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A Combinatorial Base for Some Optimal

Matroid Intersection Algorithms

Stein Krogdahl

1. Introduction

The algorithms for which a theoretical base 1s given in this

paper, have been known for some time, and were first developed by

E. Lawler. However, the proofs given for the correctness of these

algorithms have used linear programming concepts such as primal and

dual solutions, and have been rather difficult to understand. Hopefully,

the proofs given here will be easier to understand, and thereby will

give deeper insight into the nature of the problems involved.

2. Some Properties of Matroids

In this section we shall develop the properties of matroids on

which the following theory 1s built. We denote a matroid M(E) , and

thereby mean a matroidian structure defined on the finite set E . It

1s assumed that the reader knows the basic properties of matroids, and

we will use the following notation: If AC E and ecE , then A-e

and A+e shall mean A- {el and AU {e} respectively. The closure

of a set ACE, or the span of A , will be denoted sp(4). TI f£

I Cc E is independent and e ¢ sp(I)-I, then the unique circuit in

I+ e will be denoted C(e,I).



Our first theorem 1s the following:

Theorem 1. Assume that M(E) 1s a matroid and that I and J are

subsets of E such that I is independent and J C sp(I) -1 . Further

assume that a one-to-one mapping d: J —- I 1s defined such that for

all e ¢J , d(e) eC(e,I) , and for all nonempty sets A c¢ J there 1is

an ecA such that for all e'eA- e we have d(e) £C(e',I) . Then

we can conclude:

A: the set I' = IUJ-d4d(J) 1s independent;

B: sp(I') = sp(I), thus d(J) < sp(I') -1"' ;

c: for all eed we have eeC(d(e),I") .

Proof. For later convenience let us first choose one element e in

each A c J such that for all e' eA-e we have d(e) gC(e',I), and.

call it S(A) .

Part B of the conclusion 1s a simple consequence of part A, since

III = IT] and everything goes on within sp(I) . To prove part A

we assume that I' contains a circuit Ch . Because I 1s independent,

Ay = Cy NJ is not empty, and we set e = S(4,) . Because d(e) eC(e,I)-C,

and eecC(e,I) nc, , we can find a circuit C, within C(e,I) Uc,-e

such that d(e) eC, , and we know A; =C NJ CA j-e . If A £0

we'choose eeA; . Now we have d(e) eC,-C(eq>I) and e; eC, NC(ey, I)

and we can find a circuit Cy C C, UC(es,I)-eg such that d(e) eC, , and

we have A, = CoM J C A -ey . If Ag 1s not empty, we pick an €, eA,

and repeat this process again, and for some k , Ay must become empty,

since 2, | < A; 1 . But then Cr (which contains at least d(e) )
must be a circuit entirely within I , and this 1s a contradiction

sutruling the existence of C
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The proof of part C 1s done by a similar construction as the one

used to prove part A, but a little more care is needed. First we order

the elements of J in a sequence J = {dpdpseeesd] , by the following

definition: J; =S(J), J, =8(3=3y), . . . , dq = S(J=Jq= « -3.0)

in = s({3,) . We then observe that if p < gq , then 4(3,) £C(JgrT) :
Now assume eeJ , and we will show eeC(d(e),I') . Suppose

e =], , then we know By = d(J) NC(e,I) Cc_{d(e) , a(J.., 1) ye ay afi )} :

If now B, = {d(e)) we must have C(d(e),I') = C(e,I) , and we are

done. If not, let io be the smallest g such that

d(j ) ¢B.- . Now 4d(]j eC(e,IT) NC(J I and(Jg) ¢ By —d(e) (3p) eCle,I) NCI, I)
1 1

eecC(e,I)-C(j_ ,I) . Thus we can find a circuit C, c C(e,I) UC(j_ ,I) -d(j_)
b l= P P1 1 1

such that e €Cy , We now know that

B =4)NCy Sale), dlp 4), ® a) NowifB -d(e) fp,
we choose ©D, as the smallest g such that 4(34) ¢ B,-d(e) , and

let C, be a circuit in cL uc ,I) -d(§ ) containing e . Define
p2 p2

B, = d(J) NC, , and if again B,-d(e) # ¢ we choose Pp; as minimum

such that a, ) ¢ B,-d(e) and go on 1n this way. We must then get
; 5

pi < Pity , and for some k , B,.-d( e) must become empty. Then Cy

is a circuit, containing e , whose only element outside I' can

be d(e) . Since I' 1s independent we must have df(e) Cp , and

also C(d(e),I').= C,, - Thus eeC, = C(d(e),I') as claimed.

Note that we also can add, to I' in the theorem, at least one

element not in sp(I) , and remove as many elements as we wish, and

_ still rely on the independence of I' .



Theorem 2. Assume that I and J are independent sets in a matroid

such that J < sp(I) . Then for each e «¢J-I , C(e,I)N (I-J) £9 ,

and for eachJ' ¢ J-I the set I' = (I-J)nN ( U ces) 1s sucheed’

that |J'| < |1'] .

Proof. The first statement must be true, or else J would contain

a circuit. To prove the second we observe that

J'U(INJ)© sp(I'U(INJ)) . Since both these sets are independent

we must have |r ung) <|rrung)| , and thus BAR < |x| .

I. The Simple Border Graph (SBG) of an Independent Set

Assume that I 1s an independent set in a matroid M(E) . Then

we can construct a bipartite graph, called the "simple bordergraph"

(SBG) of I , 1n the following way:

The nodes of the graph are (in one-to-one correspondence with)

the elements of E , and there 1s an arc between the nodes e; ek-1I

and e, eI if and only if €, € sp(I) and €5 eC(e,I) . This means

" that if e is not a self-circuit-element and e e¢E-I , then e has

no arcs onto it if and only if e €E-sp(I) . Also if e; €E-I and

ey€ 1 and there 1s an arc between e and SOR then I+ e = &

1s 1ndependent.

We now note that the function d used in Theorem 1 corresponds

to a matching in the SBG of I , and that part A of this theorem says

something about when the interchanges indicated by the arcs 1n a certain |

matching can be performed simultaneously without destroying the

independence of I .
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To be able to formulate part A of Theorem 1 in these graphic

terms we define the graph "induced" by a matching in the SBG of I ,

as the graph with node set equal to the set of end-nodes of the matching,

and with arc set equal to the set of all arcs between these nodes in

the original SBG. Indeed this graph contains the arcs of the matching

itself, and we call these the "main arcs" of the induced graph. Further

a matching is said to be "usable" if the interchange in I of its

end-nodes inside I with those outside I makes a new independent set.

Part A of Theorem 1 then says that a matching D in the SBG

of I 1s usable if the induced graph of any submatching D' of D

has at least one main arc which 1s the only arc to its end node in I .

To get this condition on a, for us, more convenient form, we

define a "main cycle" in the induced graph of a matching as a simple

cycle that uses a main arc exactly each second time. We will say that

a matching "induces a main cycle" if its induced graph contains a

main cycle, and 1f a matching does not induce any main cycle it 1s said

to be "clean".

’ Theorem J. A clean matching D in the SBG of an independent set I

1s usable.

Proof. We will show that 1f D does not have the property that

every submatching Df of D has at least one arc whose node inside I

has degree 1 in the induced graph of D' , then the induced graph

of D must contain a main cycle. Therefore assume that D' 1s a

submatching of D inducing a graph where all the nodes inside I

has at least two arcs onto it. Then start at any node of D' outside I ,

pass along the main arc to 1ts endpoint inside I , and take any of the

p)



other arcs from here. Then we are back at the outside end of another

main arc, and we repeat the process. This process must eventually

lead back to a main arc which 1s used before, and then a main cycle

in the induced graph of D' 1s found, and this 1s also a main cycle

in the induced graph of D .

We conclude this section by giving a theorem that assures the

existence of matchings under certain conditions.

Theorem 4. Let I and J be independent sets of a matroid such

that J C€ sp(I) . Then there is a matching in the SBG of I such

that J-I 1s exactly the set of end-nodes of the matching outside I ,

and all the inside end-nodes are within I-J . Co

Proof. By Theorem 2 each node in J-I must have at least one arc

leading into I-J, and these arcs must be so arranged that for every

J' € J-1I the set in I-J directly reachable through an arc from nodes

in J' has greater cardinality than J' . Thus, by a well known theorem

about matchings 1n bipartite graphs the matching required by our theorem Co

_ exists.

hi. Intersections of Matroids

In the following we shall deal with two matroids here called M,

and My (the red and the blue matroid), both defined on the same set E .

A subset of E which is independent in both Mr and MB is traditionally oo

called an "intersection" of My and My , and our task shall be to

develop algorithms for finding optimal (in a certain sense) intersections.

In a later chapter weights are given to the elements of E and the task
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| is to find an intersection with the maximum sum of weights. However,

| we shall first treat the simpler case where all the weights are one,

that 1s, to find a maximum cardinality intersection.

For simplicity we assume that neither My nor MB has self-circuit-

elements. If any of them has, these elements (which cannot figure in any

intersections) can be deleted first, or they can simply be ignored by

any algorithm.

5. The Bordergraph (BG) of Intersections, and Alternating Paths

If IT 1s an intersection of Mp and My we define the

"bordergraph"(BG) of I to be, in a certain sense, the union of the

SBG of I in My and in My . That 1s, the set of nodes of the BG

of I 1s again in one-to-one correspondence with E , and the arcs

are exactly those from the SBG of I in Mp colored red, and exactly

those from the SBG of I in My colored blue, and only these.

If a node outside I has no blue arcs onto 1t, 1t 1s said to be

"unicolored", with color red, and if it has no red arcs onto it, it is

- unicolored with color blue. If it has neither red nor blue arcs onto

it, it is also said to be unicolored, now with color white. Obviously

(1f the matroids contain no self-circuit elements) an element 1s outside

sp, (1) 1f 1t 1s unicolored with color red or white, and outside

- spp (1) if it is unicolored with color blue or white.
We now define an "alternating path" in the BG of an intersection I

as follows: Either it 1s a single unicolored white node outside I ,

or 1t 1s a simple path or cycle of length at least one which uses
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red and blue arcs alternately and which 1s such that any end-node of

the path outside I is unicolored. ("Simple" 1s here used in the

sense that no node 1s "used twice" along the path.)

If P 1s an alternating path in the BG of I we denote its

set of nodes outside I as " out(P) ", the set of those inside I

as " in(P) ", and the set I -in(P) Uout(P)as " P(1) ". Further

we say that P is "usable" if P(I) is an intersection of the two

matroids My and My .

For later use we will classify the alternating paths in four

groups: W-paths, N-paths, M-paths and O-paths. An O-path is a cyclic

path, a W-path is one with both (unicolored) endpoints outside I (with

the single white-node-path as a special case), an N-path 1s a path with

one (unicolored) endpoint outside I and one inside I , and an M-path

1s one with both end-points inside I .



W-paths N-paths

&
~ -

. -6 @ 8 y
M-paths O-paths

Examples of alternating paths. The unfilled nodes must be unicolored,

and the lower nodes are assumed to be inside T.

By considering only the red or only the blue arcs of an alternating

L path, a red and a blue matching (of which one or both may be empty) 1s

defined. If both these matchings are clean in their own SBG, then the

~~ alternating path is also said to be clean.

By Theorem 3, and the comments after Theorem 1, we get the following

theorem:

Theorem 5. A clean alternating path 1s usable.

Our main interest 1s 1n W-paths, because if P is a usable W-path,

then P (I) 1s a new 1ntersection with one element more than I . The

following theorem assures-the existence of W-paths in the bordergraph

of I , 1f greater intersections exist at all.
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Theorem 6. Let I and J both be intersections such that

11] < |J| . Then there 1s an alternating path P of W-type in the

BG of I such that out(P) € J-I and in(P) CI-J.

Proof. If J contains an element outside spp(I) Uspp(I) then this
1s a unicolored white element and it 1s usable as a W-path alone, and

we are done. Therefore suppose J C spp(I) Uspg(T) and define

J' =J-1 . Now partition J' into the sets In ’ Jn and J, as

being the unicolored red elements, the unicolored blue elements and

the rest of the elements of J' . By Theorem4 we can now find a red

matching using exactly the nodes of Jp Ud, outside I and only nodes -

in I-J inside I , and a blue matching using exactly the nodes of

Jag Udy outside I and only nodes in I-J inside I . Now define

Ix ’ Ia and I, as the nodes in I-J which have only a red arc onto

1t, only a blue arc onto it and one red and one blue arc onto 1t

respectively in this matching. We know that |, UI UI] < 1-3] <

9-1] = |o, UT, UT] ; |T, UT, = TR UJ,| and | T, UT, | . |g UJ, | :

Therefore we must have 11: < 951 and | I; < |T5| ]

The arcs we have got now must obviously form a set of alternating

paths of various types. However since every O-path will '*consume"

nodes only from Io and I, and each N-path will consume exactly one

node in In and one in Ip, or one in Iq and one in In (plus

possibly some in Jo and I, ) at least one path must extend from a

node 1n Jn to a node 1in Ig . This path 1s a W-path in the BG of I ,

and 1t obviously meets the requirements of the theorem.

10



6.  Shortcuttingof Alternating Paths

Suppose we go along an alternating path P from one end to the

other, or around an O-path, and are just about to leave a node by an

arc of color X . If we then, from where we are now, find another

arc, also of color X , leading to a node further ahead on our path,

we can delete all nodes and arcs lying between these two nodes on the

path and insert this new arc instead, thus obtaining a new alternating

path of the same type. This operation 1s called "shortcutting", and

the resulting alternating path 1s called a shortcut of P . We obtain

the following theorem.

Theorem T. If P 1s any alternating path where no further shortcutting

1s possible, then P 1s clean, and thus usable.

Proof. It 1s easy to see that 1f either the red or the blue matching

in the graph induce a red or blue main cycle, then at least one short-

cutting edge must exist.

f+. Maximum Cardinality Intersection Algorithm

We can now construct a rather straight-forward algorithm for

finding a maximum cardinality intersection of two matroids.

If we have an intersection I withk elements, then Theorem6

tells us that 1f its BG contains no W-paths, then I, 1s a maximum

cardinality intersection. If not, we can take any W-path in the BG,

shortcut 1t until no shortcut 1s possible, and by Theorem7 we know

that it 1s now usable and will bring us to an intersection Tiel with

11
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ktl elements. Starting with I, = @ this will give us an algorithm

for finding a maximum cardinality intersection.

We shall not elaborate on how such an algorithm can be implemented

or optimized here, but only notice that if we have a way of determining

in polynomial time 1f a set 1s independent in M, or 1n My , then

we can also find Cp(e,I) and Cp(e,I) , and thus build the BG in
polynomial time. The search for W-paths and a possible shortcutting

process can obviously also be carried out in polynomial time, which

altogether gives a maximum cardinality algorithm working in polynomial

time.

8. Weighted Matroids

We will now consider the case where the elements of the set E

over which My and My are defined has weights. That 1s, a mapping

w from FE to the real numbers is given.

We also define the weight of a set A C€ E as the sum

w(h) = 2 we) .
ech

Also we define the weight of an alternating path P in the BG of I as

w(P)= w(P(I)) -w(I) . This is obviously equivalent to

w(P) = w(out(P)) -w(in(P)) .

An intersection I is said to be k-maximal if |I]= k and for

all intersections I' such that |r| = k we have w(I') < w(I).

Our aim in the following is to show that if I 1s k-maximal and P 1s

a welghtiest W-path in the BG of I which cannot be shortcutted without

12



lowering its weight, then P(I) 1s a k+1 -maximal intersection.

If IT is k-maximal-then the weight of any usable alternating path

of type 0 or N must be less than or equal to zero, or else a

weightier intersection with k elements could have been found.

A consequence of this 1s the following:

Theorem§ . If IT 1s a k—-maximal intersection and P 1s any alternating

path 1n the BG of I such that any shortcut of P will give a path

with less weight, then P 1s clean, and thereby usable.

Proof. We will show that the assumption that one (or both) of the

matchings given by the path P induces a main cycle, (that is, FP 1s

not clean) leads to a contradiction. Therefore assume that e.g. the

red matching induces a main cycle. Now, 1f the alternating path 1s of

O-type remove any blue arc to obtain a linear structure.

The idea of the proof now is really quite simple, namely that each

time the main cycle contains a "shortcut-arc" in P like this

5

/ ,/
/

A

we know that w(A) <w(B) because any shortcut is supposed to give less

weight. (We assume that the red arcs are fully drawn, and that the

lower nodes are inside I .) On the other hand, if we have a "cross-over"

structure like this:

15
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and 1f we know that neither the blue matching nor the red matching

(including the crossover-arc) involved contains any main cycle, then

the local O-path formed is usable and w(C) >w(D) or else I would

not be k-maximal.

We will afterwards show 1f there exists any main cycle at all

then we can find one (in the same or in the other color) in which each

crossover arc obeys the conditions above. First, however, we will show

that this would lead to a contradiction.

Suppose that we have obtained such a main cycle 1n red, and that

we, as above, draw the alternating path so that its red arcs go down to

the right. Then every red crossover arc in the main cycle will go up to

the right, and every red shortcut arc will go up to the left. The main

cycle must obviously contain a leftmost and a rightmost main arc 1n this

drawing, and we will use this to partition the main cycle as follows:

Part 1 1s what you pass 1f you start bygoing down the leftmost main arc

and follow the main cycle until the top of the rightmost main arc 1s met.

Part 2 1s the rest. Part 1 must in a way be dominated by crossover arcs, oo

although it may have many back-steps by shortcut arcs. Part 2 must

likewise be dominated by shortcut arcs. For example, the two parts can —

look like this:

a.

14
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Part 1 Part 2

Note that the two parts cannot use the same main arcs, and there

will generally be many red main arcs not 1n the main cycle in between

those used by the cycle. Now let U be the set of all upper nodes on

the part of the path covered by our main cycle, except the leftmost one,

and let L be the lower ones except the rightmost node. We have

IL] = |u| > 0 . By summing along Part 1 we get w(L) > w(U) but by

summing over Part 2 we get w(L) <w(u) . For example in the above

illustration, w(Ly) > w(U,) » W(L,) < w(U,) » w(Lz) > w(Uz) ,

w(L),) >w(U),) , (Lg) < w(U,) » W(Lg) >w(U,) , w(L,) < w(U.) ,
w(Lg) >w(Ug) , and w(Ly) < w(Uy) . This contradiction would now
complete the proof, 1f we knew that the existence of an induced main

cycle implied the existence of one in which each crossover arc formed

a local clean (and thus usable) O-path.

To see that this is correct, assume that there 1s an induced main

cycle in one of the colors. If, inside the subpath that this main cycle
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covers, there are other main cycles in this or the other color, then B

choose one for which there 1s no other main cycle that covers a strict

subpath of the subpath that this one covers.

Now we must look at each crossoverarc in this main cycle.

Consider the following possible picture within a "great main cycle" To

which includes the crossover arc AB :

E C B

\OERT
A F D

Here there will now be no main cycle induced by these blue (dotted) arcs,

nor by the red main arcs crossed by the AB-arc. However, 1f we also =

considerAB as a maln arc, as we do when we look at this as a local oo

O-path, there can still be a main cycle as indicated above: BAC DEFB .

Then, however, we can delete AB from our great main cycle and insert ~

ACDEFB instead to form a new great main cycle. The new crossover arcs

formed by this process (AC and FB) must be shorter than the original - |
one, and therefore a repetition of this process must terminate. When

this happens all crossover arcs must form clean O-paths, and the proof Cy
1s complete. i» |

—_

9. O-paths, N-paths, and Cut N-paths

An immediate consequence of Theorem 8 is that the BG of a k-maximal oo

intersection cannot contain any O-path or N-path with positive weight at

all. For if one such positive path existed, we could go on performing — |
such shortcuts on it that would not lower 1ts weight until such shortcuts

no longer were possible. (Note that such a process cannot make the path

shorter than two nodes.) The resulting path could then only be even more

16



positive, and according to Theorem8 it would be usable. This, however,

1s 1mpossible 1f the intersection 1s k-maximal.

For our next main theorem we also need a slightly different fact,

namely that 1f we, in the BG of a k-maximal intersection, have a W-path

and an M-path which are node-disjoint, then the sum of the weight of these

two paths must be zero or less. To see this we can put them together to

form a special N-path with one arc missing in the middle. We will call

such a path a "cut" N-path. As a cut N-path we will also accept a W-path

together with a single node inside I .

© ®

Cut N-paths. Unfilled nodes must be unicolored.

Now assume that the weight of such a cut N-path 1s positive and

shortcut 1t exactly as we did above. If a shortcut crosses the cut, this

leads to an immediate contradiction since we obtain a positive N-path.

If not, we can show that both matchings involved are clean, by arguments

similar to those used to prove Theorem 8. However, now a crossover edge

i may also form a local N-path (which is equally good), and we do not have

to worry about the usability of the local N- or O-paths formed. Since

both matchings are clean the cut N-path 1s obviously usable and cannot

have positive weight.

We state these results as a theorem.

—-— Theorem 9. If IT 1s a k-maximal intersection then the BG of I contains

no O-path, N-path or cut N-path with positive weight.

We now prove the -following theorem, which is the weighted counter-

part of Theorem 6

17



Theorem 10. Suppose thatI 1s a k-maximal intersection, and that -

J 1s any intersection with k+1 elements. Then there is a W-path P

in the BG of I such that w(P) >w(J) -w(I) , and this P can be

chosen so that out (P) € J-I and in(P) € I-J .

Proof. The proof given for this theorem is very similar to that —

given for Theorem 6.

First look at the case that J has elements outside spp (I) Usp, (I), —
and let e be any of these elements. In the BG of I , e will now

be a white unicolored node and can serve as a W-path P alone. Since i |

J-e 1s another intersection with k elements, we must have —-

w(J-e) < w(I) which implies w(P) >w(J) -w(I) as required. |

Then assume that J < spp(I) U spp(I) and partition J-I into -
parts In P In and Jo , find a red and a blue matching, and define E |
disjoint subsets Ie , Ig and Is in I-J exactly as we did 1n the -
proof of Theorem 6. The figures formed must now, as then, be a set »

of disjoint alternating paths of the four different types, and there must

be at least one W-path. -

- Now there may be elements in I-J which are in neither AEN , Ly

nor 1in Is , that 1s, they are not reached by any of the arcs 1n the To
matchings. Call the set of these in . As an example look at the

following picture:

; |
Co

—-

13 |
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It follows now that the number of M-paths plus 1, | must always
be exactly one less than the number of W-paths. An easy way to see

this is first to observe that the following equation must hold:

bol- [1g = log ll = 1+ rg].

Then "remove" all N-paths. Since each N-path has either exactly one

node 1n Jn and one 1n Ip , Or one 1n Ig and one 1n Ix , the

equations above must be kept true.

But now we must also have

| 75] = pal = number of W-paths

EEN = |Z, = number of M-paths.

Also we have (from the first equation)

pol = 1 = tleIT

which gives exactly what we want.
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Now 1t 1s easy to see that any of the W-paths present is good

for our purpose. Choose one of them as P , and pair the rest of them

to either an M-path or an element in |Z, | . This must fit exactly,
and form a set of cut N-paths. The rest of the present paths must be

either N-paths or O-paths. By Theorem 9 this implies that

w(J -1 -out(P)) < w(I -J -in(P)) . This is equivalent to (since

out (P) © J-I and in(P) < I-J ): w(out(P)) -w(in(P)) > w(J-I) -w(I-J) .

This 1s agaln equivalent to what we want, namely:

w(P)> w(J) -w(I) .

10. Concavity

In this section we shall prove that the weight-increase we can

obtain from a k-maximal to a ktl -maximal intersection cannot be

greater than the increase obtained from a k-1 - to a k-maximal one in

the same pair of matroids. This property could suitably be called

"concavity", and it will help us to determine when a maximal weight »

intersection is found. From what 1s proved until now we can easily

construct an algorithm giving us a ktl -maximal set if we have a

k-maximal one, and 1f intersections with ktl elements at all exist.

However, not even 1f all the weights are positive, will the weight of

a k-maximal set always increase with k , and the concavity will guarantee

that we have obtained a maximal weight intersection the first time we“

cannot get a weightier intersection by taking in one more element.

We will prove two theorems, whose combination immediately will

give us the concavity. The first is a stronger version of Theorem 9,
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namely that even if a W-path and an M-path are not disjoint the sum of

their weights cannot be positive in a k-maximal intersection. The

other 1s that if P is a clean W-path in the BG of I , then P will

appear as an M-path in the BG of P(l) , with weight -w(P) .

For the proof of the stronger version of Theorem 9, we introduce

the concept of an "alternating walk" as being exactly the same as an

alternating path, except that it may use the same nodes and arcs more

than once on 1ts way.

The weight of an alternating walk 1s defined so that the weight

of a node 1s counted as many times as the node 1s used by the walk.

The walks are classified as W-walks, N-walks, M-walks and O-walks

exactly as for paths. We can then prove the following theorem.

Theorem 11. Assume thatI 1s a k-maximal intersection. Then there

1s no O-walk or N-walk in the BG of I with positive weight.

Proof. We will show this by induction on the length of the walk,

expressed as the number of nodes used, 1n the sense that each node 1is

counted once each time it 1s used.

Any N-walk or O-walk has at least length 2 , and if the length

is 2 then it 1s obviously also an N- or O-path.Thereforethe

theorem holds in this case.

Now assume that the theorem holds for all lengths less than L ,

and that we have a 0- or N-walk of length L . If none of the nodes of

the walk 1s used twice (or more) we have a 0- or N-path, and the theorem

must hold. If not, start in one end of the N-walk, or anywhere on the

O-walk, and pass on to the first meeting with a multiple-used node.
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Here skip over to a later passage of this node, and follow the walk :
in the old direction until we reach the end of the N-path, or are back |
at the starting point of the O-path. We have then passed through an |

N- or O-walk with length less than L , so its weight is not positive. B

The part of the walk we skipped must have been an O-walk with length }
less than L , forcing its weight not to be positive. However, the

weight of the original path 1s the sum of the weight of the two parts, ] |
which gives our theorem. i.

Now the theorem we need follows quite easily. J

Theorem 12. Assume that I 1s a k—-maximal intersection, that P is 3

a W-path and that Q is an M-path (or possibly only a single node S

in I ), in the BG of I. Then w(P) +w(Q) <0. |
:

Proof. If the two paths are disjoint, the theorem follows immediately = |

from Theorem 9. Now assume that they are not disjoint, and assume first

that Q 1s a single node. Then the theorem follows from summing the =

weight of the two N-paths starting in each end of the W-path, and ending }
at the M-path-node. ,

If the M-path is a real one, we do a generalization of this. We 5

choose any node which 1s used both by the W- and the M-path, and obtain 1
two N-walks, Ry and R, ry by starting in one and the other end of the -
W-path, and shifting over to the M-path at the chosen node. Note that i
the direction in which you shall proceed in the M-path after the shift |

is determined by the direction in which you come to the shift-node in n

the W-path. Thus these two N-walks cover exactly what the M- and the |

W-path covered and w(R,) +w(R,) . w(P) +w(Q) . But by Theorem 11 in

w(Ry) <0 and W(R,) < 0 so the theorem follows. i |



Theorem 13. If P is a clean W-path in the BG of an intersection

I then this W-path will appear as an M-path in the BG of P(I) .

Proof. This theorem 1s a direct consequence of part C of Theorem 1,

which simply says that the arcs used in P will turn up also in the

BG of P(1) , since both the matchings in P are clean. This 1s

exactly what we need.

Theorem 1k. If I 1 7 I, and Trt are k-1-, k— and k+l -maximal

intersections respectively, then w(I,) -w(I, _;) > w(I,, 1) -w(I,) :

Cees By the earlier results we know that we can find a clean

—_— 1 ! =W-path P; in the BG of I, , such that if I} = P(I,_;) , then

w(I}) — w(I,). Further we can find a clean W-path PF, in the BG
: t — t t —

of I' such that if I! ; = P,(I}) then w(Ij,,) = w(I) . We

now want to prove that w(Py) > w(E,) . This follows from the fact

that in the BG of Ly , Pp, appears as an M-path with weight -w(P,) ’

"by Theorem15. Therefore since I 1s k-maximal we know by Theorem 12

that ~w(Py)+w(P,) < 0 , which is exactly what we want.

11. Maximum Weight Intersection Algorithm

We can now construct an algorithm for finding a maximum weight

intersection of two matroids, which 1s very similar to the maximum

cardinality algorithm given earlier. The only change we have to make

1s that we now each time must find a weightiest W-path in the BG of

the intersection we have. If the weight of this path is negative, or

if no W-path exists at all, we now have a maximum weight intersection
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by Theorems 10 and 1k. If this is not the case, we perform weight- a.
preserving shortcuts on this W-path as far as possible, and know then 5

by Theorem8 that the resulting W-path is usable. Thus, by Theorem 10,

the performance of this path will bring us to a ktl -maximal

intersection.

We will not here go into further details on this algorithm, only

notice that under the same conditions as for the maximum cardinality

algorithm, we can make this algorithm work in polynomial time.

It may be interesting to notice that if all subsets of E are

independent in one of the matroids, then the algorithm above will

degenerate to the well known greedy algorithm for the other matroid.

. 12. A Characterization of Optimal Intersections

We conclude by giving necessary and sufficient conditions for an

intersection to be k-maximal and to be of maximum weight.

Theorem 15. An intersection 1s k-maximal if and only if 1] = k and

its BG contains no 0-, N- or cut N-paths with positive weight. An

"intersection has maximum weight if and only if its BG has no M-, N=, 0-,

or W-paths with positive weight.

Proof. By earlier results the above conditions are obviously all necessary.

To get the sufficiency in the first part, assume that I is an intersection

with k elements which 1s not k-maximal. We will show that there must

exist a positive 0-, N- or cut N-path in its BG. Since I is not

k-maximal there is an intersection J so that w(J) >w(I) and |J| = |1| :

Then we make a construction similar to the one used in the proof of oo
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Theorems 6 and 10, and can easily verify that every W-path formed can

be exactly paired to one M-path (or one element in J-I not met by

any arc in the matchings). We have then obtained a set of disjoint

O-, N- and cut N-paths whose out-parts and in-parts exactly form J-I

and I-J respectively. Since w(J-I)> w(I-J) at least one of these

paths must have positive weight.

For the sufficiency of the second part we first observe that if

the BG of I has no positive M- or W-path, then it cannot have any

positive cut N-path. Thus I is k-maximal, with |I| =k .

By Theorem 10 and the concavity we know that there cannot be any

intersection I' such that 11 | > || and w(I') >w(I) . However,

by again using the same technique as in the proof of Theorems 6 and 10

we obtain that i1f k > 1 and I 1s a k-maximal intersection then we

can find an M-path P in the BG of I such that P(I) is a k-1 -maximal

intersection. Thus, by the concavity again, we know that there cannot be

any intersection I" such that |1"| < |1|, and w(I") > w(I).

Hence the theorem 1s proved.
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