-Stanford Artificial Intelligence Laboratory . July 1975
Memo AIM-263

Computer Science Department
Report No. STAN-CS-75-503

The Macro Processing System STAGE2:

Transfer of Comments to the Generated Text
by

Odd Pettersen

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Laboratory July 1975
Memo AIM-263

Computer Science Department
Report No. STAN-CS-75-503

The Macro Processing System STAGE2:

Transfer of Comments to the Generated Text
by

Odd Pettersen

ABSTRACT

This paper is a short description of a small extension of STAGEZ2, providing possibilities to
copy comments etc. from the source text to the generated text. The description presupposes
familiarity with the STAGE2 system: its purpose, use and descriptions, like [1] to [9]. Only
section 3 of this paper requires knowledge of the internal structures and working of the system,
and that section is unnecessary for the plain use of the described feature. The extension,
if not used, is completely invisible to the user: Norules, as described in the original litterature,
are changed. A user, unaware of the extension, will see no difference from the original version.

T hisresearch was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract DAHC 15-73-C-0435 . The views and conclusions contained in this
document are those of the author(s) and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of Stanford University, ARPA, or theU.S.
Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Virginia 22161.

L.

The following is a short description of a small extension of STAGE2, providing possibilities to copy
comments etc. from the source text to the generated text. The description presupposes familiarity with the
STAGE2 system: its purpose, use and descriptions, like [1]to [9].Only section 3 of this paper requires
knowledge of the internal structures and working of the system, and that section is unnecessary for the

The Macro processing system STAGE2:
Transfer of comments to the generated text.

by
Odd Pet t ersen

SINTEF, Div. of Automatic Control,
The Technical University of Norway
(presently’with
Stanford University
Artificial Intelligence Lab.

Computer Science Dept.)

December 1974

INTRODUCTION

plain use of the described feature.

The extension, if not used, is completely invisible to the user: No rules, as doscribed in the original
litterature, are changed, A user, unaware of the extension, will see no difference from the original version.

2 . THE FLAG LINE

As described in [1], the input material for any translation by STAGE2 starts with a collection of
macros, defining the correspondence between the source language of input (program) text following the
macros, and the target language. In the very beginning of the input material, however, and pteceeding the
macros, is a so-called FLAG LINE. This line, terminated by carriage return, defines the character set used.

2.1. The original format of the Flag Line.

As also stated in [1], the flag line consists of the following characters, in the order shown:

Pos. in
Flag line

© 00O N o AW -

Source end-of-line flag

Source parameter flag

Target end-of-line flag

Target parameter flag

Zero, defines all digits

Space. Also used as padding character
Left parenthesis

Addition operator

Subtraction operator

Function of Character Usual character

pace

* ~nNn O 8 & 8 O

10 - Multiplication operator *
11 Division operator
12 Right parenthesis)

If the character following immediately after), i.e. in position 13, is not a carriage return or space,
the flag line will be considered “extended”, effecting the copying of comments, as @® xplainod in section 2.2.
Contrary, if the character immediately following) is carriage return or space (the latter relevant for
punched cards), the flag line is considered “normal”’, and nothing is changed, with respect to use or the
appearance of the generated text.

2.2. Extended Flag Line.

With a simple extension of the flag line, one can specify that comments in the source text shall be
copied over ‘to the generated text lines. By “comments” is here meant strings of characters, other than
spaces, following the source end-of-line flag, before carriage return or end of line. As required by
assembler or other systems program, to be used for later processing of the generated text, comments in
the generated text should usually begin with a special delimiter, after which the remainder of the line will
be considered as comments and neglected by the assembler (or post-processor). One often used symbol for
this purpose is ; but any single character can be used, since this is to be specified on the extended
flag-line. An example of an extended flag-line can look like:

#880_(+-%/)8 tab tab oo .o
where . here symbolizes one space character, and tab symbolizes one “tab”.

The first 12 characters are unchanged. Further along the line is typed the comment delimiter, which
here is ; , in the position where it is to appear in the generated lines. The comments will be inserted in the
generated first line, immediately following the delimiter, such that any tabulator or space characters in
front of the comments in the source text will be suppressed, and substituted by tabulator and space
characters as necessary to place the delimiter and comments in the proper place on the line. Also, if the
source line comments begin with the delimiter character (following possible leading tabs and spaces), this
delimiter is suppressed, to give only one delimiter character. Delimiter characters later on the line will be
copied normally, however. By “first line” is here meant the first of the the group of lines generated by
one macro, i.e. the group of lines corresponding to the source line.

The first character following) (i.e. in position 13) in the flag line should, be an integer, in the range
1 to 9, specifying W = the number of spaces equivalent to one tabulator. The next character should be the
tabulator character (“tab”). Following this, comes any number of more “tabs” (may be zero), followed by
any number of spaces, which can also be zero. Tabs and spaces can not be mixed.

More concisely: If the number of concecutive tabs in the flag line is k, followed by j spaces, the
comment delimiter will be placed in position number:

D=[(13:W)+Kk %W #+j
where : symbolizes integer division, discarding remainder.

The integer 13 originates from the thirteen leading characters on the line, before the first tab. As a
matter of fact, one can simply forget the formula and just put the comment delimiter in the proper position
along the line.

If the generated string, before comments, extends beyond the position specified for start of

comments, the comments will start immediately after the generated string.
To summarize, the character positions along an extended flag line have the following significance:

Pos. in Function of Character Usual character
Flag line
| Source end-of-line flag 0
2 Source parameter flag »
3 Target end-of-line flag $
4 Target parameter flag .
5 Zero, defines all digits 0
6 Space. Also used as padding character space
7 Left parenthesis (
8 Addition operator +
9 Subtraction operator -
10 Multiplication operator X
1 1 Division operator /
12 Right parenthesis i)
13 =W, number of spaces between 8
tabulator positions
14+ Tabulator character value tab
(i=0,1,...,k=1)
next j Space, as padding character, used space
characters to fix the start of the comment
(j=0 permitted) section between two tab positions
1 44kej Comment delimiter 3

Possible further characters, up to carriage return, are ignored.

3. DESCRIPTION OF MODIFICATIONS IN STAGE2

The modification of STAGE2, necessary to record extended flag-line and provide copying of
comments, consists of 3 parts:

1. Extension of the first part of STAGE2, reading the flag line.
2. Modification of the line input routine.
3. Modification and extension of the routine that outputs characters to the line buffer,

Part | is close to the beginning of STAGE2, part 2 is around the label LOC 03, and part 3is at LOC
57. The modifications are shown in the enclosed listings, on the following pages. The modifications are
distinguishod from the original parts of the program, by the use of small letters for comments. Also, the
new or modified lines are not finished with the word STG2, which indicates original program text. The
semicolon, introducing each comment, is superfluous here, it is merely included due to a habit of the author.
The listings included here are only extracts of the program, showing the modifications and their
surroundings. By comparison with a complete listing of the original text, it should be fairly simple to spot
the places where the modifications are made.

The modified program-text partly explains itself, through the comments included, A couple of further

details to note are, however:
The set of registers of the simulated FLUB machine is extended with 6 more triples: FLG, VAL, and

PTR; with suffix: AA, AB, AD, AE, AF, and ZC. This involves that the modified version of STAGE2 no longer
can be translated by SIMCMP, since one more character is used in these variable names.” For the
bootstrapping implementation is therefore recommended, that the original version is used, until a primitive
version of STAGE2 is running. Then, this one can be used to translate the modified version,

AA
AB
AD
AE
AF
zZC

The variables mentioned are used in the following applications:

VAL PTR

value of char pointer, current character of comment text

not used pointer, end of comment text

working variable number of positions between each tab position

tab character value pos. no. corresponding to integer tabs before comments
comment delimiter value pos. no. of beginning comments

not used pointer for current character during output ,

One more remark is important, concerning PTR ZC: This variable is also manipulated, and changed, by the
internal mechanisms of the 1/O-package:

PTR ZC is set to 0 at each call of READ NEXT #. and of WRITE NEXT .. It is incremented by each
statement CHAR = VAL #.. Here, # signifies any valid parameter, according to macro notations.

Only PTR ZC is affected by internal operations. All other FLUB registers are only modified. by the STAGE2
Program, as positively expressed by FLUB statements.

4, REFERENCES

[} Waite, W, M.: A language independent macro processor. CACM, 10 (July 1967).

[2] Waite, W. M.: Building a Mobile Programming System. Tech. report 69-2, Graduate School
Comput ing Cent cr, Univ. of Colorado, 1969.

[3] Waite, W. M.: The STAGE2 macro processor. .Tech. reports 69-3,69-3B, Graduate School Computing
Center, Univ. of Colorado, 1969.

[4] Waite, W. M .: Theimplementation of STAGE2. Graduate School Computing Center, Univ. of
Colorado.

(5] Waite, W. M.: A New Input/Output Package for the Mobile Programming System. Tech. report
71-10. Graduate School Computing Center, Univ. of Colorado, 1971.

- [6] John M. ,GAmbers: The STAGE2 Macro Processor. Academic Computing Center, The University of

Wisconsin - Madison, July 1972.

7] JohnM. Chambers: STAGE2 - FLUB. Unpublished note, Academic Computing Center, The
University of Wisconsin - Madison, Jan. -1973.

(8] JohnM.Chambers: STAGE2 - INTRODUCTION. Unpublished note, Academic Computing Center,
The University of Wisconsin - Madison, Febr. 1973.

[9] John M. Chambers: STAGE2 - DEBUGGING. Unpublished note, Academic Computing Center, The
University of Wisconsin - Madison, Febr. 1973.

APPENDIX

The follewing pages comprise:

1. Extracts frdm listings of STAGE2, in FLUB.

2. Example: Macros for translation from FLUB to assembly for PDP-10

3. Extracts from PDP=10 assembly version of STAGE2, extracts corresponding to

item 1 above, as translated with macros, item 2.

APPENDIX 1: Extracts from listings of STAGEZ2, in FLUB.

(Section containing routines for input of Flag line and for input of normal lines)

PTR J = 0 + @.
FLG L = 1.

VAL L = 0 -1.
PTR L =0 + 0.
VALM = CHAR.
FTR M= 0 + 0.
FLG N = 0.
VAL N = CHAR
FLGO = 8.

VAL 0 = CHAR.
VAL P = CHAR"’
VAL 0= CHAR.
VALR = CHAR.

PTR AD = 0.

VAL AD = CHAR..

TO 1E IF VAL AD LT 8.
TO 1EIFVAL AD =F.
VAL. AD = AD - E.

PTR AD = VAL AD.
PTR AF = 5 + &
PTR AE = AF / AD.
PTR AF =8.

VAL AE = CHAR.
LOC 1A.

PTR AE = AE + 1.

VAL AD = CHAR.

TJO1D IF VAL AD LT 8.
TO 1A IF VAL AD = AE

LOC 18.

TO 1C IF VAL AD NE F.
FTR AF = AF + 1.

VAL AD = CHAR.

TO 1B.

LoC 1C.

TO 10 IF VAL AD LT 8.
TO 1A IF VAL AD = AE.
VAL AF = AD.

LOC 1D.

PTR AE = AE % AD.

PTR AF = AE + AF

LocC 1E.
PTR R
PTR 4
PTR 8 =
TO 01 BY D.

LOC o1.

GET | = A

READ NEXT I.

TO 38 IF FLC | NE 0.
PIR | = C +
VAL Y
PTR Y

0
7
F

+ + +
~N~No

TN

0.
8.
0

0 +
C +

’
.
’
.
,
.
’
.
’
.
,

END-OF-LINE INDICATOR.
CARRIAGE RETURN IS -1.
LOCATION COUNTER.

LEFT PARENTHESIS.

RESET THE SKIP COUNT.

SET EXPRESSION SIGN POSITIVE,
ADDITION OPERATOR.

SUBTRACTION OPERATOR.
MULTIPLICATION OPERATOR.
DIVISION OPERATOR.

RIGHT PARENTHESIS.

read extension of FLAG LINE
initialize

s remains=0 if no extension

: no extension of FLAG LINE

no extension of FLAG LINE
corresp. no. positions for TAB
into tab. -parameter

POSNO (no of pos. }e=13

NMTAB «POSND/TABPQOS

s initialize POSNO

. TAB-character value

s count no. of tabs

s terminate extension

read new if tab

jump if not space
count no. of spaces
read new if space

terminate extension

read new if tab

read comment-delimiter

calculate extension-parameters
pos.no. corresp; to integer tabs
pos.no. of beginning comments

continue original STAGE?2
SET NO REPETITION IN PROGRESS.
LENGTH OF TWO DESCRIPTORS.

POINT TO THE FIRST AVAILABLE SPACE.

START WORKING IN EARNEST.
ROUTINE TO READ FROM THE INPUT.
RECALL THE CHANNEL SPEC.

GRAB A LINE.

GET OUT UNLESS ALL IS OK.

STG2
STG2
STG2
STG2
STG2
STG2
STG2
STG2
STG2
STG2
STG2
STG2
STG2

STG2
STG2
STG2
STG62

ST62

STG2
STG2
STG2
STG2
ST6G2
STG2

TO $2 IF PTR M= 0. SHOULD THIS LINE BE SKIPPED, NO. STG2

PIR M = M- 1. YES, DROP THE SKIP COUNT STG2
TO O1. TRY AGAIN. STG2
LOCo02. READING LOOP, STG2
PTIR 3 = | + 0. ADVANCE THE SPACE POINTER. STG2
VAL | = CHAR. READ THE NEXT CHARACTER. STG2
PTRI =9 - 7. POINT TO THE NEXT CHARACTER SPACE. ST1G2
TO 97 IF PTR 8 GE | HAVE WE OVERRUN THE AREA, YES. STG2
ST09= L ‘ PUT AWAY THE CHARACTER. STG2
TO 04 IF VAL | =L. WAS THIS A CARRIAGE RETURN, YES. STG2
TO 03 IF VAL | = A. HAVE WE ‘COMPLETED THE READ, YES. STG2.
VAL Y = Y + 1. BUMP THE INPUT STRING LENGTH. STG2
TO @2 IF VAL | NE B. NO, IS THIS A PARAMETER FLAG, NO. STG2
PIRB = | + 0 YES, SET THE PARAMETER POINTER AND STG2
ST0 9 = B. STORE IT WITH THE PHASE FLAG. STG2
TO 02. STG2
LOC 03. READ THE Re MAINDER oF THE LINE. STG2
PTR AA = 3. s remark | imitmark

LOC OA. s loop to read comments etc.

TO OB IF VAL | =L. s car.ret., i.e. no remainder

PTR 9 =1+ 8.

LOC aG. :

VAL | = CHAR.:

TO 01 IF VAL | NE A. H

VAL 1 = CHAR. ; read new if first was “source EOL-f lag"

LOCo1.

TO OG IF VAL | = F eliminate leading spaces

T 0BG IFVAL-1=AE.
TO OJ IF VAL [NE AF
VAL I = CHAR.

eliminate leading tabs
continue if no comment-delimiter
eliminate comment-delimiter

e we we we

TO BH.

LOC @d.

PTR AA = 3. ;adjust startpointer

LOC OH. ; normal read/store loop

PTR I =9 - 7.

ST09 =1.

TO 97 IF PTR 8 GE | v error if ful |

TO 8B IF VAL | =L. ; terminate when car.ret.

PTR 3 =1 + O.

VAL | = CHAR. : read next

TO OH. ; and continue in loop

LOC OB. s remainder of line finished

PTR AB = 3. s set terminate-pointer

LOC B4. SCANNER. STG2
PTR U = 3 - 7. SET ALL PARAMETERS UNDEFINED. STG2
ST0 U = 3. STG2
PTR U = U - 7 STG2
STO U = 3 STG2
PTR U = U - 7. STG2
ST0 U = 3 STG2
PTR U = U - 7 STG2
ST0 U = 3 STG2
PIR U = U -7. STG2
ST0 U = 3 STG2
PTR U = U - 7. STG2
ST0 U = 3. STG2
PTR U = U - 7. STG2
STO U = 3 STG2
PTR U = U - 7 STG2
ST0 U = 3. STG2

(Section containing the Modified output routine)

STO08 = 1. YES, SET THE TERMINATOR. STG2
PTR 8 = 8 + 7. ADVANCE THE SPACE POINTER. STG2
TO 97 IF PTR 8 GE o. HAVE WE OVERRUN THE AREA, YES. STG2
VAL I = CHAR. GET THE NEXT CHARACTER. STG2
TO 55 IF VAL | NE C. DID THAT CLOSE THE DEFINITION PHASE, NO. STG2
FL-G B= 0. YES, RESET THE PHASE FLAG. STG2
LOC &G, COMMON SYSTEM RETURN POINT. ST1G2
RETURN BY D. REGISTER D IS THE RETURN ADDRESS. STG2
LDOCEE . PUNCH AN UNRECOGNIZED LINE. STG2
VAL W = 3 + 0. CHANNEL 3 USED WHEN A LINE IS NOT MATCHED. STG2
PTR X = C + 0. ADDRESS THE FIRST CHARACTER. STG2
FTR AA = AB eliminate double output of comments

LocC 57. output characters

GET X =X. norm. loop, get character

TO 9D IF VAL X NE L.
TO OD IF PTR AD = 0
TO 8D IF PTR AA = AB.

continue in normal loop if not CR
or if “main extension swi th" off
or if no remainder in this line

" e we wa we we we we

LOC 2A. output remainder of line:

T OZBIFPTRZC G EAE .;i fpos.counterless integr. tab.pos
CHAR = VAL AE. s then output tab and loop

TO 2A.

LocC ZB. s | oop for spaces

TO 2C IF PTR ZC GE AF.
CHAR = VAL F.

TO ZB.

Loc 2C.

TO 8C IF VAL AF = 0.
CHAR = VAL AF.

put out spacel(s)

-e

put out comment-del imi ter

LOC Oc. s loop for output of remaining string
GET AA = AA. sy get first char.

TO 2E IF VAL AA NE A ; eliminate possible “source EOL-f lag”
LOC 2D. s loop for output remainder (comments)
GET AA = AA. i get next character

LoC ZE.

put out the character
possible terminate

go loop if not exhausted
normal output-loop

CHAR = VAL AA.

TO BF IF FLG AA = 1.
TO 2D IFPTR AA NE AB.
LoC e0. ‘

CHAR = VAL X.

TO OE IF VAL X = L.

e we we e

terminate if C R

TO 57 IF FLG X NE 1. HAVE WE REACHED THE END, NO. STG2
LOC OF.

PTR AA = AB. s squeeze possible remaining of “remainder”

LOC OE. s end of | ine reached:

WRITE NEXT W. YES, PUT | T OUT ON THE DESIGNATED CHANNEL. STG2
TO 98 IF FLG W NE 0. TREAT ANY ERROR AS FATAL. STG2
TO 55 IF VAL X = L. ELSE IF THE LINE IS COMPLETE, RETURN. STG2
CHAR = VAL X. ELSE REPRINT THE LAST CHARACTER STG2
TO 57. AND CONTINUE. STG2
LOC 58. TRY FOR AN ALTERNATIVE MATCH. STG2
PTR Z = W + Z. GET THE POINTER TO THE ALTERNATIVE. STG2
TO 60 IF PTR W NE 0. WAS THERE ONE AFTER ALL, YES. ' STG2
TO 71 IF FLG B = 2. ND, ARE WE DEFINING, YES. SfG2
LOC59. TRY EXTENDING THE PREVIOUS PARAMETER. STG2
TO 70 IF PTR V GE 3. | S THERE ONE TO EXTEND, NO. STG2
GET Z = V. RECALL THE MACRO POINTER. STG2
GET Y = Cl ' YES, RECALL THE INPUT POINTER STG2
GET X =Y. ANO THE CURRENT CHARACTER STG2
TO 63 IFF FLG Z = 2. IS THIS THE FIRST TINE FOR A PARAMETER, YESSTG2
TO 64 IF FLG Z = 3. NO, IS IT A PARAMETER EXTENSION, YES. STG2

APPENDIX 2: Example: Macros for translation from FLUB to assembly for PDP-10

CHSHO (+-x/) 8 :
GET # =#.
IF ACc2 = 'PTR#28’SKIP 18
MOVE . 2,PTR#20#F18%
SET AC2 TO 08
MOVE1 15,FLGH#10#4F18$
J S R UNPACK#F1$
$
STOH# = H.
IF Ac2 = 'PTRH1B’ SKIP 2%
MOVE 2,PTR#1GHFLS
SET AC2 TO'PTR#18'$
MOVE1 15,FLGH204F1$
JSR PACK#F1$

3

FLGH = H.

IF #28 NE 0 SKP 28
SETZM FLGH#1BHF18

SKIP 4%

IF AC2 = 'FLGH28' sSKIP 18
MOVE 2,FLGH20#4F1%

SET AC2 TO 'FLGH1B'8
MOVEM 2,FLGH#10#F18

8

VAL # = PTR #.

IF Ac2 = 'PTR#28’sSKIP 18
MOVE 2,PTRH#20#F1$%

SET AC2 TO 'VALH1B'$
MOVEM 2,VAL#10#F1$

$

PTR # = VAL #.

IF AC2 = "VAL#20'sKIP 18
MOVE 2,VALH#20#F1$

SET Ac2 TO'PTR#16'$
MOVEM 2,PTR#10#F18

8
PTR # = 0.

SETZM PTR#16#F18
4
VAL # = 0.

SETZM VAL#108#HF18
3
A#=0 + O.

SETZM H1DH2BHF1S
4
#HH=4H + O.

IF AC2 = '#18#38' SKIP 18
MOVE 2,#10H30HF1$
MOVEM 2, #1BH20HF1 8

SET AC2 TO '#10#208° 8

s -

HH=H + 1.
IF 420 N E #38 S K P 38
IF AC2 ='H#H108#430" SKIPGS$
AOS H10H20HF18
SKIPG$
IF AC2 ="H1BH38' sKIP 18
MOVE 2,H1BH30HF18
SET AC2 TO '#108#20°8
AOJ 2,HF18

MOVEM 2, #104#20HF1$%

8

Hit=H#-.1"

IF #280 NE #3080 SKP 38

IF Ac2 = "#18H38"’ sKiP 58

S0S H1PH20HF1 8
SKIP 5%
IF Ac2 = "#18#38' SKIP 18
MOVE 2, #10H30HF1S
SET AC2 TO "H#H18#28'$
S0J 2,4F18
MOVEM 2,41BH204F1$%

#i =4+ 4.
= 'H1B4#38’ SKIP 28
IF Ac2 = '#10#48° SKIP 3%
MOVE 2,H#1BH304F1$
. ADD 2,#10#/4BHF1S
SKIP 18
ADO 2,H10H30HF1S
SET AC2 TO 'H#H10#28'8
MOVEM . 2, #1B#H20#F18

4

#H=H-4.

IF AC2 = '#18#38' SKIP 18
MOVE 2, H1PH3BHF1S
SUB 2,810840HF18

SET AC2 TO '#10#28"$

. MOVEM 2, #10H4204F18%

8

#HHt - K.

| F #28 = H38 SKP 48

IF AC2 = '#18#38° SKIP 18

: MOVE 2,#1BH3BHF1S

SET AC2 TO *#10#20'$
MOVEM 2, #104204F18

PTR-# = # x #.

IF #3080 NE 7 SKP 38

PTRH10 = #208

SKIP 8%

IF AC2 = 'PTR#28" sKIp 28

IF AC2 = "PTR#38’sKIp 38
MOVE 2,PTRH#204#F18
I MUL 2,PTR#30H#F18

"SKIP1$

I MUL 2,PTRH20#F18
MOVEM 2,PTRH104F18

SET AC2 TO "PTR#18'$8

8

PTR H# = #/H.

IF #38 NE 7 SKP 38

PTRHIO=H208

SKIP 58

IF AC2 = 'PTR#28’ sKIP 18
MOVE 2,PTRH2B#F18
IDIV 2,PTRH30Q#F18

MOVEMZ,PTRFIOHFLS

SET AC2 TO ' 'PTR#1B'S

3

TO H# IF HH=4.

IE AC2 = 'H2B#30' sKIP 2%
MOVE 2,420H30HF18

SET AC2 TO "H20#38'8
CAMN 2,H20H40HF1S
JRSTLOCHIOHF1S

3

TO # IF ## NE oO.

IF AC2 = 'H28#38' SKIP 28

. MOVE 2,H20H30HF18

SET AC2 TO 'H20438'$%
JUMPN 2,L0CH1B#F18

8

TO H# IF ## GE o.

IF AC2 = ’H#H20#38' sKIp 28
MOVE 2,H20H30HF18

SET AC2 TO "H#20#38'$
JUMPGE 2,LOCH10#F18

4

TO # IF #H#= 0.

IF AC2 = '#20#38°’ SKIP 2%
MOVE 2,H20H#30HF1$

SET AC2 TO "H208#30'$
JUMPE 2,LOCH#104F18

8

TO HIF #H4 NE H.

IF Ac2 = 'H28#38°’ SKIP 38

AC2 = "H20H4B' SKIP 48
MOVE 2,H20430HF18

SET AC2 TO '#20#38'8
CAME 2, H2BH4BHFLS

SKIP 18
CAME 2,H28H304F18
JRST .LOC#10#F18

TO # IF ## GE H.

IF AC2 = 'H2BH38'’ SKIP 3%

"IF AC2 = 'H20#48° SKIP 4%
MOVE 2,H20#3BHF1$

SET AC2T0’#28#38"8$
CAML 2,H28#40HF1$

SKIP1S$
CAMG 2,H20H30HF1$
JRSTLOCHIOHFLS

8

TO H IF #HHEHH.

IF AC2 = 'H20B#38' SKIP 2%
MOVE 2,420430HF18

SET AC2 TO 'H28#H38'$8

IF AC13 = 'BOL#48’ SKIP 2%

SET AC13 TO 'BOL#40'$
MOVE 13,BOLA#40HF1S
MOVE 15, #28#50#F18
JSR BOOL#F18
JRSTLOCHIBHF1S

8
TO H.
JRST LOCHIOHF1S
8
TO #BYH

MOVE]D 14,PTRH2BHF1S
MOVE1 15,LO0CH18#F18
JSP 13,SUBRTH#F18

SET AC13 TO 88

$

RETURN BY #.
MOVE 13,PTR#16#F1$
JRSTI(13)4F18

S ET AC13 71 008

3

LOC 4.

LOCH1D: #F18

SET AC2 TO 0%

SET AC13 TO 0%

3

STOP.
SETAS

EXITS

g

ENO PROGRAM.

LOWEND«.#F18

BLOCK MASSIZ#F18

HIGEND~.#F18

E N D STARTH#F1$

HFos

3

READ NEXT #.
MOVE 5,VAL#10#F18
JSR READINAF1$
MOVEM 2,FLGH18#F1$
SET AC2 TO 'FLG#19'$8
8
VAL# = CHAR.
JSR GETIC#F1s$
MOVEM 2, VAL#10#F1$
SET AC2 TO 'VAL#1@'S

8

CHAR = VAL #.

SET AC2 TO 'VAL#18'8
MOVE 2,VAL#1BHF1S
JSR UTCHAR#F1$
MOVEM 3,FLGH10#F18

3

WRITE NEXT #.
MOVE 5,VAL#10#F1$
JSR WRTLIN#F18
MOVEM 2,FLGH1084F18

SET AC2 TO 'FLG#19'$

8

REWIND#.
MOVE 5,VAL#104F18
JSR REWNDHF18
MOVEM 3,FLG#1B#F1$

$

MESSAGE # TO H.

MOVEI] 13, [ASC1Z/4#18/14F1$%
MOVE 15, VALH20H4F1$

JSR MSGOUTHF18

. MOVEM 3,FLGH204F1$

$
SETHTOH.

HF38

$

IF #= HSKIPH.

| F#11 = H20 SKP #3688
$

IF # = #SKP H.

H#FS0$

8

IF # NE # skp #.
#FS18

$

SKIP H#.

HF4S

88

Appendix 3: Extracts from PDP- 10 assembly version of STAGE2, extracts corresponding
t o ‘Appendix 1, as translated with macros, Appendix 2.

(Section containing routines for innut of Flag line and for input of normal lines)

SETZM PTRJ :STG

MOVE 2,FLG1 ;ENO-OF-LINE INDICATOR. STG2
MOVEM 2,FLGL

MOVE 2,VALB +CARRIAGE RETURN IS -1, STG2
soJ 2,

MOVEM 2,VALL

SETZM PTRL :LOCATION COUNTER. STG2
JSR GETIC {LEFT PARENTHESIS. STG2
MOVEM 2, VALM

SETZM PTRM +RESET THE SKIP COUNT. STG2
SETZM FLGN ;SET EXPRESSION SIGN POSITIVE. STG2
JSR GETIC +ADDITION OPERATOR. STG2
MOVEM 2,VALN

SETZM FLGO :STG2

JSR GETIC sSUBTRACTION OPERATOR. STG2
'MOVEM 2, VALO

JSR GETIC sMULTIPLICATION OPERATOR. STG2
MOVEM 2,VALP

JSR GETIC :DIVISION OPERATOR. STG2
MOVEM 2, VALQ

JSR GETIC +RIGHT PARENTHESIS. STG2
MOVEM 2,VALR

SETZM VALAF s read extension of FLAG LINE

SETZM VALAE sinitial ire

SETZM PTRAE

SETZM PTRAF

SETZM PTRAD : remains=0 if no extension

JSR GETIC

MOVEM 2, VALAD

MOVE 13,BOLLT s+ no extension of FLAG LINE

MOVE 15,VALD

JSR BOOL

JRSTLOCIE

CAMN 2, VALF s no extension of FLAG LINE

JRSTLOCLE

SUB 2, VALE i corresp. no. positions for TAB

MOVEM 2, VALAD
MOVEM 2,PTRAD s into tab. -parameter
MOVE 2,PTRS + POSNO(no o0 f pos.)e=13

ADD 2,PTR3
MOVEM 2,PTRAF' .
MOVE 2,PTRAF : NMTAB « POSNQ/TABPOS

101y 2,PTRAD

MOVEM . 2,PTRAE

SETZM PTRAF. s initialize POSNO
JSR GETIC s TAB-character value
MOVEM 2,VALAE

LOC1lA: .
AQS PTRAE s count no. of tabs
JSR GETIC
MOVEM 2, VALAD
MOVE 13,BOLLT s terminate extension
MOVE 15,VALB
JSR BOOL
JRSTLOCL1D
CAMN 2,VALAE s read new if tab

JRSTLOCLA

LOC1B:

LOC1C:

LOC1D0:

MOVE 2, VALAD
CAME 2,VALF
JRST LOCIC
AOS PTRAF
JSR GETIC
MOVEM 2, VALAD
JRST LOCIB

MOVE 2, VALAD
MOVE 13,BOLLT
MOVE 15, VAL®
JSR BOOL
JRSTLOCID
CAMN 2,VALAE
JRSTLOCIA
MOVEM 2, VALAF

MOVE 2,PTRAE
IMUL 2,PTRAD

MOVEM 2,PTRAE

LOCLE:

LOCO1:

LOC@2:

ADO 2,PTRAF
MOVEM 2,PTRAF

SETZM PTRR
MOVE 2,PTR7
AQJ 2

MOVEH 2,PTR4
MOVE 2, PTRF
AOJ 2,
MoveEeHZ2.PTR8
MOVE1 14:PTRD
MOVE1{ 15,L0C81
Jsp 13,SUBRT

HOVE 2,PTRA
HOVE1 15,FLGI
JSR UNPACK
HOVE 5,VALI
JSR READIN
HOVEH 2,FLGI
JUHPN 2,L0C98

MOVE 2,PTRC
MOVEH 2,PTRI
SETZH VALY

MOVE 2,PTRC
MOVEH 2,PTRY

MOVE 2,PTRM
JUHPE 2,L0C82
SOJ 2,
MOVEM 2,PTRM
JRST. LOCB1

MOVE 2,PTRI
MOVEH 2,PTRS
JSR GETIC
MOVEH 2, VAL
HOVE 2,PTRI
SOJ 2,
MOVEH 2,PTRI

s jump if not space

s count no. of spaces
sread new if space

;s terminate extension

sread new if tab

sread comment-delimiter
s calculate extension-parameters
s pos.no. corresp. to integer tabs

: pos.no. of beginning comments

s continue. original STAGE?2
+SET NO REPETITION IN PROGRESS.
sLENGTH OF TWO DESCRIPTORS.

sPOINT TO THE FIRST AVAILABLE SPACE

+ START WORKING IN EARNEST.

sROUTINE TO READ FROM THE INPUT.
sRECALL THE CHANNEL SPEC.

+GRAB A LINE.

+GET OUT UNLESS ALL IS OK,
1 STG2

;1 STG2
;1 STG2

s SHOULD THIS LINE BE SKIPPED, NO.

: YES, DROP THE SKIP COUNT
: TRY AGAIN.

sREADING LOOP.

+ ADVANCE THE SPACE POINTER.

+READ THE NEXT CHARACTER.

: POINT TO THE NEXT CHARACTER SPACE."

STG2
STG2

STG2

STG2

STG2
STG2

STG2

STG2

STG2
STG2
STG2
STG2
STG2
STG2

STG2

LOCO03:

LOCBA:

LOCBG:

LOC@1:

LOCBJ:

LOC@H:

JRST LOC97
MOVE 2,PTRS
MOVE! 15,FLGI
JSR PACK
MOVE 2, VALI
CAHN 2, VALL
JRST LOCO4
CAMN 2, VALA
JRST LOCO3
AOS VALY
CAME 2,VALB
JRST LOCO2
MOVE 2,PTRI
MOVEH 2,PTRB
Move 2,PTR3
MOVE1 15,FLGB

JSR PACK
JRST LOCO2
MOVE 2,PTR3

MOVEH 2,PTRAA

HOVE 2, VALI
CAMN 2, VALL
JRSTLOCeB

MOVE 2,PTRI
HOVEH 2,PTR3

JSR GETIC
MOVEM 2, VALI
CAME 2, VALA
JRSTLOCBI
JSR GETIC
MOVEM 2, VAL

MOVE 2,VALI
CAHN 2,VALF
JR ST LOCBG
CAHN 2,VALAE
JRSTLOCAG
CAME 2 VALAF
JRSTLOCBJ
JSR GETIC
MOVEM 2, VALI
JRST LOCBH

MOVE Z,PTRS
MOVEM 2,PTRAA

MOVE 2,PTRS
SOJ 2,
MOVEH 2,PTRI
HOVE 2,PTRS
MOVE! 15,FLGI
JSR PACK
MOVE 2,PTR8
CAML 2,PTRI
JRST LOC97
MOVE 2, VALI
CAHN 2,VALL
JRSTLOCSB

s HAVE WE OVERRUN THE AREA, YES.

; PUT AWAY THE CHARACTER.

+WAS THIS A CARRIAGE RETURN, YES.

+HAVE WE COMPLETED THE READ, YES.

;BUMP THE INPUT STRING LENGTH.
+NO, IS THIS A PARAMETER FLAG, NO.

s YES, SET THE PARAMETER POINTER AND

:STORE IT WITH THE PHASE FLAG.

;ST62

s READ THE REMAINDER OF THE LINE.

.
1

.
A
.
*

.o we

i

s read new if first was “source EOL-f lag”

remark | i mitmark

loop to read comments etc.
car.ret.,i.e. no remainder

: eliminate leading spaces

sel iminate leading tabs

scontinue i fno comment-delimiter

’

eliminate comment-delimiter

adjust startpointer

normal read/store loop

error if ful |

terminate when car.ret.

STG2

STG2
STG2

STG2

STG2
STG2

STG2

STG2

STG2

LOCeB:

LOCB4:

MOVE 2, PTRI
MOVEH 2, PTRS

JSR GETIC
HOVEM 2, VALI
JRSTLOCEH
MOVE 2, PTRY
MOVEM 2, PTRAB
HOVE 2, PTRS
SOJ 2,

HOVEM 2, PTRU
HOVE1 15,FLG3
JSR PACK
SOJ 2,
MOVEM 2,PTRU
MOVEI 15,FLG3
JSR PACK
SOJ 2,
MOVEM 2,PTRU
MOVE1 15,FLG3
JSR PACK
SOJ 2,
MOVEH. 2, PTRU
MOVE1 15,FLG3
JSR PACK
SOJ 2,

MOVEM 2,PTRU

MOVE1 15,FLG3
JSR PACK
SOJ 2,
MOVEH 2, PTRU
HOVE1 15,FLG3
JSR PACK
SOJ 2,
HOVEH 2, PTRU
HOVE1 15,FLG3
JSR PACK
SOJ 2,
MOVEM 2, PTRU
MOVE1 15,FLG3
JSR PACK

s read next
and continue in loop

remainder of line finished
set terminate-pointer

.
’
.
’
.
’

s SCANNER. STG2
;SET ALL PARAMETERS UNDEFINED. STG2
;STG2
s STG2
1 STG2
s STG2
s STG2
1 STG2
;s STG2
:STG2
3 STG2
1 STG2
;STG2
s STG2
1 STG2
s STG2
s STG2

(Section containing the Modified output routine)

LOCSS:

LOCS6:

LOCS7:

LOC2A:

LOCZB:

LoczC:

LocaecC:

MOVE 2, PTR8
MOVE! 15,FLG1
JSR PACK
AOJ 2,
HOVEH 2,PTR8
CAML 2,PTRS
JRST LOC97
JSR GETIC
MOVEH 2, VAL I
CAME 2,VALC

JRST LOCS55
SETZM FLGB
HOVE 13,PTRO
JRST (13)
MOVE - 2,VAL3
MOVEMZ2, VALW

MOVE 2,PTRC
MOVEM 2, PTR X
MOVE 2, PTRAB
MOVEM 2,PTRAA
MOVE 2,PTRX
MOVEI 15,FLGX
JSR UNPACK
MOVE 2, VALX
CAME 2, VALL
JRSTLOCBD
MOVE 2, PTRAD
JUHPE 2,L0C8D
HOVE 2,PTRAA
CAHN 2,PTRAB
JRSTLOCBD
MOVE = 2, PTRZC
CAML 2, PTRAE
JRST LOC28B
HOVE 2, VALAE
JSR UTCHAR
MOVEM 3, FLGAE
JRSTLOC2A
MOVE 2, PTRZC
CAML 2, PTRAF
JRSTLOCZC
MOVE 2, VALF
JSR UTCHAR
HOVEM 3,FLGF
JRSTLOCZ2B

- MOVE 2, VALAF
JUMPE 2, LOCeC
MOVE 2, VALAF
JSR UTCHAR
MOVEM 3,FLGAF

MOVE 2, PTRAA’
HOVE1 15,FLGAA
JSR UNPACK

: YES, SET THE TERMINATOR.

;AOVANCE THE SPACE ‘POINTER.
+HAVE WE OVERRUN THE AREA, YES

;GET THE NEXT CHARACTER

:0ID THAT- CLOSE THE DEFINITION PHASE, NO.
s YES, RESET THE PHASE FLAG.

sCOMMON SYSTEM RETURN POINT.
;REGISTERD IS THE RETURN ADDRESS.

+PUNCH AN UNRECOGNIZED LINE.
s CHANNEL 3 USED WHEN A LINE IS NOT HATCHED

s ADDRESS THE FIRST CHARACTER

; eliminate double output of comments

A

.
’

]
’

sor if no remainder in this line

.
’

.
’

s output characters
norm. loop, get character

continue in normal loop if not CR

or if “main extension swi th" off

s output remainder of line:

if pos.counter less integr. tab.pos

; then output tab and loop

| oop for spaces

put out spacel(s)

put out comment-delimiter

loop for output of remaining string

get first char.

STG2

STG2
STG2
STG2
STG2
STG2
STG2
STG2

STG2
STG2

STG2

MOVE 2,VALAA seliminate possible “source EOL-f lag”
CAVE 2,VALA
JRST LOCZE

LOC2D: ; loop for output remainder (comments)
MOVE 2,PTRAA ;s get next character
MOVE1 15,FLGAA

JSR UNPACK
LOC2E:
MOVE 2, VALAA s put out the character
JSR UTCHAR
MOVEM 3,FLGAA
MOVE 2,FLGAA ;1 possible terminate
CAMN 2,FLG1
JR ST LOCBF
MOVE 2,PTRAA ; go loop if not exhausted
CAME 2,PTRAB
JRSTLOC2D
LOCBD: s normal output-loop
MOVE 2,VALX
. JSR UTCHAR
MOVEM 3,FLGX i
CAMN 2, VALL { terminate if CR
JR ST LOCBE
MOVE 2,FLGX +HAVE WE REACHED THE END, NoO. STG2
CAME 2,FLG1
JRST LOC57
LOC@F:
MOVE 2,PTRAB ; squeeze possible remaining of “remainder”
MOVEM 2,PTRAA
LOCBE: s end of | ine reached:
MOVE 5, VALW s YES, PUT IT OUT ON THE DESIGNATEO CHANNEL. STG2
JSR WRTLIN
MOVEM 2,FLGW
JUMPN 2,L0C98 s TREAT ANY ERROR AS FATAL. S T
MOVE 2,VALX +ELSE IF THE LINE IS COMPLETE, RETURN. STG2
CAMN 2,VALL
JR ST LOCSS
MOVE 2,VALX +ELSE REPRINT THE LAST CHARACTER STG2
JSR UTCHAR
MOVEM 3,FLGX
JRST LOC57 + AND CONTINUE. STG2
LOC58: ' s TRY FOR AN ALTERNATIVE MATCH. STG2
MOVE 2,PTRW +GET THE POINTER TO THE ALTERNATIVE. STG2
ADD 2,PTRZ
MOVEM 2,PTRZ
MOVE 2,PTRW +WAS THERE ONE AFTER ALL, YES. STG2
JUMPN 2,L0CE8
MOVE 2,FLGB +NO, ARE WE DEFINING, YES. STG2
CAMN ' 2,FLG2
JRST LOC71
LOCS3: + TRY EXTENDING THE PREVIOUS PARAMETER. STG2
MOVE 2,PTRY + IS THERE ONE TO EXTEND, NO. STG2
CAML 2,PTRI
"JRST LOC70
MOVEI 15,FLGZ +RECALL. THE MACRO POINTER. STG2
JSR UNPACK
Move 2,PTRQ s YES, RECALL THE INPUT POINTER STG2
MOVE1 15,FLGY
JSR UNPACK
MOVE 2,PTRY +AND THE CURRENT CHARACTER STG2

MOVE1 15,FLGX
JSR UNPACK

MOVE 2,FLGZ
CAMN 2,FLG2
JRST LOCB3
CAMN 2,FLG3
JRST LOC64

: 1S THIS THE FIRST TIME FOR A PARAMETER, YESSTG2

:NO, IS IT A PARAMETER EXTENSION, YES.

STG2

