DESCRI BING AUTOMATA INTERMS OF- LANGUAGES
ASSOCIATED WITH THEIR PERI PHERAL DEVI CES

by

Reino Kurki- Suonio

STAN- CS-75-493
MY 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNI VERSITY

Describing Automata in Terms of Languages

Associated with Their Peripheral Devices

by

Reino Kurki-Suonio

Computer Science Department

Stanford University
and

~ University of Tampere, Finland

Abstract

A unified approach is presented to deal with automata having
different kinds of peripheral devices. This approach is applied
to pushdown automata and Turing machines, leading to elementary
proofs of several well-known theorems concerning transductions,
relationship between pushdown automata and context-free languages,
as well as homomorphic characterization and undecidability questions.
In general, this approach leads to homomorphic characterization of

language families generated by a single language by finite transduction.

This research was supported in part by National Science Foundation grant
GJ 36473X and by the Academy of Finland. Reproduction in whole or in
part is permitted for any purpose of the United States Government.

1. Introduction

Mathematical formulations of various classes of automata do not
usually allow uniform treatment of different kinds of automata. One
reason 1is in irrelevant differences of conventions. For instance,
input may come from an input source, orit may constitute the initial
contents of some storage device. Also, the formalisms which are used
may be difficult to manage in a general situation. Functional notations,
for instance, become quite clumsy to use when several storage devices
are introduced.

The purpose of this paper is to present an approach, suggested by
Floyd [1], where several kinds of automata are treated in a uniform way.
In Sections 6 and 7 this approach will be applied to pushdown automata
and Turing machines. The proofs of the theorems obtained are quite
elementary, when compared to those usually given [2,8,9], and they have
the advantage of being directly based on a simple and intuitively clear
picture of the situations in question. In fact, most of the theorems
are directly obvious from the basic definitions we shall make.

The general idea is to consider an automaton as a finite, non-
deterministic transition system, where each transition is associated
with a sequence of actions on peripheral devices, like inputs, outputs,
tapes, stacks, and queues. Action sequences which are possible on an
automaton are restricted by its transition system on one hand, and by
the properties of the peripheral devices on the other hand. Each such
restriction can be given in terms of a language over actions, and the
total behavior of the automaton can then be described as the intersection
of these languages.

The behavior of Turing machines has previously been described in
terms of languages by Hartmanis [6]. However, he considers sequences of
instantaneous descriptions instead of action sequences. The present
approach is both simpler and more general. Ginsburg and Greibach have
used it in [3] to exhibit an "intuitively obvious" language as a generator
for one-way stack languages. Although it seems obvious that the general
applicability of the approach has been known for some time, it is not known

to the author that systematical use had been made of it.

Comparing the approach to that of (one-way nondeterministic) balloon

automata [7] and abstract families of acceptors [4], there is the similarity
that admissible behavior of memory devices is described Vocally", i.e.,
without reference to other aspects of the automata. However, our approach
does not make explicit use of any information storage aspects of memory
devices. Instead, each device is characterized purely in terms of a
language of admissible action sequences. Letting these "peripheral
languages" determine a class of automata, it will be shown in Section 8,
that the families of languages associated with such classes are exactly
those families which are generated by a single language by finite
transduction. With a suitable restriction on "peripheral languages", full

principal AFL [3] are obtained.

2. Elementary Properties of Automata and Languages

The purpose of this section is to state explicitly those concepts
and properties of automata theory and formal languages on which our
treatment of pushdown automata and Turing machines is based.

The basic concepts of finite automata, Turing machines, and the
families of reqular, context-free, context-sensitive, and recursively
enumerable languages are assumed to be known. As for relationships
between automata and languages, we assume that the relationships between
(nondeterministic) finite automata and regqgular languges, and between
'Turing machines and recursively enumerable languages, are known. pFor
questions of undecidability, one has to know the undecidability of the
halting problem for Turing machines.

As for Boolean closure properties of families of languages, we shall
make use of the facts that

- the family of regular languages is closed under intersection,
~ the family of context-free languages is closed under intersection

with regular languages,
-~ the family of context-sensitive languages 1is closed under intersection.

In addition, we shall need properties concerning insertion of

auxiliary letters into words,' and projection homomorphisms deleting some

letters from words.

R |

Definition 1. i i 5901
initi Given two disjoint alphabets Z and Zl , the projection

* . ¥* *
of aword x ¢ (ZUL)) into & is the word X, €& obtained of x

by deleting from it all occurrences of letters not belonging to 3

For a language L over ZUZ, we define correspondingly,

L = {XE | xelL}

C Definition 2. Given a language L OVer 5 and an auxiliary alphabet Zl ,

ZNng, = ¢ , the language

&

*
L~ = {x |xe(£UZl) » X5 €L}

is called insertion of Zl into L

Obviously, projection is the opposite of insertion in the sense

that, for any language 71, oyer £ and for an auxiliary alphabet &

l 14
INZ, = ¢ , we have

1
Z
1
(L)z = L
L
For insertion we can also readily establish the following identities:
. 21 %o 2.2y 2 Uz,
(L7) % =@ ~ =1 ,
PN Z z
1 1 1
- I"ULy = (1 uL,))
PN Z bW
1 1 1
X Ll QLE = (LlﬂLz) s
z z
(Zuz) -1~ = (2 -1) ,
where L, Ly » and L, are languages over Z, and 3 g

o are two
auxiliary alphabets, disjoint from Z.

R Y

It is also easy to prove the following closure properties of

language families under projection and insertion:

Theorem 1. The families of reqular, context-free and context-sensitive

languages are closed under insertion of an auxiliary alphabet.

Theorem 2. The families of regular and context-free languages are

closed under projection.

5. Basic Definitions

By an automaton we understand a finite transition system associated

with one or more devices for input, output, and storage of symbols. Each

device is assumed in the following to have a finite set of primitive

actions associated with it. For an input device, for instance, an

input operation together with the letter obtained from the input source
would constitute a primitive action. The transition system can be viewed
as a finite digraph where edges are labelled with finite sequences of
primitive actions. Vertices and edges of the graph are called states and

state transitions, respectively. Two subsets of states are distinguished

as initial and final states.

As an example, let us consider a simple automaton with one input
and one counter. Assuming a two-letter input alphabet {a,b} , the
primitive input actions could be denoted as (input a} , {input b) ,
and (input A) , where the first two correspond to successful input
operations, while the third indicates that no letter was obtained since
the source was found empty. For the counter we have a one-letter

alphabet {1} together with primitive actions (push 1) , (pop 1) ,

and {(pop A) denoting incrementation, decrementation, and the situation

that the counter is found empty.
The transition system of the automaton 1s given in Figure 1. It

can be immediately verified that a state transition sequence leading
from the initial state to the final state is associated with exactly
those input sequences where the number of a's equals the number of b 's.
Although this example presents deterministic behavior, we shall make no
general restrictions on the action sequences associated with state
transitions. For instance, we might have tyo transitions from the same
state, one labelled with (input a) (push 1y the other with

(input a){(pop 1) ; which would indicate Nohgeterministic behavior. some

transitions might even be labelled with impossible action sequences,

like (input A){input a)

(input a)(push 1), {input b h 1
(input b) (pop 1) <inp5t aggggg l>>,
{input b

Initial state
(input a)(pop A)

(input A){pop A)

. v
Final state O

Figurel

In general, the behavior of an automaton is determined as follows:

1. Initially the automaton is required to be in one of the initial
states. There may also be fgrther requirements concerning the
initial status of the various peripheral devices.

2. Operation of the automaton can terminate successfully whenever the
current state is a final state, if all requirements (if any)
concerning the final status of peripheral devices are satisfied.

3. If the operation is not terminated, one transition from the current
state is selected, an attempt is made to perform the primitive

actions associated with it (in the order indicated by the sequence),

and, if this succeeds, the state is changed accordingly.

Nondeterminism is involved in the selection of the initial state,
the selection of transitions, and in the decision on termination.
Operation of the automaton terminates unsuccessfully, if the actions
associated with the selected state transition cannot be performed. We
are only interested in operations which do not terminate unsuccessfully.

An input device always has some input alphabet g, . - A word
inpu

*
Z is accepted by an automaton (acceptor), if the automaton

input
can be operated (with successful termination) so that the word read in

by the input actions is x . Similarly, an output device has an output
. *
1ph '
alphabet zoutput » and a word y-€20utput is generated by the automaton

(generator), if it can be operated (with successful termination) so that
the output word given by output actions is y . The language accepted

(generated) by an automaton is the set of words accepted (generated) by it.

*
A word x eZi put is transduced by an automaton (transducer) into
*
y €X if the automaton can simultaneously accept x and generate y

output ’

Notice that transduction is here defined only for words accepted by the

automaton. A language Ll is transduced into L, , if L2 is the set

[

of words into which words of Ll~are transduced.

Two automata are equivalent as acceptors (generators) if they accept
(generate) the same language. Two automata are equivalent as transducers
if the transductions performed by them are the same. Notice that
equivalence as transducers implies equivalence as acceptors and generators,
but not conversely. By equivalence without further specification we shall
understand equivalence in those respects applicable to the automata in
question.

I'or each device there are certain restrictions determining which
sequences of primitive actions on that device are admissible. ‘phe main
purpose of these restrictions is to guarantee that the symbols fetched
from a storage device correspond to those stored in it, and that no input
is obtained from an input source already found empty. 1In addition, there
may be restrictions on the initial and final status of the devices. por
instance, storage devices may initially be assumed empty. Notice that
input and output are considered "one-way" devices, not storage units which
would allow re-examination or replacement of letters already treated once.

More formally, let Aﬁ‘ be the set of primitive actions on device i
It-is assumed that primitive actions can be renamed, if necessary, for
avoiding conflicts. Therefore, it is always assumed that Ai for
different devices are disjoint. For each i we have a language

B, < A,
1 i

consisting of all admissible action sequences on device i . Let
denote the union of Ai for an automaton. The finite transition system

of the automaton then determines a regular language

such that « EBfts iff @ is associated with some sequence of state

transitions leading from an initial state to a final state (irrespective

of whether or not makes sense for the peripheral devices). This

leads to the following definition of an action sequence .y p” being

admissible:

Definition 5. A word «eA is called an admissible action sequence

for an automaton, iff

(i) “eBy o, and

(ii) ®, €B, for all devices i
i

Introducing the notation

i.e., letting ﬁ? denote the language obtained of Bi by inserting

actions on all other devices to it, we can express admissible action

sequences as the language

_ ®
(1) Bo= By NN

i

It is pointed out that this definition implies each peripheral
device being defined solely by the ways in which it can be locally
manipulated. A device is completely characterized by the language Bi
associated with it. Additional restrictions are required, if one wishes
to introduce interdependencies between devices, like those in linear
bounded automata or time/tape complexity classes of Turing machines.

In accordance with common terminology, automata having (in addition

to a single input and/or output) no peripheral devices, one pushdown

stack, one queue, or one tape, will be called finite automata, pushdown

automata, Post machines, and Turing machines, respectively. yotice that

input 1is considered an independeqt device in this definition of
(nondeterministic) Post machines and Turing machines. gtrictly speaking,
these peripherals are not devices but classes of devices, as the language
Bi of a pushdown stack, queue, or tape, depends on the alphabet used

on the device.

L. Languages Associated with Peripheral Devices

Languages Bi associated with some common peripheral devices
will be investigated in this section. pas it is known that the same
family of languages -- that of recursively enumerable languages —- is
accepted (generated) by Post machines, by Turing machines, and by
automata with two pushdown stacks, there is gsome redundancy in discussing
pushdown stacks, queues and tapes separately. However, it is interesting

to see how these different kinds of devices lend themselves to this

treatment.

4.1 Input Actions

Given an input alphabet Zin there is a primitive input action

put '

(input a) for each ael, The meaning of such a primitive action

input °
is to take the next letter from the input source and to find it to be
letter a . In addition, there may be an action (input A) , which means
that the input source is found empty by an attempted input operation.

Obviously, no further input operations can find input letters, if the

source has already been found empty.

10

“m-m-ﬂ"‘

-

The set of all primitive input actions is therefore either

{(input a) | a € I,

Ainput 1nput} ?

or

' >
A'input A'input U {(1nput A}

Correspondingly, the set of admissible sequences of input actions is
either

*
Binput Ainput

2

or

| - A" . *
B'input inpu’c<1nput A)

In each case this is a reqular language.

For notational simplicity, we shall in the following make no

distinction between a language over g and the corresponding
input

language over Ainput This means that the language accepted by an

automaton can be denoted as

(2) BA.
input

where B is the language of all admissible action sequences from (1).
More precisely, this notation involves that projection and change of

alphabet can be combined in a single notation for projection. Two

automata with the same A, and with admissible action sequences

input ’
B and B' , are then equivalent as acceptors iff 3 = B!
input input
It is easy to see that (input A) is, in fact, a superfluous action
in the following sense:
Theorem 3. For any automaton with input actions pr there is an
input

equivalent automaton with the' same peripherals and with input actions

restricted to A,
input .

11

N)

b
¥
[

.always restrict input actions to A

Proof.

Let X be an automaton with state set S and with actions A

containing an input action

(input A) . Another automaton Y , equivalent

to X and with actions A-((input A)} | can now be constructed as follows.

As states of Y take S x {0,1}, and let (s,k) be an initial (final)

state of Y iff s is an initial (final) state of X and k = 0

(k = 0,1) The state transitions of Y will be determined so that

. . [0 *
for any transition s"=t of X , S5t €S, acA , Y will have the

following transitions:

. o
if &, = € , then (s;k) = (t,k) , k =0,1;
input

. o
else, if Ok(input ny = € , then (s,0) > (t,0) ;

. “a-{(input A)}
else, 1if Lxgﬂput €B£nput » then (s,k) _LAAnput (t,1)

On the basis of this construction, it is straightforward to verify,

that for any admissible action sequence <y of X there is an admissible

action sequence 7' of Y' satisfying

7 7A-{(input MY

and conversely. Therefore X and Y are equivalent. J

On account of Theorem 3, it is no essential restriction that we shall

input in the following.

4.2 Output Actions

Given an output alphabet I
P P zoutput , the set of primitive output

actions is

Aoutput = {{output a) | a ¢ Xoutput

b

12

3 k:O,l.

where (output a) denotes the action of outputting an individual letter

zoutput . The set of admissible output action sequences is simply
*

B
output Aoutput

As in connection with input, ywe shall make no notational distinction

between a language over ;
guag Zoutput and the corresponding language over
{(output a> 1 a Ezoutput}' This means that the language generated by
L an automaton can be denoted as
(3) B,
output

Two aatomata with the same 32 and with admissible action

output ’
sequences B and B' , are then equivalent as generators, jiff
B = B!
A

output Aoutput

- When considering transduction of a language L , the output

language 1is correspondingly

() (®ns),
output

Two automata with the same A and with admissible

input ’ Aoutput ¢

action sequences B and B' , are equivalent as transducers, iff for

each o eB (o' €B') there exists a' ¢B!' (a € B) such that
Q: = Q! and = !
A. A, A

1nput input output Aoutput

Because of Theorem 3, there is complete symmetry between input
and output actions. Given an automaton accepting (generating) a

language L , this same language L is generated (accepted) by the

automaton obtained of the original by interchanging input and output.

Therefore, for a class of automata which is closed under interchanging

13

e T TR
Bt

input and output, the families of languages accepted and generated by

these automata are the same. Such a family will be referred to as the

family of languages associated with that class of automata.

4.3 Pushdown Actions

Given a pushdown stack with stack alphabet g there are

stack ’

primitive actions (push a) and (pop a) for each a Ecstack The

meanings of these actions are pushing a single letter a on top of the
stack, and popping one letter from the stack and finding it a letter a
In addition, there may be an action (pop A) , which means that the
stack 1is foun&"empty by an attempted pop operation. The set of all

primitive pushdown actions, is therefore either

A
stack ’

{(push a) | a ezstack} U {{pop a) | a €Zstack}

or

{(push a) | a ezstack} U{{pop a) _ ac zstack} U {{pop A)} -

The characteristic property of a stack is that all letters pushed
into it can be popped out of it in the reverse order. A grammar for

B the set of all admissible pushdown action sequences, can be

stack '

directly based on this property. 1In order to get B as simple as

stack
possible, we shall require further that a stack is empty both initially

and finally.l/ If A

does not contain (pop A) , B is then

stack stack

the Dyck language generated by the grammar

1/ . . -
Relaxing this requirément i s discussed in Section 6

.

14

S — €
- ush a) S op a
(p) (pop a) for all aelf .
- 35

If (pop A) is allowed, the grammar has to take care that

(pop A) can appear only when the stack is empty:

S - (pop A)

- T

.~ (push a) T (pop a) for all a €Z

stack

- TT
I h ' -
n each case B_ . 1is a context-free language over Bstack
4.4 Queue Actions

Given a queue with an alphabet uneue ; there are primitive actions
(write a) and (read a) for each aeg . The meanings of these
queue

actions are writing a letter a to one end of the queue, and reading

(and erasing) a letter from the other end and finding it to be letter a .

In addition, there may be an action (read A) which means that the queue

is found empty by an attempted read operation. The get A of all
queue

primitive queue actions is therefore either

{(wz'ltea)laezqueue} U ((read a) Iaezqueue}

or

{(write 5> Ia,ez }U ((read a> |a,e£

queue queue}U{(read 9y

15

R

The characteristic property of a queue is that all letters written

into it can be read from it in the same order. A grammar for B
queue ’

the set of all admissible queue action sequences, can be directly based
on this property. We shall make the further requirement that a queue

is empty both initially and finally. If"Aqueue does not contain

(read A) , we get the following grammar:

S - €
- T
T - (write a){read a) for all a €Z
queue
- TT
(read a){write b) - (write b)(read a) for all a,b eX

queue

Notice that the context-free productions generate all action
sequences where each write action is immediately followed by the
corresponding read action, and the context-sensitive production takes
care of arbitrary "delaying" of read actions.

If (read A) is allowed, we only have to add the production

T - (read A)

to the grammar. Hence, we find that B is in each case a
queue

context-sensitive language over A .
queue

4.5 Tape Actions

A tape allows actions for reading and writing, and for moving the
tape in either direction. It is customary to include one read, one write,
and one move operation in one primitive action, in this order. In the

following we shall adopt the convention of writing first, then moving the

16

tape and reading. Given tape alphabet Ztape , the set of primitive

tape actions is then

A = ((write a, left, read b)l a,b €2 ju

tape

({write a, right, read b) | a,b eztape}

The meaning of these actions is that letter a is written on tape,
tape head is moved by one square to the left or to the right, and the
letter in this square is read and found to be letter b

The characteristic property of a tape can be stated as follows:

when some letter has been written in a square, the same letter will

be read when-this square is reached for the next time. Let us consider

only one half of this property by requiring that a letter written by

an action moving to the right will be read when the same square is

reached next time (by an action moving to the left). Requiring further

that all letters written (moving to the right) are later read (moving
to the left) and denoting the set of action sequences sggo obtained by L

we get the following grammar for 1,

q ¢
Sl - Xl (stands for a sequence which either is empty or starts
with an action moving to the right)
- Yl (stands for an action moving to the left)
= 595
Xl - E

- (write a, right, read b) Xl (write ¢, left, read a)

for all a,b,CECt

ape
BRSS! ;
Y, - (write a, left, read b) for all a,b e¢&
1 ! ! tape

17

l 4

¢
i
i
i3

If only the second half of the characteristic property of a tape is

taken, we get a similar language L2 with grammar:
Sp =%,

™ 5,8,
X, - ¢

{write a , left, read Db) X, (write ¢ , right , read a)

1

for all sa,b,c EC
tape

= XX,

Y, - (write a , right, read b) for all a,b eX
tape

Imposing no restrictions on the initial and final contents of a tape,

we can then express Btape , the set of all admissible tape action

sequences, as

Biape = init(Iy)N init(Ly)

where 1init(L) denotes all initial parts of words in L :

init(L) = {x | xyeL for some y }

For a context-free L , init(L) is also context-free, as will be

seen in Theorem 5. Therefore, Btape is a context-sensitive language

which can be expressed as an intersection of two context-free languages

over A
tape .
Btape can also be characterized as the complement of a context-free
language L over A + A context-free grammar for L is obtained easily

tape
from the observation that at least one letter has to be read differently

from what was written in thesquare. nhis leads to the following grammar

18

R |

(together with the above productions for Xl , Yl , X2 ' and Yg):

S = {write a, right, read b) Xl (write ¢, left, read d)
-+ (write a, left, read b) Xe (write ¢ | right, read d)
for all a,b,c,d.eztape , afd

- TST

5. Serial Combination of Automata

It is often useful to consider an automaton as a serial combination

of several automata, so that the output of one automaton is used as
input to the next one. More formally, let T and U be two automata
with disjoint sets of primitive actions = A
Ap lLJAoutput ¢
= A UA, where the same alphabet is associated with
Ay 2 ” “input ’ P Ainput

output ’ and Ay and A2 stand for the primitive actions of

the other devices in T and U . An action sequence

and A

*
4 E(AllJAE)

is defined to be admissible for the serial combination of T and U

iff there are action sequences ¢ and 8 , admissible for T and U ,

satisfying
04 =y
A A
(5) By =7
Bo o Thy
a = B
output input

19

Concerning such serial combination of automata, we have:

Theorem 4. For any serial combination of (a finite number of) automata
there is a single automaton, equivalent to this serial combination,
having the same peripheral devices as the original automata, omitting

the intermediate output/input devices.

“onax Let T and U be two automata as described above. Without
affecting generality, we can assume that each state transition of T
(U) 1is associated with at most one output (input) action. A third
automaton V , with the same peripheral devices as T and U (except
the intermediate output and input), and equivalent to the serial
combination of T and U can now be constructed as follows.

Let the state sets of T and U be ST and SU . The set

ST xSU will then be taken as the state set of V , and (t,u) will

be an initial (final) state of V iff t and u are initial (final)
states of T and U . The state transitions of V will be determined

as follows:

- for each transition +t & ¢ of T , where a<;A; s

Q
take (t,u) = (t',u) for all u BS 3

- for each transition y @»u' of U , where B EA;'
take (t,w) B (tyut) for all t €8y i

- for each pair of transitions

20

where « _ By # € (when actions (input a) and
output input

(output a) are equated), take

%y Py
(t,0) —=32 (t',u’)

The claimed equivalence can be easily verified as follows. Firstly,
consider an arbitrary action segquence y admissible for the serial
combination of T and U | Then there exist & and p , admissible
for T and U , satisfying (5), and associated with some state

transition sequences

‘ t<°)_, t(io)
0 : 0 -
(6) e e e e e e,
(o (ip)
- % = ... = % s
P P
(0) (Jo)
u —
0 Co . 0 '
(7) e e e e e
J
had u(n) e -au(P) B
. b
(o) (o) L ip) (37)
where tO and U, / are initial states, E P and 1% are final

states, P , i,.0 5, Jo?+++»3, 2 0, and output (input) actions are

O’ ; §e P
associated with exactly those transitions where the subscript of the

state is changed. According to the construction of V , (6) and (7)

can be "merged" into a transition sequence from an initial state to a

final state of V :

21

-

(i) ()
o o o
O (PN
(i) (3)
A) B) I - P
("P ’up‘) (P ,uP)
The action sequence 7' associated with (8) is a merge of @, and B,
1 2
Therefore,
Y, = Q =7 >
o T S
7, =B =7 >
Ao Thy T4

which means that 7' is admissible and contains the same (external) input
and/or output as 7y .

Conversely, any action sequence % , admissible on V , corresponds
to a state transition sequence of the form (8). According to the
construction of V , this determines sequences (6) and (7) for T

and U, with action sequences «a and B satisfying (5). Therefore,

y is also admissible for the serial combination of T and U .

We shall need this theorem only for the special case that one of

the automata is a finite automaton. For this special case we have:

Corollary 1. For any class of automata determined by their peripheral
devices (in addition to a single input and/or output), the family of

languages associated with the class is closed under finite transduction.

Finite transduction is in itself a very powerful operation. As
its special cases we have, for instance, projection, insertion,

intersection with reqular languages, and quotients by regular languages

22

e

defined as

left quotient of L by R = R\L = (x | yxeL for some yeR} ,

right quotient of L by R = L/R = (x Ixyellfor some yeR} .
Notiece also that init(L) = L/Z*
In particular, we have for finite automata:

Corollary 2. Finite transduction of a regular language is regular.

Knowing that the family of regular languages is closed under

insertion, intersection, and projection, one could also see this of (L),

which for fin{te transducers assumes the form

@
(9) (L¥NBa)y

0O e +0 @ ¢

6. Context-free Languages and Pushdown Automata

Knowing that the family of context-free languages is closed under
insertion, intersection with regular languages, and projection, (9)
gives :
Theorem 5. Finite transduction of a context-free language is context-free.
As a special application of this result we notice that Bstack of

Section 4.3 will remain context-free even if the initial and final stack

contents are only required to belong to some regular languages over

Zstack In particular, one could allow the final contents to be any
*
element of Zstack .

23

For a pushdown transducer, (4) takes the form

® . @
10
(10) (70 Boack N Bope)
output

If L 1is regular, then all operations in (10) preserve the context-free

property of Bstack , and we have:

Theorem 6. Pushdown transduction of a regular language is context-free.

Next, we shall show that the family of languages associated with

pushdown automata is the family of context-free languages:

Theorem 7. The family of languages associated with pushdown automata

is the family of context-free languages.

Proof. For a pushdown automaton, B of (1) is context-free. Therefore

the language accepted (2) or generated (3) is also context-free. For

the second part of the theorem the following simple construction is

sufficient:
initia% state final state
{
|
(push 8) ! (pop a) (output a) for all ael
o H D
(pop.A)(push.Xk) . .(PUSh1Xl>
for each production A - Xl"'Xk

Here Zstack consists of all terminal (%) and non-terminal symbols of

the context-free grammar. The operation of the automaton corresponds to
following a leftmost derivation sequence of a word. Initially, g ;g
pushed into the stack, and each time there is a nonterminal on top of

the stack it is replaced 'by the right-hand side of a production for it

2l

P ———

(in reverse order). When a terminal symbol is encountered in the

stack, it is removed for output. An admissible sequence of actions ends

up with an empty stack, which corresponds to having completed a

derivation sequence. O

Notice that the action (pop A) was not needed in the above
construction. So this action does not add anything to the recognition
or generative power of pushdown automata.

As the proof of the first part of Theorem 7 was only based on the
context-free property of BstaCk + 1t remains valid even if the initial
and final requirements for stack contents are relaxed to arbitrary regular
languages over Zstack . Corresponding changes are also easy to make in
the construction for the second part of the theorem, so that any given
regular languages could be used as initial and final stack contents.

(In particular, the final contents could be allowed to be any member

f Z*
© stack.)
As Es—tack Can always be encoded in terms of a fixed alphabet

containing at least two letters, Theorem 7 shows that any context-free

language over I can be represented in terms of a fixed context-free

language and a reqular language:

Theorem 8. Given an alphabet E , there is a fixed context-free language
Lo over ZUZX' (where Z' 1is an auxiliary alphabet) such that any
context-free language 1 over E can be expressed as

L = (LoﬂR)Z ’

where R is some regular language over E UZX'.

25

Proof. Consider generating arbitrary context-free languages L by

pushdown automata with a fixed stack alphabet. Select B®t . as Ly
stac
and take Bi‘ts as R . O
Since only two letters are required in Zstack , four letters

(corresponding to push and pop operations for the two stack letters)

are sufficient in X!

Using the construction above to generate an arbitrary context-free
language L , one could also proceed as follows. Encode only nonterminals
as stack letters by using two auxiliary stack letters, gnd delete all

Output actions. Then we have}/

L = (LOHR){<POP 2) 1

This shows that LO in Theorem 8 can be chosen as a Dyck language over
a h-letter alphabet, and that |g| + L letters are then sufficient in I
As intersection with a regular language, decoding of alphabet,

and projection (together with a possible change of alphabet) can all be

performed by finite transducers, Theorem 4 gives us:

Theorem 9. Every context-free language is a finite transduction of a

fixed Dyck language over a four-letter alphabet.

1
Y Instead of letters in E ,- L here has corresponding letters in

{(pop a> | aez}.

26

7. Turing Machines and Undecidable Questions on Languages

The same reasoning as was used in the previous section can be

applied also to other classes of automata. ag any recursively enumerable

language can be generated by a Turing machine, we get the following

theorem:
Theorem 10. Given an alphabet E , there are two fixed context-free
languages L, and L, over ZUZ' (where Z' 1is an auxiliary alphabet)

1 2

such that any recursively enumerable language L over E can be

expressed as

L = (Llﬂ L,N R)E

where R is some regular language over L UZ!

Proof. Consider generating arbitrary recursively enumerable languages
L by Turing machines with a fixed tape alphabet. Select initﬂﬁ)c

and init(L)@ of Section 4.5 as L, and 1I_, and take B as R .
2 1 2 fts

Since only two letters are required to encode any actions of ,

tape

two letters are sufficient in X!
As intersection with a context-free language can be implemented by
pushdown transduction, and intersection with a regular language and

projection (with a possible change of alphabet) can be performed by

finite transducers, Theorem 4 gives us:

Theorem 11. Every recursively enumerable language is a pushdown

transduction of a fixed context-free language.

Considering an automaton with two pushdown stacks, instead of a
tape, one notices that the fixed context-free language in Theorem 11
can be chosen as a Dyck language.

27

a

According to our definitions, B of (1) is empty iff the operation

of the automaton cannot terminate successfully. o,y approach then ties
several questions about formal languages directly to the halting
problems of automata. For instance, as B for a Turing machine is
always an intersection of two context-free languages (which can be
effectively constructed from a description of the Turing machine), the
emptiness problem for intersection of con-text-free languages must be
undecidable. Undecidability questions will not be treated in more

detail here, as the proofs by Hartmanis [6] are directly applicable

to our approach as well.

8. Relation to Abstract Families of Languages

The approach pursued above can be generalized by thinking of an
arbitrary language Bi as being associated with some abstract peripheral
device. On account of (1) it is sufficient to consider automata with
only one peripheral device (in addition to a single input and/or output).
In fact, any two devices with languages Bl c Ai ' 32 c A; , where
Al(WAE =@ , can be replaced by a single device with the language

A A
() “n (s *.

Let us now rewrite (2) and (3) as
b
11 =
(11) L (Loﬂ R)‘2
where Lo is the "peripheral language" Lo c;z* , and R is the regular
Y

*
language R CZ(ZlJZP) associated with the state transition system.

The "peripheral alphabet" Zp is arbitrary, yet disjoint from I ,

which is the input (output) alphabet. Notice that an arbitrary alphabet Z

28

can be dealt with by renaming its elements and letting the projection

notation in (11) denote the combination of projection and reversal of

this renaming.

It is natural to associate a class of automata with each "peripheral

language" Lo . Let us call such classes fap-classes (for finite action
peripherals) :
Definition k. The set of automata with the same peripheral language LO

is called the fap-class generated by LO .

Definition 5. A family of languages associated with a fap-class

(generated by Lo) is called a fap-family (generated by Lo).

Obviously, a fap-family consists of the languages (11) for arbitrary R .

In particular, it contains its generator LO , which is accepted by the

following automaton:

Q} (input a)a , for all a ECP

VAR
\

initial state" 'final state

Corollary 1 to Theorem 4 says that fap-families are closed under
finite transduction. On the other hand, all operations involved in (11)

are special cases of finite transduction. Therefore, we can conclude:

Theorem 12. A family of languages is a fap-family iff it is generated

by a single language by finite transduction.

29

be two arbitrary languages. Without affecting

Let Ll and L2

generality we can assume that their alphabets have been made disjoint
by renaming. The fap-family generated by LlUI? does then contain

both L, and L Intuitively, two devices are then combined into

1 2

one so that any of the component devices, put only one of them, can be
used. On the other hand, it is straightforward to verify that each
fap-family is closed under union. Therefore, this fap-family is the
family generated by Ll and L2 by finite transduction, and Theorem 12

gets the stronger form:

Theorem 12b. -- A family of languages is a fap-family iff it is generated

by a finite set of languages by finite transduction.

It can be easily verified that fap-families need not be closed
under concatenation. Intuitively this is associated with the fact that
it may be impossible to reset a peripheral device from a final status
to an initial status. The intuitive notion of resetting peripheral

*
devices by action sequences RL o ZP can be formulated as follows:
o}

- For each action sequence x eLO there is a resetting sequence

I‘€RL such that xry e Lo for all 3re1b .
O

- If an admissible action sequence z eLo contains a resetting

. *
sequence I’eRL , 1.e., 2 = xry for some x,y<zEP + then the
o}

status of the device is an admissible final (initial) status after

the actions in x (xr) , i.e., X,y EL

If Repla,ceR c denotes a transduction which transduces any word Xry .
2
where reR , into xcy , then the result of these intuitive considerations

can be stated in terms of the following definition:

30

Definition 6. A language L is called resettable by g

1’ if

)

ReplaceR ’C(L) = LeL ,

L

where ¢ 1is a symbol not contained in L .

As an example, the languages B and B
stack queue

are reset-table by RStack - {(pop A3 uneue = [(read A)} . Ifthe

requirements for the final contents were totally removed, no finite

of Section 4

resetting languages would suffice, and we would get

*
Ritack = (pop 2 |ac Lotack) (PP A,

*
queue (read a | a Ezqueue> (read A)

For fap-classes with resettable devices we can now show:

Theorem 13. A fap-family of languages is closed under concatenation

1 +\
and plus~/ (') iff it as associated with a fap-class where peripheral

devices are resettable by regular languages.

Proof. If there are more than one peripheral device, then the
concatenation of their resetting languages would be a resetting language
for the single device obtained of them. 71t is therefore sufficient to

consider only the case of one device.

Let us start with the "if'-part. Let T and U be two automata of

the fap-class generated by a language LO reset-table by a regular

language R . Being regular, R is associated with a finite transition

Y F—
Plus is defined as L =LL | In fact, we could have star (*) in

this theorem equally well; but the later analogue for restricted

fap-families is valid only for plus (+).

31

*
system where edges are labelled by elements of }Zp . A third

automaton V of the same fap-class can now be constructed as follows.
Connect the final states of T by E-transitions to the initial states
of the transition system for R , and connect the final state of this
system again by s-transitions to the initial states of U . 1pitial
states of T (final states of U) are taken as initial (final) states
of V . The language associated with V is now the concatenation of
the languages associated with T and U

In fact, let x and y be some admissible action sequences for

«L . On account of the definition

T and U . In particular, xzp,yzp o

of R , there is now a resetting sequence reR satisfying

X €LO . As x, y, and r gare associated with admissible

s 5
P °p

transition sequences in T , U , and the transition system for R ,

there is an admissible transition sequence in V , associated with the

action sequence = . j = =
q z = Xry Since zy =X, ry; el,, and iy = (XY) g
D b P
V accepts each concatenation of words accepted by T and U

Conversely, let Z be an admissible action sequence of V . Because

of the construction of V, z must have the form z = xry , reR , Where

x and y are associated with some admissible transition sequences of

T and U . The admissibility of z also means that s EL . As
o
‘ P
Zp =Xy IV, o, we have Xp 3V eLo on account of the definition
b b D P D
of R . This shows that x and y are, indeed, admissible for T

and U . Hence, ZZ = XZyZ. is a concatenation of words accepted by

T and U .

For plus operation, an automaton W can be constructed of a given

automaton T as follows. Connect the final states of T by

52

. :'y«-vr—W“i'.'_T

e-transitions to the initial states of the transition system for R ,

and connect the final states of this system by E-transitions to the
initial states of T . As initial and final states take those of T
The correctness of this construction can be proved similarly to the
above proof for concatenation. For brevity, details are omitted here.
For the 'only if'-part it suffices to notice that any device can
be made resettable by adding a new primitive action for this purpose.
This means that the generator L can be replaced by another generator
L =1 ULO(CLO)+ , where ¢ is a new symbol outside the original
Z and £ . This language obviously has a resetting language [c},

D .
and, if the fap-family generated by L = is closed under concatenation

and plus, then Lé generates the same fap-family. U

Theorem 4 showed that characterizing peripheral devices locally
leads to language families closed under arbitrary finite transductions.
A simple and common way of introducing non-local restrictions is the
following: let us associate an integer k > 0 with each automaton,
and let us accept an action sequence x ¢ ﬁi(ﬁR as admissible iff
x)éz.; , and x / (ZUZP)*2§+1 (ZUZP)* . In other words, a non-empty
action sequence is required to contain at least one action for input
(if accepting) or output (if generating or transducing), and it cannot

contain more than k consecutive actions of other kinds.

More formally, let Rk + k> 0, be defined as the complement of
+ * ket *
=Z U (Zuz z 2UZ .
Re = I, U(Zug) 277 (Zuz)

A k-restricted automaton with peripheral language LO and transition

system language R 1s then associated with the language
z
L =
(Ly NR NR)5

33

As R, MR can always be associated with a transition system, we
can also use (11) with the additional assumption that the transition
system is k-restricted, i.e., RC Rk .

An automaton will be called restricted, if it is k-restricted for
some k >0 . As an example, let us consider restricted automata with
an arbitrary finite number of pushdown stacks, queues and tapes.
Obviously, Ib of (11) for any such automaton is context-sensitive.

It can be shown [8] that a projection, not erasing more than k consecutive
characters for some k > 0 , preserves the context-sensitive property

of a language. Therefore, we notice that languages associated with

these automata are context-sensitive. Similarly, we can see of (4)

that these automata transduce context-sensitive languages into
context-sensitive languages.

Analogously to Definitions 4 and 5 we now define:

Definition 7. The set of restricted automata with the same peripheral

language is called a restricted fap-class. A family of languages

associated with a restricted fap-class is called a restricted fap-family.

It can now be easily verified that the construction used in the

proof of Theorem L4 produces a restricted automaton V , if both T and

U are restricted. Also, for restricted automata, all operations

involved in (11) are special cases of restricted finite transductions.
Therefore, an analogue of Theorem 12b holds for restricted fap-families
and restricted finite transduction.

Similarly, an analogue of Theorem 1% is obtained for restricted

fap-families associated with automata with peripherals resettable by
I

3k

finite languages. (Some care must be exercised in the constructions

in the proof, in order to deal properly with languages containing € .)

Abstract families of languages, or AFL, can be characterized [4] as

L , , i +
those families which are closed under union, concatenation, plus (),

and restricted finite transduction. papn AFL is a full. AFL if it is

closed under an arbitrary finite transduction, and it is a principal AFL

if it is generated by a single language by the operations listed above.

In terms of these notions we can now conclude the discussion with

the following theorem, already obvious from what has been proved:

Theorem 14. _A family of languages is a (restricted) fap-family

associated with automata with peripherals resettable by regular (finite)

languages, iff it is a full (not necessarily full) principal AFL.

9. Conclusions

The approach presented is based on an inherently nondeterministic
conception of automata. An interesting way to introduce determinism
would be to take an auxiliary input for controlling nondeterminism.

Another limitation was dealing with only one-way input. Obviously,
two-way input could, in principle, be handled similarly to other devices.
However, much of the elegance of this approach seems to be lost with
the complications in the language involved. For instance, it is not
obvious from this language that each two-way finite automaton accepts
a reqgular language.

As a unified approach to automata, this approach has the advantage

that one does not need to be concerned with information representation

in the infinite storage. Also, very clear intuition is provided for

55

principal AFL, and their homomorphic characterization theorem.

Obviously, more general classes of automata than fap-classes are

needed for non-principal AFL.

In conclusion, it is felt that the approach presented deserves

attention in courses and textbooks on automata and formal languages,

and it is hoped that this paper can serve in making it more widely

known.

36

References

[1]

(2]

(3]

Floyd, Robert W., Private communication.

Ginsburg, Seymour, The Mathematical Theory of Context-free Languages.

McGraw-Hill, 1966.

Ginsburg, Seymour and Sheila Greibach, 'Principal AFL," J. Comput.
System Sci. L, 1970, 308-338.

Ginsburg, Seymour, Sheila Greibach, and John Hopcroft, "Studies in
Abstract Families of Languages," Memoirs of the Amer. Math. Soc.,

87, 1969.

Ginsburg, Seymour, and Gene F. Rose, 'Preservation of Languages by

Transducers," Information and Control 9, 1966, 153-176.

See also: "A Note on Preservation of Languages by Transducers,"

Information and Control 12, 1968, 549-552.

Hartmanis, J., "Context-free Languages and Turing Machine Computations,"

Proceedings of Symposia in Applied Mathematics 19, American

Mathematical Society, 1967.

Hopcroft, J. E. and J. D. Ullman, "An Approach to a Unified Theory
of Automata," Bell System Tech. J. 46, 1967, 1793-1829.

Hopcroft, John E., and J. D. Ullman, Formal Languages and Their

Relation to Automata. Addison-Wesley, 1969.

Salomaa, Arto, Formal Languages. Academic Press, 1973.

37

