
DESCRIBING AUTOMATA IN TERMS OF- LANGUAGES
ASSOCIATED WITH THEIR PERIPHERAL DEVI CES

by

Reino Kurki-Suonio

STAN- CS- 75-493

MAY 1975

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNI VERSITY

a

Describing Automata in Terms of Languages

Associated with Their Peripheral Devices

by

Reino Kurki-Suonio

e Computer Science Department

Stanford University

and

~ University of Tampere, Finland

; Abstract

~ A unified approach 1s presented to deal with automata having

different kinds of peripheral devices. This approach 1s applied

to pushdown automata and Turing machines, leading to elementary

proofs of several well-known theorems concerning transductions,

relationship between pushdown automata and context-free languages,

as well as homomorphic characterization and undecidability questions.

In general, this approach leads to homomorphic characterization of

language families generated by a single language by finite transduction.

This research was supported in part by National Science Foundation grant

GJ 26473X and by the Academy of Finland. Reproduction in whole or in
part is permitted for any purpose of the United States Govermment.

1

- —_—_«—«— —rE

!
1. Introduction

Mathematical formulations of various classes of automata do not

usually allow uniform treatment of different kinds of automata. One

reason 1s 1n irrelevant differences of conventions. For instance,

input may come from an input source, orit may constitute the initial

contents of some storage device. Also, the formalisms which are used

may be difficult to manage in a general situation. Functional notations,

for instance, become quite clumsy to use when several storage devices

are introduced.

‘ The purpose of this paper 1s to present an approach, suggested by

Floyd [1], where several kinds of automata are treated in a uniform way.

In Sections 6 and 7 this approach will be applied to pushdown automata

and Turing machines. The proofs of the theorems obtained are quite

L elementary, when compared to those usually given [2,8,9], and they have
the advantage of being directly based on a simple and intuitively clear

picture of the situations in question. In fact, most of the theorems

are directly obvious from the basic definitions we shall make.

. The general idea 1s to consider an automaton as a finite, non-
deterministic transition system, where each transition is associated

with a sequence of actions on peripheral devices, like inputs, outputs,

tapes, stacks, and queues. Action sequences which are possible on an

> automaton are restricted by 1ts transition system on one hand, and by

| the properties of the peripheral devices on the other hand. Each such

. restriction can be given in terms of a language over actions, and the

| total behavior of the automaton can then be described as the intersection

" of these languages.

The behavior of Turing machines has previously been described in

terms of languages by Hartmanis [6]. However, he considers sequences of

instantaneous descriptions insteadof action sequences. The present

approach 1s both simpler and more general. Ginsburg and Greibach have

used it in[3]to exhibit an "intuitively obvious" language as a generator

for one-way stack languages. Although it seems obvious that the general

applicability of the approach has been known for some time, it 1s not known

to the author that systematical use had been made of it.

\

Comparing the approach to that of (one-way nondeterministic) balloon

automata [7] and abstract families of acceptors [U4], there is the similarity

that admissible behavior of memory devices 1s described Vocally", 1i.e.,

without reference to other aspects of the automata. However, our approach

does not make explicit use of any information storage aspects of memory

devices. Instead, each device is characterized purely in terms of a

language of admissible action sequences. Letting these "peripheral

languages" determine a class of automata, it will be shown in Section 8,

that the families of languages associated with such classes are exactly

L those families which are generated by a single language by finite

transduction. With a suitable restriction on "peripheral languages", full

principal AFL [3] are obtained.

2. Elementary Properties of Automata and Languages

- The purpose of this section 1s to state explicitly those concepts

and properties of automata theory and formal languages on which our

. treatment of pushdown automata and Turing machines 1s based.

The basic concepts of finite automata, Turing machines, and the

_ families of regular, context-free, context-sensitive, and recursively

enumerable languages are assumed to be known. As for relationships

between automata and languages, we assume that the relationships between

(nondeterministic) finite automata and regular languges, and between

- "Turing machines and recursively enumerable languages, are known. For

questions of undecidability, one has to know the undecidability of the

halting problem for Turing machines.

| As for Boolean closure properties of families of languages, we shall

make use of the facts that

- the family of regular languages 1s closed under intersection,

- the family of context-free languages 1s closed under intersection

with regular languages,

~- the family of context-sensitive languages 1s closed under intersection.

In addition, we shall need properties concerning insertion of

auxlliary letters into words,' and projection homomorphisms deleting some

letters from words.

5

Definition 1. Given two disjoint alphabets I and I, | the projection
* * *

of a word x e(Zuz)) into & is the word Xx € obtained of x
by deleting from it all occurrences of letters not belonging to 7

For a language L over ZU, we define correspondingly,

Le. = {xs | xen} .

« Definition 2. Given a language L over 5 ind an auxiliary alphabet 5 ,
ZNZ, = ¢ , the language

&y *
L = {x [xe (zuz,) , X5 € L}

bh

is called insertion of & into IL .

Obviously, projection 1s the opposite of insertion in the sense

that, for any language 71 over £ and for an auxiliary alphabet Zq ,

fz) = ¢ , we have
Z
1

L = .

: Dy L
For insertion we can also readily establish the following identities:

Ly Z Zin & a. UZ. 1,72 2,71

(L9)°=@9 "=n 2 |
2 Z >
1 1 1

- LmUL, = (L,uL,) p
2 Z 2
1 1 1

} Lm NL" = (L; NL) ,
z 2

* 1 * 1
(Zuz,) ~- L = (= -L) ’

where L , Ly » and L, are languages over & , and Z, Z, are two
auxiliary alphabets, disjoint from Z.

4

CC ———————

It 1s also easy to prove the following closure properties of

| language families under projection and insertion:

|
Theorem 1. The families of regular, context-free and context-sensitive

languages are closed under insertion of an auxiliary alphabet.

Theorem 2. The families of regular and context-free languages are

closed under projection.

\

5. Basic Definitions

. By an automaton we understand a finite transition system associated

with one or more devices for input, output, and storage of symbols. Each

device 1s assumed in the following to have a finite set of primitive

actions associated with it. For an input device, for instance, an

input operation together with the letter obtained from the input source

would constitute a primitive action. The transition system can be viewed

as a finite digraph where edges are labelled with finite sequences of

- primitive actions. Vertices and edges of the graph are called states and

) state transitions, respectively. Two subsets of states are distinguished

as initial and final states.

“ As an example, let us consider a simple automaton with one input

and one counter. Assuming a two-letter input alphabet {a,b} , the

primitive input actions could be denoted as (input a} , {input b) ,

and (input A) , where the first two correspond to successful input

operations, while the third indicates that no letter was obtained since

the source was found empty. For the counter we have a one-letter

alphabet {1} together with primitive actions (push 1), (pop 1) ,

0

and (pop A) denoting incrementation, decrementation, and the situation

that the counter 1s found empty.

The transition system of theautomaton is given in Figure 1. It

can be immediately verified that a state transition sequence leading

from the initial state to the final state 1s associated with exactly

those input sequences where the number of a's equals the number of b 's.

Although this example presents deterministic behavior, we shall make no

L general restrictions on the action sequences associated with state

transitions. For instance, we might have two transitions from the same

state, one labelled with (input a) (push 1y = the other with

(input a)(pop 1) , which would indicate Nohdeterminigtiec behavior. Some

. transitions might even be labelled with impossible action sequences,
like (input A){input a) .

input a 1 .

(pt b oop 1) ” $input b) (push 1),
(input a){pop 1)

(input Db

Initial state

(input a) (pop A)

(input A){pop A)

Final state O

Figurel

6

In general, the behavior of an automaton 1s determined as follows:

1. Initially the automaton 1s required to be in one of the initial

states. There may also be further requirements concerning the

initial status of the various peripheral devices.

2. Operation of the automaton can terminate successfully whenever the

current state 1s a final state, 1f all requirements (if any)

concerning the final status of peripheral devices are satisfied.

~ 5. If the operation 1s not terminated, one transition from the current

state 1s selected, an attempt 1s made to perform the primitive

actions associated with it (in the order indicated by the sequence),

\
and, 1f this succeeds, the state is changed accordingly.

Nondeterminism 1s involved 1n the selection of the initial state,

the selection of transitions, and in the decision on termination.

Operation of the automaton terminates unsuccessfully, 1f the actions

associated with the selected state transition cannot be performed. We

are only interested in operations which do not terminate unsuccessfully.

An input device always has some input alphabet Z, put A word
. EE 1s accepted by an automaton (acceptor), 1f the automaton

can be operated (with successful termination) so that the word read in

by the input actions is x . Similarly, an output device has an output

“alphabet output y and a word yes is generated by the automatonutput CLCll Ch

_ (generator), if it can be operated (with successful termination) so that

the output word given by output actions 1s y . The language accepted

~ (generated) by an automaton 1s the set of words accepted (generated) by it.

A word Xx DA 1s transduced by an automaton (transducer) into
y CE out » 1f the automaton can simultaneously accept x and generate y .

ft

Notice that transduction is here defined only for words accepted by the

automaton. A language Ly 1s transduced into L, , 1f L, 1s the set

of words into which words of L, -are transduced.

Two automata are equivalent as acceptors (generators) 1f they accept

(generate) the same language. Two automata are equivalent as transducers

1f the transductions performed by them are the same. Notice that

equivalence as transducers implies equivalence as acceptors and generators,

\ but not conversely. By equivalence without further specification we shall

understand equivalence in those respects applicable to the automata in

question.

'or each device there are certain restrictions determining which

sequences of primitive actions on that device are admissible. he main

- purpose of these restrictions 1s to guarantee that the symbols fetched

_ from a storage device correspond to those stored 1n it, and that no input

1s obtained from an input source already found empty. In addition, there

~ may be restrictions on the initial and final status of the devices. por

instance, storage devices may initially be assumed empty. Notice that

input and output are considered "one-way" devices, not storage units which

would allow re-examination or replacement of letters already treated once.

More formally, let = be the set of primitive actions on device i .

It-1s assumed that primitive actions can be renamed, 1f necessary, for

avoiding conflicts. Therefore, it is always assumed that As for

different devices are disjoint. For each i we have a language

B, © A,
i i

consisting of all admissible action sequences on device 1 . Let a

denote the union of As for an automaton. The finite transition system

of the automaton then determines a regular language

3

B., < 4Arts © 8

such that = € Bag 1ff &@ 1s associated with some sequence of state

transitions leading from an initial state to a final state (irrespective

of whether or not « makes sense for the peripheral devices). This

leads to the following definition of an action sequence Ten being

admissible:

CL) #

L Definition 5. A word «eA is called an admissible action sequence

for an automaton, 1ff

(i) teBu, , and

(11) tw, €B, for all devices i .
i

~ Introducing the notation

| A-A
@ i

l.e., letting B) denote the language obtained of B, by inserting
actions on all other devices to it, we can express admissible action

_ sequences as the language

| ®
; 1 = Vo.(1) B Brg! n_B.

1

It 1s pointed out that this definition implies each peripheral

device being defined solely by the ways in which it can be locally

manipulated. A device is completely characterized by the language B.
i

associated with 1t. Additional restrictions are required, if one wishes

to 1ntroduce interdependencies between devices, like those in linear

bounded automata or time/tape complexity classes of Turing machines.

In accordance with common terminology, automata having (in addition

to a single input and/or output) no peripheral devices, one pushdown

9

" oT a a

stack, one queue, or one tape, will be called finite automata, pushdown

automata, Post machines, and Turing machines, respectively. notice that

input 1s considered an independent device in this definition of

(nondeterministic) Post machines and Turing machines. gtrictly speaking,

these peripherals are not devices but classes of devices, as the language

Bs of a pushdown stack, queue, or tape, depends on the alphabet used

on the device.

§

L, Languages Associated with Peripheral Devices

a Languages B, associated with some common peripheral devices

will be investigated in this section. Aas it is known that the same
C

family of languages -- that of recursively enumerable languages —- is

L accepted (generated) by Post machines, by Turing machines, and by

automata with two pushdown stacks, there 1s some redundancy in discussing

> pushdown stacks, queues and tapes separately. However, it is interesting

to see how these different kinds of devices lend themselves to this

treatment.

4.1 Input Actions

Given an input alphabet 2 | nput , there 1s a primitive input action

(input a) for each a el; + . The meaning of such a primitive action
1s to take the next letter from the input source and to find it to be

letter a . In addition, there may be an action (input A) , which means

that the input source 1s found empty by an attempted input operation.

Obviously, no further input operations can find input letters, if the

source has already been found empty.

10

The set of all primitive input actions 1s therefore either

A put = {(input a) | a « — ,
or)

= :

A A out J {(input A)} .

Correspondingly, the set of admissible sequences of input actions 1s

either

B AL
h input = “input

or

B!, = A (input AYinput input |

In each case this 1s a regular language.

i For notational simplicity, we shall in the following make no
| distinction between a language over 3 and the corresponding

input

language over A nput This means that the language accepted by an
automaton can be denoted as

i 2(2) By
input

where B is the language of all admissible action sequences from (1).

; More precisely, this notation involves that projection and change of

alphabet can be combined 1n a single notation for projection. Two

automata with the same A input , and with admissible action sequences

B and B' , are then equivalent as acceptors iff B, ~ BY
input A nput

It 1s easy to see that (input A) is, in fact, a superfluous action

in the following sense:

Theorem 5. For any automaton with input actions pr there is an
input

equivalent automaton with the' same peripherals and with input actions

restricted to A.
input .

11

Proof. Let X be an automaton with state set S and with actions A

containing an input action (input A) . Another automaton Y , equivalent

to X and with actions A-((input A}} | can now be constructed as follows.

As states of Y take S x {0,1}, and let (s,k) be an initial (final)

state of Y 1ff s 1s an initial (final) state of X and k = 0

(k = 0,1) . The state transitions of Y will be determined so that

for any transition s”-=t of X , g,t ¢3, Qed , Y will have the

following transitions:

x

if 2, = €¢ , then (s,k) = (t,k) , k =0,1 ;
input

. 0
lse 1f « . = E — .€ / n { {input A} b then (s,0) (t,0) b]

‘else, if ¢ B! “A-{ (input A)
input

On the basis of this construction, it is straightforward to verify,

that for any admissible action sequence y of X there is an admissible

- action sequence 7' of Y' satisfying

! _i 7 ’aA-{ (input MY?
) and conversely. Therefore X and Y are equivalent.J

On account of Theorem 3, it is no essential restriction that we shall

~ .always restrict input actions to A, in the following.
input

4.2 Output Actions

Given an output alphabet ZX , the set of primitive output
output

actions 1s

A _

output { (output a) | > € % output bo

12

where (output a) denotes the action of outputting an individual letter

a, Co
€& output The set of admissible output action sequences 1s simply

B Ny |
output ~~ output .

As 1n connection with input, we shall make no notational distinction

between a language over Z output and the corresponding language over

{ (output a> 1 a © Lutput This means that the language generated by
" an automaton can be denoted as

(3) B, :
output

Two automata with the same p , and with admissible action
output

| sequences B and B' , are then equivalent as generators, iff

B = B!
A

output A output

~ When considering transduction of a language L , the output

language 1s correspondingly

(1) (1%n B).
output

Two automata with the same 2 ; i 351
input ’ A sutput » and with admissible

action sequences B and B' , are equivalent as transducers, iff for

eacha eB (a' eB!) there exists a' ¢B! (a €B) such that
x: = ! _

i A and A = Oa
1nput input output output

Because of Theorem 3, there is complete symmetry between input

and output actions. Given an automaton accepting (generating) a

language L , this same language I is generated (accepted) by the

automaton obtained of the original by interchanging input and output.

Therefore, for a class of automata which is closed under interchanging

15

" |

input and output, the families of languages accepted and generated by

these automata are the same. Such a family will be referred to as the

family of languages associated with that class of automata.

L.3 pushdown Actions

Given a pushdown stack with stack alphabet Zook , there are

primitive actions (push a) and (pop a) for each a eC ___ The
. meanings of these actions are pushing a single letter a on top of the

stack, and popping one letter from the stack and finding it a letter a .

In addition, there may be an action (pop A) , which means that the

stack 1s found empty by an attempted pop operation. The set of all

1 primitive pushdown actions, A fock y 1s therefore either
{(push a)| a €Z tack) U {(pop a)| a €L took]

" or

(push a) | a eyo,J U lop a) ae xz, JU {(pop AY]

The characteristic property of a stack 1s that all letters pushed

into 1t can be popped out of it in the reverse order. a grammar for

Bot ack , the set of all admissible pushdown action sequences, can be

directly based on this property. In order to get Botack as simple as
possible, we shall require further that a stack is empty both initially

and finally. If A does not contain (pop A) , B is then
— stack stack

the Dyck language generated by the grammar

in Section 6.

14

S — €

-» (push a) S op a
(p) 5 (pop a) for all ael

- 85

If (pop A) is allowed, the grammar has to take care that

(pop A) can appear only when the stack is empty:

S — (pop A)

~ T
\

- SS

T = ¢

= (push a) T (pop a)
L P pop for all a € Let ack

- TT .

I h B

I each case stack 1S a context free language over A tack

4.4 Queue Actions

Given a queue with an alphabet 2 ene , there are primitive actions
(write a) and (read a) for each aex . The meanings of these

queue

actions are writing a letter a to one end of the queue, and reading

. (and erasing) a letter from the other end and finding it to be letter a .

In addition, there may be an action (read A) which means that the queue

. . 1s found empty by an attempted read operation. The set A of all
queue

primitive queue actions 1s therefore either

writea)la cl U reada) |aeld{(MaeZ ell Jae ie]
~ or

write a{« a> aed JU ((read a> [aes JU{(read N)]

15

The characteristic property of a queue 1s that all letters written

into it can be read from it in the same order. A grammar for B
queue ’

the set of all admissible queue action sequences, can be directly based

on this property. We shall make the further requirement that a queue

EE queue

(read A) , we get the following grammar:

5S = o£

= T

T —- (write a)(read a) for all a eX
queue

- TT

N (read a)(write b) - (write b){read a) for all a,b eZ
queue .

L Notice that the context-free productions generate all action

sequences where each write action 1s immediately followed by the

~ corresponding read action, and the context-sensitive production takes

care of arbitrary "delaying" of read actions.

If (readA) is allowed, we only have to add the production

T - (read A)

"to the grammar. Hence, we find that B 1s 1n each case a
queue

context-sensitive language over A :
— queue

4.5 Tape Actions

A tape allows actions for reading and writing, and for moving the

tape 1n either direction. It is customary to include one read, one write,

and one move operation 1n one primitive action, in this order. In the

following we shall adopt the convention of writing first, then moving the

16

tape and reading. Given tape alphabet Zt ape , the set of primitive
tape actions 1s then

A = ((write a, left, read b) | a,b € Zp opel U

({write a, right, read b) | a,b Zine)
\

The meaning of these actions 1s that letter a 1s written on tape,

tape head 1s moved by one square to the left or to the right, and the

q letter in this square 1s read and found to be letter b .

The characteristic property of a tape can be stated as follows:

when some letter has been written in a square, the same letter will

be read when-this square 1s reached for the next time. Let us consider

only one half of this property by requiring that a letter written by

an action moving to the right will be read when the same square is

reached next time (by an action moving to the left). Requiring further

that all letters written (moving to the right) are later read (moving

to the left) and denoting the set of action sequences so obtained by Ly ,

we get the following grammar for L, .

Sq — xq (stands for a sequence which either 1s empty or starts

A with an action moving to the right)

-Yy (stands for an action moving to the left)

L — S154

xq — E

= (write a, right, read Db) xy (write c, left, read a)

f 11 a,b,c
_ or a 5D, 5C tape

~ XX

Y. = (write a, left, read b) for all a,b ¢X .
1 | ’ tape

17

If only the second half of the characteristic property of a tape 1s

taken, we get a similar language L, with grammar:

EN =X,

~ 555,

Xo - €

-» {write a, left, read Db) X, (write ¢, right , read a)
\

for all a,b,cEC
tape

MRL

Y, = (write a , right, read b) for all a,b eZ
tape

1 Imposing no restrictions on the initial and final contents of a tape,

we can then express Bi ape , the set of all admissible tape action
_ sequences, as

Bt ape = init(L,) N init(L,) ’

where init(L) denotes all initial parts of words in L :

init(L) = {x | xyelL for some y }

For a context-free L , init(L) is also context-free, as will be

seen in Theorem5. Therefore, Bt ape is a context-sensitive language
which can be expressed as an intersection of two context-free languages

over A

tape .

By ape can also be characterized as the complement of a context-free

language L over A ape + A context-free grammar for L 1s obtained easily
from the observation that at least one letter has to be read differently

from what was written in thesquare. This leads to the following grammar

18

(together with the above productions for xq , 1 , 5 / and Y.):5):

S =» {write a, right, read b) X, (write c¢, left, read 4d)

-» (write a, left, read Db) X, (write ¢ | right, read d)

for all a,b,c

-+ TST

T — €

-Y,

~Y,

5. Serial Combination of Automata

It 1s often useful to consider an automaton as a serial combination

of several automata, so that the output of one automaton is used as

inputto the next one. More formally, let T and U be two automata

{ with disjoint sets of primitive actions = A
Ap 1 Y 4% utput ’

A; = A UA, » where the same alphabet 1s associated with pa2 7 input input

and Aj tout ’ and A, and A, stand for the primitive actions of
: the other devices in T and U . An action sequence

*

7 (A UA)

is defined to be admissible for the serial combination of T and U

1ff there are action sequences o and 8 , admissible for T and U ,

satisfying

QQ =
A Ta

(5) B, = 7
bo Thy

e’ = B
A
output A, put

10

Concerning such serial combination of automata, we have:

Theorem 4. For any serial combination of (a finite number of) automata

there 1s a single automaton, equivalent to this serial combination,

having the same peripheral devices as the original automata, omitting

the intermediate output/input devices.

Comoe Let T and U be two automata as described above. Without

. affecting generality, we can assume that each state transition of T

(U) 1s associated with at most one output (input) action. a tpirg

automaton V , with the same peripheral devices as T and U (except

the intermediate output and input), and equivalent to the serial

combination of T and U can now be constructed as follows.

Let the state sets of T and U be Srp and Si _ The set

- Sop X 8; will then be taken as the state set of V , and (t,u) will

be an initial (final) state of V 1ff t and u are initial (final)

states ofT andU . The state transitions of V will be determined

as follows:

_ a. Ww
. - for each transition t S+t' of T , where a eh ,

a

take (t,u)= (t',u) for all u ES ;
u

_ A *

- for each transition uy Su' of U , where B cA, ,

take (t,u) B (t,usu (t,ut) for all t € 8; ;

- for each pair of transitions

A.

t -t' of T,

u By of wu,

20

—

where a, _ By # € (when actions (input a) and
output input

(output a) are equated), take

py, .
(tsu) — (t',u') .

The claimed equivalence can be easily verified as follows. Firstly,

consider an arbitrary action sequence vy admissible for the serial

combination of T and U | Then there exist a and 8 , admissible

forT andU , satisfying (5), and associated with some state

transition sequences

RON } Ho)
0 ° ° ° 0 —

(6) ° an an an an an an an 9

— £49) - ... LL
P p ?

0 (Jo)

uf "Tuy
(7) eB @ @ Bd BD aD a ah

: (J— a!) ~ see = 1 p
p D ?

0 o) (iy)

where t!) and uf ’ are initial states, ¢ Pag uP are final
states, Pp , 1p 0 We 2 dor ened > 0, and output (input) actions are
associated with exactly those transitions where the subscript of the

state is changed. According to the construction of V , (6) and (7)

can be "merged" into a transition sequence from an initial state to a

final state of V :

21

(0) ° (i) (3)
(tq I I » Uy) -

(i) (3)
Selo) pledy LL Pru PY

“P P P P

The action sequence 7' associated with (8) is a merge of a, andB,
1 A)

Therefore,

. y! = = »
I S|

7 = Pp = 7 J
Ag A, A,

which means that »' is admissible and contains the same (external) input

| and/or output as y .

Conversely, any action sequence y , admissible onV , corresponds

- to a state transition sequence of the form (8). According to the

construction of V , this determines sequences (6) and (7) for T

} and U, with action sequences «@ and B satisfying(5). Therefore,

y is also admissible for the serial combination of T and U .

; We shall need this theorem only for the special case that one of

the automata 1s a finite automaton. For this special case we have:

Corollary 1. For any class of automata determined by their peripheral

devices (in addition to a single input and/or output), the family of

languages associated with the class 1s closed under finite transduction.

Finite transduction 1s in itself a very powerful operation. As

its special cases we have, for instance, projection, insertion,

intersection with regular languages, and quotients by regular languages

22

defined as

right quotient of L by R = L/R = (X | xy eL for some yeR}.

Notiee also that init(L) = L/Z2* .
N

In particular, we have for finite automata:

Corollary 2. Finite transduction of a regular language is regular.

Knowing that the family of regular languages 1s closed under

insertion, intersection, and projection, one could also see this of (4),

which for finite transducers assumes the form

@

(9) (TZN Ba)

6. Context-free Languages and Pushdown Automata

Knowing that the family of context-free languages 1s closed under

insertion, intersection with regular languages, and projection, (9)

gives :

Theorem 5. Finite transduction ofa context-free language 1s context-free.

As a special application of this result we notice that Bitaok of

Section 4.3 will remain context-free even if the initial and final stack

contents are only required to belong to some regular languages over

2 tack In particular, one could allow the final contents to be any
*

element of Stack .

25

For a pushdown transducer, (4) takes the form

® @10(10) (T7n Bstack 4 Bots) a
output

If L 1s regular, then all operations in (10) preserve the context-free

property of Botack , and we have:

Theorem ©. Pushdown transduction ofa regular language 1s context-free.

\ Next, we shall show that the family of languages associated with

pushdown automata 1s the family of context-free languages:

| Theorem 7. The family of languages associated with pushdown automata

1s the family of context-free languages.

Proof. For a pushdown automaton, B of (1) is context-free. Therefore

| the language accepted (2) or generated(3) is also context-free. For
the second part of the theorem the following simple construction 1s

- sufficient:

initial state final state!

| (push 8) EY (pop a) (output a) for all ae(pop A) {push Xi ... {push X41)

for each production A - KpoooXo

Here L tack consists of all terminal (Z) and non-terminal symbols of

the context-free grammar. The operation of the automaton corresponds to

following a leftmost derivation sequence of a word. Initially, 3 is

pushed 1nto the stack, and each time there 1s a nonterminal on top of

the stack it is replaced 'by the right-hand side of a production for it

2

a ——

(in reverse order). When a terminal symbol is encountered in the

stack, it is removed for output. An admissible sequence of actions ends

up with an empty stack, which corresponds to having completed a

derivation sequence. [J

Notice that the action (pop A? was not needed in the above

construction. So this action does not add anything to the recognition

or generative power of pushdown automata.

: As the proof of the first part of Theorem7 was only based on the

context-free property of Bytaox it remains valid even 1f the initial

and final requirements for stack contents are relaxed to arbitrary regular

a languages over Lotack . Corresponding changes are also easy to make in
the construction for the second part of the theorem, so that any given

regular languages could be used as initial and final stack contents.

L (In particular, the final contents could be allowed to be any member
w

of 2 stack)

As Fs_tack Con always be encoded in terms of a fixed alphabet

containing at least two letters, Theorem 7 shows that any context-free

language over Z can be represented in terms of a fixed context-free

language and a regular language:

Theorem 8. Given an alphabet E , there is a fixed context-free language

L, over xuU&' (where &' is an auxiliary alphabet) such that any

context-free language I over E can be expressed as

L = (L, NR). ,

where R 1s some regular language over E Ux'.

25

Proof. Consider generating arbitrary context-free languages L by

pushdown automata with a fixed stack alphabet. Select 8° . as Lgstac

and take Bayo 5 RO a

Since only two letters are required In Loop ; four letters

(corresponding to push and pop operations for the two stack letters)

are sufficient in &'.

Using the construction above to generate an arbitrary context-free

.

language L , one could also proceed as follows. Encode only nonterminals

as stack letters by using two auxiliary stack letters, and delete all

Output actions. Then we haves

= (Lb= EMR) pop a)

This shows that L in Theorem 8 can be chosen as a Dyck language over

_ a 4-letter alphabet, and that IZ] +k letters are then sufficient in 2'.

As intersection with a regular language, decoding of alphabet,

and projection (together with a possible change of alphabet) can all be

performed by finite transducers, Theorem Lb gives us:

. Theorem 9. Every context-free language 1s a finite transduction of a

fixed Dyck language over a four-letter alphabet.

1/
Instead of letters 1n E ,- L here has corresponding letters in

{ (pop a> | ac].

26

w I Ea |

IE Turing Machines and Undecidable Questions on Languages

The same reasoning as was used 1n the previous section can be

applied also to other classes of automata. ag any recursively enumerable

language can be generated by a Turing machine, we get the following

theorem: |

Theorem 10. Given an alphabet E , there are two fixed context-free

| languages L; and L, over ZUZ' (where Z' is an auxiliary alphabet)
such that any recursively enumerable language L over E can be

expressed as

L = (I, N L,0 R)s

where R 1s some regular language over ZL yUZ' .

L

Proof. Consider generating arbitrary recursively enumerable languages

] L by Turing machines with a fixed tape alphabet. Select init (L,)®
and init (1,)® of Section 4.5 as Ly and L, , and take Bor as R .

Since only two letters are required to encode any actions of 4
tape

two letters are sufficient in ZI!.

As intersection with a context-free language can be implemented by

pushdown transduction, and intersection with a regular language and

projection (with a possible change of alphabet) can be performed by

finite transducers, Theorem 4 gives us:

Theorem 11. Every recursively enumerable language 1s a pushdown

transduction ofa fixed context-free language.

Considering an automaton with two pushdown stacks, instead of a

tape, one notices that the fixed context-free language 1n Theorem 11

can be chosen as a Dyck language.

27

m ba

According to our definitions, B of (1) is empty iff the operation

of the automaton cannot terminate successfully. (yr approach then ties

several questions about formal languages directly to the halting

problems of automata. For instance, as B for a Turing machine 1is

always an intersection of two context-free languages (which can be

effectively constructed from a description of the Turing machine), the

emptiness problem for intersection of con-text-free languages must be

\ undecidable. Undecidability questions will not be treated in more

detail here, as the proofs by Hartmanis [6] are directly applicable

to our approach as well.

- 8. Relation to Abstract Families of Languages

The approach pursued above can be generalized by thinking of an

arbitrary language B. as being associated with some abstract peripheral

device. On account of (1) it is sufficient to consider automata with

only one peripheral device (in addition to a single input and/or output).

In fact, any two devices with languages By C A / B, c A; , where
’ Ay TA, = @ , can be replaced by a single device with the language

5) 2 " (5) °
Let us now rewrite (2) and (3) as

(11) 1=(Cn RB),
O Z

where be 1s the "peripheral language" L, - z , and R is the regular
language R c (zuz)” associated with the state transition system.
The "peripheral alphabet" z is arbitrary, yet disjoint from I ,
which 1s the input (output) alphabet. Notice that an arbitrary alphabet I

28

can be dealt with by renaming its elements and letting the projection

notation in (11) denote the combination of projection and reversal of

this renaming. |

It 1s natural to associate a class of automata with each "peripheral

language" L, . Let us call such classes fap-classes (for finite action

peripherals):

. Definition b4. The set of automata with the same peripheral language L

1s called the fap-class generated by Ly .

Definition 5. A family of languages associated with a fap-class

(generated by L,) 1s called a fap-family (generated by L)-

Obviously, a fap-family consists of the languages (11) for arbitrary R .

| In particular, 1t contains 1ts generator L , which 1s accepted by the
following automaton:

0 (input a)a , for all a Cs
/ \

\

initial state" "final state

Corollary 1 to Theorem 4 says that fap-families are closed under

finite transduction. On the other hand, all operations involved in (11)

are special cases of finite transduction. Therefore, we can conclude:

Theorem 12. A family of languages 1s a fap-family iff it 1s generated

by a single language by finite transduction.

29

Let Ly and L, be two arbitrary languages. Without affecting

generality we can assume that their alphabets have been made disjoint

by renaming. The fap-family generated by L, UL, does then contain

both Ly and L, . Intuitively, two devices are then combined into

one so that any of the component devices, put only one of them, can be

used. On the other hand, it is straightforward to verify that each

fap-family 1s closed under union. Therefore, this fap-family is the

> family generated by L; and L, by finite transduction, and Theorem 12

gets the stronger form:

Theorem 12b. -- A family of languages is a fap-family iff it is generated

by a finite set of languages by finite transduction.

It can be easily verified that fap-families need not be closed

_ under concatenation. Intuitively this is associated with the fact that

it may be impossible to reset a peripheral device from a final status

- to an initial status. The intuitive notion of resetting peripheral

*

devices by action sequences Re - 5 can be formulated as follows:
O

. - For each action sequence x el, there 1s a resetting sequence

ha such that xry « L, for all yekL, .

~ If an admissible action sequence z € Lg contains a resetting
w

sequence reRy , 1L.e., 2 = xry for some xy ea, ry then the
®

status of the device is an admissible final (initial) status after

the actions in x (xr) , 1.e., X,y EL

If Replace, o denotes a transduction which transduces any word Xry .2

where reR , into xcy , then the result of these intuitive considerations

can be stated in terms of the following definition:

30

Definition 6. A language L is called resettable by Rg if
— ee I’

Replacep (1) = LelL ,2

where ¢ 1s a symbol not contained in L .

As an example, the languages B and B of Section 4
stack queue

are reset-table by R tack = {{pop A) s Ryueue = [(read A)} . Ifthe
requirements for the final contents were totally removed, no finite

»

resetting languages would suffice, and we would get

R! _ (pop a | a ¢ PN y (op A)stack = stack’ ‘POP >

R' = (read a | a €Z y" (read A)
queue queue

L For fap-classes with resettable devices we can now show:

. Theorem 13. A fap-family of languages is closed under concatenation

and plus (') iff it 1s associated with a fap-class where peripheral

devices are resettable by regular languages.

Proof. If there are more than one peripheral device, then the

. concatenation of their resetting languages would be a resetting language

for the single device obtained of them. 1t is therefore sufficient to

consider only the case of one device.

Let us start with the 'if'-part. Let T and U be two automata of

the fap-class generated bya language L, reset-table by a regular

language R . Being regular, R is associated with a finite transition

/ | | + x
Plus 1s defined as IL = LL | In fact, we could have star (*) in

this theorem equally well, but the later analogue for restricted
+

fap-families is valid only for plus () .

31

x

system where edges are labelled by elements of “ . A third
automaton V of the same fap-class can now be constructed as follows.

Connect the final states of T by E-transitions to the initial states

of the transition system for R , and connect the final state of this

L system again by s-transitions to the initial states of U . 71pitial

states of T (final states of U) are taken as initial (final) states

of V . The language associated with V 1s now the concatenation of

b the languages associated with T and U .

In fact, let x and y be some admissible action sequences for

T andU . In particular, Xs Vy L . On account of the definition
. b DP

i of R , there is now a resetting sequence reR satisfying

| xy TVs el, . As X , y, and Tr are associated with admissible
) D J

| transition sequences in T , U , and the transition system for R ,

N there 1s an admissible transition sequence in V , associated with the

action sequence z = xXry . Since Zp = Xn IVs ¢ Lg y and In = (xy) ’
D D 2

V accepts each concatenation of words accepted by T and U .

Conversely, let 2 be an admissible action sequence of V . Because

. of the construction of V , z must have the form z = xry , rcR , Where

Xx and vy are assoclated with some admissible transition sequences of

T andU . The admissibility of z also means that Zs. EL, . AsO

| D

Zs =X Lys , we have Xs, 25 € LI, on account of the definition
P p [2 P Pp

of R . This shows that x and y are, indeed, admissible for T

andU . Hence, Zr = X.Y 1S a concatenation of words accepted by

T and U .

For plus operation, an automaton W can be constructed of a given
!

automaton T as follows. Connect the final states of T by

52

. CRAIN
1

e-transitions to the initial states of the transition system for R ,

and connect the final states of this system by E-transitions to the

initial states of T ., As initial and final states take those of T .

The correctness of this construction can be proved similarly to the

\ above proof for concatenation. For brevity, details are omitted here.

For the 'only if'-part 1t suffices to notice that any device can

be made resettable by adding a new primitive action for this purpose.

> This means that the generator L can be replaced by another generator

L = I UL (cr) , Wherec¢ is a new symbol outside the original

2 and & . This language obviously has a resetting language {fe},

N and, if the fap-family generated by Lis closed under concatenation

| and plus, then L. generates the same fap-family. U

Theorem 4 showed that characterizing peripheral devices locally

” leads to language families closed under arbitrary finite transductions.

A simple and common way of introducing non-local restrictions 1s the

following: let us associate an integer k > 0 with each automaton,

and let us accept an action sequence x «¢ £* NR as admissible iff

. xfE , and xf (zuz) £2 (zuz)” . In other words, a non-empty
action sequence 1s required to contain at least one action for input

(if accepting) or output (if generating or transducing), and it cannot

contain more than k consecutive actions of other kinds.

More formally, let BR, , k > 0 , be defined as the complement of

R= Z J (zu) 5 (Buz)

A k-restricted automaton with peripheral language L, and transition

system language R 1s then associated with the language

L = (LZ NR, NR), :
55

—S—S—

As R, NR can always be associated with a transition system, we

| can also use (11) with the additional assumptionthat the transition

| system 1s k-restricted, 1i.e., R CR, .
An automaton will be called restricted, 1f it is k-restricted for

somek >0 . As an example, let us consider restricted automata with

an arbitrary finite number of pushdown stacks, queues and tapes.

Obviously, L of (11) for any such automaton 1s context-sensitive.

It can be shown [8] that a projection, not erasing more than k consecutive

characters for some k > 0 , preserves the context-sensitive property

of a language. Therefore, we notice that languages associated with

these automata are context-sensitive. Similarly, we can see of (4)

that these automata transduce context-sensitive languages into

context-sensitive languages.

Analogously to Definitions 4 and 5 we now define:

Definition 7. The set of restricted automata with the same peripheral

language 1s called a restricted fap-class. A family of languages

~ associated with a restricted fap-class 1s called a restricted fap-family.

It can now be easily verified that the construction used in the

proof of Theorem 4 produces a restricted automaton V , if both T and

 U are restricted. Also, for restricted automata, all operations

involved 1n (11) are special cases of restricted finite transductions.

Therefore, an analogue of Theorem12b holds for restricted fap-families

and restricted finite transduction.

Similarly, an analogue of Theorem 15 is obtained for restricted

fap-families associated with automata with peripherals resettable by

3h

]

finite languages. (Some care must be exercised in the constructions

in the proof, in order to deal properly with languages containing ¢ .)

Abstract families of languages, or AFL, can be characterized[4] as

| those families which are closed under union, concatenation, plus y
and restricted finite transduction. ap AFL is a full. AFL if it is

closed under an arbitrary finite transduction, and it 1s a principal AFL

1f 1t 1s generated by a single language by the operations listed above.

q In terms of these notions we can now conclude the discussion with

the following theorem, already obvious from what has been proved:

Theorem 14. “A family of languages 1s a (restricted) fap-family

associated with automata with peripherals resettable by regular (finite)

| languages, iff it is a full (not necessarily full) principal AFL.

9. Conclusions

The approach presented 1s based on an 1nherently nondeterministic

conception of automata. An interesting way to introduce determinism

would be to take an auxiliary input for controlling nondeterminism.

) Another limitation was dealing with only one-way input. Obviously,

two-way input could, in principle, be handled similarly to other devices.

However, much of the elegance of this approach seems to be lost with

the complications in the language involved. For instance, i+ is not

obvious from this language that each two-way finite automaton accepts

a regular language.

As a unified approach to automata, this approach has the advantage

that one does not need to be concerned with information representation

in the infinite storage. Also, very clear intuition is provided for

55

- BE | -
b

principal AFL, and their homomorphic characterization theorem.

Obviously, more general classes of automata than fap-classes are

needed for non-principal AFL.

In conclusion, it is felt that the approach presented deserves

attention in courses and textbooks on automata and formal languages,

and it is hoped that this paper can serve in making it more widely

known.

t

36

References

[1] Floyd, Robert W., Private communication.

[2] Ginsburg, Seymour, The Mathematical Theory of Context-free Languages.

McGraw-Hill, 1966.

. [2] Ginsburg, Seymour and Sheila Greibach, "Principal AFL," J. Comput.

System Sci. 4, 1970, 308-338.

[4] Ginsburg, Seymour, Sheila Greibach, and John Hopcroft, "Studies in

Abstract Families of Languages," Memoirs of the Amer. Math. Soc.,
C i

87, 1969.

[5] Ginsburg, Seymour, and Gene F. Rose, 'Preservation of Languages by

Transducers," Information and Control 9, 1966, 153-176.

{ See also: "A Note on Preservation of Languages by Transducers,"
Information and Control 12, 1968, 549-552,

[6] Hartmanis, J., "Context-free Languages and Turing Machine Computations,"

Proceedings of Symposia in Applied Mathematics 19, American

Mathematical Society, 1967.

[7] Hopcroft, J. E. and J. D. Ullman, "An Approach to a Unified Theory

of Automata," Bell System Tech. J. 46, 1967, 1793-1829.

[8] Hoperoft, John E., and J. D. Ullman, Formal Languages and Their

R Relation to Automata. Addison-Wesley, 1969.

) [9] Salomaa, Arto, Formal Languages. Academic Press, 1973.
.

37

