pair

- input output

(ALRBCD—s (DDCC BBA A)

it synthesizes the "reverse and double" function

f(x) « if null(x) then nil else |
FT append (f(cdr(x)), list (car(x), car(x)));

| EXAMPLE can infer a class of functions which can be approximately

characterized as simple list-to-list transformations. A somewhat more

precise characterization of the class is that each function recurs along

_ an input list (or lists) and produces some part of the output (possibly |

empty) for each step of the recursion. These pieces of the output are

) ; assembled into the output list without any reordering (with the possible

exception of completely reversing the output). At each step of the

recursion, a similar recursive subfunction can be used to produce that

step's portion of the output. There can be several input arguments, and

the function written can be recursive in any number of arguments.

: As an example, consider the 1/0 pair

] input output

(ABCD) —> ((AB)(AC)(AD)(BC)(BD)(C D))

1 2 3

The output is produced in 5 steps as indicated. A recursive subfunction

produces the sublists (1, 2, and 3 shown above) in successive steps, and
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the main function appends them together. EXAMPLE can synthesize this

3 function and variations, such as having the output reversed or the same

=u output but with each sublist reversed.

| | The program works as follows. Consider the synthesis of the function

| | discussed above. Call it f . First EXAMPLE decides how much of the
[ output is produced in the first step of the recursion (referred to as the

recursive head). Thus, in the example above, it decides that the first

| sublist (A B)(A C)(A D) is produced in the first step and is the recursive

| } head. (The heuristic by which it decides this is interesting and is

| discussed later.) Next it sets up the subproblem of synthesizing the

| - code that produces the head. This can be thought of as specifying a

subfunction, although in-line code may be used if no recursion is necessary.

) In our example a recursive subfunction, call it fy , is required. First |
| | the arguments of fy are selected. In this case EXAMPLE chooses 2
| arguments for fy , car of the input, A , and cdr of the input,
| : (BCD) . Obviously f; Just lists car of the input with each of the

| elements of the cdr . After the inputs are set up, the subfunction is

written in the same manner as the main function, by a recursive call to

| EXAMPLE. Returning to the synthesis of the main function, there are 3
| remaining steps: (1) the terminating conditions are selected;

| : (2) the results from each recursive step are joined properly, using

| either cons or append ; and (3) the recursive call of the main

oo function is formed. The recursive call can be on the cdr , cddr ,

: cdddr , etc. For example, in (ABC DEF) —> (AC E) the recursive

| call is on the cddr of the input.



The program written for (ABC D) —> ((AB)(AC)(AD)(BC)(BD)(C D))

Lo - is |

f(x) « if null(x) then nil else
oC if null(cdr(x)) then nil else

append (f, (car(x), cdr(x)), f(cdr(x)));

f(y z) «if null(z) then nil else |
cons(1list(y, car(z)), f(y cdr(z)));

EXAMPLE is fairly complex, but we will describe one interesting part,

namely the heuristic that decides where to break the output list into the

recursive head and the rest. The output list is scanned left to right (and

possibly right to left if necessary), -looking for a simple progression.

. When a large change is encountered, this point is proposed as the break.

In our example, (ABCD) — ((AB)(AC)(AD)(BC)(BD)(CD)) , the

- pattern (A next input) , where next input signifies the successive |

elements in the input past A (i.e., B, C , and D ), is discovered

© to match the first » elements of the output but not (B C) , so the break

} occurs before (B C) . This heuristic, along with many others, such as

determining when to write a subfunction and the number of arguments for

- a subfunction, works fairly well.

The following examples are ones for which a reasonable program was

] automatically generated. Some l-input examples are

| | input output

(A BCD) ——> (DC BA) |
(A BC) ——— (AABBCZC)

] (ABCD) ——3 (DDCCBBAA)
(ABCDEPF) — (ACE)

- (ABCDEF) —s (ECA)
(ABCDEF) —s (BDF)
(A BCD) —  ((8)(B)(C)(D))

(ABCD) — ((aB)(AC)(AD)(BC)(BD)(CD))
(ABCD) ——> (ABCDBCDCDD)
(A BC D) ———> (DCBADCBDCD

_ (ABCDEF) — (BADCF E)
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| Some 2-input examples are

FC input 1 input 2 output

FN (ABCD) ——> ((¥ A)(FN B)(FN C)(FN D))
LL | (A BC) (D E F) — (AD BEC F)
| (A BC) (D E) — (ADBDCDAEBECE)

(ABC) (D E) —> ((AD)(AE)(BD)(BE)C D)(C E))
- (A BC) (D E F) — ((AD)(BE)(C F))

| The limitations of the system are |

(1) Only the position of an element, and not its identity,
is considered in deciding what to do with it. Thus a

reverse program can be written, but a sort cannot.

] (2) On the input, only top-level list recursions, as opposed
to tree recursions, are attempted. Thus the flatten

function [e.g., (AB (C (DE) F) G) — (ABCDETFG) |
-~ is not possible. |

| (3) The organization of the program makes extension into new
) areas reasonably difficult. We plan to reorganize the

: program and to add cleverer, domain-specific facts to
increase its power.

. L.6 Synthesis of Large Inductive-inference Programs

Our next system, PUP5 by Lenat, represents an attempt at the synthesis

of larger, more domain-specific programs. The system was designedto

write concept-formation programs, aclass of programs which inductively

infer the definition of a concept from a number of instances of that

concept [18]. The original target program to be synthesized

semi-automatically was SPOT, a small version of Winston's concept-formation

Co program [34] without its fancy graph-matching algorithm, written by

Peter Gadwa at Stanford University. SPOT was specifically designed to

be a simple (5-page), yet still interesting program. During the course

pis, |



| | of the design of PUPS, the target program evolved into a somewhat
| different program.

PUP5> 1s still only an experimental vehicle, but it has proved

moderately successful. It has indeed written a concept-formation program

| | similar to the intended one, although augmented by self-documentation.

PUPS is being revised to write a wider class of inductive-inference

programs. The next target program is a simple grammatical-inference

- program, upon which work should be completed shortly.

Although the system is written entirely in INTERLISP, many popular

: AIl-language features [5] (e.g., pattern matching, assertions, goal |
| direction, apply teams, backtracking, special data types, demons, etc.)

were hand coded expressly for this system. The entire 100 pages of code |

L 1s organized as an interacting community of small units, called beings.
| Although complex, the structure of each being is the same: a set of answers

© to about 50 fixed questions. These questions, called the being parts,

| represent "everything you always wanted to know about a small program".
] | Neither the exact set chosen nor the number 30 is very important; the

1 approximate size of the set is relevant to automatic programming, however.
1 Each being part is itself a little program which knows what the 30 questions

are and which may ask any being any question it wants to. Since some

| beings must write target code, we choose to have each being x write all
code similar to x . For example, the sort being contains a costly

"big switch" hooked to various sorting algorithms, but the code it writes

in any specific instance will be a tailor-written implementation of a

particular sort algorithm.

Although PUPS insists on doing structured programming (hence uses

something like macro expansion), its control structure employs feed forward,
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; R feedback, backtracking, and a contextual assertion base. One bit of

inherent philosophy is that the system should defer making all decisions

as long as possible. We hope that by this deferral, along with careful

FE record keeping, we can eliminate most of the carelessness "bugs" that |

| typically arise in humans as a result of brain-hardware limitations. This

is in contrast to earlier versions of FUP [see Section 4.4], which viewed

| debugging as the predominant part of programming. Thus, PUPS rarely

| believes it is finished if in fact it has overlooked some details.

We now present (most of) the current parts of a being:

| : name description

| identity how the being is referenced in English
sentences | |

lL arguments which arguments are required and which
are optional

argument check predicate which examines each argument
: ] for suitability

| evaluate arguments which arguments of the being and in the
| code generated by the being should
Lo be evaluated

; what brief summary of what the being does

why Justification for the being's existence:
why it is called

oo how | summary of the method(s) used by the
i being to do its thing

effects postconditions which will be true after

BE calling the being
: when factors and weights telling how apropos

| the being is right now

meta code | body of the code, but with uninstantiated
subparts

| comments aid to filling in the meta code
requisites what must be actively satisfied Just

before (prerequisites), during
(corequisites), and just after

) (postrequisites) the being is
EL executed

demons which demons should be enabled during

| the being's execution

Lo affects which other beings might be called by
this being

- 40 |



oo name description

| complexity vector describing such features as
Co recursiveness, overall cost,
: chance of failing, transparency

to user, etc.

specializations what must be known to write a streamlined
| version of this being

alternatives equivalent beings in case this one
| doesn't work

generalizations more general beings in case none of the
alternative beings works

predicate what type of values the being returns
. data structure 1f being is a data structure, how it

1s initialized and accessed, how
elements are inserted and deleted

encodable description of the flow of control in
- writing a specialized new being

inhibit current enable/inhibit mechanism for demons

i demons
form changing where in the being tree this being can

directly return to |

| Although each being has about 30 answers, each of which might contain
- several facts, only about 10 facts from any given being are actually

employed during the course of the program-writing dialog. A typical |

programming being is obtain usableinformation . Its when being part

q says that calling this being is generally undesirable, but may be the

. only reasonable course to follow if there exists new information which is
!
y

v not directly usable. Its how being part says to choose (creating a

| non-deterministic backtrack point) from among these: translate, get

totally new raw information, extract a small subset of existing raw

information to concentrate upon, or analyze the implications of a small

set of existing raw information. A typical domain-specific being is

partitiona domain . It specializations being part says to find out

whether the partition is partial or total, whether it is weak or strong,

and whether it is built by repeatedly accepting (element, class name)
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3 pairs and/or accepting an element (then guessing and verifying its

| ] class name) and/or accepting a class name (then guessing and verifying

| its element(s)).
| : The dialog involved in a PUP5 run is carried on in a miniscule |

subset of English. Since it encompasses precisely the sentences which

| | the user wants to say, the dialog gives the illusion of being unconstrained.

| However, the term "the user" is not generic as there has only been 1 user

| so far. The interaction system works by each being recognizing and

- processing phrases referring to it. The dialog for synthesizing the

| concept -formation program takes several hours of console time. Much

CC of the interaction is unnecessary: PUP5 asks the user to name things

! which are never referenced again. This annoyance is being worked on. |

] A promising sign of programming-knowledge convergence is that out of

| : 67 programming beings 50 are used by PUPS during the course of writing

| both of the target programs (concept formation and grammatical inference).

| Future plans for PUP5 work include studying the various types of knowledge

| needed for programming, inductive inference, and specific target programs . |
| This will (hopefully) be done by extending PUP5 to handle more and bigger

| tasks.

| : 4.7 Sorting |

| During the past year, Green and Barstow have attempted to isolate
| and codify those "facts" of programming knowledge which are necessary for

oo a system which can understand and write simple iterative sorting programs.
; To keep the working domain small, such techniques as recursion and exchange
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sorting (e.g., bubble sort) and such fast algorithms as quicksort [16]

z | and heapsort [8, 33] were explicitly excluded from consideration. Tn the
course of this attempt, it became apparent that many concepts were

| involved and needed to be analyzed. The Present set of facts is a list

| | of 100 rules which deal with sorting and permutations, generators for

explicitly given sets, set constructors, and several types of generate-

and-test methods. The rules allow for either array or list representations

of sets. There are at present no rules regarding efficiency considerations

| or formal verification of correctness. This we consider a shortcoming,
- and Elaine Kant has recently begun studying the addition of rules for
_ optimization.

One interesting aspect of our list of rules is that it covers gs wide |

L range of levels. As an example of the range covered, there are rules
dealing with the choice between selection and insertion sorts, with

| ~ state-saving schemata for generators, with the choice of variable names,
| and with the addition of elements to the front of a list. One initial

goal of our work was to have each rule be relatively simple and explicit;
| we feel that we have been moderately successful in this regard. Thus,
; these rules provide a knowledge base for a program-writing system, and it

- 1s the interaction of these rules which provides the foundation for the
system's "understanding" of sort programs.

The rules have been organized in a goal/subgoal fashion, with the

| capabilities of disjunctive and sequential subgoals and subgoaling by
cases. A preliminary implementation of a system based upon these rules

has been completed. Each rule has been written as an INTERLISP function.

The control system consists of several other functions which describe

the efforts of the system as it writes a program, ask for choices at

| CO



3 GR-rule junctures, and provide limited additional explanatory information

| _ on request (e.g., a why function to explain the purpose of a section of

| the final program). The traces tend to be overly verbose, but confirm

| oo our belief that the rules can form the basis of an understanding system. |

Tt should be emphasized that this system was primarily a "quick and

) dirty" effort, intended asa device for testing and refining rules, rather

than as a program-writing system. One test of the rules is, of course,

i adequacy, and the system has successfully written 3 substantially different

| - Programs : a reverse program, a selection sort, and an insertion sort.

| Although not all of the variations have been completed to date, we expect

- that with perhaps 20 additional rules our system should be capable of

; . generating a few dozen distinct (although in many cases similar) programs.

| The programs produced are generally about 1 page in length (using the

» _ INTERLISP prettyprint function as a standard of measurement).

We feel that this line of research has been fruitful and plan to

continue it in the future. It is our expectation that such a structuring

: oo of knowledge will make possible the incremental addition of rules for

| other aspects of low-level programs and that any additional rules will

EE use many of the present rules as subgoals.

| hl |
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