
-Stanford Artificial Intelligence Laboratory July 1975
Memo AIM-263

Computer Science Department

| Report No. STAN-CS-75-503

| The Macro Processing System STAGE2:
Transfer of Comments to the Generated Text

| by

Odd Pettersen

Research sponsored by

| Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT

Stanford University

EN ONT gha

Stanford Artificial Intelligence Laboratory July 1975

| Memo AIM-263

Computer Science Department
| Report No. STAN-CS-75-503

| The Macro Processing System STAGE2:
| Transfer of Comments to the Generated Text

| by

{ Odd Pettersen

ABSTRACT

This paper is a short description of a small extension of STAGE2, providing possibilities to
copy comments etc. from the source text to the generated text. The description presupposes

familiarity with the STAGE2 system: its purpose, use and descriptions, like [1] to [9]. Only
section 3 of this paper requires knowledge of the internal structures and working of the system,
and that section is unnecessary for the plain use of the described feature. The extension,
if not used, 1s completely invisible to the user: Norules, as described in the original litterature,

| are changed. A user, unaware of the extension, will see no difference from the original version.

T his research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract DAHC 15-73-C-0435 . The views and conclusions contained in this

| document are those of the author(s) and should not be interpreted as necessarily representing theofficial policies, either expressed or implied, of Stanford University, ARPA, or theU.S.
aE Government.

| Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Co Virginia 22161.

a Fone pT

3

i

y

»

The Macro processing system STAGE2:

= Transfer of comments to the generated text.

by

Odd Pet t ersen

SINTEF, Div. of Automatic Control,

The Technical University of Norway

(presently’with

Stanford University

Le | Artificial Intelligence Lab.
Computer Science Dept.)

December 1974

I. INTRODUCTION

The following is a short description of a small extension of STAGE2, providing possibilities to copy

comments etc. from the source text to the generated text. The description presupposes familiarity with the

STAGE2 system: its purpose, use and descriptions, like [1]to [9]. Only section 3 of this paper requires
knowledge of the internal structures and working of the system, and that section is unnecessary for the

plain use of the described feature.

The extension, if not used, is completely invisible to the user: No rules, as doscribed in the original

litterature, are changed, A user, unaware of the extension, will see no difference from the original version.

2 . THE FLAG LINE

As described in [1], the input material for any translation by STAGE?2 starts with a collection of

macros, defining the correspondence between the source language of input (program) text following the

macros, and the target language. In the very beginning of the input material, however, and pteceeding the

macros, is a so-called FLAG LINE. This line, terminated by carriage return, defines the character set used.

2.1. The original format of the Flag Line.

As also stated in [1], the flag line consists of the following characters, in the order shown:

Pos. in Function of Character Usual character

Flag line

| Source end-of-line flag 0

2 Source parameter flag “

3] Target end-of-line flag $

4 Target parameter flag #

5 Zero, defines all digits 0

6 Space. Also used as padding character space

7 Left parenthesis (

8 Addition operator +

9 Subtraction operator -

10 - Multiplication operator x

11 Division operator /

12 Right parenthesis)

If the character following immediately after), i.e. in position 13, is not a carriage return or space,

the flag line will be considered “extended”, effecting the copying of comments, as ® xplainod in section 2.2.
Contrary, if the character immediately following) is carriage return or space (the latter relevant for

punched cards), the flag line is considered “normal”, and nothing is changed, with respect to use or the

appearance of the generated text.

2.2. Extended Flag Line.

With a simple extension of the flag line, one can specify that comments in the source text shall be

copied over ‘to the generated text lines. By “comments” is here meant strings of characters, other than

spaces, following the source end-of-line flag, before carriage return or end of line. As required by

assembler or other systems program, to be used for later processing of the generated text, comments in

the generated text should usually begin with a special delimiter, after which the remainder of the line will

be considered as comments and neglected by the assembler (or post-processor). One often used symbol for

this purpose is ; but any single character can be used, since this is to be specified on the extended
flag-line. An example of an extended flag-line can look like:

#880 _(+-%/)8 tab tab o.oo

where . here symbolizes one space character, and tab symbolizes one “tab”.

The first 12 characters are unchanged. Further along the line is typed the comment delimiter, which

here is ; , in the position where it is to appear in the generated lines. The comments will be inserted in the

generated first line, immediately following the delimiter, such that any tabulator or space characters in

front of the comments in the source text will be suppressed, and substituted by tabulator and space

characters as necessary to place the delimiter and comments in the proper place on the line. Also, if the

source line comments begin with the delimiter character (following possible leading tabs and spaces), this

delimiter is suppressed, to give only one delimiter character. Delimiter characters later on the line will be

copied normally, however. By “first line” is here meant the first of the the group of lines generated by

ohe macro, i.e. the group of lines corresponding to the source line.

The first character following) (i.e. in position 13) in the flag line should, be an integer, in the range

1 to 9, specifying W = the number of spaces equivalent to one tabulator. The next character should be the

tabulator character (“tab”). Following this, comes any number of more “tabs” (may be zero), followed by

any number of spaces, which can also be zero. Tabs and spaces can not be mixed.

More concisely: If the number of concecutive tabs in the flag line is k, followed by j spaces, the

comment delimiter will be placed in position number:

D=[(13:W)+KlkW=+j

where : symbolizes integer division, discarding remainder.

The integer 13 originates from the thirteen leading characters on the line, before the first tab. As a

matter of fact, one can simply forget the formula and just put the comment delimiter in the proper position

along the line.

If the generated string, before comments, extends beyond the position specified for start of

comments, the comments will start immediately after the generated string.

To summarize, the character positions along an extended flag line have the following significance:

Pos. in Function of Character Usual character

Flag line

[Source end-of-line flag 0

2 Source parameter flag "

3 Target end-of-line flag $

4 Target parameter flag *

5 Zero, defines all digits 0

6 Space. Also used as padding character space

7 Left parenthesis (

8 Addition operator +

9 Subtraction operator -

10 Multiplication operator x

1 1 Division operator /

12 Right parenthesis])
13 =W, number of spaces between 8

tabulator positions

14+ Tabulator character value tab

(i=0,1,...,.k=1)

next | Space, as padding character, used space
characters to fix the start of the comment

(j=0 permitted) section between two tab positions

1 4ek+j Comment delimiter ;

Possible further characters, up to carriage return, are ignored.

3. DESCRIPTION OF MODIFICATIONS IN STAGE2

The modification of STAGE2, necessary to record extended flag-line and provide copying of

comments, consists of 3 parts:

1. Extension of the first part of STAGE2, reading the flag line.

2. Modification of the line input routine.

3. Modification and extension of the routine that outputs characters to the line buffer,

Part | is close to the beginning of STAGE?2, part 2 is around the label LOC 03, and part 3 is at LOC

57. The modifications are shown in the enclosed listings, on the following pages. The modifications are

| distinguished from the original parts of the program, by the use of small letters for comments. Also, the
new or modified lines are not finished with the word STG2, which indicates original program text. The

| semicolon, introducing each comment, is superfluous here, it is merely included due to a habit of the author.
The listings included here are only extracts of the program, showing the modifications and their

surroundings. By comparison with a complete listing of the original text, it should be fairly simple to spot

the places where the modifications are made.

The modified program-text partly explains itself, through the comments included, A couple of further

details to note are, however:

The set of registers of the simulated FLUB machine is extended with 6 more triples: FLG, VAL, and

i PTR; with suffix: AA, AB, AD, AE, AF, and ZC. This involves that the modified version of STAGE2 no longer
can be translated by SIMCMP, since one more character is used in these variable names.” For the
bootstrapping implementation is therefore recommended, that the original version is used, until a primitive

version of STAGEZ2 is running. Then, this one can be used to translate the modified version,

The variables mentioned are used in the following applications:

: VAL PTR

AA value of char pointer, current character of comment text

AB not used pointer, end of comment text

: AD working variable number of positions between each tab position

| AE tab character value pos. no. corresponding to integer tabs before comments

| AF comment delimiter value pos. no. of beginning comments

: ZC not used pointer for current character during output ,

| One more remark is important, concerning PTR ZC: This variable is also manipulated, and changed, by the

internal mechanisms of the 1/O-package:]

| PTR ZC is set to 0 at each call of READ NEXT #. and of WRITE NEXT #.. It is incremented by each

statement CHAR = VAL #.. Here, # signifies any valid parameter, according to macro notations.

| Only PTR ZC is affected by internal operations. All other FLUB registers are only modified. by the STAGE2
Program, as positively expressed by FLUB statements.

4. REFERENCES

[1] Waite, W, M.: A language independent macro processor. CACM, 10 (July 1967).
[2] Waite, W. M.: Building a Mobile Programming System. Tech. report 69-2, Graduate School

Comput ing Cent cr, Univ. of Colorado, 1969.

[3] Waite, W. M.: The STAGE2 macro processor. Tech. reports 69-3,69-3B, Graduate School Computing
Center, Univ. of Colorado, 1969.

[4] Waite, W. M.: Theimplementation of STAGE2. Graduate School Computing Center, Univ. of
Colorado.

[5] Waite, W. M.: A New Input/Output Package for the Mobile Programming System. Tech. report
71-10. Graduate School Computing Center, Univ. of Colorado, 1971.

[6] John M. ,GAmbers: The STAGE2 Macro Processor. Academic Computing Center, The University of
Wisconsin - Madison, July 1972.

[7] JohnM. Chambers: STAGE2 - FLUB. Unpublished note, Academic Computing Center, The
University of Wisconsin - Madison, Jan. 1973.

[8] John M. Chambers: STAGE2 - INTRODUCTION. Unpublished note, Academic Computing Center,
The University of Wisconsin- Madison, Febr. 1973.

[9] John M. Chambers: STAGE2 - DEBUGGING. Unpublished note, Academic Computing Center, The
University of Wisconsin - Madison, Febr. 1973.

APPENDIX

The follewing pages comprise:

1. Extracts frdm listings of STAGEZ2, in FLUB.

2. Example: Macros for translation from FLUB to assembly for PDP-10

3. Extracts from PDP=10 assembly version of STAGE2, extracts corresponding to

item 1 above, as translated with macros, item 2.

APPENDIX 1: Extracts from listings of STAGEZ2, in FLUB.

(Section containing routines for input of Flag line and for input of normal lines)
PTR J = 0 + 8. STGZ

| FLG L = 1. END-OF-LINE INDICATOR. STG2
VAL L = 0 -1. CARRIAGE RETURN IS -1. STG2

| PTR L = 0 + O. LOCATION COUNTER. STG2
VALM = CHAR. LEFT PARENTHESIS. STG2

: FTR M= 0 + 0. RESET THE SKIP COUNT. STG2

: FLG N = 0. SET EXPRESSION SIGN POSITIVE, STG2
| VAL N = CHAR. ADDITION OPERATOR. STGZ2

FLGOO = 8. STG2

VAL 0 = CHAR. SUBTRACTION OPERATOR. STG2

1 VAL P = CHAR" MULTIPLICATION OPERATOR. STG2
VAL Q= CHAR. DIVISION OPERATOR. STG2

VALR = CHAR. RIGHT PARENTHESIS. STG2

| VAL AF = 0 + O. + read extension of FLAG LINE
VAL AE = 0 + 8. sinitialize
PTRAE=0.

PTR AF = 0.

PTR AD = 0. » remains=0 if no extension
VAL AD = CHAR..

TO 1E IF VAL AD LT 8. : no extension of FLAG LINE
TO 1EIFVAL AD =F. ; no extension of FLAG LINE

| VAL. AD = AD - E. s corresp. no. positions for TAB
PTR AD = VAL AD. s into tab. -parameter
PTR AF = 5 + 3. : POSNO (no of pos.)e=13
PTR AE = AF / AD. + NMTAB « POSND/TABPOS
PTR AF =0. + initialize POSNO
VAL AE = CHAR. : TAB-character value

LOC 1A.
PTR AE = AE + 1. : count no. of tabs

VAL AD = CHAR.

TO1D IF VAL AD LT 8@. + terminate extension
TO 1A IF VAL AD = AE + read new if tab
LOC 18.

TO 1C IF VAL AD NE F. s jump if not space
FTR AF = AF + 1. s count no. of spaces
VAL AD = CHAR. s: read new if space
TO 1B.

| LGC 1C.

TO 10 IF VAL AD LT 8. : terminate extension
TO 1A IF VAL AD = AE s read new if tab

VAL AF = AD. + read comment-delimiter

LOC 10. s calculate extension-parameters

PTR AE = AE * AD. * POS.NO. corresp; to integer tabs
PTR AF = AE + AF $s pos.no. of beginning comments

LOC 1E. s continue original STAGE?2
PTR R= 0 + 0. SET NO REPETITION IN PROGRESS. STG2
PTR 4 = 7 + 7. LENGTH OF TWO DESCRIPTORS. STGZ2

PTR 8 = F + 7. POINT TO THE FIRST AVAILABLE SPACE. STG2
TO 01 BY D. START WORKING IN EARNEST. STG2

| LOC 01. ROUTINE TO READ FROM THE INPUT. STG2
GET | = A RECALL THE CHANNEL SPEC. STG2

READ NEXT I. GRAB A LINE. STG2

TO 38 IF FLC | NE O. GET OUT UNLESS ALL IS OK. STG2
PTR | = C + O. STG2

VAL ¥Y = 0 + @. STG2

PTR Y = C + 0. STG2

TO $2 IF PTR M= 0. SHOULD THIS LINE BE SKIPPED, NO. STGZ
PIR M = M- 1. YES, DROP THE SKIP COUNT STG2
TO Al. TRY AGAIN. STG2
LOC 02. READING LOOP, STG2
PTR 3 = | + O. ADVANCE THE SPACE POINTER. STG2
VAL | = CHAR. READ THE NEXT CHARACTER. STG2
PTR I = 9 - 7. POINT TO THE NEXT CHARACTER SPACE. STG2
TO 97 IF PTR 8 GE | HAVE WE OVERRUN THE AREA, YES. STG2

STO9 = L | PUT AWAY THE CHARACTER. STG2
TO 04 IF VAL | =L. WAS THIS A CARRIAGE RETURN, YES. STG2
TO 03 IF VAL | = A. HAVE WE ‘COMPLETED THE READ, YES. STG2.
VAL Y = Y + 1. BUMP THE INPUT STRING LENGTH. STG2
TO @2 IF VAL | NE B. NO, IS THIS A PARAMETER FLAG, NO. STG2
PIR B = | + O. YES, SET THE PARAMETER POINTER AND STG2
S70 9 = B. STORE IT WITH THE PHASE FLAG. STG2
TO 02. STG2
LOC 03. READ THE REMAINDER oF THE LINE STG2
PTR AA = 3. s remark | imitmark

LOC OA. + loop to read comments etc.
TO OB IF VAL | =L. s car.ret., i.e. no remainder

PTR 9 =1 + 8.

LOC 0G. ;

VAL | = CHAR.:

TO 01 IF VAL | NE A. ;

VALI = CHAR. + read new if first was “source EOL-f tag"
LOC 01.

TO OG IF VAL | = F. s eliminate leading spaces

T OBGIFVAL I=AE. s eliminate leading tabs
TO OJ IF VAL | NE AF : continue if no comment-delimiter
VALI = CHAR. cs eliminate comment-delimiter
TO BH.

LOC ad.

PTR AA = 3. s adjust startpointer

LOC OH. s hormal read/store loop
PTR I =9 - 7.

STO 9 = 1.

TO 97 IF PTR 8 GE |. + error if ful |

TO 9B IF VAL | =L. s terminate when car.ret.

PTR 3 = 1 + O.

VAL | = CHAR. : read next

TO OH. s and continue in loop
LOC OB. s remainder of line finished

PTR AB = 3. s set terminate-pointer

LOC B4. SCANNER. STG2
PTR U = 3 - 7 SET ALL PARAMETERS UNDEFINED. STGZ2
ST0 U = 3. STG2
PTR U = U - 7. STG2
STO U = 3 STG2
PTR U = U - 7. STG2
STO U = 3. STGZ2
PTR U = U - 7. STG2
STO U = 3 STG2

PIR U = U -7. STG2
STO U = 3. STG2
PTR U = U - 7. STG2

STO U = 3. STG2
PTR U = U = 7. STG2

STO U = 3. STG2
PTR U = U - 7. STG2
STO U = 3. STG2

(Section containing the Modified output routine)
STOS = 1. YES, SET THE TERMINATOR. STG2
PTR 8 = 8 + 7. ADVANCE THE SPACE POINTER. STG2
TO 97 IF PTR 8 GE 9. HAVE WE OVERRUN THE AREA, YES. STG2
VAL I = CHAR. GET THE NEXT CHARACTER. STG2
TO SS IF VAL | NE CC. DID THAT CLOSE THE DEFINITION PHASE, NO. STG2
FL-G B= 0. YES, RESET THE PHASE FLAG. STG2
LOC GG. COMMON SYSTEM RETURN POINT. STG2
RETURN BY D. REGISTER D IS THE RETURN ADDRESS. S162
LOCE56 . PUNCH AN UNRECOGNIZED LINE. STG2
VAL W = 3 + 0. CHANNEL 3 USED WHEN A LINE IS NOT MATCHED. STG2
PTR X = C + 0. ADDRESS THE FIRST CHARACTER. STG2

PTR AA = AB : eliminate double output of comments

LOC 57. + output characters
GET X =X. s horm. loop, get character

TO 80 IF VAL X NE L. : continue in normal loop if not CR
TO OD IF PTR AD = 0. + or if “main extension swi th" off
TO 60 IF PTR AA = AB. sor if no remainder in this line

LOC ZA. + output remainder of line:

T OZBIFPTRZCG EAE .;i fpos.counter less integr. tab.pos
CHAR = VAL AE. s then output tab and loop
TO ZA.

LOC ZB. s | oop for spaces
TO ZC IF PTR ZC GE AF.

CHAR = VAL F. s put out space(s)
TO ZB.

LOC 2C.

TO @C IF VAL AF = 0.

CHAR = VAL AF. s put out comment-del imi ter

LOC Oc. s loop for output of remaining string
GET AA = AA. s get first char.

TO ZE IF VAL AA NE A s eliminate possible “source EOL-f lag”
LOC 20. » loop for output remainder (comments)

GET AA = AA. : get next character
LOC ZE.

CHAR = VAL AA. s put out the character
TO BF IF FLG AA = 1. s possible terminate

TO ZDIF PTR AA NE AB. go loop if not exhausted
LOC 80. : normal output-loop
CHAR = VAL X.

TO OE IF VAL X = L. s terminate if C R

TO 57 IF FLG X NE 1. HAVE WE REACHED THE END, NO. STG2

LOC OF.

PTR AA = AB. + squeeze possible remaining of “remainder”
LOC OE. «+ end of | ine reached:
WRITE NEXT W. YES, PUT | T OUT ON THE DESIGNATED CHANNEL. STG2
TO 98 IF FLG W NE 0. TREAT ANY ERROR AS FATAL. STG2
TO 55 IF VAL X = L. ELSE IF THE LINE IS COMPLETE, RETURN. STG2

CHAR = VAL X. ELSE REPRINT THE LAST CHARACTER STG2

TO 57. AND CONTINUE. STG2

LOC 58. TRY FOR AN ALTERNATIVE MATCH. STG2
PTR Z = W + Z. GET THE POINTER TO THE ALTERNATIVE. STG2

TO 60 IF PTR W NE 0. WAS THERE ONE AFTER ALL, YES. STG2

TO 71 IF FLG B = 2. ND, ARE WE DEFINING, YES. SfG2
LOC 59. TRY EXTENDING THE PREVIOUS PARAMETER. STG2
TO 70 IF PTR V GE 3. | S THERE ONE TO EXTEND, NO. STG2

GET Z = V. RECALL THE MACRO POINTER. STG2

GET Y = Cl YES, RECALL THE INPUT POINTER STG2

GET X =Y. ANO THE CURRENT CHARACTER STG2

TO 63 IF FLG Z = 2. IS THIS THE FIRST TINE FOR A PARAMETER, YESSTG2

TO 64 IF FLG Z = 3. NO, IS IT A PARAMETER EXTENSION, YES. STG2

APPENDIX 2: Example: Macros for translation from FLUB to assembly for PDP-10

HSHD (+-%/) 8 :

GET # =H.

IF Ac2 = 'PTR#28’sKIP 1%
MOVE . 2,PTRH#2BHF1$

SET AC2 TO 6%

MOVE1 15,FLGH1B#F1$
JS R UNPACKHF1S$

8

STOH# = H.

IF Ac2 = 'PTR#18’ SKIP 2%

MOVE 2,PTRH#1BHF1S
SET AC2 TO 'PTR#108'$

MOVE1 15,FLGH204F1$
JSR PACKHF1$

8

FLG# = #H.

|F #20 NE 0 SKP 2%
SETZM FLGH1BHF1S

SKIP 4% | _

IF AC2 = 'FLGH2B' SKIP 18
MOVE 2,FLGH204F1%8

SET AC2 TO 'FLG#19'$

MOVEM 2,FLGH18HF1$
8

VAL # = PTR #.

IF AC2 = 'PTR#Z2B8’ SKIP 18

MOVE 2,PTR#20HF1%
SET AC2 TO 'VAL#108'$

MOVEM 2, VALH#10HF1$
%

PTR H# = VAL H.

IF AC2 = 'VAL#28’skIP 18

MOVE 2,VALH204F18
SET AC2 TO'PTR#16'$

MOVEM 2,PTR¥#10#4#F1$
3

PTR # = 0.

SETZM PTR#10#F18
8

VAL # = 0.

SETZM VAL#10#4F18

8

A#= 0 + O.

SETZM H10H20HF18
8

Hit=H + O.

IF AC2 = 'H#18#38' SKIP 18

MOVE 2,H1BH30HF1%
MOVEM 2, #10#204F18

SET AC2 TO 'H#H10#20'$

8 .

HH=H# + 1.

|F #280 N E #38 SK P 38

IF AC2 ="'HI1B43Q’ SKIPG5$
AOS H10H20HF1$8

SKIP S$

IF AC2 ="'HIBH3B'SKIP 1S

MOVE 2,810H304F18
SET AC2 TO 'H#18#H20’8

AOJ 2,HF18
MOVEM 2,H#104204F1$%

.. 8
HH =-#-.1

IF #28 NE #38 SKP 38
IF Ac2 = "H18#38' sKIP 58

Co SOS H1DH20HF18

SKIP 5%

IF Ac2= "#18#38' SKIP 1%

MOVE 2,H10H30HF18
SET AC2 TO 'H104208’%

SOJ 2,4F18
MOVEM2,#10H284F1%

8

#Hi=4#8 + 7.

#10 #20 - #30 + 18
$

HH =H-7.

#10 HZ0 = #380 - 18
8

HH =H + H.

IF Ac2 = 'H1B#H38' SKIP 28%

IF Ac2 = '#10#408' SKIP 38%

MOVE 2,H4184304F18
ADD 2,H10840HF18

SKIP 18

ADO 2,#104304F18
SET AC2 TO 'H#10#206'$

MOVEM . 2, #10H#20H4HF1$
8

=H - #4.

IF AC2 = 'H184#38° SKIP 18

MOVE 2, H1PH30/F18
SUB 2,81084400F18

SET AC2 TO 'H#184#2080°$

. MOVEM 2,#10H208F18%
8

Hi = KH.

| F H28 = H38 SKP 48

IF AC2 = "H18#38° SKIP 18

MOVE 2,H1BH30AF1S
SET AC2 TO '#106#20'$

MOVEM 2,#104204#F18
8

PTR # = # x #4.

IF #38 NE 7 SKP 3%

PTR HALO = #208

SKIP &%

IF AC2 = 'PTR#28’ skip 2%
IF AC2 = 'PTR#38’ SKIP 3%

MOVE 2,PTRH2BHF18
[MUL 2,PTR#30HF1S

'SKIP1$

[MUL 2,PTR#204F18
MOVEM 2,PTR#18B4F18

SET AC2 TO 'PTR#10’8

$

PTR H# = #/H.

IF #38 NE 7 SKP 38

PTRHIO = H208

SKIPGS

IF AC2 = 'PTR#28’ SKIP 1$
MOVE 2,PTRH#2Z2BHF18
IDIV 2,PTRY30AF1S

MOVEMZ2,PTR§IBHF1S
SET AC2 TO 'PTR#18’$
$

TO # IF HH=4.

IF AC2 = "H2BH#3B0' sKIpP 28

MOVE 2, H20H430HF18
SET AC2 TO 'H208#38’8

CAMN 2,H208404F18
JRSTLOCHIOHF1S

3

TO # IF ## NE oO.

IF AC2 = 'H#H208#38' SKIP 28

: MOVE 2, H20H30RF18
SET AC2 TO 'H28430'$

JUMPN 2,LOCH104#F1%
8

TO # IF #H# GE o.

IF AC2 = 'HZ20H3B’' SKIP 28

MOVE 2,H204304F18
SET AC2 TO 'H20#38’$

JUMPGE 2,LOCH#104F1$
8

TO # IF ##= 0.

IF AC2 = 'H#20#38' sKIP 2%

MOVE 2,H20H30HF1$
SET AC2 TO 'H#20#30’$

JUMPE 2,LOC#104F1$
8

TO HIF #H NE HA.
IF Ac2 = 'H#2BH#H308’ SKIP 38

IF AC2Z = 'H2OH4D' SKIP 48
MOVE 2,H208304F18

SET AC2 TO '#208430’8

- CAME 2, H20840HF18
SKIP18

CAME 2,H20H38HF18
JRST .LOC#104F1%

8

i TO HH IF #H# GE #4.
i IF AC2 = '"H2BH38’ SKIP 3%
) '"\FE AC2 = '"H20#48' SKIP 4%

MOVE 2, H20H30HF18

SET AC2T0’#208438"8$

j CAML 2,HZ2BH4BHF1S$
| SKIP1$

CAMG 2, H20830HF1$
JRSTLOCHIOHFLS

g

. TO HIF #HHH.
IF AC2 = '"H28BH30' SKIP 2%

MOVE 2,H2048304F18

5 SET AC2 TO 'H#208430’$8
IF AC13 = 'BOL#48B’ SKIP 2%

SET AC13 TO 'BOLA4D’S

MOVE 13,BOL#40HF18
MOVE 15,#28H#504F1%

| JSR BOOLA#F18

| JRSTLOCHLIOAF1S
8

TO #H.

| JRST LOCHIQHF1S

8

TO #4 BY #4.

| MOVED 14,PTR#284F18

MOVE1 15,LOCH1BAF1S$
JSP 13,SUBRTHF1S

| SET AC13 TO 9%
$

RETURN BY #4.

MOVE 13,PTR#164F1%
JRSTI(13)#F18

S Er AC13+1 0 28

8

LOC #4.

LOCH1B:HF1$

| SET AC2 TO 0%
SET AC13 TO 0%

$

STOP.

SETAS

EXITS

$

ENO PROGRAM.

LOWEND-.#F18

BLOCK MASSIZ#F18

HIGEND-~.#F18

ENDSTARTAF1S

H#FO8

8

READ NEXT #.

MOVES, VAL#10HF18
JSR READINA#F1$
MOVEM 2,FLGH#10#F1$

SET AC2 TO 'FLG#1D’$8

8

VAL# - CHAR.

JSR CETICHF1S

MOVEM 2, VAL#1064F1$
SET AC2 TO 'VAL#108'8

8

CHAR = VAL #H.

SET AC2 TO 'VAL#1D’S

MOVE 2,VAL#104F1$%
JSR UTCHAR#F1$

MOVEM 3,FLG#18#F1%
$

WRITE NEXT #.

MOVE 5, VAL#10#F1$8
JSR WRTLIN#F18

MOVEM 2,FLGH#184F1$
SET AC2 TO 'FLG#18’$

8

REWIND #.

MOVE S,VAL#184HF1$
JSR REWND#HF1$

MOVEM 3,FLGH1B4F1%
$

MESSAGE # TO H#.

MOVE] 13, [ASCIZ/#18/1#F1$
MOVE 15, VALHZ20HF1$8

\ JSR MSGOUTAF1$
MOVEM 3,FLGH20#F1$

$

SETH#TOH.

HF38

$

IF #= HSKIPH.

| F #11 = #28 SKP #30%

$

IF # = # SKP #4.

H#HF50%8

3

IF # NE # skp H#.

HFG18

8

SKIP #4.

#HF48

$8

Appendix 3: Extracts from PDP- 10 assembly version of STAGEZ2, extracts cofresponding
t o ‘Appendix 1, as translated with macros, Appendix 2.

(Section containing routines for inout of Flag line and for input of normal lines)
SETZM PTRJ «STG2
MOVE 2,FLGI ‘ENO-OF-LINE INDICATOR. STG2
MOVEM 2,FLGL
MOVE 2,VALB : CARRIAGE RETURN IS -1, STG2
SOU 2,

MOVEM 2,VALL
SETZM PTRL + LOCATION COUNTER. STG2
JSR GETIC + LEFT PARENTHESIS. STG2
MOVEM 2, VALM
SETZM PTRM + RESET THE SKIP COUNT. STG2
SETZM FLGN : SET EXPRESSION SIGN POSITIVE. STG2
JSR GETIC + ADDITION OPERATOR. STG2
MOVEM 2,VALN

SETZM FLGO + STGZ
JSR GETIC + SUBTRACTION OPERATOR. STG2
'MOVEM 2, VALO
JSR GETIC «MULTIPLICATION OPERATOR. STG2
MOVEM 2,VALP
JSR GETIC «DIVISION OPERATOR. STG2
MOVEM 2, VALQ
JSR GETIC «RIGHT PARENTHESIS. STG2
MOVEM 2,VALR

SETZM VALAF + read extension of FLAG LINE

SETZM VALAE sinitial ire

SETZM PTRAE

SETZM PTRAF

SETZM PTRAD remains=0 if no extension

JSR GETIC

MOVEM 2, VALAD
MOVE 13,BOLLT + no extension of FLAG LINE

MOVE 15,VAL®
JSR BOOL

JRSTLOCILE

CAMN 2, VALF : no extension of FLAG LINE
JRSTLOCILE

SUB 2, VALE s corresp. no. positions for TAB
MOVEM 2, VALAD
MOVEM 2,PTRAD s into tab. -parameter
MOVE 2,PTRG + POSNO(no 0 f pos.) e=13
ADD 2,PTR3

MOVEM 2,PTRAF'

MOVE 2 PTRAF « NMTAB « POSNO/TABPOS
I101v 2,PTRAD
MOVEM . 2,PTRAE

SETZM PTRAF. : initialize POSNO

JSR GETIC +: TAB-character value

MOVEM 2, VALAE
LOClA:

AQS PTRAE s count no. of tabs

JSR GETIC

MOVEM 2, VALAD

MOVE 13,BOLLT + terminate extension
MOVE 15, VALG
JSR BOOL

JRSTLOC1OD

CAMN 2,VALAE s read new if tab
JRSTLOCLA

LOC1B:

MOVE 2, VALAD s jump if not space
CAME 2, VALF
JRST LOCIC

AOS PTRAF s count no. of spaces

JSR GETIC s read new if space
MOVEM 2, VALAD
JRST LOCIB

LOC1C:

MOVE 2, VALAD s terminate extension
MOVE 13,B0OLLT
MOVE 15, VALO
JSR BOOL

JRSTLOCID

CAMN 2,VALAE sread new if tab
JRSTLOCLA

MOVEM 2, VALAF s read comment-delimiter
LOC10: s calculate extension-parameters

MOVE 2,PTRAE $ pos.no. corresp. to integer tabs
IMUL 2,PTRAD

MOVEM 2,PTRAE
ADO 2,PTRAF : pos.no. of beginning comments
MOVEM 2,PTRAF

LOC1E: + continue. original STAGE?
SETZM PTRR : SET NO REPETITION IN PROGRESS. STG2

MOVE 2,PTR7 + LENGTH OF TWO DESCRIPTORS. STG2
AOJ 2,

MOVEH 2,PTR4 SE
MOVE 2 PTRF + POINT TO THE FIRST AVAILABLE SPACE. STG2
AOJ 2,
MmovEeEHZ.PTR8

MOVE1 14:PTRD +:START WORKING IN EARNEST. STG2
MOVE1 15,L0C81

JSP 13,SUBRT
LOCO1: | + ROUTINE TO READ FROM THE INPUT. STG2

Hove 2,PTRA « RECALL THE CHANNEL SPEC. STG2
HOVE1 15,FLGI
JSR UNPACK

HOVE 5,VALI «GRAB A LINE. STG?
JSR READIN

HOVEH 2,FLGI

JUHPN 2,L0C98 +:GET OUT UNLESS ALL IS OK, STG2
MOVE 2,PTRC + STG2
MOVEH 2,PTRI

SETZH VALY + STG2
MOVE 2 PTRC + STG2
MOVEH 2,PTRY

MOVE 2,PTRM + SHOULD THIS LINE BE SKIPPED, NO. STG?
JUHPE 2,L0C82
SOJ 2, +:YES, DROP THE SKIP COUNT STG2
MOVEM 2,PTRM

_ JRST. LOC#A1 + TRY AGAIN. STG2

LOCB2Z: + READING LOOP. STG?
MOVE 2 PTRI +sADVANCE THE SPACE POINTER. STG2
MOVEH 2,PTRS
JSR GETIC s READ THE NEXT CHARACTER. . STG?
MOVEH 2, VALI
Hove 2,PTRS + POINT TO THE NEXT CHARACTER SPACE." STG2
SOJ 2,

MOVEH 2,PTRI TO

- CAMG 2,PTR& + HAVE WE OVERRUN THE AREA, YES. STG2
JRST LOC97

MOVE, 2,PTRS : PUT AWAY THE CHARACTER. STG2
MOVED 15.FLGI

JSR PACK

MOVE 2, VALI «WAS THIS A CARRIAGE RETURN, YES. STG?
CAHN 2, VALL
JRST LOCO4

CAMN 2, VALA «HAVE WE COMPLETED THE READ, YES. STG2
JRST LOCOS

| AOS VALY : BUMP THE INPUT STRING LENGTH. STG2
CAME 2,VALB «NO, IS THIS A PARAMETER FLAG, NO. STG2
JRST LOCO2

MOVE 2,PTRI +:YES, SET THE PARAMETER POINTER AND STG2
MOVEH 2,PTRB
MOVE 2,PTRS «STORE IT WITH THE PHASE FLAG. STG2
MOVE1 15,FLGB
JSR PACK

JRST LOCO? 3 STG2Z

LOCO03: » READ THE REMAINDER OF THE LINE. STG2
MOVE 2,PTRSY sremark | i mi tmark
MOVEH 2,PTRAA

LOCBA: + loop to read comments etc.
HOVE 2, VALI scar.ret.,i.e. no remainder

CAMN 2, VALL

JRST LOCSB

MOVE 2. PTRI

HOVEH 2,PTR3
LOCBG: H

JSR GETIC :

MOVEM 2, VALI
CAME 2, VALA ;
JRST LOCI

JSR GETIC s read new if first was “source EOL-f lag”
MOVEM 2, VALI

LOCBI :
MOVE 2, VALI : eliminate leading spaces
CAHN 2 VALF

JRST LOCBG

CAHN 2,VALAE sel iminate leading tabs
JR ST LOCBG

CAME 2 VALAF scontinue i fno comment-delimiter
JRST LOCBJ

JSR GETIC s+ eliminate comment-delimiter

MOVEM 2, VALI
JRST LOC@H

LOCBJ:

MOVE Z,PTRS s adjust startpointer
MOVEM 2,PTRAA

LOCOH: s normal read/store loop
MOVE 2,PTRY

SOJ 2

MOVEH 2,PTRI

HOVE 2,PTRS

MOVE! 15, FLGI
JSR PACK

MOVE 2,PTR8 + error if ful |

CAML 2 PTRI
JRST LOC97

MOVE 2, VALI : terminate when car.ret.
CAHN 2, VALL

JRST LOCGB

MOVE 2, PTRI

MOVEH 2, PTR3

| JSR GETI1C : read next
HOVEM 2, VALI

| JRSTLOCBH s and continue in loop
LOC@B: s remainderof line finished

MOVE 2, PTR + set terminate-pointer
MOVEM 2, PTRAB

LOC@4: ; SCANNER. STG?
HOVE 2, PTRS s SET ALL PARAMETERS UNDEFINED. STG?
SOJ 2,
HOVEM 2, PTRU

HOVE1 15,FLG3 1 STG2
JSR PACK

SOJ 2, s STG2
MOVEM 2,PTRU

MOVE] 15,FLG3 1 STG2
JSR PACK

SOJ 2, s STG2
MOVEM 2,PTRU

MOVE1 15, FLG3 s STG2
JSR PACK

SOJ 2, s STG2
MOVEH. 2, PTRU

MOVE1 15, FLG3 s STG2
JSR PACK

SOJ 2, : STG2
MOVEM 2,PTRU

MOVE1 15,FLG3 1 STG2
JSR PACK

SOJ 2, + STG2
MOVEH 2, PTRU

HOVE1 15,FLG3 s STG2
JSR PACK

SOJ 2, s STG2
HOVEH 2, PTRU :

HOVE1 15,FLG3 s STG2
JSR PACK

SOJ 2, s STG2
MOVEM 2, PTRU
MOVE1 15,FLG3 1 STG2
JSR PACK

: (Section containing the Modified output routine)

i MOVE 2, PTR8 + YES, SET THE TERMINATOR. STG?
MOVEI 15,FLGl
JSR PACK

1 AOJ 2. :AOVANCE THE SPACE ‘POINTER. STG?
3 HOVEH 2,PTR8
; camL 2,PTRS + HAVE WE OVERRUN THE AREA, YES. STG?
1 JRST LOC97

| JSR GETI1C «GET THE NEXT CHARACTER. STG?
i MOVEH 2, VALI

! CAME 2,VALC «DID THAT- CLOSE THE DEFINITION PHASE, NO. STG?
1 JRST LOCS5

] SETZM FLGB + YES, RESET THE PHASE FLAG. STG?

{ LOCSS: : COMMON SYSTEM RETURN POINT. STG2
; HOVE 13,PTRO + REGISTERD IS THE RETURN ADDRESS. STG?
1 JRST (13)
| LOCS6: : PUNCH AN UNRECOGNIZED LINE. STG2
3 MOVE - 2,VAL3 CHANNEL 3 USED WHEN A LINE IS NOT HATCHED. STG2

MOVEMZ, VALW
MOVE 2,PTRC + ADDRESS THE FIRST CHARACTER. STG2

i MOVEM 2 PTRX
: MOVE 2, PTRAB » eliminate double output of comments

3 MOVEM 2,PTRAA
; LOCS7: + output characters
| MOVE 2,PTRX s norm. loop, get character

i MOVED 15,FLGX
JSR UNPACK

MOVE 2, VALX s continue in normal loop if not CR
| CAME 2, VALL

; JRSTLOCAD
MOVE 2,PTRAD s or if “main extension swi th" off

! JUHPE 2,L0C80
HOVE 2, PTRAA sor if no remainder in this line
CAHN 2,PTRAB

: JR ST LOCGD
; LOC2A: : output remainder of line:
{ MOVE 2, PTRZC s if pos.counterless integr. tab.pos

CAML 2, PTRAE
JRST LCCZ2B

HOVE 2, VALAE : then output tab and loop

| JSR UTCHAR
MOVEM 3, FLGAE
JR ST LOC2A

LOCZB: + | oop for spaces
MOVE 2, PTRZC
CAML 2, PTRAF

i JRSTLOCZC
MOVE 2, VALF sput out space(s)

) JSR UTCHAR

i HOVEM 3,FLGF
JRST LOCZB

] LOC2C:

_ MOVE 2, VALAF

JUMPE 2, LOCBC

MOVE 2, VALAF : put out comment-delimiter
JSR UTCHAR

j MOVEM 3 ,FLGAF

LOCAC: s loop for output of remaining string
MOVE 2, PTRAA’ : get first char.
HOVE1 15,FLGAA
JSR UNPACK

|—

MOVE 2,VALAA sel iminate possible “source EOL-f lag”
CAVE 2, YALA
JRST LOCZE

LOC20: + loop for output remainder (comments)
MOVE 2,PTRAA s get next character
MOVE1 15,FLGAA

JSR UNPACK

LOCZ2E:

MOVE 2, VALAA s+ put out the character
JSR UTCHAR

MOVEM 3,FLGAA
MOVE 2,FLGAA s possible terminate
CAMN 2,FLG1
JRST LOCBF

MOVE 2,PTRAA + go loop if not exhausted
CAME 2 PTRAB

JRST LOCZ2D

LOCBOD: s normal output-loop
MOVE 2,VALX

. JSR UTCHAR

MOVEM 3,FLGX

CAMN 2, VALL + terminate if CR
JRST LOCBE

MOVE 2, FLGX +sHAVE WE REACHED THE END, NO. STG2
CAME 2,FLGL
JRST LOC57

LOCBF:

MOVE 2,PTRAB s squeeze possible remaining of “remainder”
MOVEM 2,PTRAA

LOCBE: + end of | ine reached:

MOVES, VALW + YES, PUT IT oUT ON THE DESIGNATEO CHANNEL. STG2
JSR WRTLIN

MOVEM 2,FLGW

JUMPN 2,L0CS8 +sTREAT ANY ERROR AS FATAL. S T G 2
MOVE 2, VALX «ELSE IF THE LINE IS COMPLETE, RETURN. STG?
CAMN 2. VALL

JRST LOCS5

MOVE 2,VALX + ELSE REPRINT THE LAST CHARACTER STG2
JSR UTCHAR

MOVEM 3,FLGX

JRST LOC57 + ANDO CONTINUE. STG2

LOC58: +:TRY FOR AN ALTERNATIVE MATCH. STG2
MOVE 2. PTRW «GET THE POINTER TO THE ALTERNATIVE. STG2
ADD 2 PTRZ

MOVEM 2,PTRZ

MOVE 2 PTRW + WAS THERE ONE AFTER ALL, YES. STG?
JUMPN 2,L0C68
MOVE 2,FLGB NO, ARE WE DEFINING, YES. STG2
CAMN ' 2,FLGZ2
JRST LOC71

LOCS3: s TRY EXTENDING THE PREVIOUS PARAMETER. STG2
MOVE 2,PTRY + IS THERE ONE TO EXTEND, NO. STG2
CAML 2,PTR3
"JRST LoC70

MOVEI 15,FLGZ + RECALL. THE MACRO POINTER. STG?
JSR UNPACK

MOVE 2,PTRQ + YES, RECALL THE INPUT POINTER STG2
MOVE1 15, FLGY
JSR UNPACK

MOVE 2. PTRY + AND THE CURRENT CHARACTER STG?
MOVE1 15, FLGX
JSR UNPACK

i

A

MOVE 2,FLGZ + 1S THIS THE FIRST TIME FOR A PARAMETER, YESSTG2
g CAMN 2,FLGZ
| JRST LOCB3

cCAMN 2,FLG3 «NO, IS IT A PARAMETER EXTENSION, YES. STG2
JRST LOCG64

|
i

|
b

