RANDOM INSERTION INTO A PRIOR ITY QUEUE STRUCTURE

by

Thomas Porter

Istvan Simon

STAN-C S-74-460
OCTOBER 1974

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

- —

Random Insertion into a Priority Queue Structure

by
Thomas Porter

*
Istvan Simon—/

Abstract

The average number of levels that a new element moves up when
" inserted into a heap is investigated. Two probabilistic models, under
which such an average might be computed are proposed. A "lemma of
conservation of ignorance" is formulated and used in the derivation of
an exact formula for the average in one of these models. It is shown
that this average is bounded by a constant and its asymptotic behavior

is discussed. Numerical data for the second model is also provided and

analyzed.

Keywords and phrases: Priority queue, heap insertion, heap sort,

analysis of algorithms.

CR Categories: 5.25, 5.31

—/ On leave of absence from the Instituto de Matemdtica e Estatistica
da Universidade de S&0 Paulo, depto. de Matemdtica Aplicada.

This research was supported in part by the National Science Foundation
grant number GJ 36473X and by the Fundacdo de Amparo a Pesquisa do
Estado de S0 Paulo under grant number 72/425. Reproduction in whole
or in part is permitted for any purpose of the United States Government.

Random Insertion into a Priority Queue Structure

1. Introduction

In this paper we investigate the average number of levels that a
new element moves up when inserted into an (n-1) -heap to form an
n-heap. An n-heap [Williams - 190k, Knuth - 1977] is a complete
binary tree of n nodes such that the key associated with each node
is larger than the keys of both of its sons. Given an (n-1) -heap,
a new node can be inserted by placing it initially at the bottom of
the tree, thereby creating a complete binary tree of n nodes, and
then repeatedly comparing the key of the inserted node, x , with the
key of its father, y , exchanging the two nodes if x > y . If at
any stage x < y the resulting binary tree is an n-heap. Since a
complete binary tree of n nodes has | 1lg(n) +1 levels,:t/the
inserted node moves up at most | 1g(n) | levels. Hence we can create
an n-heap by repeated application of this process in less than n{ lg n||
operations. This suggests that the heap insertion method just described
could be used in the heap creation phase of heapsort [Knuth - 1973,
Section 5.2.3, Algorithm H]. One might expect that the average behavior
of the heap insertion method is still much better. Actually Williams'
INHEAP routine in his original paper is essentially the insertion method
just described, and he states without proof in the comment accompanying
his routine that the average number of exchanges is two. In one of the
models proposed in this paper we shall prove that the average is bounded

by a constant less than two.

x/
lg n denotes log2 n

To avoid ambiguities we state now the precise description of the

insertion algorithm. In this description we make use of the well known
compact representation of a complete binary tree in an array k ,

where k[1] is the root, and k[j] has left son k[2j] and right

son k[2j+1] . We also assume that each node consists only of its key.

If there are other fields of the node besides the key, the corresponding
modification of Algorithm I is trivial, and it obviously has no effect

on the average we are investigating here.

Algorithm I. This algorithm inserts the n-th node into a heap. The
heap is stored in k[1],k[2],...,k[n-1] and k[n] is the node to be

inserted.
L];. [Initialize.] Set p « n , g« Ln/2_| , k « k[n]

I2. [sift it up.] While g >0 and k[g] < k do
begin k[pl-klql, » « g , g ~Lp/2] ___

I3. [Insert.] Set k([p] « k . O

2. The Models
Let H(n) denote the number of n-heaps with n given distinct
keys, kl’kg’ [) w. The following closed form is known [Knuth - 1973,

Section 5.2.3] for H(n)

H(n) = ——2— , (1)

where Si is the size of the sub-tree rooted at node k[i]

Definition: Let A(n) denote the average number of levels the n-th

node is moved up by Algorithm I.
To find A(n) we consider two models:

Model 1: We assume that each of the H(n-1) possible heaps with the

(n-1) elements already in the heap [kl,kg,._.,k is equally likely,

n—l]
and that the key of the n-th node kn is equally likely to occur in any

of the n intervals determined by k ...,kn . In Section 4 we

l’k2’ 1

shall derive a simple recursive formula for A(n) 1in this case.
Furthermore, we shall prove several properties of this formula in
Section 5.

The assumption that each of the H(n-1) possible heaps is equally
likely is Jjustified if one uses the heap creation algorithm of heapsort
[Knuth -1973, Section 5-2.3, Algorithm, H, heap creation phase] to build
the (n-1) -heap and then applies Algorithm I to insert the last element.
It is shown [Knuth -197%, Section 5.2.3, Theorem H] that each (n-1) -heap
occurs with equal probability in this case. One could hope that a
similar theorem would hold for heap creation by repeated application of
Algorithm I. Unfortunately, this is not so, for certain heaps will
occur more-often than others if-we apply Algorithm I successively to a
random permutation of 1,2,...,n . To see this, let us compute the

probability distribution for the two possible heaps when n = 3 . It

‘is easily verified that the permutations 123, 132, 2153

and 3 12 are transformed into the heap , while 2351

and 321 are transformed into . Hence is twice

as likely as if we assume that each permutation is equally

likely. An even more striking example of this fact is that the heap

o
Q’@ is generated by 228 T-permutations while its
©]0.016 |
(1)

reflection 6 0 is generated by only 12 , a ratio of 19:1 !

Therefore we are led to our second model in a natural way.

Model 2: We assume that the H(n-1l) heaps occur with a probability
distribution induced when Algorithm I is applied successively n-1
times to a random permutation of 1,2,...,n . Then we determine the

average A(n) when applying Algorithm I once more to insert Kn .

In Section 6 we shall discuss the average according to Model 2.
Although we do not provide an exact formula for Model 2, we do present

numerical data that shows results relatively close to those of Model 1.

3. Combinatorial Preliminaries

In this section we present a combinatorial lemma about k-arrangements
which appears to be useful in a variety of situations. In particular
we shall use it to prove Theorem 1 in the next section. The result
was suggested to us by D. E. Knuth and has been previously used in the
solution of several problems, but to our knowledge has not been precisely

formulated before.

Throughout this section, n and k denote fixed positive

integers with n > k

Definition:

(1) A k-arrangement of n objects is an ordered k-tuple of these
objects. A k-arrangement of k objects is called a k-permutation.
We shall consider only k-arrangements of {1,2,.”,n} .

(2) Let 0 be the set of k—-arrangements of {1,2,”.,n} and let =
be the set of k-permutations of {1,2,.”,k} . The function

f: 0 - n such that f((al"'“’ak)):= (o "bk) implies

1" ..
a. <a. © b. <b.
i J i J

is called the renumbering function preserving relative order. It

is obvious that for each n and k the renumbering function f
preserving relative order is unique.

3) A property P of k-arrangements is said to depend only on the
relative order of its elements when P(a) ® P(f(a)) for all
aco . (Note that since n C o, f(a) €0 and hence we can talk

about P applied to f(a) .)

Examples:

(1) The property that the first element of the k-arrangement is the
largest one is a property that depends only on the relative order
of its elements.

(2) The property that the first k-1 elements of the k-arrangement

form a (k-1) -heap is also such a property.

Definition: A random variable over a certain space with uniform
probability distribution will be called simply a random variable over

that space.

We observe that the renumbering function f induces a partition
over the set ¢ , where two k-arrangements belong to the same equivalence
class, 1if and only if they are both mapped into the same k-permutation

by £

*
Lemma l:—/ Let P be a property of k-arrangements that depends only
on the relative order of its elements. A random k-arrangement of
{1,2,...,n} satisfying P remains random under the renumbering

function f preserving relative order.

Proof: All we have to prove is that an equal number of k-arrangements
that satisfy P are mapped by f into each k-permutation that
satisfies P . Notice that since P depends only on the relative
order of the elements of the k-arrangements, those that satisfy P

are always mapped into k-permutations that satisfy P . Furthermore,
if any k-arrangement of an equivalence class satisfies P , then all
k-arrangements of that class satisfy P . Hence we may simply show
that each equivalence class has the same number of elements. But there
are exactly k! equivalence classes each corresponding to a k-permutation.
Now consider any k-subset of {1,2,...,n} . Permuting its elements in
every possible order, it follows immediately from the definition of f

that exactly one of these k! permutations falls into each equivalence

*

—/ L. Guibas has suggested that this lemma be named a "Principle of
Conservation of Ignorance", because the randomness is preserved
through the renumbering process.

class. Thus, since there are (i) k-subsets of {1,2,...,n} , there

are exactly (i) elements in each equivalence class. O

L. The Analysis by Model 1

In this section we derive a formula for A(n) in Model 1. The
input to Algorithm I can be thought of as a complete binary tree of n

nodes, kl’kE""’kn , such that

(1) The nodes kl,k2,-...,k.n_l form an (n-1) -heap.
(2)

(ii) The n-th node, kn , of the binary tree is the new node

to be inserted.

AY

\

. LY
level |Llg n]

Figure 1. Input to Algorithm I when n = 9 .

The situation is depicted in Figure 1 when n = 9 . The nodes connected

with solid lines form the (n-1) -heap, and the broken edge connecting

k9 to the tree is used to indicate that k9 is the node to be inserted
into the heap. Thus, at this point k9 is the only node that might
violate the heap condition key(son) < key(father) . It is important

to notice that as long as the relative order of kl’k2’°“’k9 is
preserved, the values of the keys themselves are irrelevant as far as
the complexity of Algorithm I is concerned for this input.Inother
words, Algorithm I will execute exactly the same sequence of instructions

for two inputs k,,ky, . . -k and k . .,kl:1 satisfying condition (2),

] !
l) 2’ .
provided that their relative order is the same. Therefore we may as well

assume that

{kl,ke’ Ly a,kn} = {1’2, oy .,n} = Mn . (3)
We now prove the following formula for the average A(n) in Model 1:

Theorem 1: The average A(n) under the assumptions of Model 1
satisfies the recurrence relation

L +n-_ni. A(n-2‘) for n > 2

Sl

A(n) =

where L = | 1g n] and { = ng(%n)_] and

A(l) =0

Proof: Let L = | 1gn] be the level of the inserted node, and let T

denote the subtree of the root that contains kn . Let T' be the other
subtree and let T be the subtree T without the node kn . Thus T
and T' are both heaps. Each possible wvalue of kn occurs with
probability 1/n . If kn = n , Algorithm I will move it up exactly L
levels, since in this case the inserted node has maximum key, and

therefore it will be at the root when the algorithm terminates. If

kn #n , then n is already at the root and kn will eventually

settle at some level in T . Therefore we may write

A(n) = ;-];.L+P-;-1—l AlT] (%)

where A[T] denotes the average number of levels k, is moved up in
the subtree T . The subtree T has exactly n-2' nodes, where

a = ng(% n) |} . (Note that £ = L-1 if T is the left subtree of
the root and £ = L if it is the right one.)

Our aim now is to show that
L
A[T] = Am-2%) . (5)

Fixing a particular T and varying the possible heap arrangements of
the nodes of T' we see that each T occurs exactly H(2[-l)'times
among the original (n-1) -heaps, which are assumed equally likely by
hypothesis. Therefore each possible T is equally likely and we can
compute A[T] over the space of possible T-s . Keeping also in mind
that kn will eventually settle at some level in T , since k eM 4

and n 1s already at the root, this means that everything works as if
we were inserting kh into T rather than into the original (n-1) -heap.
Let us therefore assume from now on that our input is T . The input T

has k = n-2£ nodes chosen from M and it can be regarded as a

nl'’
k-arrangement of {1,2,...,n-1}- such that its first (k-1) elements

form a heap. As we have seen before, this is a property of k-arrangements
that depends only on the relative order of its elements, and hence a
-random T remains random under the renumbering function £ preserving
relative order, by Lemma 1. Furthermore by observation (3) above, the

renumbering process preserving relative order does not change the number

of levels that the inserted node is moved up by Algorithm I. Hence we

10

can compute the average A[T] over the space of the renumbered trees.

But this is precisely A(n -22). -

5. Some Properties of the Average A(n)

In this section we shall explore some of the properties of the
average A(n) derived in Section 4. In particular we shall show that
at any level L of the tree the leftmost node, ob » has the largest
average. We then proceed to prove-that A(ZL) is always bounded by a
constant and approaches this constant as L approaches infinity, thus
showing that A(n) is bounded by a constant for all n . We then
derive a closed formula for n of the form il , which is the
rightmost node at level L , and show that actually in this case A(n)
is bounded by 1 and approaches 1 as L approaches infinity.
Finally we examine the asymptotic behavior of A(n) , where n varies

along an arbitrary path of the tree.

Theorem 2: If n; and n, are two nodes at the same level L such
that n; is to the left of n, (i.e., nl<:n2), and if
L £
1 2 2
Alny -2 7) > A(n, -27) where £; = ng(gni)J , then A(n;) > A(ny)
Proof: By Theorem 1,
L 1 4
- = - = -2
A(ni) n.4+- (1 n1.) A(ni)
4 L

)

1 2
Since A(nl-2) 2A(n2-2)

!
A(n) - A(n,) > (% - HJ;-)L - (% - i)A(n2 -2 3

£
2 1 1
(L-A(n,-2 7)) | — - =
2 n, n,

L L

2) > 0 , because (n2 -2 2) is a node at level

I-1 , and it can move up at most L-1 levels. It follows that

Now L -A(n2 -2

A(nl) > A(n2) . |

Corollary 1: At each level L the leftmost node 2L has the largest

average value.

Proof: The proof is by induction. At level 0 the result is trivial.
Now assume the corollary at level L-1 . Let nl be the leftmost

node at level L , and let n2 be a node to its right at the same

2 ll

level. Then n2-2 is some node at level L-1 , and nl-2 is

the leftmost node at that level (since f; = ng(% nl)J = ng(% 2L)J = L-1,

4 L L

1_ -1 2

and n; -2). Therefore A(nl-2 l) > A(n2 -2 7] Dby the

induction hypothesis, and the corollary follows from Theorem 2.

g

We now examine the average at the leftmost nodes at each level.

'
A(n -2%) + k%(lﬁil it follows that A(n) > A(n -2%)

Since A(n)

for all n . 1In particular if n 1is the leftmost node, i.e., n = 2L,
1 I-1 L

then n-2" =2 » hence A(2”) is a monotonically increasing sequence

with L . It is not difficult to show that this sequence has a limit A,

and hence it is bounded by this limit. By virtue of Corollary 1 this

implies that A(n) < M for all n, i.e., M is a constant that
bounds A(n) . Furthermore A is the best conceivable such bound

since lim A(2L) =N .

L~
We shall now determine a closed formula for A(ZL) and use it to

derive an expression convenient for the numerical computation of N .

Theorem 3: The bound M satisfies the equalities
. L 1
A= 1lim A(2Y) = 2 =5 = 1.606695152k . . .
L —o i>1 291
Proof: We have A(2L) = % + (1-2-L)A(2L-l) by Theorem 1. Let a&ap
2
L L
denote A(27) and let bL = 3 Then
T (2™
1<j<L
L -L
a; = T +(1-2)aL_l and
& _ L . b1
T (1279 LT @edy T =),
1<ji<L 1<i<L 1<j<L-1
i.e.,
L
b, - ~— + Db (6)
L = 2L -I'T (1_2-3) aene .
1<3<L
Iterating equation (6) we get
bL = bo + 3 = 'j (7)
1<i<L 2 T (1-27Y)
1<i<i

15

But bO = &, = 0, hence (7) yields

i T @a-2-3
. 1<3<L
a. - . (8)
L= 1cicar 2t 7T (1-279)
1<i<i
Let P =][(1-2-3j) and P, = (1-2-j) . If L approaches
i>t 1<i<i
infinity, ar, approaches A , hence
AN=P X - . (9)

i>1 2% p,
- L

By Euler's partition formula [Knuth - 1973, exercise 5.1.1-16],
1 ~ i
TT — -2 < 3 . Settingz=le-xand
i>0 (1-gjz) i>0 T (1-¢Y)
1<j<i

-1
q = %— =2 yields

i
R(x) = L - 1+ »n X : (10)
i>1 1-27% i>1 2%,
1 d 2-7
Let r.(x) = — . Then r;(x) = — r.(x) = ————
J 1-279% - dx J (1-279%)°
Taking derivatives of (10) and noting that R'(x) = % ﬂ' r.(x)) =
i1 ?
; r'(x) L i-1
R(x) Z % we have R'(x) = R(x) .2 —1_ = 2 1}.:
i>1 ¥; i>1 2d(1-27%) i>1 2 P,

In particular for x = 1 , noting that R(1) = % r we have

1k

1 Z 1 Z; i
T — = g Finally by
Pisiodar i1 2'p, ' (9)

A= 5 X (11)
j>1 29-1
= |

The sum (11) is rapidly converging and can be used to find M

numerically.

We can also derive a closed formula for the average at the rightmost

node of each level.

Theorem 4: If n is the rightmost node at level L , (i.e., n = 2 -1),
then A(n) = 1 - L+Tl
Proof: A simple induction on L .

The proof of the following corollary is now trivial:

1
Corollary 2: If n is of the form 2% 1_1 then

(1) A(n) <1

(ii) lim A(n) =1

L=

Theorems 3 and 4 give asymptotic values for the average A(n)
along two particular paths down the tree. We can describe any path
-on the tree by a binary sequence @ where the L-th element of the
sequence, Oi 5, 1is 0 if we go from level L-1 to L taking the
left branch and 1 if the right branch is taken. With this convention

the number 1 followed by the first L bits of @ , in binary, gives

15

the node at level L along that path. We denote this node by ELWI.f/

Hence the limit A(a) = lim A(2L-a) , 1f it exists, gives the

L-ow

asymptotic value of the average along the path defined by a . If
the limit does not exist we say that A(a) is undefined. For example
a(O) =000 ... vrefers to the path of leftmost nodes at each level,
and thus A(a(o)) = M according to Theorem 3, while a(l) =111 . . .
refers to the path of rightmost nodes at each level, and thus

A(&)) = 1 by Corollary 2.

Definition:

(1) Two binary sequences «& and B have the same tail if there exists
an i and j such that ai+k = Bj+k for all k > 0

(2) If m = n-2£ , wWhere [= ng(% n) | then we say that the average

at node n depends on the average at node m
This definition is motivated by Theorem 1.

Theorem 5: If @ and B are two binary sequences that have the

same tail, then A(a) and A(B) are either both undefined or both

defined and equal.

*
—/ This notation is motivated by regarding & as associated with the

Q
real number O = 1+ 2 —% Then the node denoted by 2le a2 is
L>1 2
clearly the node L2L-&J . Note however that this correspondence
between @ and & is not 1-1 , for sequences that are of the form
ozloze...aklooo ... and alae . ..O(kOlll... correspond to the

same real while defining distinct paths on the tree.

16

Proof: Let no be a node at level i and let nl be the node

at level i-1 such that the average at n, depends on the average

L
at ny =n-o-2 0 . It is an immediate consequence of Theorem 1 that

the average at node 2no (node 2no+l), the left (right) son of n,

depends on the average at node Enl (node 2nl+l) the left (right)

son of ny o Now given 8(0) such that 216(0) = n0 let 5(1) be

. ¢ B i-1 (1) _ (0) _ (1)
the binary sequence satisfying 2 3 =ng and Si+k = 8i-l+k for all

i+k ((0)y _ itk 1 i-1+k (1)
k >0 . Then A(2 ®) = W+ (l - W}A(E o))

Letting k approach infinity we have

i+k

oAtk (0) ©

1
() gi+k,5Z05> '

Hence if A(G(o)) = lim A(ZL'B(O)) exists then so does
L=

6(1)) - 1lim A(QL-s(l)) and A(b(o)) = A(&))

L »®

The above construction, given a node n, at level i and a path
6(0) passing through nO constructs a corresponding path 8(1)
passing through nl at level i-1 , such that the average at n,
depends on the average at n; and A(b(o)) and A(S(l)) are either
-both undefined, or both defined and equal. So 1 successive applications
of this construction reduces 6(0) to a path 6(1) such that
B:ES}){ = bl({i) for all k > 0 , and A(6(i)) and A(8(0)) are either

both undefined or both defined and equal. Consequently if @ and B

17

have the same tail then they are reduced by this process to the same

path & such that a for k > 0 for some i and j ,

i+l = Pyrx = Ok
and A(®) , A(@) and A(Q) are either all undefined or all defined

and equal. 0

Corollary 3: If Q is a binary sequence ending with an infinite

sequence of O's , then A(a) exists and A(a) = M .
Proof: Immediate from Theorems 3 and 3.

Corollary 4: If @ is a binary sequence ending with an infinite

sequence of 1's , then A(Q) exists and A(a) = 1
Proof: Immediate from Corollary 2 and Theorem 3.
Corollary 5: There exists an @ such that A(@) is undefined.

Proof: Let ® be any sequence ending with an infinite sequence
of O's . Since A(6) = M, given any € > 0 , there exists an N
such that for L >N , A -A(2L-6)| < € . Similarly for any
sequence y ending with an infinite sequence of 1l's , since

A(y) =1, there exists an N' such that for L >N',
ll-A(2L~7—)|<e.N0Wl < N, so let ¢ > 0 be such that

l+e < M-¢ . Then construct a as follows.

Step (1): Let cxl =0y =. . .= Otkl = 0 where kl is the least
1 kl
integer such that |[M-A(2 T.a)| < e . Note that 2 “.a
is determined by the first kl bits of @ only, so

this condition is well defined.

18

Step (2): Now let Qk]fl = ak i2:=. - ak2 = 1 where k2 is

the least integer greater than kl such that
Il-A(2 a)‘<e.
Now at any odd step (r) add sufficiently many 0's to have

k
|>\.-A(2 o a>l < e and at any even step (s) add sufficiently many 1l's

k
to have |1-A(2 s-a)| < e . It is clear that A(®) must be undefined

for such an O . ol

Corollary 3 asserts that no matter which node of the tree we start
at, if we always take the left branch the asymptotic value of the
average is M, while if we always take the right branch then the
asymptotic value of the average is 1 by Corollary L,

The relation of two sequences @ and B having the same tail is
clearly an equivalence relation. In virtue of Theorem 5 the asymptotic
value of the average is invariant over any equivalence class. Corollary
3 and 4% give two distinct equivalence classes that have two distinct
asymptotic values, and Corollary 5 shows that there are equivalence,
classes over which the asymptotic value of the average is undefined.

We conjecture that indeed the only two equivalence classes with defined

asymptotic values are those mentioned above.

6. Remarks About Model 2

Table 1 shows the comparison between Model 2 and Model 1. The
values under Model 1 Were computed using the recurrence relation of
Theorem 1. For Model 2 the average for n < 9 was determined by

considering all possible inputs to the algorithm. For greater values

19

Table 1

A(n) , according to the assumptions of:

Level n Model 1 Model 2 Zig-Zag
0 1 0 0 0
1 2 0.50 0.50 0.50
3 0.33 0.33 0.33
L 0.88 0.92 0.59 + 0.02
5 0.67 0.67 0.83 + 0.02
6 0.75 0.75 0.66 + 0.03
T 0.57 0.55 0.85 + 0.02
1.1k 1.2k 1.08 + 0.03
9 0.93 0.94% 0.86 + 0.03
10 0.98 0.99 + 0.03 1.07 + 0.03
11 0.79 0.81+ 0.03 0.78 + 0.03
12 1.05 1.05 + 0.03 1.07 + 0.03
13 0.85 0.87 + 0.03 0.8% + 0.03
14 0.91 0.88 + 0.03 1.05 + 0.03
15 0.73 0.77 + 0.03 0.72 + 0.03
16 1.32 1.38 + 0.0k 0.82 + 0.03
17 1.11 1.14 + 0.04 1.12 + 0.03
18 1.1k 1.14 + 0.0k 1.00 + 0.0k
19 0.96 0.94 + 0.0k 1.17 + 0.03
20 1.20 1.24 + 0.0k 0.92 + 0.0k
21 1.00 1.01 + 0.0k 1.26 + 0.03
22 1.05 1.01 + 0.0k 1.02 + 0.0k
23 0.88 0.84 + 0.0k 1.18 + 0.0k
2k 1.26 1.28 + 0.0k 0.83 + 0.03
25 1.05 1.08 + 0.0k 1.13 + 0.03
26 1.09 1.08 + 0.0k 0.99 + 0.0k
27 0.91 0.91 + 0.0k 1.24 + 0.0k
28 1.16 1.15 + 0.0k 0.91 + 0.0k
29 0.95 0.96 + 0.0k 1.24 + 0.03
30 1.01 1.00 + 0.0k 0.99 + 0.0k
31 0.8k 0.82 + 0.0k 1.23 + 0.0k

Table 1 continued
A(n) , according to the assumptions of:
Level n Model 1 Model 2 Zig-Zag
5 32 1.43 1.50 + 0.05 1.37 + 0.0k
33 1.22 1.27 + 0.05 1.14 + 0.0k
46 1.10 1.10 + 0.0k 1.19 + 0.03
g 0.93 0.91 + 0.0k 0.93 + 0.0k
48 1.%0 1.45 + o.ob 1.34 + 0.0k
L9 1.19 1.20 + 0.0k 1.10 + 0.0k
6 1.08 1.0 + 0.0k 1.16 + 0.0k
63 0.90 0.85 + 0.0k 0.88 + 0.0k
6 ok 1.51 1.56 + 0.05 0.96 + 0.0k
65 1.30 1.33 + 0.05 1.21 + 0.0k
§h 1.13 1.08 + 0.0k 1.13 + 0.05
95 0.96 0.95 + 0.0k 1.35 + 0.0L4
96 1.48 1.57 + 0.05 0.96 + 0.0k
97 1.27 1.30 + 0.05 1.20 + 0.04
126 1.12 1.05 + 0.0k 1.17 + 0.05
127 0.94 0.85 + 0.0k 1.39 + 0.0k
128 1.55 1.7% + 0.06 1.k2 + 0.05
129 1.34 1.2 + 0.05 1.20 + 0.05
190 1.15 1.09 + 0.0k 1.24 + 0.0k
191 0.98 0.91 + 0.0k 0.9% + 0.04
192 1.53 1.63 + 0.05 1.kk + 0.05
193 1.33 1.6 + 0.06 1.20 + 0.05
251 1.1 1.01 + 0.0k 1.27 + 0.0k
255 0.97 0.88 + 0.0k 0.92 + 0.0k
21

of n we simulated heap creation on 1000 randomly selected inputs,
thus determining an estimate of the average and its interval of
confidence. These results indicate that the average is relatively
close in the two models. In general the behavior of Model 2 is more
extreme than that of Model 1: the worst case, at each level, is now
worse than the worst case in Modell and asymptotically exceeds A ;
on the other hand the best case, at each level, is now better than in
Model 1. In this section we give an intuitive explanation for this
- behavior, and suggest a method for smoothing out the difference between
the worst and best case. We consider L-1 levels of the heap already
created and examine what happens when inserting the nodes at level L .
To simplify the notation we discuss the case where L = 3 , but the
argument applies as well for the general case.

Let us first assume that heap H is random. (See Figure 2.)
When k8 is inserted it can exchange with kh , k2 , and kl . These
are the same nodes that k9 will encounter, hence k9 will be competing
with numbers greater than or equal to k8's competition. Consequently
the average at node 9 will be smaller than that at node 8 . Let us
now look at the leftmost node of the right subtree, k12) When it 1is
inserted it will be compared with k6 , k5 and kl . The only one of
these nodes that could possibly have been affected by previous insertions
at this level is kl . But k12 is compared to kl only when it is
greater than k5 3 therefore we might expect that the average at 12
is only slightly smaller than the average at 8 . By this same kind
of reasoning the average at 15 should be the smallest at this level.

The above discussion shows that the average will have an undulatory

behavior at each level.

22

LA 7\ r N ;7\
r\
I

5O d b d o &b

Figure2

23

Actually the heap H , as we know, will not be random, but this
will only accentuate such behavior. The heap H 1is not random because
large keys tend to drift to the right, thus further lessening the
averages of the elements in the right subtree. To see this, consider
the input as a random permutation of {1,2,...,15} . We know that after
all nodes have been inserted, 15 will be at the root, and we shall
examine the chances of kE or k5 being 14 . We have several cases

to consider. The number 14 will settle as the left son k2 if

(1) 15 and 14 both enter the tree on the left;
(2) one of them enters at the root and the other on the left;
(3) 14 enters on the left and 15 enters previously on the right;

(4) 14 enters on the right and 15 enters later on the left.

Similarly there are four corresponding cases where 14 settles as
the right son k5 . Comparing these cases we find that the difference
between the probabilities that 14 settles at k5 rather than k.2 is
the probability that 14 enters on the same level as 15 but on the
opposite side.

In order to dampen the latter effect we suggest a "zig-zag" method,
alternating the direction of insertion at each level. Table 1 also
shows the averages found by this "zig-zag" method, when even levels are

inserted from right to left. The effect is to balance the tree more by

upsetting the ordinary drift of large elements to the right.

T. Acknowledgments

The authors wish to thank Prof. Knuth for his guidance and

suggestions throughout the development of this research.

2k

References

[Knuth - 1968]: D. E. Knuth, The Art of Computer programming, Vol. 1

Addison-Wesley, 1968.

[Knuth - 1973]: D. E. Knuth, The Art of Computer Programming, Vol. 3

Addison-Wesley, 1973.
[Williams - 1964]: J. W.J. Williams, Algorithm 232: HEAPSORT, CACM 7
(196k4), 347-348.

25

