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A Combinatorial Base for Some Optimal

Matroid Intersection Algorithms

Stein Krogdahl

1. Introduction

The algorithms for which a theoretical base is given in this
paper, have been known for some time, and were first developed by
E. Lawler. However, the proofs given for the correctness of these
algorithms have used linear programming concepts such as primal and
dual solutions, and have been rather difficult to understand. Hopefully,
the proofs given here will be easier to understand, and thereby will

give deeper insight into the nature of the problems involved.

2. Some Properties of Matroids

In this section we shall develop the properties of matroids on
which the following theory is built. We denote a matroid M(E) , and
thereby mean a matroidian structure defined on the finite set E . It
is assumed that the reader knows the basic properties of matroids, and
we will use the following notation: If AC E and ecE , then A-e
and A+e shall mean A- {e}] and AU {e} respectively. The closure
of a set A CE , or the span of A , will be denoted sp(A) . I £
I ¢ E is independent and e e sp(I)-I , then the unique circuit in

I+ e will be denoted C(e,I) .



Our first theorem is the following:

Theorem 1. Assume that M(E) is a matroid and that I and J are
subsets of E such that I is independent and J € sp(I) -1 . Further
assume that a one-to-one mapping d: J - I 1is defined such that for
all e ¢J , d(e) eC(e,I) , and for all nonempty sets A c J there is
an ecA such that for all e'ecA- e we have d(e) £C(e',I) . Then
we can conclude:

A: the set I' = IUJ-4(J) is independent;

B: sp(I') = sp(I), thus d(J) < sp(I') -1' ;

c: for all -eeJ we have ecC(d(e),I') .

Proof. For later convenience let us first choose one element e in
each A c_J such that for all e'ecA-e we have d(e) £C(e',I), and.
call it S(A)

Part B of the conclusion is a simple consequence of part A, since
11T = |I'| and everything goes on within sp(I) . To prove part A

we assume that I' contains a circuit CO . Because I 1is independent,

AO = COﬂJ is not empty, and we set e = S(AO) . Because d(e) eC(e,I)—CO

and ecC(e,I)NC

o+ We can find a circuit ¢, within C(e,I) Uc,-e
such that d(e) eCl , and we know Al = ClﬂJ c Ao-e . If Al £ 0

we'choose e €A, . Now we have d(e) eCl—C(el,I) and eleClﬂC(el,I)

and we can find a circuit 02 c ClUC(elJI)—el such that d{(e) €C2 , and

we have A2 = Ceﬁ J c Al-el . If A2 is not empty, we pick an e, eA2

and repeat this process again, and for some k , A.k must become empty,

since lAi' < |Ai l| . But then C, (which contains at least d(e) )
must be a circuit entirely within I , and this is a contradiction

outruling the existence of ¢



The proof of part C is done by a similar construction as the one
used to prove part A, but a little more care is needed. First we order
the elements of J in a sequence J = {jl’je""’jn} , by the following
definition: 3y =83, = S(J-jl) , rdpay = S(J-Jl- -Jn_z) /
in = S({,jn}) . We then observe that if p < g, then d(jp) )éC(jq,I) .

Now assume eeJ , and we will show eecC(d(e),I') . Suppose
e=13, , then we know By = d(J) Nc(e,I) c_{d(e) , d(jﬁl) yee oy A
If now By = {d(e)) we must have C(d(e),I') = C(e,I) , and we are

)3

n

done. If not, let Py be the smallest g such that

a(jy) By —d(e) . Now d(:ipl) €C(e,I) ﬂC(J‘pl,I) and
eeC(e,I)-C(j_ ,I) . Thus we can find a circuit C, c C(e,I) UC(j_ ,I) -d(J
such that e eCl , We now know that

B, =a(7)NCy c{ale),aliy o c»d(3 )} Nowif B, -d(e) £ 6,

)>
+ll
we choose P, as the smallest g such that 4a(j ) eB,-d(e) , and

2 q 1

let C, be a circuit in ClUC(j ,I) -d(j7 ) containing e . Define
p2 p2

B, = d(J) NC, , and if again Be-d(e) # ¢ we choose p; as minimum

such that d(jp ) eBQ-d(e) and go on in this way. We must then get
3

Pi < Piyqp and for some k , Bk—d( e) must become empty. Then Ck

is a circuit, containing e , whose only element outside I' can

be d(e) . Since I' 1is independent we must have d(e) €C and

k. 4

also C(d(e),I')-= C, - Thus eeC, = C(d(e),I') as claimed.

Note that we also can add, to I' in the theorem, at least one
element not in sp(I) , and remove as many elements as we wish, and

still rely on the independence of I' .



Theorem 2. Assume that I and J are independent sets in a matroid
such that J < sp(I) . Then for each e ¢J-I, C{e,I) N (I-J) £ 9,

and for each J' ¢ J-I the set I' = (I-J)N ( U C(e,I)) is such
eed'

that |J'| < |1'] .

Proof. The first statement must be true, or else J would contain

a circuit. To prove the second we observe that
J'U(INJ) € sp(I'U(INJ)) . Since both these sets are independent

we must have |J'U(INJ)| < |1'u(InJ)| , and thus |d'| < |1'| .

7. The Simple Border Graph (SBG) of an Independent Set

Assume that I is an independent set in a matroid M(E) . Then
we can construct a bipartite graph, called the "simple bordergraph"
(SBG) of I , in the following way:

The nodes of the graph are (in one-to-one correspondence with)
the elements of E , and there is an arc between the nodes el'eE-I
and e, eI if and only if e e sp(I) and e, eC(e,I) . This means
" that if e is not a self-circuit-element and e eE-I , then e has
no arcs onto it if and only if e €E-sp(I) . Also if e; €E-I and
e, € I and there is an arc between e and €5 then I+ e - &
is independent.

We now note that the function d used in Theorem 1 corresponds
to a matching in the SBG of I , and that part A of this theorem says
something about when the interchanges indicated by the arcs in a certain

matching can be performed simultaneously without destroying the

independence of I



To be able to formulate part A of Theorem 1 in these graphic
terms we define the graph "induced" by a matching in the SBG of I ,
as the graph with node set equal to the set of end-nodes of the matching,
and with arc set equal to the set of all arcs between these nodes in
the original SBG. Indeed this graph contains the arcs of the matching
itself, and we call these the "main arcs" of the induced graph. Further
a matching is said to be "usable" if the interchange in I of its
end-nodes inside I with those outside I makes a new independent set.
Part A of Theorem 1 then says that a matching D in the SBG
of I is usable if the induced graph of any submatching D' of D

has at least one main arc which is the only arc to its end node in I
To get this condition on a, for us, more convenient form, we

define a "main cycle" in the induced graph of a matching as a simple

cycle that uses a main arc exactly each second time. We will say that

a matching "induces a main cycle" if its induced graph contains a

main cycle, and if a matching does not induce any main cycle it is said

to be "clean".

Theorem 3. A clean matching D in the SBG of an independent set I

1s usable.

Proof. We will show that if D does not have the property that

every submatching D' of D has at least one arc whose node inside I
has degree 1 in the induced graph of D' , then the induced graph

of D must contain a main cycle. Therefore assume that D' 1is a
submatching of D inducing a graph where all the nodes inside I

has at least two arcs onto it. Then start at any node of D' outside I ,

pass along the main arc to its endpoint inside I , and take any of the



other arcs from here. Then we are back at the outside end of another
main arc, and we repeat the process. This process must eventually
lead back to a main arc which is used before, and then a main cycle
in the induced graph of D' 1is found, and this is also a main cycle
in the induced graph of D

We conclude this section by giving a theorem that assures the

existence of matchings under certain conditions.

Theorem 4. Let I and J be independent sets of a matroid such
that J C sp(I) . Then there is a matching in the SBG of I such
that J-I is exactly the set of end-nodes of the matching outside I ,

and all the inside end-nodes are within I-J .

el

Proof. By Theorem 2 each node in J-I must have at least one arc
leading into I-J , and these arcs must be so arranged that for every
J'"c J-I the set in 1I-J directly reachable through an arc from nodes
in J' has greater cardinality than J' . Thus, by a well known theorem
about matchings in bipartite graphs the matching required by our theorem

exists.

L. Intersections of Matroids

In the following we shall deal with two matroids here called MR
and MB (the red and the blue matroid), both defined on the same set E
A subset of E which is independent in both MR and MB is traditionally
called an "intersection" of MR and MB , and our task shall be to
develop algorithms for finding optimal (in a certain sense) intersections.

In a later chapter weights are given to the elements of E and the task



is to find an intersection with the maximum sum of weights. However,
we shall first treat the simpler case where all the weights are one,
that is, to find a maximum cardinality intersection.

For simplicity we assume that neither Mﬁ nor MB has self-circuit-
elements. If any of them has, these elements (which cannot figure in any
intersections) can be deleted first, or they can simply be ignored by

any algorithm.

5. The Bordergraph (BG) of Intersections, and Alternating Paths

If T is an intersection of Mﬁ and MB we define the
"bordergraph" (BG) of I to be, in a certain sense, the union of the
SBG of I in MR and in MB . That is, the set of nodes of the BG
of I is again in one-to-one correspondence with E , and the arcs
are exactly those from the SBG of I in MR colored red, and exactly
those from the SBG of I in Mﬁ colored blue, and only these.

If a node outside I has no blue arcs onto it, it is said to be
"unicolored", with color red, and if it has no red arcs onto it, it is
unicolored with color blue. If it has neither red nor blue arcs onto
it, it is also said to be unicolored, now with color white. Obviously
(if the matroids contain no self-circuit elements) an element is outside
spB(I) if it is unicolored with color red or white, and outside
spR(I) if it is unicolored with color blue or white.

We now define an "alternating path" in the BG of an intersection I

as follows: Either it is a single unicolored white node outside I ,

or it is a simple path or cycle of length at least one which uses



red and blue arcs alternately and which is such that any end-node of
the path outside I is unicolored. ("Simple" is here used in the
sense that no node is "used twice" along the path.)

If P is an alternating path in the BG of I we denote its
set of nodes outside I as " out(P) ", the set of those inside I
as " in(P) ", and the set I -in(P) Uout(P) as " P(1l) ". Further
we say that P is "usable" if P(I) is an intersection of the two
matroids MR and MB'

For later use we will classify the alternating paths in four
groups: W-paths, N-paths, M-paths and O-paths. An O-path is a cyclic
path, a W-path is one with both (unicolored) endpoints outside I (with
the single white-node-path as a special case), an N-path is a path with
one (unicolored) endpoint outside I and one inside I , and an M-path

is one with both end-points inside I

Lo
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Examples of alternating paths. The unfilled nodes must be unicolored,

and the lower nodes are assumed to be inside 1.

By considering only the red or only the blue arcs of an alternating
path, a red and a blue matching (of which one or both may be empty) is
defined. If both these matchings are clean in their own SBG, then the
alternating path is also said to be clean.

By Theorem 3, and the comments after Theorem 1, we get the following

theorem:
Theorem 5. A clean alternating path is usable.

Our main interest is in W-paths, because if P is a usable W-path,
then P(I) is a new intersection with one element more than I . The
following theorem assures-the existence of W-paths in the bordergraph

of T , if greater intersections exist at all.



Theorem 6. Let I and J both be intersections such that
\I\< \J\ . Then there is an alternating path P of W-type in the

BG of I such that out(P) € J-I and in(P) <€ I-J .

Proof. If J contains an element outside spR(I)LJspB(I) , then this
is a unicolored white element and it is usable as a W-path alone, and
we are done. Therefore suppose J C SpR(I)\JSpB(I) and define

J' =J-I . Now partition J' 1into the sets JR P JB and J0 as
being the unicolored red elements, the unicolored blue elements and
the rest of the elements of J' . By Theorem I we can now find a red
matching using exactly the nodes of JRUJO outside I and only nodes
in I-J inside I , and a blue matching using exactly the nodes of

J,Ud outside I and only nodes in I-J inside I . Now define

B70

IR s IB and I0 as the nodes in I-J which have only a red arc onto

it, only a blue arc onto it and one red and one blue arc onto it
respectively in this matching. We know that lIRLJIOtJIBl < |I—J1 <

|J—I|=\JRUJOUJB| , |IRUIO| = \JRUJO| and \IBUIO\ = |JBUJO\

and |I.| < |J

sl

Therefore we must have lIR‘ < \J B|

2l
The arcs we have got now must obviously form a set of alternating
paths of various types. However since every O-path will '*consume"

nodes only from J and I and each N-path will consume exactly one

0 0
i i i i 1
node in JR and one in IR or one in JB and one in IB (plus
possibly some in JO and IO) at least one path must extend from a
node in JR to a node in JB . This path is a W-path in the BG of I ,

and it obviously meets the requirements of the theorem.

10



6.  Shortcutting of Alternating Paths

Suppose we go along an alternating path P from one end to the
other, or around an O-path, and are just about to leave a node by an
arc of color X . If we then, from where we are now, find another
arc, also of color X , leading to a node further ahead on our path,
we can delete all nodes and arcs lying between these two nodes on the
path and insert this new arc instead, thus obtaining a new alternating
path of the same type. This operation is called "shortcutting", and
the resulting alternating path is called a shortcut of P . We obtain

the following theorem.

Theorem T. If P is any alternating path where no further shortcutting

is possible, then P is clean, and thus usable.

Proof. It is easy to see that if either the red or the blue matching
in the graph induce a red or blue main cycle, then at least one short-

cutting edge must exist.

I Maximum Cardinality Intersection Algorithm

We can now construct a rather straight-forward algorithm for
finding a maximum cardinality intersection of two matroids.

If we have an intersection Ik with k elements, then Theorem 6
tells us that if its BG contains no W-paths, then Ik is a maximum
cardinality intersection. If not, we can take any W-path in the BG,
shortcut it until no shortcut is possible, and by Theorem T we know

that it is now usable and will bring us to an intersection Ik#l with

11



kt1 elements. Starting with IO = ¢ this will give us an algorithm
for finding a maximum cardinality intersection.

We shall not elaborate on how such an algorithm can be implemented
or optimized here, but only notice that if we have a way of determining
in polynomial time if a set is independent in Mk or in MB , then
we can also find CR(egU and CB(e;D , and thus build the BG in
polynomial time. The search for W-paths and a possible shortcutting
process can obviously also be carried out in polynomial time, which
altogether gives a maximum cardinality algorithm working in polynomial

time.

8. Weighted Matroids

We will now consider the case where the elements of the set E
over which MR and MB are defined has weights. That is, a mapping
w from E to the real numbers is given.

We also define the weight of a set A € E as the sum

w(d) = 2 w(e)

ech

Also we define the weight of an alternating path P in the BG of I as

w(P) = w(P(I)) -w(I) . This is obviously equivalent to
w(P) = w(out(P)) -w(in(P))

An intersection I is said to be k-maximal if |I] = k and for
all intersections I' such that |[1'] = k we have w(I') < w(I)
Our aim in the following is to show that if I ~1s k-maximal and P is

a weightiest W-path in the BG of I which cannot be shortcutted without

12



lowering its weight, then P(I) is a k+tl -maximal intersection.

If I is k-maximal-then the weight of any usable alternating path
of type 0 or N must be less than or equal to zero, or else a
weightier intersection with k elements could have been found.

A consequence of this is the following:

Theorem 8 . If T is a k-maximal intersection and P is any alternating
path in the BG of I such that any shortcut of P will give a path

with less weight, then P is clean, and thereby usable.

Proof. We will show that the assumption that one (or both) of the
matchings given by the path P induces a main cycle, (that is, P 1is
not clean) leads to a contradiction. Therefore assume that e.g. the
red matching induces a main cycle. Now, if the alternating path is of
O-type remove any blue arc to obtain a linear structure.

The idea of the proof now is really quite simple, namely that each

time the main cycle contains a "shortcut-arc" in P like this

we know that w(A) <w(B) because any shortcut is supposed to give less
weight. (We assume that the red arcs are fully drawn, and that the
lower nodes are inside I .) On the other hand, if we have a "cross-over"

structure like this:

15



and if we know that neither the blue matching nor the red matching
(including the crossover-arc) involved contains any main cycle, then
the local O-path formed is usable and w(C) >w(D) or else I would
not be k-maximal.

We will afterwards show if there exists any main cycle at all
then we can find one (in the same or in the other color) in which each
crossover arc obeys the conditions above. First, however, we will show
that this would lead to a contradiction.

Suppose that we have obtained such a main cycle in red, and that
we, as above, draw the alternating path so that its red arcs go down to
the right. Then every red crossover arc in the main cycle will go up to
the right, and every red shortcut arc will go up to the left. The main
cycle must obviously contain a leftmost and a rightmost main arc in this
drawing, and we will use this to partition the main cycle as follows:

Part 1 is what you pass if you start bygoing down the leftmost main arc

and follow the main cycle until the top of the rightmost main arc is met.

Part 2 is the rest. Part 1 must in a way be dominated by crossover arcs,
although it may have many back-steps by shortcut arcs. Part 2 must
likewise be dominated by shortcut arcs. For example, the two parts can

look like this:

14
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Part 1 Part 2

Note that the two parts cannot use the same main arcs, and there
will generally be many red main arcs not in the main cycle in between
those used by the cycle. Now let U be the set of all upper nodes on
the part of the path covered by our main cycle, except the leftmost one,
and let L be the lower ones except the rightmost node. We have
|L| = |u| > 0 . By summing along Part 1 we get w(L) >w(U) but by
summing over Part 2 we get w(L) <w(u) . For example in the above
illustration, w(Ll) > w(Ul) s W(LE) < w(Ug) s W(LB) > W(Ui) ,
W(Lh) > W(Uh) P W(L5) < W(US) :W(L6) > W(U6) ’ W(L7) < W(U7) ’
W(L8) 27W(U8) , and w(Lg) < W(U9) .  This contradiction would now
complete the proof, if we knew that the existence of an induced main
cycle implied the existence of one in which each crossover arc formed
a local clean (and thus usable) O-path.

To see that this is correct, assume that there is an induced main

cycle in one of the colors. If, inside the subpath that this main cycle

15



covers, there are other main cycles in this or the other color, then
choose one for which there is no other main cycle that covers a strict
subpath of the subpath that this one covers.

Now we must look at each crossover arc in this main cycle.

Consider the following possible picture within a "great main cycle"
which includes the crossover arc AB

E C B

A F D

Here there will now be no main cycle induced by these blue (dotted) arcs,
nor by the red main arcs crossed by the AB-arc. However, 1if we also
consider AB as a main arc, as we do when we look at this as a local
O-path, there can still be a main cycle as indicated above: BAC DEFB

Then, however, we can delete AB from our great main cycle and insert

ACDEFB instead to form a new great main cycle. The new crossover arcs

formed by this process (AC and FB) must be shorter than the original
one, and therefore a repetition of this process must terminate. When
this happens all crossover arcs must form clean O-paths, and the proof

is complete.

9. 0O-paths, N-paths, and Cut N-paths

An immediate consequence of Theorem 8 is that the BG of a k-maximal
intersection cannot contain any O-path or N-path with positive weight at
all. For if one such positive path existed, we could go on performing
such shortcuts on it that would not lower its weight until such shortcuts
no longer were possible. (Note that such a process cannot make the path

shorter than two nodes.) The resulting path could then only be even more

16
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positive, and according to Theorem 8 it would be usable. This, however,
is impossible if the intersection is k-maximal.

For our next main theorem we also need a slightly different fact,
namely that if we, in the BG of a k-maximal intersection, have a W-path
and an M-path which are node-disjoint, then the sum of the weight of these
two paths must be zero or less. To see this we can put them together to
form a special N-path with one arc missing in the middle. We will call
such a path a "cut" N-path. As a cut N-path we will also accept a W-path

together with a single node inside I

\/\/9 d”\ \J/P .

Cut N-paths. Unfilled nodes must be unicolored.

Now assume that the weight of such a cut N-path is positive and
shortcut it exactly as we did above. If a shortcut crosses the cut, this
leads to an immediate contradiction since we obtain a positive N-path.

If not, we can show that both matchings involved are clean, by arguments
similar to those used to prove Theorem 8. However, now a crossover edge
may also form a local N-path (which is equally good), and we do not have
to worry about the usability of the local N- or O-paths formed. Since
both matchings are clean the cut N-path is obviously usable and cannot
have positive weight.

We state these results as a theorem.

Theorem 9. If I is a k-maximal intersection then the BG of I contains

no O-path, N-path or cut N-path with positive weight.

We now prove the -following theorem, which is the weighted counter-

part of Theorem 6
17



Theorem 10. Suppose that I is a k-maximal intersection, and that
J is any intersection with k+1l elements. Then there is a W-path P
in the BG of I such that w(P) >w(J) -w(I) , and this P can be

chosen so that out(P) € J-I and in(P) € I-J .

Proof. The proof given for this theorem is very similar to that
given for Theorem 6.

First look at the case that J has elements outside SRRCD UspB(I),
and let e be any of these elements. In the BG of I , e will now
be a white unicolored node and can serve as a W-path P alone. Since
J-e is another intersection with k elements, we must have
w(J-e) < w(I) which implies w(P) >w(J) -w(I) as required.

Then assume that J C spR(I)lJSPB(I) and partition J-I into
parts JR P JB and JO , find a red and a blue matching, and define
disjoint subsets IR ’ I]3 and IO in I-J exactly as we did in the
proof of Theorem 6. The figures formed must now, as then, be a set
of disjoint alternating paths of the four different types, and there must
be at least one W-path.

I

Now there may be elements in I-J which are in neither IR r Iy

nor in IO , that is, they are not reached by any of the arcs in the
matchings. Call the set of these Il . As an example look at the

following picture:

18
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0 O

It follows now that the number of M-paths plus tHJ must always
be exactly one less than the number of W-paths. An easy way to see

this is first to observe that the following equation must hold:

|JR| - |Iﬁ = lJB‘ lIBl = 1+ \Il‘ .

Then "remove" all N-paths. Since each N-path has either exactly one

and one in I the

node in JR and one in IR , Or one in JB B’

equations above must be kept true.

But now we must also have

B = number of W-paths

[
=
w_

Rl

|IR| = number of M-paths.

Also we have (from the first equation)

bl -1 = Izl + 11y

which gives exactly what we want.

19



Now it is easy to see that any of the W-paths present is good
for our purpose. Choose one of them as P , and pair the rest of them

to either an M-path or an element inlI This must fit exactly,

il
and form a set of cut N-paths. The rest of the present paths must be
either N-paths or O-paths. By Theorem 9 this implies that

w(J -1 —out (P)) §_W(I -J -in(P)) . This is equivalent to (since

out (P) € J-I and in(P) € I-J ): w(out(P)) -w(in(P)) > w(J-I) -w(I-J) .

This is again equivalent to what we want, namely:

w(P) > w(J) -w(I)

10. Concavity

In this section we shall prove that the weight-increase we can
obtain from a k-maximal to a ktl -maximal intersection cannot be
greater than the increase obtained from a k-1 - to a k-maximal one in
the same pair of matroids. This property could suitably be called
"concavity", and it will help us to determine when a maximal weight
intersection is found. From what is proved until now we can easily
construct an algorithm giving us a k+tl1 -maximal set if we have a
k-maximal one, and if intersections with ktl elements at all exist.
However, not even if all the weights are positive, will the weight of
a k-maximal set always increase with k , and the concavity will guarantee
that we have obtained a maximal weight intersection the first time we"™
cannot get a weightier intersection by taking in one more element.

We will prove two theorems, whose combination immediately will

give us the concavity. The first is a stronger version of Theorem 9,
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namely that even if a W-path and an M-path are not disjoint the sum of
their weights cannot be positive in a k-maximal intersection. The
other is that if P is a clean W-path in the BG of I , then P will
appear as an M-path in the BG of P (1) , with weight -w(P)

For the proof of the stronger version of Theorem 9, we introduce
the concept of an "alternating walk" as being exactly the same as an
alternating path, except that it may use the same nodes and arcs more
than once on its way.

The weight of an alternating walk is defined so that the weight
of a node is counted as many times as the node is used by the walk.
The walks are classified as W-walks, N-walks, M-walks and O-walks

exactly as for paths. We can then prove the following theorem.

Theorem 11. Assume that I is a k-maximal intersection. Then there

is no O-walk or N-walk in the BG of I with positive weight.

Proof. We will show this by induction on the length of the walk,
expressed as the number of nodes used, in the sense that each node is
counted once each time it is used.

Any N-walk or O-walk has at least length 2 , and if the length
is 2 then it is obviously also an N- or O-path.Thereforethe
theorem holds in this case.

Now assume that the theorem holds for all lengths less than L ,
and that we have a 0- or N-walk of length L . If none of the nodes of
the walk is used twice (or more) we have a 0- or N-path, and the theorem
must hold. If not, start in one end of the N-walk, or anywhere on the

O-walk, and pass on to the first meeting with a multiple-used node.

21



Here skip over to a later passage of this node, and follow the walk

in the old direction until we reach the end of the N-path, or are back
at the starting point of the O-path. We have then passed through an
N- or O-walk with length less than L , so its weight is not positive.
The part of the walk we skipped must have been an O-walk with length
less than L , forcing its weight not to be positive. However, the
weight of the original path is the sum of the weight of the two parts,
which gives our theorem.

Now the theorem we need follows quite easily.

Theorem 12. Assume that I is a k-maximal intersection, that P is
a W-path and that Q is an M-path (or possibly only a single node

in I ), in the BG of I. Then w(P)+w(Q) < 0 .

Proof. If the two paths are disjoint, the theorem follows immediately
from Theorem 9. Now assume that they are not disjoint, and assume first
that Q i1s a single node. Then the theorem follows from summing the
weight of the two N-paths starting in each end of the W-path, and ending
at the M-path-node.

If the M-path is a real one, we do a generalization of this. We
choose any node which is used both by the W- and the M-path, and obtain
two N-walks, Rl and R2 , by starting in one and the other end of the
W-path, and shifting over to the M-path at the chosen node. Note that
the direction in which you shall proceed in the M-path after the shift
is determined by the direction in which you come to the shift-node in
the W-path. Thus these two N-walks cover exactly what the M- and the
W-path covered and w(Rl)-FW(RQ) . w(P) +w(Q) . But by Theorem 11

W(Rl) < 0 and w(R,) < 0 so the theorem follows.

o)
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Theorem 13. If P is a clean W-path in the BG of an intersection

I then this W-path will appear as an M-path in the BG of P(I)

Proof. This theorem is a direct consequence of part C of Theorem 1,
which simply says that the arcs used in P will turn up also in the
BG of P(l) , since both the matchings in P are clean. This is

exactly what we need.

Theorem 1k. If I , I, and Ik+ are k-1-, k— and k+l -maximal

k1 k 1

intersections respectively, then W(Ik)"dIkgﬁ > w(IkEQ -w(Ik)

UUUUU . By the earlier results we know that we can find a clean

_ ; : vo—
W-path P; in the BG of I such that if Ip Pl(Ik_l) , then

k1

w(IR) = W(Ik)' Further we can find a clean W-path P, in the BG
4 t —_ 1 | —

of I\ such that if I} , = PE(Ik) then W(Ik+l) = W(Ik+1) . We

now want to prove that W(RR > W(PE) . This follows from the fact

that in the BG of Ii p Pl appears as an M-path with weight —W(Pl)’
"by Theorem 13. Therefore since Ié is k-maximal we know by Theorem 12

that —w(Pl)+-w(P2)_§ 0 , which is exactly what we want.

11. Maximum Weight Intersection Algorithm

We can now construct an algorithm for finding a maximum weight
intersection of two matroids, which is very similar to the maximum
cardinality algorithm given earlier. The only change we have to make
is that we now each time must find a weightiest W-path in the BG of
the intersection we have. If the weight of this path is negative, or

if no W-path exists at all, we now have a maximum weight intersection
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by Theorems 10 and 1%. If this is not the case, we perform weight- ?
preserving shortcuts on this W-path as far as possible, and know then —
by Theorem 8 that the resulting W-path is usable. Thus, by Theorem 10,
the performance of this path will bring us to a k+l -maximal
intersection.
We will not here go into further details on this algorithm, only
notice that under the same conditions as for the maximum cardinality
algorithm, we can make this algorithm work in polynomial time.
It may be interesting to notice that if all subsets of E are
independent in one of the matroids, then the algorithm above will

degenerate to the well known greedy algorithm for the other matroid.

12. A Characterization of Optimal Intersections

We conclude by giving necessary and sufficient conditions for an

intersection to be k-maximal and to be of maximum weight.

Theorem 15. An intersection is k-maximal if and only if |I| = k and
its BG contains no 0-, N- or cut N-paths with positive weight. An
intersection has maximum weight if and only if its BG has no M-, N-, 0-,

or W-paths with positive weight.

Proof. By earlier results the above conditions are obviously all necessary.
To get the sufficiency in the first part, assume that I is an intersection
with k elements which is not k-maximal. We will show that there must

exist a positive 0-, N- or cut N-path in its BG. Since I is not

k-maximal there is an intersection J so that w(J) >w(I) and |J| = |1|

Then we make a construction similar to the one used in the proof of
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Theorems 6 and 10, and can easily verify that every W-path formed can
be exactly paired to oneM-path (or one element in J-I not met by
any arc in the matchings). We have then obtained a set of disjoint
0-, N- and cut N-paths whose out-parts and in-parts exactly form J-I
and I-J respectively. Since w(J-I) > w(I-J) at least one of these
paths must have positive weight.

For the sufficiency of the second part we first observe that if
the BG of I has no positive M- or W-path, then it cannot have any
positive cut N-path. Thus I is k-maximal, with |I]| =k .

By Theorem 10 and the concavity we know that there cannot be any
intersection I' such that |I'| > |I| and w(I') >w(I) . However,
by again using the same technique as in the proof of Theorems 6 and 10
we obtain that if k > 1 and I is a k-maximal intersection then we
can find an M-path P in the BG of I such that P(I) is a k-1 -maximal
intersection. Thus, by the concavity again, we know that there cannot be
any intersection I" such that \I"l < |1] , and w(I") > w(I).

Hence the theorem is proved.
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