
| RANDOM INSERTION INTO A PRIOR ITY QUEUE STRUCTURE

. by

Thomas Porter

Istvan Simon

STAN-C S-74-460

OCTOBER 1974

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

75%

| Random Insertion into a Priority Queue Structure

by

Thomas Porter

Istvan Simon-

Abstract

The average number of levels that a new element moves up when

inserted into a heap is investigated. Two probabilistic models, under

| which such an average might be computed are proposed. A "lemma of

conservationof ignorance" 1s formulated and used 1n the derivation of

an exact formula for the average in one of these models. It 1s shown

| that this average 1s bounded by a constant and its asymptotic behavior

| 1s discussed. Numerical data for the second model is also provided and

| analyzed.

Keywords and phrases: Priority queue, heap insertion, heap sort,

analysis of algorithms.

| CR Categories: 5.25, 5.31

* ld ' '| _ wi On leave of absence from the Instituto de Matematica e Estatistica
| da Universidade de S80 Paulo, depto. de Matemdtica Aplicada.

This research was supported in part by the National Science Foundation

| grant number GJ 36473X and by the FundacSo de Amparo a Pesquisa do
Estado de S80 Paulo under grant number 72/425. Reproductionin whole

| or in part 1s permitted for any purpose of the United States Government.

| 1

Random Insertion into a Priority Queue Structure

1. Introduction

In this paper we investigate the average number of levels that a

new element moves up when inserted into an (n-1) -heap to form an

n-heap. An n-heap [Williams - 1904, Knuth - 1977] is a complete

binary tree ofn nodes such that the key associated with each node

. 1s larger than the keys of both of its sons. Given an (n-1) -heap,

a new node can be inserted by placing 1t initially at the bottom of

the tree, thereby creating a complete binary tree of n nodes, and

then repeatedly comparing the key of the inserted node, x , with the

key of its father, vy , exchanging the two nodes if x > y . If at

any stage x < y the resulting binary tree 1s an n-heap. Since a

complete binary tree of n nodes has | 1lg(n) +1 levels, ¥ the

inserted node moves up at most | 1lg(n)| levels. Hence we can create

an n-heap by repeated application of this process in less than n|lg n |

operations. This suggests that the heap insertion method just described

could be used in the heap creation phase of heapsort [Knuth - 1973,

Section 5.2.5, Algorithm H]. One might expect that the average behavior

of the heap insertion method 1s still much better. Actually Williams’

INHEAP routine in his original paper is essentially the insertion method

just described, and he states without proof in the comment accompanying

his routine that the average number of exchanges 1s two. In one of the

models proposed in this paper we shall prove that the average 1s bounded

by a constant less than two.

J lg n denotes log, n .

3 To avoid ambiguities we state now the precise description of the

| insertion algorithm. In this description we make use of the well known

| compact representation of a complete binary tree in an array k ,

| | where k[1l] is the root, and k[j] has left son k[2j] and right

| | son k[2j+1] . We also assume that each node consists only of its key.

| If there are other fields of the node besides the key, the corresponding
modification of Algorithm I 1s trivial, and 1t obviously has no effect

on the average we are investigating here.

AlgorithmI. This algorithm inserts the n-th node into a heap. The

heap is stored in k[1],k[2],...,k[n-1] and k[n] is the node to be

inserted.

Il. [Initialize.] Set p ~n , q«{n/2], k « k(n] .

- 12. [Sift it up.] While q >0 and k[q] < k do
begin k[pl«~k[al, » « gq , gq «Lp/2] __

| 13. [Insert.] Set k[p] « k . 3

| 2. The Models

Let H(n) denote the number of n-heaps with n given distinct

| keys, TAY ® ... The following closed form is known [Knuth - 1973,
Section 5.2.3] for H(n) :

H(n) = nn ; (1)

| l<i<n *

where Ss 1s the size of the sub-tree rooted at node k[1i] .

| 3

| Definition: Let A(n) denote the average number of levels the n-th
| node 1s moved up by Algorithm I.

| To find A(n) we consider two models:

Model 1: We assume that each of the H(n-1) possible heaps with the

| (n-1) elements already in the heap [kpokyye sk] 1s equally likely,
| and that the key of the n-th node kK 1s equally likely to occur in any

of the n intervals determined by kiskpr eos k 1 In Section Lk we

| shall derive a simple recursive formula for A(n) in this case.

| Furthermore, we shall prove several properties of this formula 1n

| Section 5.

| The assumption that each of the H(n-1) possible heaps 1s equally
| likely is justified if one uses the heap creation algorithm of heapsort

[Knuth -1973, Section 5.2.3, Algorithm, H, heap creation phase] to build

| the (n-1) -heap and then applies Algorithm I to insert the last element.

It is shown [Knuth -197%, Section 5.2.3, Theorem H] that each (n-1) -heap

occurs with equal probability in this case. One could hope that a

similar theorem would hold for heap creation by repeated application of

| Algorithm I. Unfortunately, this is not so, for certain heaps will

| occur more-often than others i1f-we apply Algorithm I successively to a

| random permutation of 1,2,...,n . To see this, let us compute the

probability distribution for the two possible heaps when n = 5 . It

/ ‘is easily verified that the permutations 123%, 152, 215

and 3 12 are transformed into the heap 35 , while 2 35 1910

| and 321 are transformed into . Hence 1s twice

Co - 010 010

Ly

|

. as likely as Bo 1f we assume that each permutation is equally
likely. An even more striking example of this fact 1s that the heap

is generated by 228 T-permutations while its

reflection 2 & is generated by only 12 , a ratio of 19:1 !
Therefore we are led to our second model 1n a natural way.

Model 2: We assume that the H(n-1) heaps occur with a probability

| distribution induced when Algorithm I 1s applied successively n-1

| times to a random permutation of1,2,...,n . Then we determine the

| average A(n) when applying Algorithm I once more to insert XK, .

In Section 6 we shall discuss the average according to Model 2.

Although we do not provide an exact formula for Model 2, we do present

| numerical data that shows results relatively close to those of Model 1.

3. Combinatorial Preliminaries

In this section we present a combinatorial lemma about k-arrangements

which appears to be useful in a variety of situations. In particular

| we shall use it to prove Theorem 1 in the next section. The result
was suggested to us by D. E. Knuth and has been previously used in the

solution of several problems, but to our knowledge has not been precisely

formulated before.

p

Throughout this section, n and k denote fixed positive

integers with n > k .

Definition:

(1) A k-arrangement of n objects is an ordered k-tuple of these

objects. A k-arrangement of k objects is called a k-permutation.

We shall consider only k-arrangements of {1,2,...,n} .

(2) Let 0 be the set of k-arrangements of {1,2,...,n} and let =x

be the set of k-permutations of {1,2,...,k} . The function

f: 0 » nt such that £((ays vray) = CIEL implies

a, <a. e by <b,

is called the renumbering function preserving relative order. It

is obvious that for each n and k the renumbering function £f

preserving relative order 1s unique.

3) A property P of k—arrangements 1s said to depend only on the

| relative order of its elements when P(a) ® P(f(a)) for all

aco . (Note that since nC oo , f(a) e€0 and hence we can talk

about P applied to f(a) .)

Examples:

(1) The property that the first element of the k-arrangement 1s the

largest one 1s a property that depends only on the relative order

of its elements.

(2) The property that the first k-1 elements of the k-arrangement

form a (k-1) -heap 1s also such a property.

6

Definition: A random variable over a certain space with uniform

probability distribution will be called simply a random variable over

that space.

We observe that the renumbering function f induces a partition

over the set 0 , where two k—-arrangements belong to the same equivalence

class, 1f and only if they are both mapped into the same k-permutation

by f .

Lemma, 1. Let P be a property of k-arrangements that depends only

on the relative order of its elements. A random k-arrangement of

{1,2,...,n} satisfying P remains random under the renumbering

function f preserving relative order.

Proof: All we have to prove is that an equal number of k-arrangements

that satisfy P are mapped by f into each k-permutation that

satisfies P . Notice that since P depends only on the relative

order of the elements of the k-arrangements, those that satisfy Pp

are always mapped into k-permutations that satisfy P . Furthermore,

1f any k-arrangement of an equivalence class satisfies P , then all

k—arrangements of that class satisfy P . Hence we may simply show

that each equivalence class has the same number of elements. But there

are exactlyk! equivalence classes each corresponding to a k-permutation.

Now consider any k-subset of {1,2,...,n} . Permuting 1ts elements 1n

every possible order, it follows immediately from the definition of £

that exactly one of these k! permutations falls into each equivalence

Conservation of Ignorance", because the randomness 1s preserved

~ through the renumbering process.

I

class. Thus, since there are () k-subsets of {1,2,...,n} , there

are exactly (%) elements in each equivalence class. 0]

L. The Analysis by Model 1

In this section we derive a formula for A(n) in Model 1. The

input to Algorithm I can be thought of as a complete binary tree of n

nodes, kppkos oes ky , such that

(1) The nodes kyskyyeeosk 4 form an (n—-1) -heap.
(2)

(11) The n-th node, k , of the binary tree 1s the new node :

to be inserted.

ai ———@) B® ® &
\

AY

.

level |lg n|

Figure 1. Input to Algorithm I when n = 9 .

The situation 1s depicted in Figure 1 when n = 9 . The nodes connected

with solid lines form the (n-1) -heap, and the broken edge connecting

8

Ky to the tree 1s used to indicate that Kg 1s the node to be inserted

into the heap. Thus, at this point Kg 1s the only node that might

violate the heap condition key(son) < key(father) . It 1s important

to notice that as long as the relative order of Kyskpy oeenky 18
preserved, the values of the keys themselves are irrelevant as far as

the complexity of Algorithm I 1s concerned for this input.Inother

words, Algorithm I will execute exactly the same sequence of instructions

for two inputs ki;k,, . . .,k and kp,k, Lo. .»k satisfying condition (2),

, provided that their relative order is the same. Therefore we may as well

assume that

{kprkyyevesk } = {1,2,...,n} = Mo. (3)

We now prove the following formula for the average A(n) in Model 1:

Theorem 1: The average A(n) under the assumptions of Model 1

satisfies the recurrence relation

A(n) = 1 . +o A(n - 2%) for n > 2
n n

2

where IL = {lg n] and I = L&(zn) J and
A(l) = 0 .

Proof: Let L = | lg n] be the level of the inserted node, and let T

denote the subtree of the root that contains k . Let T' be the other

subtree and let T be the subtree T without the node k . Thus T

. and T' are both heaps. Each possible value of kK occurs with

probability1/n . If k =n , Algorithm I will move it up exactly L

levels, since 1n this case the inserted node has maximum key, and

therefore it will be at the root when the algorithm terminates. If

- Kk #n , then n is already at the root and k will eventually

9

settle at some level in T . Therefore we may write

A(m) = =.L+2 arm] (4)

where A[T] denotes the average number of levels k_ 1s moved up in

the subtreeT . The subtree T has exactly n-2' nodes, where

a = | 1e(% n)] . (Note that £ = L-1 if T is the left subtree of
the root and£ = L if it is the right one.)

Our aim now 1s to show that

| art] = Am-24 (5)

Fixing a particular T and varying the possible heap arrangements of

the nodes of T' we see that each T occurs exactly g(2!-1) times

among the original (n-1) -heaps, which are assumed equally likely by

hypothesis. Therefore each possible T 1s equally likely and we can

compute A[T] over the space of possible T-s . Keeping also in mind

that kK will eventually settle at some level in T , since kK eM 1

and n 1s already at the root, this means that everything works as if

we were inserting LS into T rather than into the original (n-1) -heap.
Let us therefore assume from now on that our input is T . The input T

has k = n - 2% nodes chosen from M 1 and 1t can be regarded as a
k-arrangement of {1,2,...,n-1} such that its first (k-1) elements

form a heap. As we have seen before, this 1s a property of k-arrangements

that depends only on the relative order of its elements, and hence a

-random T remains random under the renumbering function f preserving

relative order, by Lemma 1. Furthermore by observation (3) above, the

renumbering process preserving relative order does not change the number

of levels that the inserted node 1s moved up by Algorithm I. Hence we

’

can compute the average A[T] over the space of the renumbered trees.

But this 1s precisely A(n 2h . —

| 5. Some Properties of the Average A (n)

In this section we shall explore some of the properties of the

average A(n) derived in Section 4. In particular we shall show that

at any level L of the tree the leftmost node, <2 , has the largest

i average. We then proceed to prove-that A(27) 1s always bounded by a

constant and approaches this constant as L approaches infinity, thus

showing that A(n) 1s bounded by a constant for all n . We then

[derive a closed formula for n of the form 2 -1 , which 1s the

| rightmost node at level L , and show that actually in this case A(n)

is bounded by 1 and approaches 1 as L approaches infinity.

Finally we examine the asymptotic behavior of A(n) , where n varies

along an arbitrary path of the tree.

| Theorem 2: If n, and n, are two nodes at the same level IL such

| that n, is to the left of n, (i.e., 10; <n), and if
{ f
1 2 2

| A(n,y -27) > An, —-2 7) where tL; = L1g(3n;) J , then A(n,) > a (ny)

| Proof: By Theorem 1,

L 1 4
| = — - — , = 2 ,

| A(n,) nt (1 n,) Any)

| 2 f
1 2

since A(n, -2) > An, -2)

| 11

1 1 1 1 2
| A(n,) -A(n) > (=-=Yu-(=-=a(n, -2 91 2/ =

ny n,, n, nn, 2

bb (1 1
| = (L-A(my-2 7) | = - = |

1 2

| to to
Now L - A(n, - 2 7) > 0 , because (n, - 2 7) is a node at level

| IL-1 , and it can move up at most IL-1 levels. It follows that

| A(ny) > Any) . -

| Corollary 1: At each level L the leftmost node pL has the largest

| average value.

| Proof: The proof 1s by induction. At level 0 the result is trivial.

Now assume the corollary at level L-1 . Let ny be the leftmost

| node at level L , and let n, be a node to its right at the same
to ol

| level. Then n, -2 is some node at level L-1 , and n, -2 is

_ 2 2 AL

the leftmost node at that level (since fy = L1e(5 n,) | = Lle(3 27) = L-1,
2 J £

and nq -2 -Cat). Therefore Ang -2 1 > An, -2 2 by the
induction hypothesis, and the corollary follows from Theorem 2.

LJ

We now examine the average at the leftmost nodes at each level.

1 L~-A(n - oh J
Since A(n) = A(n -27) + = it follows that A(n) > A(n -2%)

for all n . In particular if n is the leftmost node, i.e., n = ol
/ IL-1 L

then n-2° = 2 » hence A(2°) 1s a monotonically increasing sequence

with L . It 1s not difficult to show that this sequence has a limit A ,

and hence it 1s bounded by this limit. By virtue of Corollary 1 this

12

implies that A(n) < MA for all n , i.e., AM is a constant that

bounds A(n) . Furthermore MA is the best conceivable such bound

since lim Ce) = N .
L »o

We shall now determine a closed formula for a (2b) and use 1t to

derive an expression convenient for the numerical computation of A .

Theorem 3: The bound M satisfies the equalities

. L 1

A= lim A(27) = 2 —— = 1.606695152k4 . .
L— j>1 2v-1

Proof: We have A(2Y) = a " (1-2"Dya by Theorem 1. Let ap
2

L “L
denote A(27) and let bo = T=.3. Then

Te”) .
1<j<L

L -L

ar = 7% (1-2 Jar 4 and
2

~ = 7 — 3
mT (1-27) 22 TT (1-279) TT (1-279) ,

1<j<L 1<j<L 1<j<L-1

i.e.,

= 0 TT (1-2 J) ce .
1<j<L

Iterating equation (6) we get

b. = b. + 2 EE (7)
L ° 1<i<n 2t TT 2d

1<j<1

}

| But [A =a, = 0, hence (7) yields

i JI (1-2-9)
1<J<L

1<i<i 20 IT (1-279)
1<j<i

Let P = 11 (1-2-3) and P, = 7 (1-2-3) . If L approaches
3>1 1<j <i

infinity, a, approaches N , hence

_ 1
A =P —-— (9)

1>1 2 P,
= i

By Euler's partition formula [Knuth - 1973, exercise 5.1.1-16],

1 : 1
TT — - —_—— Setting z = 3 x and
j>0 (l-gjz) i >0 TT (1-9)

1<j<i

-1

q = = = 2 ylelds

1 i
R(x) = mM —= 1+ 2 x : (10)

j>1 1-27% i>1 2%,

I SE d 2-]Let r(x) = —— Then rj (x) = r.(x) = — 5
1-279x% J (1-279%)°

Taking derivatives of (10) and noting that R' (x) = - IT r. (x) =
j>1

: r(x) . gd
R(x) Z "SE we have R'(x) = R(x) 2 =3 = 2 —

i>1 Tj j>1 291-279) i>1 @ P,

| In particular for x = 1 , noting that R(1) = 2 r we have
P

| 53 & T= = — Finally by 9

Fysie2da i> 2p, (9),

N= DL ==. (11)
j>1 2-1

| J

The sum (11) is rapidly converging and can be used to find A

numerically.

{ We can also derive a closed formula for the average at the rightmost

node of each level.

| | i+l
Theorem U4: If n is the rightmost node at level L , (i1.e., n = 2 -1),

then A(n) = 1 = zl .

Proof: A simple induction on L . 0]

The proof of the following corollary 1s now trivial:

I+1
Corollary 2: If n is of the form 2° ~-1 then

(i) A(n) <1

(ii) lim A(n) = 1 .
Low

| Theorems 3 and 4 give asymptotic values for the average A(n)
along two particular paths down the tree. We can describe any path

-on the tree by a binary sequence @ where the L-th element of the

| sequence, ar , 1s 0 1f we go from level L-1 to L taking the
left branch and 1 if the right branch is taken. With this convention

the number 1 followed by the first L bits of &@ , in binary, gives

1

the node at level L along that path. We denote this node by Log X/

Hence the limit A(a) = lim NC) , 1f 1t exists, gives the
L—ow

asymptotic value of the average along the path defined by a . If

the limit does not exist we say that A(a) 1s undefined. For example

2 (0) = 000 .. . refers to the path of leftmost nodes at each level,

and thus a(a(0)y = MN according to TheoremJ, while oH) = 111. . .

refers to the path of rightmost nodes at each level, and thus

A(&)) = 1 by Corollary 2.

Definition:

(1) Two binary sequences «O and B have the same tail 1f there exists

an 1 andJ such that ®: x = Biri for all k > 0 .
J 2

(2) If m = n-2° , where I = L1e(3 n)|] then we say that the average
at node n depends on the average at node m .

This definition 1s motivated by Theorem 1.

Theorem 5: If @& and B are two binary sequences that have the

same tail, then A(@) and A(B) are either both undefined or both

defined and equal.

*

*/ This notation 1s motivated by regarding & as associated with the
a

real number a = 1+2 Then the node denoted by 2 a 1S
L>1 27 °°

clearly the node L284 . Note however that this correspondence
between & and & is not 1-1 , for sequences that are of the form

Oy &y eee 1000... and ay Oy ce 0111... correspond to the

same real while defining distinct paths on the tree.

16

Proof: Let nj, be a node at level 1 and let ny be the node

at level 1-1 such that the average at n, depends on the average

fo
at ny =n-y-2 . It 1s an immediate consequence of Theorem 1 that

the average at node 2n, (node 2n,+l), the left (right) son of n,

depends on the average at node en, (node en +1) the left (right)

son of n, . Now given 3 (0) such that ,15(0) = n, let 5(1) be
Co i-1 (1) (0) (1)

the binary sequence satisfying 2 te) =n, and Dirk = 8: 14k for all

i+k (0) i+k 1 i-1+k (1). . = " + - - .k >0 Then A(2 @)) iv __(0) € wo pe ¢))
Letting k approach infinity we have

1+k
: - 0

i+k (0)

1 - L - 1
: ~1tk (0)

Hence if a(s(9)) = lim a 2%.5(0)) exists then so does
I, »oo

1 . L (1a6)) = lim A(2 5)y and a(s(0)y = A(&)) .
I, =»

The above construction, given a node n, at level 1 and a path
(0) (1)

6 passing through n, constructs a corresponding path 8

passing through ny at level 1-1 , such that the average at nL,
1

depends on the average at n; and a(s(0)y and as | are either
-both undefined, or both defined and equal. So 1 successive applications

(0) (1)
of this construction reduces ©6 to a path © such that

50) = 51) for all k > 0 , and asl) and a (80), are eilther
i+k k —

both undefined or both defined and equal. Consequently if & and PB

17

have the same tail then they are reduced by this process to the same

path & such that Aspe = Birk = Oy , for k > 0 for some 1 and J ,

and A(3) , A(x) and A(Q) are either all undefined or all defined

and equal. 0

Corollary 3: If @ is a binary sequence ending with an infinite

sequence of O's , then A(a) exists and A(a) = MN .

, Proof: Immediate from Theorems 3 and 5.

Corollary 4: If @ is a binary sequence ending with an infinite

sequence of 1's , then A(Q) exists and A(a) = 1 .

Proof: Immediate from Corollary 2 and Theorem J.

Corollary 3: There exists an @ such that A(@) is undefined.

Proof: Let © be any sequence ending with an infinite sequence

of O's . Since A(6) = AM, given any € > 0 , there exists an N

L CL
such that for L >N , IA -A(2 8) | <e . Similarly for any

sequence y ending with an infinite sequence of 1l's , since

A(y) = 1 , there exists an N' such that for L >N',

I, - .
|1-A(277)|<e.Now1l < NA, so let € > 0 be such that

l1+e€e < AN-¢ . Then construct a as follows.

Step (1): Let % = Qs =, . . = .% = 0 where ky 1s the least
1

ky fq
integer such that |A-A(2 ~.q)| < e . Note that 2 ~.a

1s determined by the first ky bits of & only, so

this condition 1s well defined.

18

Step (2): Now let a1” % 42 va = % = 1 where k, is

the least integer greater than ky such that
k

|1-A(2 2a) | < €.

] Now at any odd step (r) add sufficiently many O's to have

k

: IN -A(2 T® a1 <¢ and at any even step (s) add sufficiently many 1's
k

| to have |1-A(2 S.a)| < €¢ . It is clear that A(®) must be undefined

for such an @ . cl

| Corollary 5 asserts that no matter which node of the tree we start

| at, if we always take the left branch the asymptotic value of the

| average is MA, while if we always take the right branch then the

| asymptotic value of the average is 1 by Corollary kh.

The relation of two sequences O and Pp having the same tail is

| clearly an equivalence relation. In virtue of Theorem 5 the asymptotic

value of the average is invariant over any equivalence class. Corollary

3 and 4 give two distinct equivalence classes that have two distinct

asymptotic values, and Corollary 5 shows that there are equivalence,

classes over which the asymptotic value of the average 1s undefined.

We conjecture that indeed the only two equivalence classes with defined

asymptotic values are those mentioned above.

| . Remarks About Model 2

| Table 1 shows the comparison between Model 2 and Model 1. The

values under Model 1 were computed using the recurrence relation of

] Theorem 1. For Model 2 the average for n < 9 was determined by

| considering all possible inputs to the algorithm. For greater values

19

Table 1

A(n) , according to the assumptions of:

Level n Model 1 Model 2 Z19-7ag

0 1 0 0 0

1 2 0.50 0.50 0.50

5 0.355 0.53 0.33

| L 0.88 0.92 0.59 + 0.02

| 5 0.67 0.67 0.83 + 0.02

| 6 0.75 0.75 0.66 + 0.03

| 7 0.57 0.55 0.8% +0.02

8 1.1k4 1.2k4 1.08 + 0.03

| 9 0.93 0.94 0.86 + 0.03

10 0.98 0.99 + 0.03 1.07 + 0.03

11 0.79 0.81 +0.03 0.78 + 0.03

1 1.05 1.05 + 0.03 1.07 + 0.03

13 0.85 0.87 + 0.03 0.84 + 0.03

1h 0.91 0.88 + 0.03 1.05 + 0.03

15 0.73 0.77 + 0.03 0.72 + 0.03

| 16 1.32 1.38 + 0.0k 0.82+ 0.03

] 17 1.11 1.14 + 0.04 1.12 + 0.03

| 18 1.1h 1.14 + 0.0k 1.00 + 0.0k
19 0.96 0.9% + 0.0k 1.17 + 0.03

| 20 1.20 1.24 + 0.0k 0.92 + 0.0k
21 1.00 1.01 + 0.0h 1.26 + 0.03

22 1.05 1.01 + 0.0h 1.02+ 0.0k

23 0.88 0.84 + 0.0L 1.18 + 0.0L

| 2h 1.26 1.28 + 0.0k 0.85 + 0.03
25 1.05 1.08 + 0.0L 1.13 + 0.03

| 26 1.09 1.08 + 0.0k 0.99 + 0.0k

27 0.91 0.91 + 0.0k 1.24 + 0.0L

28 1.16 1.15 + 0.04 0.91+ 0.0k4

29 0.95 0.96 + 0.0k 1.2k + 0.03

30 1.01 1.00 +0.0k 0.99 + 0.0k

31 0.84 0.82 + 0.0L 1.23 + 0.04

2

Table 1 continued

A(n) , according to the assumptions of:

Level n Model 1 Model 2 Zig-Zag

| 5 32 1.43 1.50 + 0.05 1.37 + 0.04

| 33 1.22 1.27 + 0.05 1.14+ 0.0%

| 46 1.10 1.10 + 0.0k 1.19 + 0.03
h7 0.93 0.91 + 0.0k 0.93 + 0.0k

| 48 1.40 1.43 + 0.0k4 1.34 + 0.0L

| Te 1.19 1.20+ 0.0k4 1.10 + 0.0k

6 1.08 1.03 + 0.0k 1.16 + 0.0k
63 0.90 0.85 + 0.0L 0.88 +0.0k

6 6h 1.51 1.56 + 0.05 0.96 + 0.04

65 1.30 1.33 + 0.05 1.21+ 0.0k4

ol 1.13 1.08 + 0.0b 1.13 + 0.05
| 05 0.96 0.95 + 0.0L 1.35 + 0.04
: 96 1.48 1.57 + 0.05 0.96 + 0.0L

| 07 1.27 1.30 + 0.05 1.20 + 0.04

| 126 1.12 1.05 + 0.0L 1.17 + 0.05
127 0.94 0.85 + 0.0k4 1.39 + 0.0h4

128 1.55 1.74 + 0.06 1.4k2 + 0.05

129 1.34 1.k2 + 0.05 1.20 + 0.05

190 1.15 1.09 + 0.04 1.24 + 0.0L
| 191 0.98 0.91+ 0.0k 0.94% + 0.0k

192 1.5% 1.63 + 0.05 1.44 +0.05

193 1.33 1.46 +0.06 1.20 + 0.05

251 1.1k 1.01 + 0.0L 1.27 + 0.0k4
: 255 0.97 0.88 + 0.04 0.92 + 0.0h4

21

of n we simulated heap creation on 1000 randomly selected inputs,

thus determining an estimate of the average and its interval of

confidence. These results indicate that the average is relatively

close 1n the two models. In general the behavior of Model 2 1s more

extreme than that of Model 1: the worst case, at each level, 1s now

worse than the worst case in Modell and asymptotically exceeds A ;

on the other hand the best case, at each level, 1s now better than in

Model 1. In this section we give an intuitive explanation for this

- behavior, and suggest a method for smoothing out the difference between

the worst and best case. We consider L-1 levels of the heap already

created and examine what happens when inserting the nodes at level L .

To simplify the notation we discuss the case where L = 3 , but the

argument applies as well for the general case.

Let us first assume that heap H 1s random. (See Figure 2.)

When kg 1s 1nserted 1t can exchange with ky, , ky , and ky . These

are the same nodes that Kg will encounter, hence Ky will be competing

with numbers greater than or equal to kg 's competition. Consequently

the average at node 9 will be smaller than that at node 8 . Let us

now look at the leftmost node of the right subtree, Kio When 1t 1s

inserted it will be compared with ke , Ks and ky . The only one of

these nodes that could possibly have been affected by previous insertions

at this level 1s ky But Kio is compared to ky only when it 1s

greater than ks 5 therefore we might expect that the average at 12

is only slightly smaller than the average at 8 . By this same kind

of reasoning the average at 15 should be the smallest at this level.

The above discussion shows that the average will have an undulatory

behavior at each level.

22

| rN /

! \ / \ / \ | / \
| T \ / \ / \ / \

Figure?

25

Actually the heap H , as we know, will not be random, but this

will only accentuate such behavior. The heap H is not random because

large keys tend to drift to the right, thus further lessening the

averages of the elements in the right subtree. To see this, consider

the input as a random permutation of {1,2,...,15} . We know that after

all nodes have been inserted, 15 will be at the root, and we shall

examine the chances of Lo or ky being14 . We have several cases

| to consider. The number 14 will settle as the left son k, if

(1) 15 and 14 both enter the tree on the left;

(2) one of them enters at the root and the other on the left;

(3) 14 enters on the left and 15 enters previously on the right;

(4) 1b enters on the right and 15 enters later on the left.

Similarly there are four corresponding cases where lI settles as

| the right son ky Comparing these cases we find that the difference

| between the probabilities that 1k settles at ky rather than k, is
the probability that 14 enters on the same level as 15 but on the

opposite side.

In order to dampen the latter effect we suggest a "zig-zag" method,

alternating the direction of insertion at each level. Table 1 also

| shows the averages found by this "zig-zag" method, when even levels are

inserted from right to left. The effect is to balance the tree more by

| upsetting the ordinary drift of large elements to the right.

7 - Acknowledgments

| The authors wish to thank Prof. Knuth for his guidance and
| suggestions throughout the development of this research.

2h

|

i References

[| [Knuth = 1968]: D. E. Knuth, The Art of Computer programming, Vol. 1

Addison-Wesley, 1968.

[Knuth = 1975]: D. E. Knuth, The Art of Computer Programming, Vol. 3

Addison-Wesley, 1973.

[Williams - 196k]: J. W.J. Williams, Algorithm 232: HEAPSORT, CACM 7

(196k), 347-348.

25

