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Abstract

In 1969 it was shown by P. Erdos that if 0 < al < a2 < . . . < < x
TV——

1s a sequence of integers for which the products 5 3. sre all distinct
17]

then the maximum possible value of k satisfies

3/4 3/2 4| n(x) +c, ©! (10g X) / < max k < nm(x)+ Cy 5! / (log x) 7/2
where w(x) denotes the number of primes not exceeding x and |

1

= and Cc, are absolute constants.

In this paper we will be concerned with similar results of the

following type. < <...< a
g typ Suppose 0 aq xg S¥ 5,0 <b <...<b <x

are sequences of integers. Let g(n) denote the number of representations

. ofn in the form ab. . Then we prove:

(1) If g(n) <1 for all n then for some constant Cs ,
C ve
J

k ~~

¢ < log x .

(11) For every c¢ there is an f(c) so that if g(n) < c¢ for all n

then for some constant Cy, ,
2

Cy X

ns f(ec)kt < Togx (log log X) :
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United States Government.



On Multiplicative Representations of Integers

P. Erdos and E. Szemerédi

Let a, <. . . < 8, <X be a sequence of integers for which the

products 2485 are all distinct. Pp. Erdos proved that [1]

3/h 3/2
n(x) + c, X / / (log x) / < max k < n(x)+ Cc, x/*/ (10g x)?

Perhaps there 1s an absolute constant c¢ so that

3/k

(1) max k = n(x) + c 2% (10g x)>/2 + © a(10g x)°/%

. but we can not prove (1). (eseps . denote absolute constants not
necessarily the same.)

| P. Erdos [2] also proved that if 8q < ,..< a < x is such that
| the number of solutions of a; a = t is less than ofiq then

£-1

(2) max k = (1+ o(1) Blog dog n) ]

: In fact (2) holds if the number of solutions is  _ ofl, 4

Let a1 < en < and denote by g(n) the number of solutions of

. Nn a ge (2) easily implies that 1f g(n) >0 for all n then

| lim sup g(n) = » . It is curious to remark that the additive analogues
IN =¢

of this result present great difficulties. An old problem of P. Erdos

and P. Turdn states: Denote by f(n) the number of solutions of

n = a; te, + Then if f(n) > 0 then lim sup f(n) = » . The proof
1=
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or disproof of this conjecture seems to present surprising difficulties

and P. Erdos offered 300 dollars for a proof or disproof.

Raikov proved that if 8, < 8 < . . . 1s such that g(n) > 0 for

all n then

10.
lim sup A(x) (log x)" > 0
X = x

where A(x) = 2: 1 . P.ErdSs asked: Is there a sequence a, <a < . . .
a. <x : 2
1

for which g(n) > 0 and A(x) < cx/log x for infinitely many x °?

Wirsing [9] answered this question affirmatively. In fact he showed that

X
> 0 f 11 >n 1 A > i + €

g(n) or all n o implies A(x) X Ton x (1+ €) for some
e > 0 and that this result 1s best possible; that is, for every g¢ > 0

\ there 1s a sequence ay < a, < LL. satisfying g(n) > 0 for all n > n,
< —— €

| and A (x) Tog x (L+ €) for infinitely many x .
let 1 Sa; <. . . <8 <x, 1b, <.. .<b, <x . Assume that

| there are at least cx distinct 1ntegers not exceeding x of the form
1/2+4d Cs

. aD, . Then max(A(x),B(x)) > X and 1f the number of distinct

= a;hy 's is x+o(x) then max(A(x),B(x)) > xT for every eg >0 .
We do not discuss the proofs here which are not difficult.

It might be worth while to investigate the question that if g(n) > 0 and

_ A(x) < Tor % holds for infinitely many xX, is it then true that
A(x) > cx for infinitely many x , or if this would not be true, how

fast must A(x) increase for a suitable infinite sequence x, —- ©
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| One more question 1n this direction: Let a <..* KL a, <x
kK ¢

be a sequence of integers for which the products 17 8, 1 ,
i=1 1

| eg = 0 or 1 are all distinct. P. ErdSs [3] proved
1/21/2 Xmax k = xw(x + 0] ————n(x)+ n(x") (£2) .

In fact, perhaps the following more precise statement can be made:

let 1<wu <... <u be a sequence of integers for which all the
k

sums z et P €s = 0 or 1 are all distinct. put min Ww = x .
ErdSs and Pdsa observed that

1/a
(3) max k > 2. «(x i )

i k=1

| and there could be equality in (3). A very old problem of P. ErdSs asks:
Is it true that o> KC for every k where c is an absolute
constant? P. Erdos offers 300 dollars for a proof or disproof of this

conjecture.

Let 1 <a, <. . . <8 <x; 1b <... <b, <x be two sequences

| of integers. Assume that all the products 240 » 1 <i<k;
1 < j <I are distinct. P. Erdds conjectured and Szemerédi [7] proved

that then

ox’
h < ==(4) kf Tog %

First of all we give a simpler proof of (4), which nevertheless

uses many of the ideas of the original proof. ye conjecture that in

fact

3



2
X

Kg < (1+ © ee hnbd?Zz .(5) < (1+ o(1)) 1

It 1s easy to see that (5) 1f true 1s best possible. To see this, let

the a 'sbe the primes in (%, x) and the b's are the integers not
exceeding x all whose prime factors are <7 Clearly the products
a3P are all distinct and the prime number theorem implies

<°
ke > (1+0(1)) Tor % if t=t_— = but t/x® » 0 for every ¢>0 .

In fact by choosing t = log x (1+ o(1l)) we maximize kf and we then

t a, < . . . < ceo.
get sequences a, 8a by < <b, with the products 230,
all distinct- and

2 2

6 X X log logx | x= log log x
log x 2 2 ’

(log X) (log x)

It would be of interest to see if (6) can be improved. Conceivably

1t 1s best possible, but we have no evidence for it.

L

In this paper we prove the following theorem. To every c there

| is an f(c) so that if 1 <a, <. . . <a <x, 1<b, <.. . <b, <x
are such that g(n) < c¢ for all n then

1 f(e)
(7) kf < Tog x (log log Xx)

(7) is best possible apart from the value of f(c) . The proof is

not entirely trivial and we only outline it. Tet r > 1 be given. The

sequence B consists of all the squarefree integers b satisfying

X

5 <b <x, and v(b) <r (v(b) 1s the number of prime factors of b )

The sequence A consists of all the integers a <x which do not have

two divisors 4; <4, < 2d, , v(d,) <r, v(d,) <r.

4



|

| It 1s not difficult to show that
A(x) > cx , B(x) > c x(log log «10g x

| and the number of solutions of ab. =n is less than c where c1] r r

depends only on r . We do not discuss the details.

We further outline the proof of the following two'theorems:

l. Assume A(x) > ¢iX , B(x) > CX Then

“3
(8) max g(n) > (log x)

n <x’

| Again apart from the value of C3 this is best possible. (To see this,
| let the a 's and b 's have < log log n prime factors.) Finally
: assume AUB 1s the set of all integers and A(x) > cx , B(x) > cx.

. Here

¢, log log xL
(9) max g(n) > (log x)

n <x

| and apart from the value of c) this 1s best possible. Tg gee this,
- let the a 's have < log log n prime factors and the b's have

> log log n prime factors. Perhaps (9) holds for every c) < l-g .

The above example shows that it can not hold for C), > Ite

Now we are ready to prove (4). In other words we prove the

following.

Theorem 1. Let l<a <<a <x, LS <... <b, <X be
two sequences of integers. Assume that the products ab. are all

1]

distinct. Then for some absolute constant c

ex’
ki < ——

log x

d



Denote by A resp. B the sequences LIFRREPL NY and LIPRESA IS
A(y) will denote the number of terms of A not exceeding y . A prime

p 1s associated with A if there are at least k |
i, 700 p log p multiples

of p in A, similarly p is associated with B if there are at least

_ _ 1!

100 plogp multiples of p 1n B . Let P, <P, < ... be the primes

which are not associated with A —- omit all the a 's which are multiples

of any of the p's. Thus we obtain the new sequence Aq having ky
terms. Repeat the same process and also apply it to B with the primes

not associated with B. Since 2 __ < 1 eventually
p 100 p log p 2

we obtain a sequence = k

q u by <...<wm} ,VeB, A >38 N00
4

V={v.<...<v, }, Vc&B, N, >= with the property that if
1 A 2 2

plu, then p 1s associated with U and 1f p|v, then p 1s
associated with V . To prove our theorem it clearly suffices to show

2

(10) AMA, < cx / log x .

£ ou t 1/2Let now © with 2° <x be the greatest integer for which there

t/2 : t tt :are more than 2 / p's in (27,2 1 which are associated with both

U and V . Denote these primes by Dys-+ sD

(11) 2" <p, <<. xx < p, < 2", s > 28/2

Consider the set of all pairs of integers

u, Vv. ,

P1 Py — -

0



where us = 0 (mod P,) y V., by 0 (mod P.) . Since 1p, is associatedi

with both U and Vv there are by (11) at least

cA, A

13 1 . SA
10% (£41) 2 HetH2 me 3/2

pairs (12).

Now observe that the pairs (12) are unique. If

u, u, Vv, Vv.
1d Jq J5

= 7 = /— and B = —= = —

P, Ps Py Db.
1 2 1 J2

. then RRAAPT = “3,73 = ABP. Py which contradicts our assumptions.

L Now we estimate the number of pairs (12) from above. Denote by

pttl <p, <.** <x
i , <- the primes associated with both U gpg v . BRB y

| the maximality of t there are at most 1/2 primes p in the interval
( 1 i+] Co

| (2,2 ) for every fg >t . Thus trivially
: 1

(14) z= < 8
i Ps

_ i

; : t+1
Denote by a < ... the primes in (2° 7x) ot associated with

- t+1

U and by ry < ... the primes in ( 2 »X) not associated with V .

—Clearly the integers (12) satisfy

| : % x v., x u, Vy
(15) < + , == <X and 4 # 0omod q) , 4 = 0mod =r

P; gt P; gt Ps bs

for all the primes q and r defined above. By Brun's method we

immediately obtain from (15) that the number of integers of the form
u.

—J 1s less than ‘
Py



EE ———

(16) cq = ml 1-1
2 94

Vv.

and the number of integers of the form  J' J 1.45 than
pi

X 1

(17) 5 2E = |2 1

Thus, from (16) and (17) we obtain that the number of pairs (12)

1s less than

x° 1 1
(18) c, C = T rE) 1- =1 72 2t :

From (14) and the theorem of Mertens we obtain

- 1 1 1 1

(19) Zot =D 5-0 > log log x = log t - C
i 1 i

where in 2 the summation 1s extended over all the primes in (281 x)J .

From (18) and (19) we obtain that the number of pairs (12) is less than

2

2 log x

From (13), (20) and the uniqueness of the pairs (12) we thus obtain

2
No, A -

Ch Ms 3 CF xt
| £2 It/2 ke log x
he

! or

MN A < o x t
1 2 t/

| 2 2 log x

i which proves (10) and completes the proof of Theorem 1.
8



ee ——————————

| Observe that 1f no t exists for which there are many primes 1n
(2%,2% associated with both U and V , the proof gives

U(x)V(x) < ex 4 lag x.

| :
If there is a large t then in fact U(x)V(x) = o( =)

2

Now let us try to obtain A(x)B(x) < (1+ o(1l)) Tor x . One can
formulate this as an extremal problem in number theory. assume

1<a < F< a, <X ’ 1<h < Coe <b, < X are such that the

products 239; are all distinct. What is the maximum of k# and which
sequences realize this maximum? Perhaps the sequence defined in the

introduction comes close but we have no evidence. (One could try first

L of all to prove that the extremal sequence has the following structure:

| Split the primes into two classes ds and r..The A's are the
| integers composed of the g's and the B's are the integers composed

| of the r's . We have not been able to show this -- the method which we
use 1n proving Theorem 1 shows that we can assume that the extremal

sequence has the following structure: The primes are split into three

; classes la.1, EY ’ {s,] 2 < C and all the g's are associated
withA , all the r's with B and the s's can be associated with both.

If we would succeed 1n eliminating the primes s then to prove

2

A(x)B(x) < (1L+0(1)) Yog we would need the following theorem on

sieves which we can not prove but which perhaps can be attacked by the

experts: Let 4; <4, < 0. Ly ry <1, < . . . be two disjoint sequences of

primes. 8, Say <LLLy by <b, <. . «are the integers composed of

the q's and r's respectively. Is 1t true that

9



2

(21) A(X)F < (1+ =(9B(x) < (1+ o(1) Toog

As shown in the introduction, equality is possible in (21), but

perhaps the only way to achieve equality in (21) 1s to have

/

| min 2. Se, ugqd; or, tendto 0 as x =»,

Thecrem 2.

Q fu
g(n) > (log x)" .

Theorem 2 1s an immediate consequence of an .
old theorem of Erdds [4].

The number of products of the form b i 52
°i"y *® > c/ x but there are

x=

fewer than T— distinct integers of the 1p . k = x
(log x) ’ ’

£ <X . This implies Theorem 2.
1

It would be interesting to determine the best possible value of a,

| a < wt LL= log 2 15 €as8Y LO Prove, and at present it is not clear to us how

I much this can be improved.
Theorem3. Let A(x) > cx , B(x) > ex and assume that every m < x

- 1s either in A Or B . Then for some n <x and x > x, (€)
1

(+ -¢)loglogx
(22) g(n) > (log x) b

]

| Denote by I the interval

| 1/2

(‘ato x) (log x) / )
and let py < . LL. <P, be-the primes 1n 1

10



EES

|
S

k = E (log ov? | ys 4 = 2 = = (3- 1) 10g logx + 0(1) -i=1 “1

| Denote by D the sequence- dl < d, < . . . of 1ntegers not exceeding
x which have at least k distinct prime factors in I . It 1s easy to

see that

(23) D(x) > TTor x 5 (k=)

The proof of (23) follows the method of Hardy and Ramanujan [6]

and will be suppressed.

Without loss of generality we can assume that at least = D(x)
of the d's are inA (since A UB contains all the integers not

exceeding x ).

It follows from Turén's method [8] that all but o(x) integers

not exceeding x have I+ o(l) distinct prime factors in I . Thus

since B(x) > cx we can assume that at least = of the b 's have at
least t distinct prime factors in I where t = [(1l-€)2]. Consider

now all the integers

- (2k) agbe , 8; €DNA , v(b,) >t.

By (24) the number of these products 1s greater than

2

(25) —EY(xe)
(log x)

It 1s not difficult to see that almost all of these products are squarefree

= and these then have at least k+l prime factors in 1 . It is easy to

see that the number of integers not exceeding x which have at least

) kt! distinct prime factors in I is less than

11



(26) 3 1 ktf-1 ok =]5 SE R31 Z-

Zp, (kt2-1)1 = x2 /(kre-1)¥ |R i

From (25) and (20) we obtain that there 1s an n for which the

number of solutions of n = a.b  i5 at least
1 J

ktf-1 \-1 ! L

x 51 (1) x4 ) , k Ss (1 OF - €) log logx— / “IV — ogX(log x) (kt £ 1) 2?

which proves (21).

Perhaps (21) holds with 1l-€ instead of I “€ + To make the proof
work, I would have to be the interval

. - 1-1log x Ml -( g x)" (log x) ) » k= [(log x)* My
But then we could not prove (23), but we hope to return to this question.

Finally we prove
|.

| Theorem kh. To every c there 1s an f(c) go that if
l<a) <. <a <x, 1 <b, < Coe <b, < Xx are such that g(n) < c¢

| then (7) holds.

) For simplicity we only prove this for  _4 | Assume that

X 04

(e7) kt > Tog% (log log x)

where & 1s sufficiently large. We are going to prove that (27)

implies that there are integers 4 , v and four primes 5) , o(1)1 Y
0

» ) ; pi so that for all choices of e =0 or 1, 1i=1,2,
2 “Len 2 (e )5 .

(28) vy IT »s cA , z |] p. = eB .. . i
j=1 i=1

12



0).,(1) (0) (1)
(28) clearly implies that g(z yp! Jp! Py "Po ) > L

hence to prove Theorem 4 it suffices to prove (28). In view of the

fact that we do not try to get best possible values of & the proof

of this will in some respect be simpler than the proof of Theorem 1.

We say that the prime p belongs to A 1f there are at least

k CL

5 multiples of it inA | This is a slight modification
p(log log P)
of the definition in Theorem 1 (which as the attentive reader will

later see 1s really needed here) but since EE — converges
p(log log p)

this makes no difference.

Let ty be the smallest integer satisfying

t
Cc 1(log x)” < 2 < x32 (where c¢ is sufficiently large)

tT,

o +
for which there are more than ————>% primes which belong to

t, (log t,)

| bothA andB . If no such interval exist then Brun's sieve gives

| as 1n the proof of Theorem 1 that

2

| kp < CX log log xlog x

i which implies that in this case our theorem holds.
Let now

+

- > 1

t, (log t,)

ty ttl
be the primes 1in 2 7,2 which belong to both A and B .

Denote by A respectively B the set of integers

13



| a. b.,

| , (2).{2}). a] = 0(mod py) , by, = O (mod 1) :
| (1) CC

Let now t5 be the smallest integer satisfying

£1) 1/2c 2 X
(log x) < 2 < [ =

Py

L (1)
p 2 9

for which there are more than ~—- primes p )
(1) (i),2 3 in

t57 (log 37)2

8{%) 688) 41
2 = which belong to both A and B .If such a

Ps P.. i

(1) | cx V2

t5 does not exist then every prime gq in (208 x)", =)Ps

belongs to at most one of the sequences A (we neglected a
Pi Pi

set of primes the sum of whose reciprocals goes to ( 45 x —- o» and

which may belong to both A and B ). But then as in the proof of

Theorem 1 we obtain by Brun's method

2

(30) a | |B. | < cx log log x |
Pi" Py 5-1

Db, "log x

Thus from (30) and the definition of A  B we have
Pi Pi

2 9)
2 kb ex” (log log x)kt = |a] |B] < |A B > (log Pi cx (log log %)”[al Ie] < fa, | 1B, | 2; (10g pi 10g 10g 2) < Tog x

which again proves Theorem 4.

14



:

hoi f %The number of possible choices for t§ ) 1s at most log X 4nd so
there are at least

t

5 1
2

t, (log t,) log x

| | ty t+
primes Pp; 1n 2 7,2 which have the same t,

Let pj 1 i1 <1<s , be the primes (28) and 97 0 ad the set
tL t +1

of primes in po) 2 o 2
’ To every ps there are at least

t

o 2

t.(log t )°2 2

p\®) 's (which are g 's) so that there are at least

L ck ck
— (iY 2 oT (i)2 > BE TT Se —1 pi) (log log P;) (log log p! )ye 1+, 5 o| J 2 (log t.) (log t,)

| cx
q > tty oo (since k > —%—)

2 (log t,) (log t,) log x log x
bh

. xX .
i

integers u BNE) so that up, p! ) en . Therefore by a simple
PP. JJ

computation there 1s an integer U to which there are at least

t.+%

> 1 2

(10g x)

products p,p(*) f hich U £3 A15 or whic P- : € . Henceforth we only consider

these pairs p,p{*) hich bel to U£5 whic elong to * To each of these pairs there

15



are at least

CX

t. +t
1

log x 2 2 (log t,)° (log ,)°

—integers v < XE) so that vp p{d) €B .Thus again by a simple1 ij : g y P
b;DP.J

averaging process there 1s a V so that there are at least

t.+%

> 1 2

(log x)’

pairs pq for which Upg € A , Vpg € B .

Now we use the following simple lemma on graphs. [ot G be a

bipartite graph of Ly white and Ly black vertices and more than

1/2
Lm Ls

i edges (Ly < L,) . Then the graph contains a rectangle. Since
| ty 100 to 1002 7 > (log x) rr 2° > (log x) the lemma applies and the rectangle

. gives the configuration which we require.

For ¢ = 2° the proof is similar. We have to apply our procedure

k times and have to use the theorem on k-tuples in [5].

16



References

[1] P. Erdos, "On some applications of graph theory to number theoretic

problems," Publ. Ramanujan Inst. 1 (1969), 131-136.

[2] P. Erdds, "On the multiplicative representation of integers,"

Israel J. Math. 2 (1964), 251-261.

[3] P. ErdSs, "Extremal problems in number theory" (written in

Hungarian), MAT. Lapok, 17 (1966), 135-155.

[4] P. Erd3s, "On an asymptotic formula in number theory," Vestnik

Leningrad Univ. 15 (1960), 41-49.

[5] P. Erdds, "On extremal problems of graphs and generalized graphs, '*

Israel-J. Math. 2 (1964), 183-190.

[6] G. H. Hardy and S. Ramanujan, Quarterly J. Math. 48 (1920), 16-92,

_ see also Collected Papers of Srinivasa Ramanujan.

[7] E. Szemerédi, "On a problem of P. Erdos," to appear in Journal of

L Number Theory.

[8] P. Turén, "On a theorem of Hardy and Ramanujan," J. London Math.

L Soc. 9 (1934), 274-276.

| [9] E. Wirsing, "Uber die Dichte multiplikativer Basen," Archiv derMath. 8 (1957), 11-15.

[.

17


