. Stanford Artificial Intelligence Laboratory September 1975
Memo AIM-267

Computer Science Department
Report No. STAN-CS-7 5-520

On the Representation of Data Structures in LCF
with Applications to Program Generation

by

Frederich- W. von Henke

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2434

and
Deutsche Akademische Austauschdienst

COMPUTER SCIENCE DEPARTMENT
Stanford University

Aqsud

. Stanford Artificial Intelligence Laboratory September 1975
Memo AIM-267

Computer Science Department
Report No. STAN-CS-75-520

On the Representation of Data Structures in LCF
with Applications to Program Generation

by

Frederich W. von Henke

ABSTRACT

In this paper we discuss techniques of exploiting the obvious relationship between program
structure and data structure for program generation. We develop methods of program
specification that are derived from a representation of recursive data structures in the
Logic for Computable Functions (LCF). As a step towards a formal problem specification
language we define definitional extensions of LCF. These include a calculus for
(computable) homogeneous sets and restricted quantification. Concepts that are obtained by
interpreting data types as algebras are used to derive function definition schemes from an LCF
term representing a data structure; they also lead to techniques for the simplification of
expressions in the extended language. The specification methods are illustrated with a
detailed example.

Authors’s present address: Gesellschaft fuer Mathematik und Datenverarbeitung Bonn, 5205
St.Augustin, Schloss Birlinghoven, West Germany

T his research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract DAHC 15-73-C-0435 and the Deutsche Akademische Austauschdienst.
The views and conclusions contained in this document are those of the author(s) and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of Stanford
University, ARPA, Deutsche Akademische Austauschdtenst, or the U.S. Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Virginia 22151.

Con tents
1. Introduction

2. The type-free Logic for Computable Functions
2.1 Type-free LCF
22 Retracts, Domains, Types

3. Abstract Data Types in the Type Free Logic
31 Data Type Definitions
32 Representing Data Structures in tfLCF
33 Algebraic Interpretation of Data Types
34 Non-generic Data Types
35 An Example: Infix to Post-fix Translation

4. Elements of a Problem Specification Language
4.1 Sets, Set Operations and Quantification
4.2 Schemes for Function Definition
4.3 Transformation of Function Definitions into Programs

9,

. An Example: Substitution with a-Conversion
5.1 The Data Types
52 The Problem

- 6. Concluding Remarks
R. References

A. Appendices
Al Logic for Computable Functions
A.2 Special functions in tfLCF
A3 Structural Induction

!._.'._ -

— r

r- -

— r

Introduction 1-1

1. Introduction

In this paper we are concerned with the use of data structures in generating correct programs from
formal problem statements.

Present experimental systems for automatic program synthesis (see [BuLl,[MaW] for recent work)
are based on a rather large amount of knowledge in the form of individual axioms and problem
solving methods. At each step in the ‘synthesis process the system has to search for an applicable
piece of knowledge in the data base. One of the main problems is the automatic construction of
iterative loops or recursive calls. However, it can be observed that the structure of the data is
reflected more or less in the structure of any program operating on them, both in the analysis of
subcases and (iterative or recursive) loops. In fact, if a recursion or iteration is possible (and
reasonable) at all it is because of a corresponding data structure. So it is safe to say that the
generation of a program is always guided by an underlying domain structure, Thus, by
“strengthening” the guide lines we can avoid the system having to “retrieve” anew the underlying
structure each time it is synthesiiing a program. Organizing the knowledge about the data domain
and representing it in such a way that it directly assists a system in constructing a program can
possibly eliminate some complicated problem solving processes,

In the case of recursive data types the relationship between program structure and data structure is
particularly obvious. For this kind of data types the Logic for Computable Functions (LCF) [Mil,
_Mi2, WM J provides a natural, basis for reasoning about program generation, since both the problem
and the prospective structure can be expressed in the same formal system. Obviously, the crucial
point is to find an appropriate representation of the data structure. A large portion of this paper is
devoted to this problem; it attempts to develop a sufficient mathematical framework for dealing with
abstract data types within LCF. Based on this theory methods of function specification are
investigated that are directly derivable from the data structure representation and do not require
general problem solving methods. They include extensions of the term language of LCF,in
particular a calculus for (a restricted kind of) sets and restricted quantification, and certain
“definition schemes”; both kinds are based, on concepts obtained by interpreting, data types as

algebras.

The definition techniques are meant to be a step towards a “problem specification language” that
allows easy and concise definition of functions on a level of abstraction that is close to the intuitive
conception of the user. This approach to program specification bears a resemblance with what has
been called “very high level” or “non-procedural” programming languages. Indeed, programming
language features similar to some of the constructions to be discussed here have been proposed
elsewhere (e.g. [Eal) and are available in SETL. However, we are not dealing with a programming
language, but a formal system that permits formal reasoning. Emphasis is given to interpreting the
added constructions in terms of LCF in order to make feasible meaning preserving transformations

Introduction 1-2

of ex presssions. Only the fact that every LCF term also has an interpretation as a computation rule
for the function denoted by it, allows us to regard it as a kind of program.

The following section provides the logical and mathematical framework as needed in the subsequent
sections. It gives a short overview of the type free version of LCF and the mathematical theory of
subdomains. Section 3 discusses the axiomatization of abstract data types, their representation in
LCF, and the interpretation of types as heterogeneous algebras. Section 4 is devoted to introducing
elements of a specification language, which include (computable) sets, set operations and bounded
quantification. The algebraic concepts of section 3 lead to methods for defining and simplifying
functions over data types. In section 5, the definition methods are demonstrated in an example that
is based on the data types of LCF terms and is taken from a LCF implementation. Finally, possible
directions of future work are indicated in the concluding section.

The paper is intended to be essentially self-contained. The letters "T.P." that can often be found
instead of a proof are meant to indicate that a prove has been generated by means of the interactive
theorem prover for LCF. The amount of user interaction required to generate a proof is not
indicated; in general, the proofs for simple lemmas can be generated fully automatically. The
automatic theorem prover component of the system employed for proof generation will be described
in detail in a forthcoming paper [He].

The type-free Logic for Computable Functions .. 2-1

2. The type-free Logic for Computable Functions

The Logic for Computable Functions (LCF) was invented by D. Scott (unpublished) and, in a
modified form, mechanized by R. Milner [Mil,Mi2]. Using this interactive proving system the logic
has subsequently been applied to various problems in the Mathematical Theory of Computation:
schematology, formalization of syntax and semantics of programming languages, proving properties
of programs and the correctness of interpreters and compilers (cf. [AAW,N2] for more recent work
on PASCAL and LISP and comprehensive references). In these experiments LCF proved very
useful for formalizing and proving problems involving (possibly partial) recursive functions,

In the following the reader is assumed to be, familiar at least with the basics of LCF. For the sake of
self-containment, a syntax of the language is given in appendix A.Ll.

2.1 Type-f ree LCF

In this subsection the type free version of LCF (or tfLCF for short) is described briefly as needed
for the further development. This version of the logic was developed by D. Scott, R. Milner and
R. Weyhrauch [unpublished notes). Most-of the material and the ideas presented here is essentially
due to them; part of it can also be found in [Sc2].

Essentially, tfLCF axiomatizes one of Scott’s models for the A-calculus {Sc1): the domain I which is
constructed over the 4-element lattice T of truth values:

The main characteristic of the domain I is that it is isomorphic to its domain of continuous
functions; thus, each element of I can also be regarded as a function from I to I,

The language of the logic itself is essentially the same as for the typed version, (see appendix A.l.1),

with two exceptions:

(a) the restrictions for building expressions that result from the types are abolished,;

(b) besides the 4 truth values, the language includes constants I for the “universe”, i.e. the domain
of the model, and T for the domain of truth values.

The main problem in extending the semantics of expressions to the type free case is defining the
meaning of the conditional p 2 q,r for any termp. This is done by mapping the elements of I onto
the truth values (this will be made clearer in the following subsection). The meaning of T = x,y is
not further specified except that T2 x,x « x. However, it turns out that it can be taken as the join
of x and y (see below).

The type-free Logic for Computable Functions ‘ 2.2

For details about axioms and inference rules of the logic, see appendix A.1.2.

The element 4 is called undefined, and the element T is called overdefined; all other elements are
called defined. A predicate 8 can be defined in I such that

3x) = &t i ff "x is defined"” dL)wi, AT)ET

i.e., & yields the distinction between defined and non-defined elements in I. 6 is definable in the logic
by a mapping onto the S-element lattice {4, %, T}. The definition depends on the fact that the truth
values are isolated elements in the lattice I. For details see appendix A.2.1.

A function f is called strict if it returns & or T whenever the argument is A or T resp,, that is if the

following wff is true of f: ' :
v X. (3x) 2 o(f(x)), &) = a(f(x))

f is called i-strict if f(4)s L , and T-strict, if {(T)aT . fis called total if it never returns A. or T
for a defined argument, i.e., if

o(x) w> A(f(x)) = &
holds. Thus, if a function fis strict and total then 9(x) = 3(f(x)) .
Any function f can be made into a strict one by first applying @ to the argument: For
f sw[Ax. 9(x) 2 f(x), A]

we obviously have

T “if xsT
f'(x)s A if xsd
f(x) otherwise

In the next section a functional str will be defined that turns any function into a strict one.

In the following we define some standard operators on 1 that will be used throughout the paper.

0 :s[Xxyzx(y(z)] function composition

pair :s[A Xy 2.22xy] ordered pair

n; o s A X x(R)] projection onto first component
ny e[h xo x(f)] projection on to second component

Y sa[A x y z pair(x(z t), y(z)] Cartesian product

The type-free Logic for Computable Functions ‘ 2-3

+ s[Xabx.m;(x) > pair(tt, alrp x)), pair(ff, b{rz x))] disjoint union

id == [XxXx] . identity function
u E[XxYy Taxy] join
A i [Xx y.Ox)udly))>x2y,] logical and
vV o [XX y.(3(x) u oy)) = x 2 tt,y] logical or
1w [Xx, x 2 ff,#t] negation

For pair(x,y) we also use the notation <x,y> .

The standard properties of these functions are easily derivable; for example,
VX y. rj{<xy>) o X VX y. ra(¢x,yd) 8 Y

Milner and Weyhrauch have shown that u has all the properties of the join operation in a lattice,
also with respect to the partial order defined by €. In particular, tuffsT and xuTsT for all x¢I.

A strict conditional 2, i.e. TxysT for all x and y , is definable in terms of the normal
conditional =:

> :sAzxy. z2(22 x T), (22T, y)

Since the normal conditional will not be used in this paper except in the join operation, we will
henceforth use the character to denote the strict conditional.

The propositional connectives are strict in all arguments; they extend the standard functions (for
two-valued logic) to four truth values in such a way that the standard relationships like
x vy s.(xA=y) still hold.

2.2 Retracts, Domains, Types

The typefree logic essentially axiomatizes the “universal” domain 1. However, one would like to talk
also about demains other than I, like “lists” or “integers.” It turns out that they can be "embedded"
into the universal domain; there are subdomains of I that correspond to those particular domains in
a sense to be made precise in the following section. As Scott [S€2] has shown, Iis so rich in
subdomains that one can find a corresponding subdomain for all those domains or “data types”
computer scientists are normally interested in.

The standard way of defining a subdomain is by using retracts. A retract is an idempotent function,
ie., an f € I with f o fs f . The idempotency property implies that all elements in the range of a
retract f remain unchanged, i.e. the range of f is exactly its set of fixed points. subdomain D of 1

The type-free Logic for Computable Functions ‘ 2.4

(the range of f). This domain Dy can be shown to be a complete lattice. In the remainder of this
paper, the term “domain” always nieans “subdomain of I as defined by a retract.” Very often the
domain and the function (the retract) defining it will be confused by using the same notation for
both; however, from the context it will be clear what exactly is meant. For emphasis, we will say
retraction if we mean the function in particular.

The category of retracts
It may be helpful to look at retracts from a categorical point of view. The retracts of I form a

category Rin the following way:
- The objects of Rare the retractions in I.
- A functions f€ I is a morphism from the retraction r to the retraction s iff fores,
- Composition of morphisms in R is just composition of functions in I

Obviously, R is a category. Note that two functions f and g in I will be identical morphisms in R if
they agree on their source domain (“source retract”), i.e. if for= gor. An identity on a retract risa
function F with For = r. We write Id, for the identity on r.

Let r,s be retracts. D, is called subdomain of Dg iff ser=r, i.e. iff the fixed points of rarealso
fixed points of s. D, is called retract of Dg iff sorsr and ros=r.

- A particular retract is the truth value domain T. Trivially, the universal domain 1 is also a retract.
However, the property of being a retract cannot be proved; the corresponding retractions

Te[Ax.x2tt, ff]
and

I s{acd Tu (J =J)]
are rather part of the axiomatization of tfLCF. Obviously, “retract” and “retract of I’ mean the
same thing.

It should be noted that R is not the category of those subdomains of 1 that are defined by retracts;
different retractions can define the same domain but will be different objects in R. For example, the
retractions T and istrue (see appendix) both define the domain {4,&,#,T} but are completely different
functions. However, T and istrue are isomorphic in the category R. Incidentally, if two domains are
isomorphic one of them need not be a retract of the other: for instance, it is

T oistrue & istruo and istrue o Ta& T
1.e. Tand istruo are subdomains of each other, but

istrue o T ¢ istrue and Toistrue ¢ T

The type-free Logic for Computable Functions . 2-5

Thus neither of T and istrue is a retract of the other. This discussion shows how retractions that
define the same domain are related in the category R:

Corollary 2.1: For retractions v and 8 if D,80g then r and s are isomorphic, that is, from a
structural point of view, they cannot ‘be distiguished.

The category R has many useful closure properties we are going to exploit.

Lemma 2.2: R is closed under +,% and =, 1.e. if a and b are retracts, then $0 are a%b,ax b, and a=b.
Proof: by T.P.
Lemma 2.3: R is cartesiati-closed.

Proof; We have to prove that [r=[8=1]] and- [rxs = 1] are isomorphic in R for any retracts
r,s and t. Let F, G be defined by

FaXfx fr; x)np x))
Ga[Xx grs g(<r,s>)]

The T.P. proofs for
G o F = Idip,is.py}

and
FoGaldps .5 p

are almost straightforward.

Lemma 2.3 is the basis for what is commonly called “currying”. It allows to restrict attention to
monadic functions.

Let the function str be defined by
stram[Xf x. o(x) 2 f(x), L]

By T.P. we can show that str ‘turns any function into one that is strict (with respect to the first
argument) and that it is a retract. This shows that the set of strict functions is a proper subdomain

of I.

A domain is called flat if it contains, besides & and T, only pairwise incomparable elements, For flat
domains there is a computable equality relation "s" with:

x)m#t, ofy) s i, xny |~ xsy s g
xsy = # e xmy, ax)= i, dy)at

The type-free Logic for Computable Functions ‘ 2.6

In many cases it is very convenient to use the (computable) equality instead of the equivalence a
‘since it may appear inside a term and thus gives greater expressive power.

Lemma 2.4: If Fa[ed. [Xc. WHe))]] and G [Xc. [«g.t(g) J] , wheretis any rerm, then F = G.

Proof: T.P.

Essentially, the lemma means that constant parameters can be bound “globally”, i.e. they need not be
passed on with every call. The lemma will be used quite often in the remainder of the paper
without being referred to explicitly.

Abstract Data Types in the Type Free Logic 8-1

3. Abstract Data Types in the Type Free Logic

In this section we introduce data types and discuss the representation of data structures in tfLCF.
We investigate <properties of data types by looking at them from a more algebraic point of view,
which allows us to derive various function definition schemes. The basic function definition method
is illustrated in an example dealing with the translation of arithmetical expressions from infix to
postfix form.

What is intuitively meant by the notion abstract data type? There is a common understanding that,
in programming, a data type is not just a set, but also comprises information about the structure of
the elements and how to construct them and to operate on them. This can be done in an abstract
way, i.e. the only information available is the set of primitive operations (constructors, selectors,
recognizers) and relationships between them; it does not matter what the elements of the type look
like and how the primitive operations are implemented. In the context of a formal calculus the
relationships between the primitive operations are expressed by axioms.

The presentation concentrates on generic recursive types; however, in subsection 3.4 extensions to
non-free types are discussed.

3.1 Data Type Definitions

We start with discussing free data types. The type system will be extended later to comprise a wider
class of types, A type definition is made by listing alternative subtypes. A subtype is either a constant
or a composed type. Composed data types are defined best by their abstract syntax [Mc], using
constructors, selectors and recognirers to describe the structure of the type. In a more formal BNF-
like notation (using "constr” for constructor, “sel” for selector, and “dt” for data type):

<type_def> t <type_name> := <subtype>{| <subtype> }
<subtype> t <constant> | <comptype>

<comptype> t <constr> (<sel | >:<dt | >,..,<selp>:<dty>)
<constant> « <identifier>

with the restriction that the names of all constructors in a type definition and all selectors in one
composed type have to be distinct. A data typﬁ definition may be recursive, that is, any of the dt; in
a subtype may be the name of the type to be defined. Also mutually. recursive data type definitions
are permitted.

For example, the data type “sequence (linear list) of atoms” can be defined using this formalism by
Seq := emptyseq | mkseq(hd:atom, ti:Seq).

Strictly speaking, this data type definition is a type scheme, that is,

Abstract. Data Types in the Type Free Logic 3.2

seq = emptyseq | mkseq(hd:dtype, ti:seq)

defines a type “sequence of elements of type dtypo” for any data type dtype. This will be made more
precise in the following subsection. Beside seq we will use other standard data types (type schemes)

like binary trees, natural numbers, and pairs, defined by

bintree := mkbt(sub:dtype) | comp(fir:bintree, sec:bintree)
nnum :® zero | suc{nninnum)
dpair := mkpair(fir:dtype ;, sec:dtype,)

32 Representing Data Structures in tfFLCF
In section 2 it was explained that retracts can be regarded as the “types” in the type-free logic, The
data types are now to be represented in LCF in such a way that the resulting terms are retractions.

What exactly is implied by a data type definition? Intuitively, a data type should have the following

properties:

a) A data type is the disjoint union of subtypes. A subtype is either a constant or a composed
subtype. For each subtype there is a predicate (characteristic function) which will be named
"is_const” or "is_<constr>" resp. These recognizers permit to decide membership in one of the
subtypes relative to the whole data type.

b) Each constructor is a one-to-one function; in particular, the corresponding selector functions allow
to “retrieve” the respective arguments of a constructor.

c) Asubtype has to be embedded explicitly into thetype by a constructor function. For example,
“atoms” are not lists unless they are “converted” into lists. This helps us to keep all data types
disjoint.

These statements can be expressed more precisely in terms of LCF axioms.

Definition 3.1 (Axioms for generic data types):
The data type definition

type := constant }... | constant, |comptype;|...| comptype,
with .
comptype, := compy(sel :dty;, .. . seluidlyy) for kel,.,n

is considered to correspond to the fixed point equation

(1) typo s[ecF.[A x. is_constant;(x)3 x, . . jis_constant,,(x)> x,
is_comp; (x) o comp, (dt; ; (sel; ;(x)), . . ,dt;;;(sely;;(x)), . .,
is_comp,,(x) > compy(dty; (sely; (x)), . . dty(selyn(x))),

1]

where dt'ysF if dtstype and’ dt'y=dty; otherwise, and for i,j=l,.,m;kjlsl,.,n

Abstract Data Types in the Type Free Logic 3-3

(2) Olconstant;) s tt
is_constant;(constant;) s it

(3) é(compk(dt“ (X]); .. 'dtkjk(xik)” 2 a(dtkl (x] NAA é(dtk,k(x,k))
d o comp; : s is_comp; o comp;

(4) V x . is_compy(x) => is_comp(x) = f f
V X . is_const;(x) => is_consti(x) = ff
V x . is_const(x) => is_comp,(x) = f f

(5) d o is_compy 2 O o is_comp, for kAl
d o is_const; ¥ d o is_const; for iAj
d o is_const, » O o is_comp,
(6) dlcomp;(x | X)) => 501, (cOMP;(X 1Xpi)) & X, for r=l,.n;

Axiom (1) is a mere transcription of the type definition. It contains the basic information about the
type structure; therefore, it will be called the characterizing function of the type. The goal is to prove
that it is a retract. However, this cannot be done without further specifying the primitives occurring
in (1) by adding axioms expressing the statements a)-c). They make sure that the recognizers for the
subtypes are complementary (axiom 4) and that they are defined exactly for the elements of the type
(axiom 5). Axioms no. 6 state the generic nature of the type (This is equivalent to saying that
constructor and selector functions are essentially tupling and projections). All constructors are
assumed to be strict in each argument and total for arguments of correct types (axioms 3).

Example: The data type definition for (homogeneous) sequences
Seqis @ mptyseq | mkseq(hd:Atom, t1:Seq)
will generate the axioms

(S1) seq=[ecS. [Xx. is_emptyseq(x)> emptyse
is_mkseq(x) ® mk«q(atom(hd(x)). S(tiix))),

)

where atom is the characterizing function for the data type Atom,

(S2) o{emptyseq) = tt

(S3) is_emptyseq(emptyseq) = tt

(S4) V x y. d(mkseq(atom(x), seq(y))) s d(atom(x)) A d(seq(y))
(S5) o mkseq e is,mkseq © mkseq

(S6) is_emptyseqz-~cis mkseq

(S7) Vxy. a(mksoq(x,y)) =) hd(mkseq(x,y)) By

(S8) Vx y.d(mkseq(x,y)) s> tiimkseqix,y)) ¢ ¥y

Any type {;that occurs in the definition of another type t;is considered a base type for t;. The notion

- Abstract Data Types in the Type Free Logic 3-4

"base type” does not imply “basic” or “simpler”’; on the contrary, since mutual dependence of data
types is permitted, t; itself may be a base type for t; (hence the relation “is-base-type-of” is only a
quasi-order). If data types are mutually dependent the corresponding characterizing functions form
a system of mutually recursive functions. Those base types that do not depend on the type to be
defined are called generating types (in fact, they generate the type in an algebraic sense; see the
following sub-section).

At this point it has to be clarified what it means for a characteristic function to be a retraction, The
logical type of typo is (type=type) In order to make it a function in I the primitives (constants,
constructors and selectors etc.) have to be specified as elements of 1. This amounts to defining a model
of (the axioms describing) the data type in I. However, the retraction property can be proved just
from the axioms; more precisely, what can be proved is that type is an "abstract retraction”, meaning
that ‘every model is a retraction. All the models will be isomorphic retractions (in the categorical
sense), Thus the, abstract retraction represents an equivalence class of objects in R.

It should be noted that the standard representation of data types in a LCF-like language is by
“domain equations” (involving * and x ; see [$¢2]). For example, the data type Seq of sequences of
atoms is completely specified by the least fixed point of the equation

(i) Seq « ® mptysoq i+ (Atom :x Seq)

_ (where :+ and :x are strict versions of ¢ and x) given a representation of the type Atom andthe
constant emptyseq. However, we do not follow this line. The syntax of data type definitions, as given
in the preceding section, involves constructors and selectors; they are the primitives for defining
functions operating on the data type. But they do not appear in (i); in fact, (i) is an implementation
of the data type Seq (by functions in I) rather than an abstract definition; the primitives are hidden
in the construction of sum and product. In order to keep the previous higher level of abstraction
the primitives have to be axiomatized, as has been done for special types in [Nell. Although an
axiomatization as in definition 3.1 is by far less elegant than a definition like (i) it is more
appropriate for the purpose of program specification.

Incidentally, this discussion shows that every (generic) data type has the following standard model:
The data type definition

type = constant,| . . . | constant, |comptype|...| comptype,
with

comptype, = compy(selydt,;, ... seledty,) for kel,.,n

is simply translated into
type s tt o ...:e &t :e comp; :+... 3+ comp,

with
comp, s (dty, 3x . , sx dby) for kel,n

It is easy to figure out what the primitives look like, and the proof that the axioms of definition 8.1
hold is straightforward.

Abstract Data Types in the Type Free Logic ‘ 3.5

Lemma 3.2: type i strict.
Proof: Simple consequence of the fact that all functions involved are strict (by definition).
Theorem 3.3: type is a retract if all base types of type are retracts.

Proof: See appendix A.3.

From the characterizing function of a type we are going to derive a variety of function definition
schemes and functions. In particular, a rype predicate (characteristic function) is-type canbederived
which yields # exactly for the defined elements of the type, i.e. which satisfies:

VX. is_type(x)=> typo(x) ® x
VX. istype(x)=> o(x) st
and -
type(X) s x, o(x) n & |~ is_type(x) = #
This predicate will be discussed in greater detail in the following subsection.

For a recursive data type we can derive the standard structural induction rule from the
characterizing function (the retraction).

T Aeorem 3.4 (Structural Induction):
For a recursive data type typo defined by

type := constant ;|... | constant, |comptype;}...| comptype,

with
comptypey :s compy(sely sty , . . . ,selyidt,) forksl,.,n

there is an induction rule that allows to conclude
Ql= Vx. is_type(x)=> P(x)

(where the conclusion is meant to be a wff involving x each of whose awff's is prefixed by
VX. is_type(x). .) from the following antecedents:

(a) For each constant constant; (i=l,.,m)

Q |- P(constant)

Abstract Data Types in the Type Free Logic ‘ 3-6

(b) For each composed subtype comptypey (ksl,..,n)

Q Plykjp), . .. dlcompy(..))= & |- Pleompy(..))

with an antecedent Plyyjp) for each recursion arguments, i.e. for those arguments of comp, with
dty; = type .

Proof; see appendix A.3.
For example, the induction rule corresponding to the characterizing function seq is

P(emptyseq) Ply), o(mkseqix,y))stt |= P(mkseq(x,y))

Vx. is_seq(x) »> P(x)

Note that the constructor arguments in the induction step need not be restricted by type predicates
(the restriction is implied by the definedness predicate). A discussion of other forms of the induction
rule that involve the retraction can be found in appendix A.3.

As mentioned above, the type definition for seq is a rype scheme, defining a data type for any type
dtype. This means that in the corresponding retraction seq the retract atom can be replaced by any
other retract. We therefore can define the functional

seqof :a [\ typo. [«S. [Xx. is_emptyseq(x) > emptyse?,
is_]ni\ksaq(x) > mkseq(type(hd(x)), S(ti(x))),
iy

By theorem 3.3 seqof(type) is a retract for any retract type. In other word, seqof maps retracts on
retracts. Obviously, any generic type construction yields such a mapping on retracts. Properties of
these functionals will be studied in the following subsection.

3.3 Algebraic Interpretation of Data Types

Interpreting data types in terms of universal algebra helps to clarify certain concepts and properties.
As a data type may involve several subtypes-and functions of heterogeneous type the appropriate
notion is that of “heterogeneous algebra” (Birkhoff and Lipsom [BIJ; see also Higgins [Hi]).

Definition 3.5 (Heterogeneous algebra)
A heterogeneous algebra A consists of
- a family (Aj)y of (non-empty) sets; the A are called phyla.
- a family (fe of operations; for each fx there is an associated tupel
index = (kiy . - viknks Jknke 1) OF €lements of J.

Abstract Data Types in the Type Free Logic 3-7

The index of the operation fy indicates the phyla from which the arguments of f, are taken (i.e. the
argument types) and the target phylum. nkis the arity of f (possibly 0). In the present framework,
the index is simply the type of the operation.

The triple (J,K, (indexe)ek) is called the signature of the algebra; it characterizes the basic structure.

Algebras are called similar if they have the same signature. As the structure of similar algebras is
comparable, it is possible to define structure-preserving mappings between them.

Definition 3.6 (Homomorphism)
Let A = ((A)jes (k) and B = ((B)jeys (Bdke) be similar algebras. A homomorphism h from

Ato Bis a family of mappings (h;),c; such that hi maps A; into B;j and for each kéK
hirke (fCagy 2 yand) = 8ilhjy (@3)y - hyn(an))
where index, = (. . vink inks1) .

As mentioned in the previous section, a data type (or: its domain) forms a complete lattice. So, the
appropriate algebraic structure is that of a Aeterogeneous lattice-algebra. Although the lattice
structure of the domains considered here is not very interesting - apart from the elements .1 and T
the domains are flat - we have to take it into account by requiring that all functions preserve the
lattice structure. However, because of the simple structure it is sufficient to require that all functions
involved in the algebraic structure, ie. the operations, are strict and total. Similarly, all the
mappingsh; constituting a homomorphism have to be strict (it is, however, not necessary to assume
totality), Henceforth, these assumption will be made throughout the remainder of the paper,

Example. The data type Seq, regarded as a heterogeneous algebra, consists of the two phyla atomand
seq and operations

emptyseq: 0= seq (nullary)
mkseq: atomxseq = seq.

The axioms in the previous section indicate that a data type corresponds to an absolutely free (or

“generic”) algebra which is generated by the constants, the base types and the constructor functions

as operations. As it is well-known in algebra, an absolutely free algebra has characterizing universal

properties:

(1) There is (upto isomorphisms) only one absolutely free algebra for given generating base types and
operations.

(2) Any homomorphism from an absolutely free algebra F into another algebra A of the same type (in
the algebraic sense) is determined uniquely by functions mapping the generating sets into A.
Properties (1) and (2) can be proved in LCF for each (free) data type without relying on an

algebraic interpretation. It is these properties we are going to exploit.

Abstract Data Types in the Type Free Logic ‘ 3-8

In order to define a homomorphism it is sufficient to map the base types into target sets and the
constructors onto operations on the target structure. Then, by property (2) there is a unique function
that homomorphically extends the base function(s). Due to the fact that in LCF homomorphisms can
be “pushed through” conditionals, homomorphic extension is representable by a simple modification
of the function characterizing the data type: we have only to replace the base type retracts by the
base functions and the constructors by the operations on the target algebra.

To continue our example based on the data type seq, we notice that a homomorphism from seq into
an appropriate algebra is determined completely by

a) a constant that is the image of emptyseg,

b) afunction that maps the base type atom into the corresponding set, and

¢) a binary operation on the target algebra.

In LCF, this is written as the functional

Sfun sa[X f const op. [e¢ s. [xx. is_emptyseq(x) = const,
is_mkseq(x) > op(f(hd(x)). S(ti(x))),
4113

Assume R is the target structure with phyla R; and Ry, ¢ an element of Ry, op s RyxRp = Ry a binary
operation and fun a function from atom to R;. Then property (2) above yields the following
theorem:

Theorem 3.7: F s Sfun(fun,e,0p) is the unique homomorphic extension of fun with respect to ¢ and op,
ie, it is’ the only homomorphism fromseq 10 R with Flemptyseq)a c and
F o mkseq® (Xx y.op(fun(x),F(y))].

The proof is straightforward; it crucially depends on the “freeness” of the type definition (i.e. axioms
(87),(S8)) which is necessary to establish the homomorphism property of F.

A simple example is the type predicate (characteristic function) for seq: The function is_seq: seq=>T
with . -
is_seq(x)stt ff seqix)2x an d x)=tt

is definable simply by extending the type predicate is-atom of the generating base type to a
homomorphism into T:
is.seq = Sfun(is_atom,tt,A)

A further property of the homomorphic extension functional Sfun is that it carries over a structural
induction rule from the source domain. E.g for sequences:

Plc) Ply), d{op(x,y)= # | - P{op(x,y))

V 2. is_seq(z) = P(F(2))

Abstract Data Types in the Type Free Logic 3-9

thus permitting induction on (target) domains originally not structured appropriately.

The mathematical content of the discussion on interpreting data types as absolutely free algebras
and the homomorphic extension functionals amounts to a well-established fact known from category
theory: the correspondence between free constructions (free objects) and representable functors. The
pair (Sdom,Sfun) defines a functor from Rinto a subcategory of Rof “suitably structured” retracts,
The point is that this correspondence can be established within the framework of LCF. Due to the
fact that everything is represented as LCF terms, objects and morphisms as well as functors, it allows
to carry out mechanically assisted proofs rather easily. For the time being, theorems like the one
mentioned above have to be proved in LCF for each data type separately, although the structure of
the proof is always the same. However, there is some hope that formal proofs of general statements
about, e.g., all generic data types will be feasible using a metatheory of LCF being developed on the
basis of representing the LCF notions as data types (see section 6 for part of the data type
definition).

The usefulness of homomorphisms as a structuring principle has been observed elsewhere, in
particular in the context of program translation [Mo, MiW]. However, though homomorphic
extension is a rather powerful scheme for function definition it is by far not powerful enough. It
turns out that properties similar to those proved for homomorphic extension can be shown for a
more general class of definition schemes; this will be discussed in section 5.

34 Non-generic Data Types

Although the class of generic data types covers many of the structures needed in programming it is
not comprehensive enough. Relaxing the restriction to generic structures is tantamount to, in
algebraic terms, allowing to add further relations to a type definition. In a way, the generic data types
can be regarded as the “context-free types,” and adding relations as “introducing context.” In the
context of this paper it is sensible to consider only relations that are expressible as recursive
predicates.

The general method will be discussed by means of an example. Let norep(x) be a predicate on
sequences which is true iff x does not contain repetitions of elements (the explicite definition is
straightforward). Then the data type norepseq of “sequences without repetitions” is just the
restriction of seq by norep. The new type can be represented in the following way: Whenever an
element is added to a sequence it is checked first if it already occurs in it, in which case nothing is
done. That is, if the constructor mkseq is modified to

mknorepseq 8 [X x y. norep(mkseq(x,y)) > mkseq(x,y), y]

then all sequences constructed by mknorepseq have the “no-repetition” property, i.e. they satisfy the
predicate norep. This is just another application of the homomorphic extension functional: The
range of the function

Abstract Data Types in the Type Free Logic 3-10

norepseq :% Sfun(dtype, emptyseq, mknorepseq)

isexactlythe desired subset of sequences without repetitions (it is obvious that only elements of seq
are constructed). In other words, norepseq represents ordered sets of elements of type dtype.
Obviously, norepseq is a retract of seq; Since norepseq defines a subdomain of seq it is also a retract
of I, which means that norepseq makes sense (in the present context) as a data type. This
construction for new retracts works at lease in the case where a new type is defined by arestrictive
predicate. The full extend of the method, however, needs to be explored further. It is con jected that
anydatatype(givenareasonable definition in terms of computability) is representable as a retract of
a generic type; this would parallel the fact that, in formal language theory, any recursively
enumerable set isthe image of context free sets under suitable mappings.

3.5 AnExample: Infix to Post-fix Translation

As an example we show how to generate a function that translates arithmetical expressions from
infix to postfix notation (the example was suggested by J.Allen). The abstract syntax of the
structures is defined by

exp = mktexp(testerm) | mksexp(su,:exp, supiterm)
term = mkfterm(tf:fact) | mkpterm(pr :term, proifact)
fact s mkvfact(fv:var) | mkefact(fe:exp)

and
post = mkvpost(pvivar) | mksum(s,:post, sy:post) | mkprod(p,:post, po:post)

which may be thought of as abstraction from the “concrete” infix grammar

<axp> i= <exp>'+ <term> | <term>
term> :s <term> 'x <fact> | <fact>
fact> = <var> | '(<exp> ')

and the postfix grammar
<post> = <var>|<post> <post) '+ | <post> <post> 'x

Now, the problem-is to find a function that translates variables into variables and infix-sums and
infix-products into postfix-sums and postfix-products resp. This is a simple example of a
homomorphism between heterogeneous algebras. The algebra Exp includes the 4 phyla exp, term, fact
and var, the algebra Post the phyla post and var. The homomorphism maps exp, term and fact into
the phylum post and var onto var, that is, the homomorphism consists of 4 mappings

id: var = var
Texp: exp — post
Tterm: term =» post

Tfact: fact = post

Abstract Data Types in the Type Free Logic 3-11

These mappings have to respect the corresponding algebraic operations

mksexp: ~ expxterm= exp <=> mksum : postxpost= post
mkpterm: termxfact = term <=> mkprod: postxpost - post
mkvf act: var = fact <{=> mkvpoct: var = post

i.e., they must satisfy equivalences

Texp(mksexp(x,y)) # mksum(Texp(x), Tterm(y))

etc. Since the distinction between exp, term and fact disappearb in Post, the “operations”
corresponding to mktexp, mkfterm and mkefact are just identities on post. Having established all the
algebraic correspondences, homomorphic extension immediately yields the desired functions (slightly
simplified):

Texp &[«E. [Xx. is_texp(x) > Tterm(te(x)),
is_sexp(x) > mksum(E(su; (x)), Tterm(suy(x))),

)

Tterm = [ecF. [Ax. is_fterm{x) o Tfact(tf(x)),
is_pterm(x) > mkprod(F (pr ; (x)), Tfact(pr,(x))),

1]]

Tfact s [Xx. is_vfact(x) o mkvpost(var(fv(x))),
is_efact(x) o Texplfa(x)),
4]

Elements of a Problem Specification Language ‘ 4-1

4. Elements of a Problem Specification Language

This section is devoted to discussing a rudimentary “problem specification language.” The language
consists of the terms of typed LCF, augmented by certain, constructions that are considered natural
or helpful for concise specification of problems or, more precisely, functions over data types. The
main extension is a first-order like calculus that enables to talk about sets and quantification in a way
consistent with the computational logic. is an extension of the LCF terms in their typed form. Using
the definition techniques developed in the preceding section, the added constructions are interpreted
as LCF terms which gives them the intended meaning as computation rules or “programs.”

4.1 Sets, Set Operations and Quantification

Syntax

Types. The language is typed, i.e. a type is associated with each term. There is a predefined type:
T, the domain of truth values. New types can be defined explicitly as data types (see below). For
each type t we have a type setof(t) denoting the powerset type “sets of elements of type t". More
formally:

Definition 4.1 (Types):
(1) Tisatype.
(2) Data types are types.
(3) Ift;and t; are types, then (=) is a type (the type of functions from f; to t)).
(4) Iftis atype then setof(t) is a type.
(5) These are all the types.

Types built by (4) are called set types. No data type is a set type. Although types are not sets, we use
the type name also to denote the set of individuals of that type. There are no equalities between
types; different type expressions, in particular different type names, denote different types.

Note the distinction between “types” and “data types". Types are the sorts in the logic, whereas the
notion data type is used more in the sense of data types in programming languages which involves
certain assumptions about the (intérnal) structure of the typed objects. By (2) in definition 4.1 data
types are assumed to coincide with certain logical types.

Terms, We use the notation s# to denote a term s of type t. Ift is a set type then s:t is called set
term. All LCF terms (1 - 6) are terms of our language (cf. [Mi 13 and appendix A.LIl). Beside the
LCF terms the language includes terms for expressions involving sets and bounded quantification
(7-9).

Definition 4.2 (Terms):
(1) The constants 1, tt, ff, T are terms of type T.

Elements of a Problem Specification Language 4-2

(2) Any identifier is a term.

(3) If ssty=tp and x:ty are terms then s{x)itp is a term.

(4) Ifxst;is an identifier and stp is a term then [Ax.s(x)]: t; =t is a term.

(5) If psT,q,rst are terms then (p2q,r)itis a term.

(6) Ifx:tis an identifier and s:ta term then [ecx.8]st is a term.

(7) If xatis an identifier and S:setof(t) a set term then (x¢$):T is a term.

(8) If xst is an identifier, S:setof(t) a set term and P:#-T a predicate term then (Vx¢S.P(x)): T

and (3x€S. P(x)): T are truth value terms.
(9) These are all the terms.

As usual parentheses and brackets can be omitted as long as parsing is unambiguous. The notions
awff and wff are used as in typed LCF (see appendix A.1.1).

Note that the use of the sign V for quantification-in (8) cannot be confused with the use of Vin
abbreviations for Ax.tzAx.s. The former always requires a restricting set whereas the wff-V is never
restricted.

Semantics

The aim is to interpret the extended typed language in the type free calculus. This is done by
showing that every type corresponds to a retract in tfLCF. Since the representation of data types as
retracts has already been discussed, it remains to show how sets are to be represented. Based on the
set representation we then have to find interpretations for the set operations and quantifications.

The most common way of introducing sets into an environment of structures is by representing them
as sequences (linear lists) of non-repeating elements. Aswe are not interested in axiomatizing set
theory but rather look for convenient definition of function meanings we rely on such a
representation in LCF (cf. [Nel]). It will turn out later that sets are needed mainly as a conceptual
intermediate step which can be eliminated in actual “programs”. Besides, representing sets by
sequences fits nicely into the algebraic framework. Actually, what is to be represented is a rather
restricted kind of sees: we are only dealing with homogeneous and computable (mainly even finite)
sets. However, the required homogeneity is not really restrictive as one can always define the "sum

type.”

The first step is to define a membership predicate x€S for sequences, yielding t if x occurs in § and
otherwise (if it is defined). It is definable as a homomorphism from Seq into T by homomorphically
extending equality on atoms:

€35 [XX. Stun([Ay.xsy], ff, v)]

Note that ¢ is defined for appropriate types only; if x does not have the same type as the elements of
S, = is undefined, thus also x€S.

Elements of a Problem Specification Language ‘ 4-3

Using the predicate ¢a function U, on atom x seq is definable by
U; i [Xx S. x€§2 S, mkseq(x,S)]

u, guarantees that elements already occurring in a sequence will not be added; sequences built up
using u; are those directly representing sets. If Seq is the data type of sequences of elements of type
t, the type setof(t) is the image of Seq under the homomorphism

set := Sfun(id, emptyseq, U;).

Moreover, set is a retract on seq; it defines the same subdomain of seq as the function norepseq
discussed in subsection 3.4.: setof(t) corresponds to the subset of sequences without repetitions of
elements. (However, it is not a subalgebra of seq.) From this it follows that functions defined on Seq
are equally defined on setof(t). Furthermore, the (generic) structure of Seq can be used for defining
functions on setof(t). More specifically, we have the embedding iset: setof(t)» seq with

set o iset = idgy -

Thus, any function f: seq =D can be restricted toset by composing with iset. In this way, the
predicate ¢ defined above becomes the set-theoretic element relation. Similarly, we obtain an
interpretation of quantified terms by applying homomorphic extension to any predicate P. Let
operators all and exist be defined by

all sz [AP.Sfun(P, ff, A)
exist := [AP.Sfun(P, ff, v)
Then

Vx€S. P(x) := all(P,S)

and
3x€S. P(x) := exist(P,S).

Note that this form of quantification is well-defined if S and Pare defined; since . or T is never an
element of a set, it will not appear in quantifications (and cause a non-defined truth value).
Furthermore, a quantified term denotes a computable function if the predicate P and the term
denoting the restricting set S are computable, which is guaranteed by the way terms can be built up.

Using these constructs, set inclusion is easily expressed by
Sic g i= Vx¢S; xeS;
and- similarly set equality by the “extensionality” property
;=S jiz (Vx€S; x€S)) A (Vx€S;. x€S))

Note again that these relations will be undefined for sets over different types. The empty set is the
image under set of the empty sequence; we will identify the former with the latter.

Elements of a Problem Specification Language ‘ 4-4.

The function V;, taken as a function from ixsetof(t) to setof(t), inserts a single element into a set;

extending this function homomorphically in the first argument yields ordinary set union u.Asa
short hand notation we will use Y, for n-ary union (n-I-fold composition of U).

Similarly, set intersection and set difference are definable by means of the function
remove: t1xsetof(tl) - setof(tl) that removes an element from a set. remove is defined by

remove :s [XX S. xés D rem(x,s), s]
where rem is the endomorphic extension of
rem;:s [Xx y. x=y 2 {}, {y}].

If { x |x€S}is used as an equivalent notation for S, the term language can be extended to include
sets that are characterized by predicates. However, one has to be careful: a set { x |P(x)} need
not be constructive even for computable P, if no domain is indicated. Therefore, predicates for set
formation have to be restricted to those based on set expressions, i.e. elementary predicates x¢S.All
other predicates have to be restrictive in the sense that they restrict a set to a subset ("filter
predicates”).

Definition 4.3 (admissible set predicates):
The set of admissible set predicates is defined by
(1) The elementary predicates x¢S are admissible set predicates.
(2) If Pis an admissible set predicate and Q any predicate, then PAQ is an admissible set
predicate.
(3) If Pand Q are admissible set predicates, then PvQ and P\Q are admissible set predicates.

Lemma 4.4:
if Pand Q are admissible set predicates, then

{x |PIVQ(X)} o {x+PX)IV{x . Qix)}
and

{x]PX)AQMX)} o {x«P)}A{x: Q)

It can be shown that the operations defined here have most of the standard properties. However, the
well-known problems caused by only partial recursive predicates still remain. For example,

~(Vx€S. P(x))s3x€S. . P(x)
is true only if Pis rotal on the domain under consideration.

It is obvious that the representation of sets and set operations provide a model for a theory of (finite)
sets. In particular, a first-order like calculus based on the restricted quantifiers is available for

Elements of a Problem Specification Language ‘ 4-5

proving properties of functions. Note that this calculus is constructive in the sense that all
expressions denote computable functions (cf. [Co)).

As the type system does not include basic set types, sets have to be generated from objects that are
not sets. There is a canonical way of deriving set-valued functions from types. Recall that a type t,

is a base type for a data type {; if it occurs in its definition. For each type t; that is a base type for t,

a function
set_of ;i t; - setot(t)

is obtained by homomorphically extending the mapping base-type - singleton-set. More precisely, in
the homomorphic extension constructors are replaced by set union (with appropriate arity); those
parts of a structure that do not involve elements of type t; are mapped onto the empty set. An

example can be found in section 5.

4.2 Schemes for Function Definition

In section 3 we introduced a method called “homomorphic extension” for defining new functions
over a data type. A particularly simple special case of this method is the endomorphic extension of a
function. An endomorphism is a homomorphism from an algebra into itself. Since all the algebraic
operations remain unchanged, the only parameters of endomorphic extension are the functions on
the base types to be extended. A typical example is substitution of terms for variables. Recall the
data type definition for binary trees over atoms from section 3:

bintree := mkbt(subsatom) | comp(fir:bintree, sec:bintree)
where atom is the generating base type. The corresponding endomorphic extension functional is

BTend := [Af. [«E. [Xx . is_mkbt(x) > f(atom(sub(x))),
is_comp(x) o comp(E(fir(x)), E(sec(x))),
4111

Now, if we want to solve the problem
“Find a function varsubst: bintree = bintree such that varsubst replaces all atoms in a binary
tree by their vatues under the function varsub: atom = bintree,”

then a solution is simply
varsubst =BTend(varsub),

and this solution is even unique, as it was shown in section 3.

Sofar, we have been looking at homomorphisms only. Unfortunately, many interesting functions
can not be represented as homomorphisms. But we can apply a similar definition technique to a
larger class of functions simply by explicitly stating the non-homomorphic part of the function and

Elements of a Problem Specification Language ‘ 4-6

using the extension functional for the homomorphic rest. This situation occurs often with data types
which include several composed subtypes; an example can be found in the next section.

The functionals derived from a data type definition (for homomorphic, endomorphic extension etc.)
not only permit definition of new functions in a concise wWay, they also facilitate proving properties.
In fact, certain properties of those functions derive from properties of the function& like the
induction proof rule already mentioned above.

Lemma 4.5:
If the argument junctions of an extension functional are strict/total then the resulting junction is

strict/total.

Note that totality entails that any program derived from a function by "meaning-preserving”
transformations terminates on defined inputs.

There are other definition schemes that hitherto have defied a natural algebraic interpretation.
Consider, for example, the following form of function iteration. Let the expression

[Vx€S : f(x,2)]

be interpreted as “For each x in S apply [Ay.f(x,y)] to 2" This can be made more precise by a
recursion on the sequence representing S:

[AS z. [Vx€S:f(x,2)]] & [eF.[XS z.is_emptyseq(S) > z, F(1i(S), f(hd(S), z)) 1]

However, this interpretation causes some problems. In order to be a conservative extension of the
specification language as defined so far the given interpretation has to be consistent with the notions
introduced previously. In particular, if two sets S and S’ are equal one would expect

VX €S: f(x,2) = vx €8S" f(x,z)

This implies that the applications of the f{x,.) must be independent of the particular representation
of 8, i.e. the “hidden order” on S ; or, at least, it must be guaranteed that the sequence of
applications of f can be executed in any order. This virtually restricts applicability of the
construction; in many cases it may not be easy or even possible to verify this kind of commutativity.
Although operators like function iteration are necessary to make the specification language powerful
enough, they will not be discussed further in this paper.

43 Transformation of Function Definitions into Programs
So far we have been discussing methods for defining functions over structured data and their
interpretation in LCF. Now, every LCF term also has an interpretation as a computation rule for

Elements of a Problem Specification Language ‘ 4-7

the function denoted by it. Given such an interpreter for LCF this allows to compute all the
functions definable in the language. However, the resulting computations would be quite inefficient,
in particular because of nestings of unnecessary recursions resulting from direct interpretation of the
constructs. Consider, for example, the expression

F(y) = Yx€S(y). P(x)

where the type of y is the data type list as defined above and S the standard set-valued function
set_of_atom. Since listis a recursive type, one recursion is required to compute S(y) and another one
to compute the quantified expression; but wc can do much better by utilizing the underlying
algebraic structure. Note that the value of F is determined by the values of P(x); moreover, we have

P = F omkbt

which means that Fis a homomorphic extension of P. Because of the uniqueness property it follows
that

F = BThom(P, A)

where BThom is the homomorphic extension functional for bintree. This means that F canbe
replaced by an equivalent function that involves only one recursion. Apart from that, the explicit
representation of the set S{y) is eliminated.

This is an example of how the algebraic concepts can be used to simplify function definitions
considerably. It shows that the interpretation of the specification language is not a case of simple
macro expansion, but a possibly non-deterministic process of simplifying expressions in a suitable
way, which is similar to, e.g., theorem proving. More heuristic methods for recursion removal have
been studied by R. Burstall and J. Darlington {BD].

T he regular expression structure that results frem defining functions by means of definition schemes
is of advantage at all levels of program development. Apart from the techniques for proving
properties about them (see above) it permits uniform application of optimizing transformations, like
replacing recursion by iteration. Even at the implementation level it can be advantageous: For
example, functions defined by endomorphic extension can be implemented in such a way that no
additional storage (for data) is required (cf. selective updating in [Hol). If it has been proved that
the transformation and implementation techniques preserve meanings, then the ‘“correctness” of
resulting programs can be guaranteed. Meaning preserving transformations will be studied in
greater detail in a subsequent paper.

An Example: Substitution with a-Conversion

5. An Example: Substitution with «-Conversion

5.1 The Data Types
In the example now to be discussed we have four data types, defined by

term s mketerm(constof:const) |
mkvterm(varofivar) |
. mkapply(funeof:term, argeof:term) |
mklambda(bvarof:bvar, termofiterm) |
mkmu(bvarof:bvar, termof:term) |
mkcond(condof:term, trueeof:term, falseeof:term)

bvar i= mkbvar(varofivar)
const := uu Jtt] ff | 00
var is taken as basic and not further specified.

The reader will notice that these data types represent the abstract syntax of LCF terms. In algebraic
terms the types form a heterogeneous algebra with the four phyla term, bvar, var, and const and

operations

(opl) mkcterm: const = term

(op2) mkvterm: var = term

(op3) mkapply: termxterm= term
(op4) mklambda: bvarxterm= term
(op5) mkmu: bvarxterm= term
(op6) mkcond: termxtermx term = term
(op7) mkbvar: var @ bvar

The generating phyla (data types) are const and var. Obviously the phyla var and bvar are
isomorphic; the reason for introducing the data type bvar is that it is more convenient to separate the

binding occurrences of variables from the other ones.
From the data type definitions the following characterizing functions are generated:

term s=[ecF.[Ax. is_const(x) = mkcterm(const(constof(x)),
is_mkvterm(x) o mkvterm{var(varof(x)),
is.mkapply(x) = mkapply(F (funeof (x), F(argeof(x))),
is_mklambda(x) > mklambda(bvar(bvarof(x)), F(termot(x))),
is_mkmu(x) @ mkmu(bvar (bvarof (x)),F(termof (x))),
is_mkecond(x) @ mkcond(F (condof(x}), F (trueot(x)), F(falseot(x))),

111

bvar : = [Xx. mkbvar(var(varof (x)))]

In order to define a homomorphism we have to supply 7 operations of appropriate types. 6 of them
correspond to the constructors occurring in the characteristic function term; the last one is to replace
mkbvar. By substituting the characteristic function for bvar in term we obtain an expression that

An Example: Substitution with a-Conversion 5-2

includes all operations and completely defines homomorphic extension. For endomorphic extension
only the operations on the generating subtypes (i.e. opl,0p2 and op7)-are required. Let

termhom :s [Aoplop2 ... op7.[«F..]]

and
termend := [X opl op2 0p7. [«F. . .]]

be the functionals for homomorphic and endomorphic extension.

52 The Problem

We want to formalize the following (cf.{AW]):
Replace any free occurence of the variable v in the expression (term) e by the term t after
renaming bound variables in e suitably (i.e. so that no free variable in t will become bound in a)
(a common notation is e[t/v]).

What is described above is the basic conversion rule of the X-calculus as it is incorporated in the
LCF system. It may be desirable to have a system that is smart enough to understand this
description of substitution and to translate it from English into a programming language, At
present, such a system is not available. It would require knowledge about what exactly is meant by
“free occurrence”, “replace”, “renaming” etc. For the time being we have to be satisfied with specifying

b

those notions in some kind of formal language and having a less ambituous system transform the

~ specification statements into executable code. In any case, we need a formal definition in order to be

able to prove anything about the function.

We construct a function subst: varx termxterm = term by stepwise specifying the informal notion in
our language. Let subst be defined by

subst := [XV t e. substfree(v, t, reanamebvar(e,t))]

where
substfree(v,t,e) := “replace all free occurences of v in e by t"
renamebvar(e,t) = “rename bound variables in e that occur free in t appropriately”

a) bound variables in term. The function boundvarsin: term - setof{var) returns a set of variables for
which there is a binding occurrence in the term. This is just the standard set function set-of-bvar
composed with the isomorphism variso from bvar to var, extended to sets. Here we can see how the
separation of the type bvar from var facilitates definition of set-valued functions. set-of-bvar is the
homomorphism defined by the operations

by:sbyis [Xx. {}] (empty set)
by :2 by s by 13 U

be i= Ug

by:= [Ax. ()] (singleton map)

. An Example: Substitution with «-Conversion ‘ 5.3

ie., set-of-bvar &termhom(b;, . . ,b;).

Then
boundvarsin i® variso © set-of-bvar

b) free variables in term. The standard function set-of-vars returns all occuring variables regardless
of whether they are free or not. So we have to update that function appropriately to get afunction
that returns only free variables. If we had separated the A- and cc-terms from the type term we could
use a standard set-of-dtype function for defining freevarsin. Instead, we define it directly as ‘as a

homomorphism
freevarsin: term = setof (var).

Using the set-valued functions

55 [xx. {}]

fz 2= f7 33 [Ax. {x}]

fa = U

fq 12 f5 33 [Axy. y\x] (set difference)
fg 1= Ug

the function is definable by

freevarsin :=termhom(f;, . . ,f;)

¢) Renaning bound variables. We need a function newvar that “invents” new variables (which do not
occur in either e or t). Strictly speaking the existence of newvar depends on a function that
enumerates all variables and returns the first element with a certain property. In any practicall
implementation we “know” all the variable names available to the user, so a function that generates
new names is available. In the abstract context it is sufficient to assume the existence of a strict and
total function newvar that returns a variable with the property

~ newvar(v,e,t) € varsin(e) U varsin(t) U {v}.

Using this function we can specify.renaming of bound variables:

renamevar(e,t) := “rename in @ each variable that occurs free in t and bound in "

formally:

renamevar :=[Aet. [V x €freevarsin(t) N bvarsin(e) : rename(t,x,e)]]
rename’ s8[At. [Xx @.termend(mketerm, replacevar, mkbvar © replacevar)]]

where replacevar denotes the term [Az.z=x o newvar(x,e,t), 2). Note that the use of the iteration
construction is justified by the fact that renaming of bound variables can be done in any order; all
resulting terms are equivalent.

An Example: Substitution with a-Conversion ‘ 5-4

d) substfree. "Free occurrence’ means “not bound”, i.e. “not in the range of a X or « binding that
variable.” So, in order to find occurrences of a variable v we have to search (recur in)thetree
representing the term e. Whenever we come across a A or « (that is, a mklambda or mkmu) that binds
v, we stop and return. Then any remaining occurrence of v is a free one and istobereplaced byt.
Inthe formal language this is expressed by a construction using a modified functional for

endomorphic extension:

substfree 13 [xS. [Xv t.[Ae.is_mkvterm(e) = varof (e)sv o t,q,
(is_lambda(e)vis_mu(e)) A bvarof(e)=v o e,
turmO(S(v,1),0)1]]."

Here term0 is the operator on F that defines term, i.e. term s [F. [Xx. tormO(Fx)]].

This finishes the formal specification of the substitution function. The collection of all the function

definitions

subst iz [Xv te.substfree(v,t,renamevar(e,t))]

substfree s8[¢S, [Xv L. [Ne. is_mkvierm(e) = varof(e)av > t,e,
(is.lambda(e)vis_mu(e)) A bvarof(e)=v = e,
term0{S{v,t),8)1]]

renamevar iz [Aet.[Vx €freevarsin(t) N bvarsin(e) : rename(tx,e)])

rename s5 [l [Xx e.termend(mkcterm, replacevar, mkbvaroreplacevar)]]

replacevar 32 [A2. z=x 2 newvar(x,e,t),z]

bvarsin 38 variso ¢ set-of-bvar

set-of-bvar satermhom(l Xx.{}], [Xx.{)], U, U, U, Vg,[Ax.{x}])
freevarsin :x termhom([Ax.{}], [Ax.{x}], U, \, \, U3, [Ax.{x}])

is somewhat longer than the informal description in English, yet it is complete in the sense that a
sufficiently smart system can transform it into a reasonably efficient program, using transformations
of the sort indicated in the preceding section.

Concluding Remarks 6-1

6. Concluding Remarks

In this paper, the representation of abstract data types in LCF and the algebraic interpretation of
structures were discussed. This led to constructions that permit to specify functions operating on data
structures in a concise way and close to what may be considered “natural.” The methods were
demonstrated in an example taken from the actual LCF system.

The construction methods considered here constitute only . first step towards an elaborated language
that will allow easy and concise definition of complex functions as they are needed in, e.g., structure
manipulating systems. There are many directions in which the work presented here has to be
extended. Some have already been mentioned in the preceding sections: systematic extension ‘of the
system of data type; more general function definition schemes; general methods for transforming and
optimizing function definitions, in particular for remnval of redundant recursions; the translation of
logical expressions into a “real-life” programming language. In the paper, only methods for explicit
function definition have been discussed. However, it appears that techniques for solving equations
that define functions implicitly can similarly be derived from the explicit representation of the data
structure by a retract. The retract could serve for guiding the search for solutions and for
structuring the resulting program. The development of such problem solving methods in the
framework of LCF has to be left to future studies.

How much of the methods discussed here can be automated? It is obvious that the generation of the
appropriate set of axioms, of function definition schemes and rules for structural induction from the
data type definitions is straightforward and can be completely automated. Furthermore’ many checks
for simplifications and transformations can be done on a purely syntactic level accessible to
automation, So it should be easy to incorporated all these features and special knowledge about the
restricted set calculus into an interactive system for developing programs and proving theorems
about them.

References R- 1

R. References

[(A1]

Allen, J.: Anatomy of a Language: LISP. Forthcoming book.

[AAW] Aiello, L, Aiello, M., and Weyhrauch, R.-W.: The Semantics of PASCAL in LCF.Memo

[AW]
[BiL]
(BuD]
{BuL]
[Co]
(Ea]
(He])
(Hi]
(Hol
[(Mc]
(MaWw]

[Mill

(Mi2]

(Miw]
(Mo]
[Nell
(Ne2]
(Sci]

(Sc2]

AIM-22 1, Stanford University, 1974.

Aiello, L. and Weyhrauch, R.W.:LCFsmall: an implementation of LCF. Memo AIM-241,
Stanford University, 1974.

Birkhoff, G, and J.D. Lipsom : Heterogeneous algebras. Journ.Comb.Theory 8 (1970),115-
133.

Burstall, R.M., and J. Darlington : Some transformations for developing recursive programs.
Proc. Int. Conf. on Reliable Software, Los Angeles, April 1975.

Buchanan, J.R. and DC. Luckham: On auromating the construction of programs. Memo
AIM-236, Stanford University, 1974.

Constable, R.L.: A constructive theory of - recursive’ functions. Technical Report 73-186
Cornell University, October 1973.

Earley, J. High level operations in automatic programming.Proc. Symp. on Very High
Level Languages, SIGPLAN Notices 9.4 (1974).

vonHenke,F. W.: Notes on automating theorem proving in LCF. forthcoming.

Higgins, P. J.: Algebras with a scheme of operators. Math. Nachr, 27 (1963),115- 132.

Hoare, C.A.R.: Recursive Data Structures. Memo AIM-223, Stanford University, 1973.
McCarthy, J: A basis for a mathematical theory of computation. in: Computer Programming
and Formal Systeins, (ed. Braffort and Hirschberg), North Holland (1963).

Manna,Z.and R. Waldinger: Knowledge and reasoning in program synthesis, Techn.Note
98, Stanford Research Institute, Nov. 1974.

Milner, R.: Logic for computable functions - description of an implementation. Memo AIM-
169, Stanford University, 1972.

Milner, R.: Implementation and applications of Scott’s logic for computable functions. Proc.
ACM Conference on Proving Assertions about Programs, New Mexico State University,
Las Cruces, New Mexico, 1972.

Milner, R. and Weyhrauch, R.-W.: Proving compiler correctness in a mechanized logic,
Machine Intelligence 7, ed. D. Michie, Edinburgh University Press, 1972.

Morris, F.L.: Correctness of Translations of Programming Languages - an algebraic ap proach.
Memo AIM- 174, Stanford University, 1972.

Newey, M.: Axioms and Theorems for Integers, Lists and finite Sets in LCF. Memo AIM-
184, Stanford University, 1973.

Newey, M.: ‘Formal semantics of LISP with applications to program correctness. Memo
A IM-257, Stanford University, 1975.

Scott, D.: Continuous Lattices. Proc. of the 1971 Dalhousie Conference, Springer Lecture
Notes.

Scott, D.: Data types as lattices. Forthcoming Springer Lecture Notes.

3

References R-Z

(WM] Weyrauch, R. and Milner, R.: Program semantics and correctness in a mechanized logic, Proc.
USA -Japan Computer Conference, Tokyo, Oct 1972.

Appendices A -i

A. Appendices
Al Logic for Computable Functions

A.1.1 Syntax of Typed LCF
The following is an extract taken from [Mil].

Types At bottom tr and ind are types. Further if 81 and 82 are types then (81-482)is a type.
With each term of the logic there i1san unambiguously associated type. For a term t we write {:4 to
mean that the type associated with tis .

Terms (metavariables s,t,si,ti,.) The following are terms:

Identifiers (metavariables x,y)- sequences of upper or lower letters and digits. We assume that
the type of each identifier is uniquely determined in some manner.

Applications - s(t) : 82 , where s:81-82 and t:81.
Conditionals -(s=1,t2): 8 , where s:tr and t1,t2:8.
X-expressions - [Ax.s] : #1=482, where x:81 and s:82.
«-expressions -[«x.8]: 8 , where x,s:4.

The intended interpretation of the d-expression [«f.s] is the minimal fixed-point of the function or
functional denoted by [Af.s]. For example:

[ocf.[Ax.(p(x)=1(a(x)),b(x))]]
denotes the function defined recursively as follows:
f(x) <= if p(x) then f(a(x)) else b(x).

Constants The identifiers tt, ff denote truthvalues true and false. & denotes the totally undefined
object of any type: in particular, the undefined truthvalue.

Atomic well-formed formulae (awffs) The following is an awff:
sct

where s and t are of the same type. The intended interpretation of s&t is, roughly, that t is at least as
well defined as, and consistent with, s.

Well-formed formulae (wffs) (metavariables P,Q,P1,Ql,.) Wifs are sets of zero or more awffs,
written as lists with separating commas. They are interpreted as conjunctions. We use

Appendices A-2

s =t
to abbreviate sct,tes.

Sentences Sentences are implications between wffs, written

PI-Q
or, if P is empty, just |-Q.

Proofs A proof is a sequence of sentences, each being derived from zero or more preceding
sentences by a rule of inference.

The strict syntax for terms and awff’s is relaxed in the machine implementation to allow a saving of
parentheses and brackets. In addition, we use the abbreviation

f(x,y) for fx)y)
vxtes for Axt ¢ Xx.8
p::g&Tr for p ?qdsp>ord }

Functions are used in infix notation where it is obvious what is meant.

A.1.2 Type free LCF

The type free version of LCF differs from the typed one essentially in the handling of truth values and

conditional expressions. Apart from that it also specifies the structure of the domain. Besides the truth

values there are constants T for the truth values retract and I for the universal domain. |n the
_ following the additional axioms and rules of inference are listed.

MAX = s erT
COND |= T =ssss

= r=stsT(r) =st

[+ T(s)(t) » T(s)
= Te T=>T

[2[ed Tu(=1J)]

The CASES-rule is changed to
Pl- Q{a/x} P |- Qit/x} P |- Q{f/x} P |- Q{T/x}
Pl- Q{T/x}

CASE-§

Other defined
D

-

standard terms:
m[Xxy 2x2x2Y,T,z]

i [Xx y. Az yxzxx]

Appendices

Appendices A-4

A2 Special Functions in tfLCF

A.2.1 Definedness predicate
We want a predicate 9 such that

|- alx)=tt, xe L, xaT

Define & by

d=uptVU down
where

down &[A x. xi94,4]
and

upt = [« P.[A x. (x =&,1t) UPx(TN]] (= [Ax. uptf(x) = &,#])
down maps everything to 4 except T which goes to T:
down(x)s T |= T(x)=T |= x8T

upt maps everything to # except 4 which is mapped to 4. The desired properties of & are then
obvious.

A.2.4 istrue
-Quraim is to give a function that

- maps everything on a truth value and

- gives the values tt and ff exactly for the arguments % and ff resp.
This function will enable us to test effectively variables for “well defined” truth values. In the type-
free logic, the simple conditional does not provide this function as it is defined “relative to the truth
values retract T ". However, we can define istrue using a limit construction. That such a definition is
possible at all is due to the fact that the truth values are isolated points in the latticeI.

Definition: istrues[ocS. [Ax. x:28 US(x T), ff US(x 1)]]
It is easy to show by cases that

(1) T < istrue

SinceVx. T(x) ex we also have

(@ - T o istrue c istrue

From the definition follows immediately

(3a) istrue(x)= &t |- istrue(x(T)) < istrue(x)
(3b) istrue(x)z ff |- istrue(x(T)) c istrue(x)

Appendices

also

(4) T(x)=TV |- istrue(x)aTV f o r TVel,T

Next we show by induction on istrue
(5) Vx. istrue(x) < T(istrue(x))
Li(x)e... ok

Il. Assume Vx. S(k) € T(istrue(x)). We have to show
x s #US(x T), ff U ${x T) < T(istrue(x)).
By Cases T(x):

T(x)=zl : trivial
T(x)=T: implies istrue{x)s T, trivial.

Ti(x)=tt :
ihs= # U S{xT)ctt U T(istrue(x T)) by Ind.Hyp.
s T(t U istrue(x T)) by L54 Mi-We
s T(istrue(x)).

T(x)=ff : analog

With (2) we have shown

(6) istrue = T o istrue.

which means that the range of istrue is a set of truth-values.
On the other hand we already mentioned that

(6a) istrue(tv) = tv

holds for each truth value tv. Thus,.in a short notation

(7)istruec T a T

i.e.istrueis an identity on T. From (6) and (7) we deduce the retract property for istrue:

istruo e istruo ® istruo o(T o istrue)
(istrue o T) o istrue
(8) s T oistrue

= istrue

A-5

Appendices A-b

The ultimate goal is to show

(%) istrue(x) = #t |- x = &
istrue(x) = ff |~ x = ff

i.e. istrue is a truth-valued function that gives the values t or ff exactly for # and ff resp. In orde:
to do so we introduce another truth-valued function:

Definition: uptf 5[e P. [A X. T(x)UPX(T)]]
By definition we have
(ut) T e uptf
We prove the following facts about uptf:
(U2) X < uptf
(9) istrue & uptf
(10) istrue(x) = & |= uptf(x) < istrue(x)
. (9) and (10) together show
(11) istrue(x)att |- uptf(x)stt
With (U2) it follows that
(12) x c tt
on the other hand, since #sT(x) K we have
(13) istrue(x) = t |- x = t.

The proof for the corresponding statement for ff follows the same line.

A.3 Structural induction

The basic idea of how to do structural induction in LCF is that it can actually be simulated if a
recursive function “describing” the structure is available. For the kind of structures we are interested
in in this paper the retraction constructed from the type definition serves this purpose. So, structural
induction becomes a mere application of computational induction. The derivation of the induction
rule as in theorem 3.x is done in two steps: 1) first derive a rule involving the retraction; 2) modify
the rule in 1) by using the type-predicate. Since proving the rule in full generality would be rather
tedious, it is demonstrate by means of the example seq.

Appendices A-7

Recall that seq is defined by the retraction

seq = [«S. [Ax. is_emptyseq(x) © emptyseq,
is.mkseq(x) > mkseq(atom(hd(x)), S(ti(x))),
1]

First, we prove the rule

(a;) P(L) (a2) P(T) (ag) P(emptyseq) (az) Vx.P(y) |- Vx.P(mkseg(x,y))

(R1)
P(seq(x))

where xandy do not occur inP. By computational induction, we can deduce

Vx. P(seg(x))
from
Vx. P(4 K) and Vx. P(S k) |= Vx. P(tau(S)(x)).

Since
P(L x) <= P(L)

the base case is proved by premise (b;).

Now assume
Vx.P(S x)

I order to prove
Vx. P(tau(S)(x))

we expand tau(S) to

tau(S)(x) = is_emptyseq(x) > emptyseq, .
is_mkseq(x) mkseg(atom(hd(x)), S{ti(x))),
A

and split into cases which then can be deduced from appropriate premises:

is_exptyseq(x) = L : tau(S)(x) = X by premise (a;)
2t £ emptyseq by (az)
8T : #T. by (ap)

a ff : case split for is_mkseq(x) : only & is interesting:
= mkseq(atom(y),S(x)) b y (ag)

Now, the rule

(b;) P(emptyseq) (b2) Ply) |~ P(mkseq(x,y))

Vx.is_seq(x) &> P (x)

follows from (R 1) by virtue of the facts that the reiativiring type predicate eliminates the cases 4
and T.

