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Abstract
In 1969 it was shown by P. Erdds that if 0 < al < a2 < . . . < < x
TV—-—

is a sequence of integers for which the products 5 3 are all distinct
1]

then the maximum possible value of k satisfies
3/4 2
’T(K)"’Cz X / /(log x)ﬁ/ < max k < w(x)+ Cq xi/h/(log 1:)5/2

where =w(x) denotes the number of primes not exceeding x and c
1

and 02 are absolute constants.

In this paper we will be concerned with similar results of the

followi t . ces
ollowing type Suppose0<al< <ak<x’0<b1<"'<bz<x

are sequences of integers. Let g(n) denote the number of representations

of n in the form aibj . Then we prove:
(1) If g(n) <1 for all n then for some constant Cs s
Cq x°
3
k
P < log x

(ii) For every c there is an f(c) so that if g(n) < c for all n

then for some constant ch ,

o]
e, X
f(c
ke Tog = (log log x) () .
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Let a, <. . . < & <x be a sequence of integers for which the

products aiaj are all distinct. P. Erdos proved that [1]

n(x)+ ¢, xa/h/(log x)5/2 < max k < x(x) + ¢, x5/h/(1og x)5/2

Perhaps there is an absolute constant ¢ so that

3/4
(1) max k = n(x) + c xj/h/(log x)3/2 + 0 X
(log X)j; 2
but we can not prove (1). (C,cl,--- denote absolute constants not

necessarily the same.)
P. Erdds [2] also proved that if 8 < ., < a < x is such that
the number of solutions of 4 g = %t is less than 22+1 then
17

n(log log n)l_l
(£-1)! 1log n

(2) max k = (1+ o(1)

In fact (2) holds if the number of solutions is < 23-14_1

Let al < ae < and denote by g(n) the number of solutions of

n a e (2) easily implies that if g(n) >0 for all n then

lim sup &(n) = » . It is curious to remark that the additive analogues

n=cw
of this result present great difficulties. An old problem of P. Erdds
and P. Turdn states: Denote by f(n) the number of solutions of

n = ai*.%ﬁ. Then if f(n) > 0 then lim sup f(n) = » . The proof
n=o



or disproof of this conjecture seems to present surprising difficulties

and P. Erdds offered 300 dollars for a proof or disproof.

Raikov proved that if & < o < . . . is such that g(n) > 0 for
all n then
V5.
lim sup A (x) &EQE;E[___ >0
X =@ X
where A(x) = 2 1 . P.ErdSs asked: Is there a sequence a, <a_. < .
a, <x 17

for which g(n) > 0 and A(x) < cx/log x for infinitely many x ?

Wirsing [9] answered this question affirmatively. Tp fact he showed that

X
log x

g(n) > 0 for all n > ny implies A(x) > x (1+ &) for some

€ > 0 and that this result is best possible; that is, for every ¢ > 0

there is a sequence 8 <&, <. . . satisfying g(n) > 0 for all n > n,
X e
—_— €

and A(x) < Tog x (1+ &) for infinitely many x

Let 1 < 8 <. .. <8 <xy 1< bl <. . .< b! < X . Assume that
there are at least cx distinct integers not exceeding x of the form

1/2+4d . L

aibj . Then max(A(x),B(x)) > x and 1f the number of distinct
a;h 's is x+o(x) then max(A(x),B(x)) > x"¢ for every g >0

We do not discuss the proofs here which are not difficult.

It might be worth while to investigate the question that if g(n) > 0 and

A (x) 15§<x holds for infinitely many x, is it then true that
A(x) > cx for infinitely many X , or if this would not be true, how

fast must A(x) increase for a suitable infinite sequence x. = « .
J



One more question in this direction: Let 8 <. RS & < x

k €
be a sequence of integers for which the products ]1' aii ,
i1

g, = 0 or 1 are all distinct. P. ErdSs [3] proved

max k = x(x) + n(xl/z) + O(f;lg/i )
In fact, perhaps the following more precise statement can be made:
Let 1< Y <. .. <W Dbe a sequence of integers for which all the
k
sums i%l ?;qui s & = 0 or 1 are all distinct. Pput min w, = ak .

ErdSs and Pésa observed that

(3) max k > 5 n(xl/ak)

T k=1

and there could be equality in (3). A very old problem of P. ErdSs asks:
Is it true that o > ol for every k where c is an absolute
constant? P. Erdds offers 300 dollars for a proof or disproof of this
conjecture.

Let l_<_al< e <a.k<x;l§bl<... <bl_<_x be two sequences
of integers. Assume that all the products aibj » 1<i<k;

"1 < j <1 are distinct. P. ErdSs conjectured and Szemerédi [7] proved

that then

2
CX
(h) Kt < log x

First of all we give a simpler proof of (4), which nevertheless
uses many of the ideas of the original proof. we conjecture that in

fact



(5) Kt < (1+ o(1)) ﬁi

It is easy to see that (5) if true is best possible. To see this, let
. . X = ,

the a 'sbe the primes in ({_’-, x) and the b's are the integers not

exceeding x all whose prime factors are _<t,§ Clearly the products

aibj are all distinct and the prime number theorem implies

X
log x

k2 > (1+0(1)) if t=t_ - = but t/x® - 0 for every ¢ >0 .

In fact by choosing t = log x (1+0(1)) we maximize Xxf and we then

get sequences ay <. . 0K &y bl <.. . <b£ with the products aib,j

all distinct- and

2 2
6  m o> X X lmlogx, (5 1om1oex
log x 2 2 '
(log x) (log x)

Tt would be of interest to see if (6) can be improved. Conceivably
it is best possible, but we have no evidence for it.

In'this paper we prove the following theorem. To every c there
' f ' <. .. <
is an f(c) so that 1flSa.l & <X, lgbl<.. .<bl<x

are such that g(n) < ¢ for all n then

c. X
f
(7) kt < lo]é ~ (log log X) (c)

(7) is best possible apart from the value of f(c) . The proof is
not entirely trivial and we only outline it. ©Let r > 1 be given. The

sequence B consists of all the squarefree integers b satisfying

X
2

The sequence A consists of all the integers a <x which do not have

<b<x, and v(b) < r (v(b) is the number of prime factors of b ).

two divisors d; < d2 < Edl ’ V(dl) <r, V(de) <r.




It is not difficult to show that

A(x) > e.x , B(x) > cex(log log x)4 /log x

1

and the number of solutions of ab. =n is less than c where c
i r r
depends only on r . We do not discuss the details.

We further outline the proof of the following two'theorems:

1. Assume A(x) > e;x , B(x) > e x . Then
°3
(8) max g(n) > (log x)
n<x2
Again apart from the value of 05 this 1s best possible. (To see thiS,

let the a 's and b 's have < log log n prime factors.) Finally
assume AUB is the set of all integers and A(x) > cx , B(x) > cx.

Here

¢, log logx
(9) mex g(n) > (log x) *

n<x2
and apart from the value of c), this is best possible. 7Tq gee this,
let the a 's have < log log n prime factors and the b's have
> log log n prime factors. Perhaps (9) holds for every ¢, < l-e .
The above example shows that it can not hold for c), > g .
Now we are ready to prove (4). In other words we prove the

following.

Theorem 1. Let l_<_al<,,,<ak<x, 1Sbl<"'<bz <X Dbe

two sequences of integers. Assume that the products a b, are all
173

distinct. Then for some absolute constant c
2
cxX

K log x




Denote by A resp. B the sequences {a.l,...,ak} and {bl""’bz}

A(y) will denote the number of terms of A not exceeding y . A prime

p is associated with A if there are at least k

100 p 1og p multiples

of p in A, similarly p is associated with B if there are at least

_ _ X ) . .
100 p log p multiples of p in B . Tet P, <P2 < ... be the primes
which are not associated with A _- opit all the a 's which are multiples

of any of the p's. Thus we obtain the new sequence A, having k,

terms. Repeat the same process and also apply it to B with the primes

. . , 1 1
not associated with B . Since % lmp < 5 eventually
we obtain a sequence U={u, <...< } VCB, A\ >15='nd
1 uxl ? ? ™M 2 2
V={v.<...<v, }, VcB, A\ >£ with the property that if
1 >\.2 2 2

plui then p is associated with U and if p vJ. then p is

associated with V . To prove our theorem it clearly suffices to show
2
(10) 7\.17\2 < egx /log x

: t
Let now t with 2~ < xl/2 be the greatest integer for which there

t/2 t 1

are more than 2 p 's in (27, ) which are associated with both

U and V . Denote these primes by Pl""’Ps'

t t+1 t/2

(11) 2<pl<.**<ps<2 R s > 2

Consider the set of all pairs of integers

BN
12 1
(12) 2o

IA
He
INA
0
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where u, =0 (mod p,), v., = 0 (mod p )
B i J i

Since pi is associated

with both U and v there are by (11) at least

c AN cA_ A\
(13) N > s
107 (4+1)° 2 2 p7%/2

pairs (12).

Now observe that the pairs (12) are unique. If

u V.

9 Jp J1

- = p—— and B = p—-—- = -—p
N )
1 dp i J2

then ujlvjé = ujev'ji = ozsp_.ulpie which contradicts our assumptions.

Now we estimate the number of pairs (12) from above. Denote by
t+1
2 < pl <.** <X the primes associated with both U gng v .3 y

the maximelity of t there are at most 2!/2

b i+1
(27,27°7)

primes p in the interval

for every £ >t . Thus trivially
(14) > L <8
1 Pi

Denote by gy < ... the primes in (2t+l,x)

U and by rl < ... the primes in ( 2t+l,x)

not associated with

not associated with V
-Clearly the integers (12) satisfy

(15) <,

WS kF
A

v, u v
X 1 3 st
= _PL < = and I—Dl # O(mod q) , =~ = 0(mod r)
i 2 £ by

for all the primes q and r defined above. By Brun's method we

immediately obtain from (15) that the number of integers of the form
u.
—J

is less than
Py



| | 4 -

X 1
(16) ¢, % Tf(l "3

. Vit
and the number of integers of the form J. is less than

P 1

X 1
17 e ;.Eﬂ(l r)
1

Thus, from (16) and (17) we obtain that the number of pairs (12)

is less than

2
(18) c. ¢ Eomfr-L2 )nf1-1 :

From (14) and the theorem of Mertens we obtain

1 1
(19) Za;+2r—i'=21

B |

1
-ZF > log log x = log t -~ c
i

where in Zl the summation is extended over all the primes in (217"'1 x)
2

From (18) and (19) we obtain that the number of pairs (12) is less than

x2t

(20) °s =g
27 log x

3
From (13), (20) and the uniqueness of the pairs (12) we thus obtain

C)\l )\2 -5_‘; b. 4l

ﬁ— <
‘t2 23t 2 22t log x

or

NN, < e
1 2 7
2t210g'x

which proves (10) and completes the proof of Theorem 1.
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Observe that if no t exists for which there are many primes in

t t+1
5277)

(2 associated with both U and V , the proof gives

U(x)v(x) < ex 2/la\g -X

2
If th is a 1 t then in fact U(x = X
ere is arge en i (x)V(x) o(log x)

2
Now let us try to obtain A(x)B(x) < (1+ o(1l)) f%gjz . One can

formulate this as an extremal problem in number theory. agsume
15a1<.*. <a.k<x ' 15b1<. . <bl<xare such that the
products aibj are all distinct. What is the maximum of k& and which
sequences realize this maximum? Perhaps the sequence defined in the
introduction comes close but we have no evidence. oOpe could try first
of all to prove that the extremal sequence has the following structure:
Split the primes into two classes a; an% r..The A's are the
integers composed of the g's and the B's are the integers composed
of the r's . We have not been able to show this -- the method which we
use in proving Theorem 1 shows that we can assume that the extremal

sequence has the following structure: The primes are split into three

classes {qi}, {rj} , {Sl} Z)gL < C and all the g's are associated
)

with A , all the r's with B and the s's can be associated with both.

If we would succeed in eliminating the primes s then to prove
x2
A(x)B(x) < (1+0(1)) Tog we would need the following theorem on
sieves which we can not prove but which perhaps can be attacked by the
experts: Let ql<q2 <. . Ly rl < r2 < . . . be two disjoint sequences of

primes. 8 <Ay <.y bl < bg <. . . are the integers composed of

the q's and r's respectively. Is it true that



(21) A(x)B(x) < (1+ o(1)) <

log x

As shown in the introduction, equality is possible in (21), but

perhaps the only way to achieve equality in (21) is to have

/"
min{ 2, g -
Q. "ri tend to 0 as X =« |,

~

Thecrem 2.

LA Let A(x) > clx , B(x) > ¢,X  Then for some n <x,
a [

g(n) > (log x)

Theorem 2 is an immediate consequence of an .
old theorem of Erdds [4].

The number of products of the form 2 9
R aibj is > ¢, x but there are
bid
fewer than ——— C ot :
a distinct integers of the form k£ , k = x ,
(log x)
2 <Xx . This implies Theorem 2.

It would be interesting to determine the best possible value of a,

1
Q
= log 2

is easy to prove, and at present it is not clear to us how

much this can be improved.

M' Let A(x) > cx , B(x) > ex and assume that every m < x

is either in A or B . rhep for some n < x and x > x4(€)

1
-(22) g(n) > (log x)(H " ¢)loglog x

Denote by I the interval

(c(lOg X)n’ c(log x)l/e)

and let P < . . . <pg be-the primes in 1

(X

10
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NJ =

1 1/2 Sl
k = [§ (log x) / ] s b= .Z o = ( - 'n)log log x + 0(1)
Denote by D the sequence- dl < d2 < . . . of integers not exceeding

x which have at least k distinct prime factors in I . It is easy to

see that

(23) Dx) > 1571/ (x-1)1

The proof of (23) follows the method of Hardy and Ramanujan [6]
and will be suppressed.

Without loss of generality we can assume that at least % D(x)
of the d's are in A (since A UB contains all the integers not
exceeding x ).

It follows from Turdn's method [8] that all but o(x) integers
not exceeding x have I+ o(l) distinct prime factors in I . Thus
since B(x) > cx we can assume that at least %; of the b 's have at

least t distinct prime factors in I where t = [(1-€)£] . Consider

now all the integers

(2k) agb, , &;eDNA v(bj) >t

By (24) the number of these products is greater than

2
5 X k-1,.. .
(25) —(log 2 27/ (k1)

It is not difficult to see that almost all of these products are squarefree
and these then have at least k+f prime factors in 1 . It is easy to
see that the number of integers not exceeding x which have at least

ktf distinct prime factors in I is less than



r—

r—— r

(26) % 1 ktf-1 . ket -1
X Z i)—i (kt2-1)! = x2 / (kt2-1)"

From (25) and (26) we obtain that there is an n for which the

number of solutions of n = a.b {5 at least
1d

kg-1 \-1 ’ 1
X k-1 x4 K (T -¢€) log logx
£/ (x-1) 4 ( > = > (L L
(log x)° (krg-1) 1 ) (log x)

which proves (21).
Perhaps (21) holds with l-e instead of ﬁ "€ - To make the proof

work, I would have to be the interval
.
log x M 1 X M ) -
(c< g ) ’ o(1og x) » ko= [(Log x)1™M;

But then we could not prove (23), but we hope to return to this question.

Finally we prove

Theorem 4. To every c there is an f(c) so that if

lS&l<. . .<ak<x, lel< N <‘bl_<-xare such that g(n) < c

then (7) holds.

For simplicity we only prove this for . _4 . Assume that

(27) kg > X _ (log log x)<

log x
where & i1s sufficiently large. We are going to prove that (27)

implies that there are integers gz | y and four primes g}_) , p(1)

0 .
pg ) P pél) so that for all choices of e =0 or 1, i=1,2,

2 /( si 2
(28) v IT 3" ea, 2T p e .
i=1 i=1

N
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(28) clearly implies that g(Zyp](_o)pil)Péo)Pél)) >

hence to prove Theorem 4 it suffices to prove (28) In view of the

fact that we do not try to get best possible values of & the proof
of this will in some respect be simpler than the proof of Theorem 1.

We say that the prime p belongs to A if there are at least
k

p(log log P)
of the definition in Theorem 1 (which as the attentive reader will

multiples of it in A | This is a slight modification

later see is really needed here) but since 2 1 5
p(log log P)

converges
this makes no difference.
Let tl be the smallest integer satisfying

t
c 1
(log x)~ < 2 < Xl/2 (where c is sufficiently large)

t.,
2..L

for which there are more than —
tl(log tl)

primes which belong to
both A and B . 1If no such interval exist then Brun's sieve gives
as in the proof of Theorem 1 that

ke < cx2 log log x
log x

which implies that in this case our theorem holds.

Let now

o1
(29) Pl,pe’ * . "PS 2 S > —2
tl(log tl)

t.+1

t
be the primes in (2 l, 21 ) which belong to both A and B

Denote by AP respectively BP the set of integers

i i

13



a. b,
’ {5‘3.'} ’ {-f;lL} » aj = 0(mod pi) ’ bj' = O (mod pi)

Let now tél) be the smallest integer satisfying

(1)
c t2 X 1/2
L(D)

2 ° (1)

- - primes p.- / .
tél)(log tél))E j in

for which there are more than

tél) té1)+l
2 s 2 which belong to both A and B .If such a
Pi Pi
t(i) does not exist then ever i ' c X /2
5 y prime g in (log x)¢, =
i

belongs to at most one of the sequences A , B (we neglected a
Pi Pi

set of primes the sum of whose reciprocals goes to ( g5 x -« and

which may belong to both A and B ). But then as in the proof of

Theorem 1 we obtain by Brun's method

[»)
cx log log x

0
o) e, |, | <

2 -
1 1 pi log x
Thus from (30) and the definition of A | B we have
Pi Pi

2 5

2 L ¢ x (log log x)

ke = |a} |B] < |a B ° (1log Pi _ , g log X)°

||||_|Pi|Ipilpl(OgPlloglogpl) < e

which again proves Theorem 4.

14



r— r—

The number of possible choices for t&l)

is at most log x
there are at least

t
5 1

2
tl(log tl) log x

. _ tl tl+l
primes Dp; 1in 2 7,2 which have the same ¢

Let Pi » 1<i<s, be the primes (28) and 995 0 W' the set

. . ( ts t2+1)
of primes in 27,2 To every Pi there are at least

t
o 2

2
t2(log t2)

PJ(I) 's (which are g 's) so that there are at least
) ck ) ck
i 2 i)\2 >
b, Pj(l) (log log pi) (log log p'_(l))— T+t - -
J 2 (log tl) (log t2)
cx

Tty - - (since k >—=

2 (log tl) (log t2) log x log x

. X .
t i .
tntegers P P(ij so that U-P:-LP§ ) €A | Therefore by a simple

¥

computation there is an integer U to which there are at least

t
2

(log x)5

1%

(1) . ]
products pi_pj for which Ul}-l’g ) ea Henceforth we only consider

. 1
h pl*) - ,
these pairs Pipj which belong to U . 145 each of these pairs there

15

and so



are at least

CX

t. +t
log x 2 1 (log tl)a (log t

. X i
-integers v < ;—PTE)_ so that V'Pipg )eB .Thus again by a simple
i3

averaging process there is a V so that there are at least

t
2

(log x)5

1t

pairs p+q for which Upg € A , Vpg € B
Now we use the following simple lemma on graphs. 1ot G be a

bipartite graph of Ll white and L2 black vertices and more than

edges (Ll < L2) . Then the graph contains a rectangle. Since

t t
1 100 2 100
27> (log x) r 27> (log x) the lemma applies and the rectangle

gives the configuration which we require.

k . o
For ¢ = 2 the proof is similar. We have to apply our procedure

k times and have to use the theorem on k-tuples in [5].

16
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