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Co kL Introduction

In this paper we are concerned with the use of data structures in generating correct programs from

formal problem statements.
4

Present experimental systems for automatic program synthesis (see [BuLl,[MaW] for recent work)

| | are based on a rather large amount of knowledge in the form of individual axioms and problem

solving methods. At each step in the ‘synthesis process the system has to search for an applicable
| piece of knowledge in the data base. One of the main problems is the automatic construction of

iterative loops or recursive calls. However, it can be observed that the structure of the data is
| reflected more or less in the structure of any program operating on them, both in the analysis of

subcases and (iterative or recursive) loops. In fact, if a recursion or iteration is possible (and
reasonable) at all it 1s because of a corresponding data structure. So it 1s safe to say that the

generation of a program is always guided by an underlying domain structure, Thus, by
“strengthening” the guide lines we can avoid the system having to “retrieve” anew the underlying

structure each time it is synthesiiing a program. Organizing the knowledge about the data domain

and representing it in such a way that it directly assists a system in constructing a program can

possibly eliminate some complicated problem solving processes,

In the case of recursive data types the relationship between program structure and data structure is

. particularly obvious. For this kind of data types the Logic for Computable Functions (LCF) [Mil],
_Mi2, WM J provides a natural, basis for reasoning about program generation, since both the problem

and the prospective structure can be expressed in the same formal system. Obviously, the crucial

. point 1s to find an appropriate representation of the data structure. A large portion of this paper 1s

devoted to this problem; it attempts to develop a sufficient mathematical framework for dealing with

abstract data types within LCF. Based on this theory methods of function specification are

— investigated that are directly derivable from the data structure representation and do not require

| general problem solving methods. They include extensions of the term language of LCF, in
particular a calculus for (a restricted kind of) sets and restricted quantification, and certain

~ “definition schemes”; both kinds are based, on concepts obtained by interpreting, data types as
algebras.

L The definition techniques are meant to be a step towards a “problem specification language” that
allows easy and concise definition of functions on a level of abstraction that is close to the intuitive

| conception of the user. This approach to program specification bears a resemblance with what has
been called “very high level” or “non-procedural” programming languages. Indeed, programming

language features similar to some of the constructions to be discussed here have been proposed

t elsewhere (e.g. [Eal) and are available in SETL. However, we are not dealing with a programming
language, but a formal system that permits formal reasoning. Emphasis is given to interpreting the

I added constructions mn terms of LCF 1m order to make feasible meaning preserving transformations
-
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; of ex presssions. Only the fact that every LCF term also has an interpretation as a computation rule
for the function denoted by it, allows us to regard it as a kind of program.

The following section provides the logical and mathematical framework as needed in the subsequent

sections. It gives a short overview of the type free version of LCF and the mathematical theory of

subdomains. Section 3 discusses the axiomatization of abstract data types, their representation in

LCF, and the interpretation of types as heterogeneous algebras. Section 4 1s devoted to introducing

elements of a specification language, which include (computable) sets, set operations and bounded

quantification. The algebraic concepts of section 3 lead to methods for defining and simplifying
functions over data types. In section 5, the definition methods are demonstrated in an example that

1s based on the data types of LCF terms and is taken from a LCF implementation. Finally, possible

directions of future work are indicated in the concluding section.

The paper is intended to be essentially self-contained. The letters "T.P." that can often be found

- instead of a proof are meant to indicate that a prove has been generated by means of the mteractive

theorem prover for LCF. The amount of user interaction required to generate a proof is not

indicated; in general, the proofs for simple lemmas can be generated fully automatically. The

automatic theorem prover component of the system employed for proof generation will be described

in detail in a forthcoming paper [Hel

|
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2, The type-free Logic for Computable Functions

| The Logic for Computable Functions (LCF) was invented by D. Scott (unpublished) and, in a

modified form, mechanized by R. Milner [Mil, Mi2]. Using this interactive proving system the logic
has subsequently been applied to various problems in the Mathematical Theory of Computation:

schematology, formalization of syntax and semantics of programming languages, proving properties

! of programs and the correctness of interpreters and compilers (cf. [AAW,N2] for more recent work
on PASCAL and LISP and comprehensive references). In these experiments LCF proved very

useful for formalizing and proving problems involving (possibly partial) recursive functions,

| In the following the reader is assumed to be, familiar at least with the basics of LCF. For the sake of
self-containment, a syntax of the language is given in appendix A.l.l.

2.1  Type-f ree LCF

In this subsection the type free version of LCF (or tfLCF for short) is described briefly as needed

for the further development. This version of the logic was developed by D. Scott, R. Milner and

R. Weyhrauch [unpublished notes). Most-of the material and the ideas presented here 1s essentially

due to them; part of it can also be found in [Sc2].

| Essentially, tfLCF axiomatizes one of Scott’s models for the A-calculus {Sc1): the domain I which is
constructed over the 4-element lattice T of truth values:

1 T
[ \

i tt ff
\ /
A

: The main characteristic of the domain I is that it 1s isomorphic to its domain of continuous

: functions; thus, each element of I can also be regarded as a function from I to I,

| The language of the logic itself 1s essentially the same as for the typed version, (see appendix A.l.1),
with two exceptions:

(a) the restrictions for building expressions that result from the types are abolished;

| (b) besides the 4 truth values, the language includes constants I for the “universe”, i.e. the domain
of the model, and T for the domain of truth values.

] The main problem in extending the semantics of expressions to the type free case is defining the
meaning of the conditional p = q,r for any term-p. This is done by mapping the elements of I onto

the truth values (this will be made clearer in the following subsection). The meaning of T= x,y 1s

not further specified except that T= x,x « x. However, it turns out that it can be taken as the join
of x and y (see below).
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For details about axioms and inference rules of the logic, see appendix A.l.2.

The element 4 is called undefined, and the element T is called overdefined; all other elements are

called defined. A predicate o can be defined in I such that

dx) ett iff "x is defined," d(dL)w Lk, O(T)=T

1.., d yields the distinction between defined and non-defined elements in I. 6 is definable in the logic

by a mapping onto the S-element lattice {4, ®, T}. The definition depends on the fact that the truth

values are isolated elements in the lattice I. For details see appendix A.2.1.

A function f 1s called strict if 1t returns 4 or T whenever the argument 1s A or T resp,, that 1s if the

following wif 1s true of f: |
v X. ( ax) = off(x)), &) = a(f(x))

f 1s called 1-strict if f(L)sd , and T-strict, if f(T)=T . fis called total if it never returns A. or =

for a defined argument, i.e., if

a(x) => (f(x) = &

holds. Thus, if a function fis strict and total then 9(x) = 3{f(x)) .

~ Any function f can be made into a strict one by first applying @ to the argument: For

f sm [Ax. 9(x)= f(x), A]

we obviously have

T if xs

f(x) = A if xsd
f(x) otherwise

| In the next section a functional str will be defined that turns any function into a strict one.

In the following we define some standard operators on | that will be used throughout the paper.

0 [Xx yz x(y(z))] function composition

pair :a[A Xx y z2.2oxy] ordered pair

rn, sa xo x(tt)] projection onto first component

| n, aA xo x(f)) projection on to second component

| I sa[X\ x y 2pair(x(z#), y(z  ))] Cartesian product
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+ s[Nabx.n;(x) > pair(tt, a(n, x)), pair(ff, bin x))] disjoint union

| id = [Xxx]. identity function

Uu s=[XxYy. Toxy] join

| A 1m [Xx y.(0x)udly))ox>y,ff] logical and
Vv oi [XX y. (d(x) u dly))> x 2 t,y] logical or
: im [XX, x 2 ff,it] negation

| For pair(x,y) we also use the notation <x,y>.

: The standard properties of these functions are easily derivable; for example,

: VX vy. mr (x,y?) o X Vx. no (<x,y>) BY

| Milner and Weyhrauch have shown that uw has all the properties of the join operation in a lattice,
also with respect to the partial order defined by <. In particular, tuffsT and xuTsT for all x¢I.

A strict conditional 3, i.e. TixyaT for all x and y , is definable in terms of the normal

| conditional =:

- > Az xy. z2(22 x, T), 227, vy)

| | Since the normal conditional will not be used in this paper except in the join operation, we will
henceforth use the character ® to denote the strict conditional.

| The propositional connectives are strict in all arguments; they extend the standard functions (for

two-valued logic) to four truth values in such a way that the standard relationships like

| x vy s.(-xA=y) still hold.

2.2  Retracts, Domains, Types

2 The typefree logic essentially axiomatizes the “universal” domain 1. However, one would like to talk
also about domains other than I, like “lists” or “integers.” It turns out that they can be "embedded"

into the universal domain; there are subdomains of I that correspond to those particular domains in

a sense to be made precise in the following section. As Scott [Sc2] has shown, is so rich in

| subdomains that one can find a corresponding subdomain for all those domains or “data types”
computer scientists are normally interested in.

The standard way of defining a subdomain 1s by using retracts. A retract is an idempotent function,
ie., an f € I with fe sf. The idempotency property implies that all elements in the range of a

oo retract f remain unchanged, i.e. the range of f 1s exactly its set of fixed points. subdomain Ds of|
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(the range of f). This domain Dy can be shown to be a complete lattice. In the remainder of this

paper, the term “domain” always nieans “subdomain of I as defined by a retract.” Very often the
domain and the function (the retract) defining it will be confused by using the same notation for

both; however, from the context it will be clear what exactly is meant. For emphasis, we will say

retraction 1f we mean thefunction in particular.

The category of retracts

It may be helpful to look at retracts from a categorical point of view. The retracts of I form a

category Rin the following way:

- The objects of Rare theretractions in I.

- A functions f¢€ I 1s a morphism from the retraction r to the retraction s iff foras,

- Composition of morphisms in R is just composition of functions in I.

Obviously, R is a category. Note that two functions f and gin I will be identical morphisms in R if

they agree on their source domain (“source retract”), 1.e. if fers gor. An identity on a retract risa

function F with For = r. We write Id, for the identity on r.

Let r,s be retracts. D, is called subdomain of Dg iff ser=r, i.e. iff the fixed points of r are also

fixed points of s. D, 1s called retract of Dg iff sersr and res=r .

- A particular retract is the truth value domain T. Trivially, the universal domain 1 is also a retract.

However, the property of being a retract cannot be proved; the corresponding retractions

Tex. xott, ff]

and

[ 8d. Tu (J = J)]

are rather part of the axiomatization of tfLCF. Obviously, “retract” and “retract of I” mean the

same thing.

It should be noted that R 1s not the category of those subdomains of I that are defined by retracts;

different retractions can define the same domain but will be different objects in R. For example, the

retractions T and istrue (see appendix) both define the domain {4,,ff,T} but are completely different

functions. However, T and istrue are isomorphic in the category R. Incidentally, if two domains are

isomorphic one of them need not be a retract of the other: for stance, it is

T oistrue 3 1struo and istrue co Ta T

1.e. Tand istruo are subdomains of each other, but

istrue o T # istrue and T oistrue # T
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Thus neither of T and istrue is a retract of the other. This discussion shows how retractions that

define the same domain are related in the category R:

Corollary 2.1: For retractions vr and 8 if B,8Dy then r and 8 are isomorphic, that is, from a

structural point of view, they cannot ‘be distiguished.

The category R has many useful closure properties we are going to exploit.

Lemma 2.2: Ris closed under + x and =, 1.€. if a and b are retracts, then 30 are ash, ax b, and a=b.

Proof: by T.P.

Lemma 2.3: R is cartesiati-closed.

Proof; We have to prove that [r=[8=1]] and- [rxs =t] are isomorphic in R for any retracts
r,s and t. Let F, G be defined by

Fs [A f x. fin, x)(no Xx) ]
Ge) g rs. gikr,s)]

The T.P. proofs for

j G oF = Idi, s.p))
- and

FoGaldps .5 p

are almost straightforward.

Lemma 2.3 is the basis for what 1s commonly called “currying”. It allows to restrict attention to
monadic functions.

Let the function str be defined by

str es [Af x. o(x)2 f(x), 4]

By T.P. we can show that str ‘turns any function into one that is strict (with respect to the first

argument) and that it 1s a retract. This shows that the set of strict functions is a proper subdomain
of L.

A domain is called flat if it contains, besides 4 and T, only pairwise incomparable elements, For flat

domains there is a computable equality relation "=" with:

ox) = tt, oly) = #, X sy |= xsy ® §
xuy n # l* x=y, olx)=s ft, oly)st
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- In many cases it 1s very convenient to use the (computable) equality instead of the equivalence =

‘since 1t may appear inside a term and thus gives greater expressive power.

Lemma 2.4: If Fale [Xc. He)]] and G® [Xc. [=g.t(g) J] , wheretis any term, then F =G.

Proof: T.P.

Essentially, the lemma means that constant parameters can be bound “globally”, 1.e. they need not be

passed on with every call. The lemma will be used quite often in the remainder of the paper
without being referred to explicitly.
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oo 3. Abstract Data Types in the Type Free Logic

In this section we introduce data types and discuss the representation of data structures in tf LCF.

i We investigate <properties of data types by looking at them from a more algebraic point of view,
which allows us to derive various function definition schemes. The basic function definition method

1s illustrated in an example dealing with the translation of arithmetical expressions from infix to

postfix form.

What is intuitively meant by the notion abstract dara type? There is a common understanding that,

in programming, a data type is not just a set, but also comprises information about the structure of

the elements and how to construct them and to operate on them. This can be done in an abstract

way, 1.e. the only information available is the set of primitive operations (constructors, selectors,

recognizers) and relationships between them; it does not matter what the elements of the type look
like and how the primitive operations are implemented. In the context of a formal calculus the

relationships between the primitive operations are expressed by axioms.

The presentation concentrates on generic recursive types; however, in subsection 3.4 extensions to

non-free types are discussed.

3.1 Data Type Definitions

- We start with discussing free data types. The type system will be extended later to comprise a wider

class of types, A type definition 1s made by listing alternative subtypes. A subtype 1s either a constant

or a composed type. Composed data types are defined best by their abstract syntax [Mc], using
constructors, selectors and recognirers to describe the structure of the type. In a more formal BNF-

like notation (using “constr” for constructor, “sel” for selector, and “dt” for data type):

<type_def>  t <type_name> := <subtype>{| <subtype> }x
<subtype> t <constant> | <comptype>
<comptype> t <constr> ( <sel|>:<dt | >,..,<selp>:<dty>)
<constant> « <identifier>

with the restriction that the names of all constructors in a type definition and all selectors in one
composed type have to be distinct. A data type definition may be recursive, that is, any of the dt; in

a subtype may be the name of the type to be defined. Also mutually. recursive data type definitions

are permitted.

For example, the data type “sequence (linear list) of atoms” can be defined using this formalism by

Seq i= emptyseq | mkseq(hd:atom, ti:Seq).

Strictly speaking, this data type definition 1s a type scheme, that is,
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seq = emptyseq |mkseq(hd:dtype, ti:seq)

defines a type “sequence of elements of type dtypo” for any data type dtype. This will be made more

precise in the following subsection. Beside seq we will use other standard data types (type schemes)

like binary trees, natural numbers, and pairs, defined by

bintree := mkbt(sub:dtype) | complfir:bintree, secibintree)
nnum $® zero |suc{nninnum)
dpair i= mkpair(fir:dtype ;, sec:dtype,)

3.2 Representing Data Structures in tfLCF | |
In section 2 it was explained that retracts can be regarded as the “types” in the type-free logic, The

data types are now to be represented in LCF in such a way that the resulting terms are retractions.

What exactly is implied by a data type definition? Intuitively, a data type should have the following

properties:

a) A data type 1s the disjoint union of subtypes. A subtypeis either a constant or a composed

subtype. For each subtype there 1s a predicate (characteristic function) which will be named

"is_const" or "is_<constr>" resp. These recognizers permit to decide membership in one ofthe

subtypes relative to the whole data type.

b) Each constructor is a one-to-one function; in particular, the corresponding selector functions allow

to “retrieve” the respective arguments of a constructor.

c)A subtype has to be embedded explicitly into thetype by a constructor function. For example,

“atoms” are not lists unless they are “converted” into lists. This helps us to keep all data types

disjoint.

These statements can be expressed more precisely in terms of LCF axioms.

Definition 3.1 (Axioms for generic data types):

The data type definition

type $= constant |... | constant, |comptype,|...| comptype,

with |
comptype, := comp (sel, ;:dy;, ... selidly) for ksl,.n

~isconsidered to correspond to the fixed point equation

(1) typo s[ecF.[A x. is_constant;(x)> x, . . isconstanty,(x)> x, |
is.comp,(x) 2 comp, (dt (sel; {x)), . . dt;;; (sel); (x))), . . ,
is_compp(x) 2 comp, (dt, (sel, (x), . . dt,n(selyn(x))),
+ ]] |

where dt’ sF if di,stype and’ dt’ys=dty; otherwise, and for i,j=l,.,m;Kk,al,.,n
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(2) d{constant;) = {t
is_constant (constant) ft

(3) decomp, (dt, (x hy. t(D) = o(dty (x4 NDA..A O (dt; (x)
9 © comp; : 5 is_.comp; © comp,

(4) V x .is_comp,(x) => is_comp(x) = f f

V X . is_const(x) => is_const,(x) = ff
V x .is_constx) => is_comp,(x) = f f

(5) 9 o is_comp, 2 d o is_comp, for kA
o o is_const. J o is_const for i]
0 o is_const, o d o is_comp,

(6) d(comp;(X| y-sXp;)) => 80l;, (comp, (x; 1.4Xp)) E_X, for r=l,..n,

Axiom (1) is a mere transcription of the type definition. It contains the basic information about the

type structure; therefore, it will be called the characterizing function of the type. The goal is to prove

that 1t 1s a retract. However, this cannot be done without further specifying the primitives occurring

in (1) by adding axioms expressing the statements a)-c). They make sure that the recognizers for the
subtypes are complementary (axiom 4) and that they are defined exactly for the elements of the type

(axiom 5). Axioms no. 6 state the generic nature of the type (This is equivalent to saying that

constructor and selector functions are essentially tupling and projections). All constructors are

assumed to be strict in each argument and total for arguments of correct types (axioms 3).

Example: The data type defmition for (homogeneous) sequences

Seq: @ mptyseq | mkseg(hd:Atom, ti:Seq)

will generate the axioms

(S1) seq=[ecS. [Xx. is_emptyseq(x)> emptyseq,
is_mkseq(x) ® mkseq(atom(hd(x)), S(ti{x))}),
+1]

where atom 1s the characterizing function for the data type Atom,

(S2) o{emptyseq) = tt
(S3) is_emptyseq(emptyseq) =
(54) V x y.d(mkseq(atom(x), seqly))) = d(atom(x)) A d(seq(y))
(S5) do mkseq e is,mkseq © mkseq

(S6) is_.emptyseqe-~c is mkseq
(S7) V x y. d(mkseq(x,y)) => hd(mkseq(x,y)) = x
(S8) Vx y.o(mkseq(x,y))s> ti{mkseq{x,y)) « ¥

Any type {; that occurs in the definition of another type tj 1s considered a base type for t. The notion
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Lo "base type” does not imply “basic” or “simpler”; on the contrary, since mutual dependence of data

: types 1s permitted, t; itself may be a base type for {; (hence the relation “is-base-type-of” is only a
quasi-order). If data types are mutually dependent the corresponding characterizing functions form

a system of mutually recursive functions. Those base types that do not depend on the type to be

defined are called generating types (in fact, they generate the type in an algebraic sense; see the

following sub-section).

At this point 1t has to be clarified what it means for a characteristic function to be a retraction, The

FE logical type of typo is (type-type) In order to make it a function in I the primitives (constants,
constructors and selectors etc.) have to be specified as elements of I. This amounts to defining a mode!

of (the axioms describing) the data type in I. However, the retraction property can be proved just

from the axioms; more precisely, what can be proved is that type iS an "abstract retraction”, meaning

that ‘every model is a retraction. All the models will be isomorphic retractions (in the categorical
sense), Thus the, abstract retraction represents an equivalence class of objects in R.

It should be noted that the standard representation of data types in a LCF-like language 1s by

| “domain equations” (involving * and x ; see [Sc2]). For example, the data type Seq of sequences of
atoms 1s completely specified by the least fixed point of the equation

(i) Seq « @® mptysoq i+ (Atom:x Seq)

| _ (where :+ and :x are strict versions of + and x)given a representation of the type Atom andthe
| constant emptyseq. However, we do not follow this line. The syntax of data type definitions, as given

FC in the preceding section, involves constructors and selectors; they are the primitives for defining

functions operating on the data type. But they do not appear in (i); in fact, (i) is an implementation
| of the data type Seq (by functions in I) rather than an abstract definition; the primitives are hidden

in the construction of sum and product. In order to keep the previous higher level of abstraction

the primitives have to be axiomatized, as has been done for special types in [Nell Although an

axiomatization as in definition 3.1 is by far less elegant than a definition like (1) it 1s more
appropriate for the purpose of program specification.

Incidentally, this discussion shows that every (generic) data type has the following standard model:
The data type definition

type i= constant,| . . . | constant, |comptype,|...| comptype,
with

comptypey i= compy(sel, dt, ... sel cdi) for kel,.,n

1s simply translated into
_ types ft ie... ie it oe comp; i+... comp,

- with

comp, 3 (dt; ex . , sx db) for kel,.n

It 1s easy to figure out what the primitives look like, and the proof that the axioms of definition 3.1

hold 1s straightforward.
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Lemma 3.2: type i$ strict.

Proof: Simple consequence of the fact that all functions involved are strict (by definition).

Theorem 3.3: type is a retract if all base types of type are retracts.

Proof: See appendix A.3.

From the characterizing function of a type we are going to derive a variety of function definition

schemes and functions. In particular, a type predicate (characteristic function) is-type canbederived

which yields & exactly for the defined elements of the type, 1.e. which satisfies:

Vx. is_type(x)=> typo(x) ® x
VX. istype(x) => (x)= tt

and ]

type(X) sx, o(x) = &t |- is_type(x) =

This predicate will be discussed in greater detail in the following subsection.

For a recursive data type we can derive the standard structural induction rule from the |

characterizing function (the retraction).

T Aeorem 3.4 (Structural Induction):

For a recursive data type typo defined by

type i= constant ||... | constant, |comptype;}|...| comptype,
with

comptype, is comp, (sel, dt, . . . sel idt,) for ksi,.,n

there is an induction rule that allows to conclude

Ql= Vx. is_type(x)=> P(x)

(where the conclusion is meant to be a wff involving x each of whose awff’s is prefixed by
VX. is_type(x).. ) from the following antecedents:

(a) For each constant constant, (i=l,.,m)

Q |= P(constant,)
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(b) For each composed subtype comptypey, (ksi,..,n)

| Q, Plykip) . .. O(comp(..))e & |= Plcompyl..))

with an antecedent Plyyjp) for each recursion arguments, i.e. for those arguments of comp, with

Proof; see appendix A.3.

For example, the duction rule corresponding to the characterizing function seq is

P(emptyseq) Ply), o(mkseq(x,y))sf |= P(mkseq(x,y))

Vx. is_seq(x) => P(x)

Note that the constructor arguments in the induction step need not be restricted by type predicates

(the restriction is implied by the definedness predicate). A discussion of other forms of the induction

rule that involve the retraction can be found in appendix A.3.

As mentioned above, the type definition for seq is a type scheme, defining a data type for any type

dtype. This means that in the corresponding retraction seq the retract atom can be replaced by any
other retract. We therefore can define the functional

| seqof ta [\ typo. [ eS. [Xx. is_emptyseq(x) > emptyseq,
is_mkseq(x) > mkseq(type(hd(x)), S(ti(x))),
1]]

By theorem 3.3 seqof(type) is a retract for any retract type. In other word, seqot maps retracts on

retracts. Obviously, any generic type construction yields such a mapping on retracts. Properties of

these functionals will be studied in the following subsection.

3.3 Algebraic Interpretation of Data Types

Interpreting data types in terms of universal algebra helps to clarify certain concepts and properties.

As a data type may involve several subtypes-and functions of heterogeneous type the appropriate

notion is that of “heterogeneous algebra” (Birkhoff and Lipsom [BIJ; see also Higgins [Hi]).

| Definition 3.5 (Heterogeneous algebra)

A heterogeneous algebra A consists of
- a family (Aj)ey of (non-empty) sets; the A; are called phyla.

- a family (fx of operations; for each fx there is an associated tupel
index, = (iis . - vknks Jknks1) Of elements of J.
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The index of the operation fy indicates the phyla from which the arguments of f, are taken (i.e. the

| argument types) and the target phylum. nkis the arity of f; (possibly 0). In the present framework,

the index is simply the type of the operation.

The triple (J,K, (index eek) 1S called the signature of the algebra; it characterizes the basic structure.

Algebras are called similar if they have the same signature. As the structure of similar algebras 1s

comparable, it 1s possible to define structure-preserving mappings between them.

| Definition 3.6 (Homomorphism)
{ Let A = ((A)icy (fide) and B = ((B))icyy (gk)kex) be similar algebras. A homomorphism h from
| Ato Bis a family of mappings (h;),; such that hi maps A; into Bj and for each kéK

hirke (fay 2 oank)) = gdh (ag). shjpilangd)

| where index, = (jy. . rinks inks?

: As mentioned in the previous section, a data type (or: its domain) forms a complete lattice. So, the
appropriate algebraic structure is that of a heterogeneous lattice-algebra. Although the lattice

structure of the domains considered here 1s not very interesting - apart from the elements 4 and +

the domains are flat - we have to take it into account by requiring that all functions preserve the

| lattice structure. However, because of the simple structure it 1s sufficient to require that all functions
involved in the algebraic structure, i.e. the operations, are strict and total. Similarly, all the

mappings h; constituting a homomorphism have to be strict (it 1s, however, not necessary to assume
totality), Henceforth, these assumption will be made throughout the remainder of the paper,

| Example. The data type Seq, regarded as a heterogeneous algebra, consists of the two phyla atom and
| seq and operations

| emptyseq: 0 = seq (nullary)
mkseq: atomxseq = seq.

| The axioms in the previous section indicate that a data type corresponds to an absolutely free (or
| “generic”’) algebra which 1s generated by the constants, the base types and the constructor functions

| as operations. As it is well-known in algebra, an absolutely free algebra has characterizing universal
properties:

(1) There is (upto isomorphisms) only one absolutely free algebra for given generating base types and
| operations.

(2) Any homomorphism from an absolutely free algebra F into another algebra A of the same type (in
| the algebraic sense) is determined uniquely by functions mapping the generating sets into A.

Properties (1) and (2) can be proved in LCF for each (free) data type without relying on an

| algebraic imterpretation. It is these properties we are going to exploit.
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EL In order to define a homomorphism it 1s sufficient to map the base types into target sets and the

- constructors onto operations on the target structure. Then, by property (2) there 1s a unique function
that homomorphically extends the base function(s). Due to the fact that in LCF homomorphisms can

L be “pushed through” conditionals, homomorphic extension is representable by a simple modification
: of the function characterizing the data type: we have only to replace the base type retracts by the

base functions and the constructors by the operations on the target algebra.

| To continue our example based on the data type seq, we notice that a homomorphism from seq into
an appropriate algebra 1s determined completely by

| a) a constant that is the image of emptyseg,
| b) afunction that maps the base type atom into the corresponding set, and

c) a bmary operation on the target algebra.

In LCF, this 1s written as the functional

a. Sfun = [A f const op. [ec s. [xx. is_emptyseq(x)= const,
i is.mkseq(x) > op(f(hd(x)), S(ti(x))),

+ 113

| Assume R is the target structure with phyla R; and Ra, ¢ an element of Ry, op : Ry; xRp =» Ry a binary
| operation and fun a function from atom to Ry. Then property (2) above yields the following

Fo theorem:

Theorem 3.7: F i= Sfun{fun,e,0p) is the unique homomorphic extension of fun with respect to c and op,

| i.e, it is’ the only homomorphism fromseq ro R with Flemptyseq)s Cc and

| F o mkseq® (Xx y.op(fun(x),F(y)}]. |

The proof is straightforward; it crucially depends on the “freeness” of the type definition (i.e. axioms

($7), (S8)) which 1s necessary to establish the homomorphism property of F.

A simple example 1s the type predicate (characteristic function) for seq: The function is_seq: seq=T

with | N
| is_seq(x)slt ff seqx)ex and ox)=tt

1s definable simply by extending the type predicate is-atom of the generating base type to a

homomorphism into T:
oo is.s0q = Sfun(is_atom,it,A)

| A further property of the homomorphic extension functional Stun is that it carries over a structural

Lo induction rule from the source domain. E.g for sequences:

P(c) Ply), olop(x,y = | - Plop(x,y))

hE V 2. is_seq(z) => P(F(z))
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thus permitting induction on (target) domains originally not structured appropriately.

| | The mathematical content of the discussion on interpreting data types as absolutely free algebras

LC and the homomorphic extension functionals amounts to a well-established fact known from category

theory: the correspondence between free constructions (free objects) and representable functors. The

pair (Sdom,Sfun) defines a functor from Rinto a subcategory of R of “suitably structured” retracts,
| The point is that this correspondence can be established within the framework of LCF. Due to the
| fact that everything 1s represented as LCF terms, objects and morphisms as well as functors, it allows

to carry out mechanically assisted proofs rather easily. For the time being, theorems like the one

| mentioned above have to be proved in LCF for each data type separately, although the structure of
the proof is always the same. However, there is some hope that formal proofs of general statements

EE about, e.g., all generic data types will be feasible using a metatheory of LCF being developed on the

basis of representing the LCF notions as data types (see section 6 for part of the data type

definition).

The usefulness of homomorphisms as a structuring principle has been observed elsewhere, in

| particular in the context of program translation (Mo, MiW]. However, though homomorphic
| extension 1s a rather powerful scheme for function definition it 1s by far not powerful enough. It

b turns out that properties similar to those proved for homomorphic extension can be shown for a

: more general class of definition schemes; this will be discussed in section J.

34  Non-generic Data Types

| Although the class of generic data types covers many of the structures needed in programming it 1s

| not comprehensive enough. Relaxing the restriction to generic structures is tantamount to, in

algebraic terms, allowing to add further relations to a type definition. In a way, the generic data types

| can be regarded as the “context-free types,” and adding relations as “introducing context.” In the

context of this paper it 1s sensible to consider only relations that are expressible as recursive

| predicates.

The general method will be discussed by means of an example. Let norep(x) be a predicate on

| sequences which is true iff x does not contain repetitions of elements (the explicite definition is

straightforward). Then the data type norepseq of “sequences without repetitions” is just the

restriction of seq by norep. The new type can be represented in the following way: Whenever an

element 1s added to a sequence it is checked first if it already occurs in it, in which case nothing is

done. That 18, if the constructor mkseq is modified to

~ mknorepseq 3% [ X x y. norep{mkseq(x,y)) = mkseq(x,y), y]

then all sequences constructed by mknorepseq have the “no-repetition” property, i.e. they satisfy the

- predicate norep. This 1s just another application of the homomorphic extension functional: The

range of the function
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i. norepseq :# Sfun(dtype, emptyseq, mknorepseq)

is exactly the desired subset of sequences without repetitions (it iS obvious that only elements of seq
are constructed). In other words, norepseq represents ordered sets of elements of type dtype.

Obviously, norepseq 18 a retractof seq; Since norepseq defines a subdomain of seq it 1s also a retract
of I, which means that norepseq makes sense (in the present context) as a data type. This
construction for new retracts works at lease in the case where a new type 1s defined by arestrictive

predicate. The full extend of the method, however, needs to be explored further. It 1s conjected that
anydatatype(givenareasonable definition in terms of computability) is representable as a retract of
a generic type; this would parallel the fact that, in formal language theory, any recursively
enumerable set isthe image of context free sets under suitable mappings.

3.5 An Example: Infix to Post-fix Translation

As an example we show how to generate a function that translates arithmetical expressions from

infix to postfix notation (the example was suggested by J.Allen). The abstract syntax of the

structures 1s defined by

exp = mkiexp(te:term) | mksexp(su,:exp, susiterm)

term i= mkfterm(tf:fact) | mkpterm(pr term, proifact)
fact i= mkvfact(fv:var) | mkefact(fe:exp)

; and

post i= mkvpost(pvivar) | mksum(s:post, so:post) | mkprod(p,:post, p,:post)

which may be thought of as abstraction from the “concrete” infix grammar

<axp> i= <exp>'+ <term> | <term>
term> := <term> 'x <fact> | <fact>

<fact> = <var> | '( <exp> ')

and the postfix grammar

<post> m<var>|<postd> <post)’s | <post> <post> 'x

Now, the problem-is to find a function that translates variables into variables and infix-sums and

infix-products into postfix-sums and postfix-products resp. This 1s a simple example of a

homomorphism between heterogeneous algebras. The algebra Exp includes the 4 phyla exp, term, fact
and var, the algebra Post the phyla post and var. The homomorphism maps exp, term and fact into

the phylum post and var onto var, that 18, the homomorphism consists of 4 mappings

BN id: var = var

Texp: exp — post
Tterm: term => post

. Tfact: fact =» post
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These mappings have to respect the corresponding algebraic operations

mksexp: ~~ expxiterm= exp <=> mksum : postxpost= post
mkpterm: termxfact= term <=> mkprod: postxpost= post
mkvf act: var= fact {=> mkvpoct: var =* post

1.e., they must satisfy equivalences

Texp(mksexp(x,y)) 8 mksum(Texp(x), Tterm(y))

etc. Since the distinction between exp, term and fact disappearb in Post, the “operations”

corresponding to mktexp, mkfterm and mkefact are just identities on post. Having established all the

| algebraic correspondences, homomorphic extension immediately yields the desired functions (slightly

simplified):

Texp 8[«E. [Xx. is_texp(x) > Tterm(te(x)),
is_sexp(x) © mksum(E(su; (x)), Tterm(su,(x))),
L]]

| Tterm = [ocF. [Ax. is_fterm(x) = Tfact(tf(x)),
is_pterm(x) o> mkprod(F(pr ; (x)), Ttact(pr,(x))),
L]]

| Tfact = [ Xx. is_vfact(x) © mkvpost(var(fv(x))),
is_efact(x) © Texp(fe(x)),
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| 4, Elements of a Problem Specification Language

This section 1s devoted to discussing a rudimentary “problem specification language.” The language

consists of the terms of typed LCF, augmented by certain, constructions that are considered natural

or helpful for concise specification of problems or, more precisely, functions over data types. The

| main extension 1s a first-order like calculus that enables to talk about sets and quantification in a way
consistent with the computational logic. 1s an extension of the LCF terms in their typed form. Using

the definition techniques developed in the preceding section, the added constructions are interpreted

: as LCF terms which gives them the intended meaning as computation rules or “programs.”

4.1 Sets, Set Operations and Quantification

| Syntax
Types. The language is typed, i.e. a type is associated with each term. There is a predefined type:

T, the domain of truth values. New types can be defined explicitly as data types (see below). For

| each type t we have a type setof(t) denoting the powerset type “sets of elements of type t". More
formally: |

Definition 4.1 (Types):
(1) Tisatype.

| (2) Data types are types.

| (3) Ift; and t; are types, then (=t;) is a type (the type of functions from t; to t).
| (4) Iftis a type then setof(t) is a type.

(5) These are all the types.

Types built by (4) are called set types. No data type 1s a set type. Although types are not sets, we use

the type name also to denote the set of individuals of that type. There are no equalities between

types; different type expressions, in particular different type names, denote different types.

| Note the distinction between “types” and “data types”. Types are the sorts in the logic, whereas the
notion data type is used more in the sense of data types in programming languages which involves

| certain assumptions about the (internal) structure of the typed objects. By (2) in definition 4.1 data

: types are assumed to coincide with certain logical types.

Terms, We use the notation sit to denote a term s of type t. If t is a set type then st is called set

| term. All LCF terms (1 - 6) are terms of our language (cf. [Mi 13 and appendix A.Ll). Beside the
| LCF terms the language includes terms for expressions involving sets and bounded quantification

(7-9).

Definition 4.2 (Terms):

| (1) The constants 1, tt, ff, T are terms of type T.
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(2) Any identifier 1s a term.

(3) If sst;=t, and xsty are terms then six)itz is a term.

(4) Ifx:t,is an identifier and s:tp 1s a term then [Ax.s(x)]: t;=t, 1s a term.

(5) If p:T,q,rst are terms then (p2q,r)it is a term.

(6) Ifx:tis an identifier and s:ta term then [ecx.8]st 1s a term.

(7) If x:tis an identifier and S:setof(t) a set term then (x€S):T 1s a term.

(8) If x:t is an identifier, S:setof(t) a set term and P#-T a predicate term then (Vx¢S.P(x)): T
and (3x€S. P(x)): T are truth value terms.

(9) These are all the terms.

As usual parentheses and brackets can be omitted as long as parsing 1s unambiguous. The notions

awff and wff are used as in typed LCF (see appendix A.1.1).

Note that the use of the sign V for quantification-in (8) cannot be confused with the use of Vin

abbreviations for Ax.t=zAx.s. The former always requires a restricting set whereas the wff-V is never
restricted.

Semantics

The aim 1s to interpret the extended typed language in the type free calculus. This is done by
showing that every type corresponds to a retract in tfLCF. Since the representation of data types as

retracts has already been discussed, it remains to show how sets are to be represented. Based on the

- set representation we then have to find interpretations for the set operations and quantifications.

The most common way of mtroducing sets into an environment of structures is by representing them

as sequences (linear lists) of non-repeating elements. Aswe are not interested in axiomatizing set

theory but rather look for convenient definition of function meanings we rely on such a

representation in LCF (cf. [Nel)). It will turn out later that sets are needed mainly as a conceptual

intermediate step which can be eliminated in actual “programs”. Besides, representing sets by

| sequences fits nicely into the algebraic framework. Actually, what 1s to be represented 1s a rather

restricted kind of sees: we are only dealing with homogeneous and computable (mainly even finite)

sets. However, the required homogeneity 1s not really restrictive as one can always define the "sum

| type.”

The first step is to define a membership predicate x€S for sequences, yielding # if x occurs in § and ff

otherwise (if it is defined). It is definable as a homomorphism from Seq into T by homomorphically
extending equality on atoms:

¢:s [XX. Sfun([Ay.xsy], ff, VI]

Note that ¢ 1s defined for appropriate types only; if x does not have the same type as the elements of

S, = 1s undefined, thus also x€S.
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| Using the predicate ¢a function U; on atom x seq 1s definable by

| U; 32 [Xx S. x€§> S, mkseq(x,S)]

; u, guarantees that elements already occurring in a sequence will not be added; sequences built up

using u; are those directly representing sets. If Seq is the data type of sequences of elements of type

| t, the type setof(t) 1s the image of Seq under the homomorphism

set := Sfun(id, emptyseq, U;).

| Moreover, set 1s a retract on seq; it defines the same subdomain of seq as the function norepseq
discussed in subsection 3.4.: setof(t) corresponds to the subset of sequences without repetitions of

| elements. (However, it is not a subalgebra of seq.) From this it follows that functions defined on Seq

| are equally defined on setof(t). Furthermore, the (generic) structure of Seq can be used for defining

functions on setof(t). More specifically, we have the embedding iset: setof(t) =» seq with

| set o iset = idgy

. Thus, any function f: seq =D can be restricted to set by composing with iset. In this way, the
| predicate¢ defined above becomes the set-theoretic element relation. Similarly, we obtain an

interpretation of quantified terms by applying homomorphic extension to any predicate P. Let

operators all and exist be defined by

all ~~ := [AP.Sfun(P, ff, A)
exist = [AP.Sfun(P, ff, v)

Then

Vx€S. P(x) := all(P,S)
and

3x€S. P(x) := exist(P,S).

Note that this form of quantification 1s well-defined if S and Pare defined; since 4L or T is never an

element of a set, it will not appear in quantifications (and cause a non-defined truth value).

Furthermore, a quantified term denotes a computable function if the predicate P and the term

denoting the restricting set S are computable, which 1s guaranteed by the way terms can be built up.

Using these constructs, set inclusion is easily expressed by

S; ec Sj = Vx€S,. X€S,

and- similarly set equality by the “extensionality” property

| S;=S ji (Vxe€S; x€S;) A (Vx€S; x¢S))
Note again that these relations will be undefined for sets over different types. The empty set 1s the

image under set of the empty sequence; we will identify the former with the latter.



a

FE Elements of a Problem Specification Language 4.4.

B The function V,, taken as a function from txsetef(t) to setof(t), inserts a single element into a set;
: extending this function homomorphically in the first argument yields ordinary set union u. Asa

short hand notation we will use VU, for n-ary union (n-l-fold composition of U).

Similarly, set intersection and set difference are definable by means of the function
Fo remove: t1xsetof(tl)- setof(tl) that removes an element {from a set. remove 1s defined by

| remove :5 [XX S. x¢s d rem(x,s), S|

Co where rem 1s the endomorphic extension of

rem;:= [Xx y. x=y2 {}, {y}].

If {x |x€S} 1s used as an equivalent notation for S, the term language can be extended to include

| sets that are characterized by predicates. However, one has to be careful: a set {x |P(x)} need

Lo not be constructive even for computable P, if no domain 1s indicated. Therefore, predicates for set

: formation have to be restricted to those based on set expressions, 1.e. elementary predicates x¢S. All

| other predicates have to be restrictive in the sense that they restrict a set to a subset ("filter
; predicates”).

|
Definition 4.3 (admissible set predicates):

= The set of admissible set predicates is defined by
| (1) The elementary predicates x¢S are admissible set predicates.
Lo (2) If Pis an admissible set predicate and Q any predicate, then PAQ is an admissible set

| predicate.
| (3) If Pand Q are admissible set predicates, then PvQ and P\Q are admissible set predicates.

| Lemma 4.4:
if Pand Q are admissible set predicates, then

|

{x [POOVQX)} o {xo PO IU {x QU]
and

{x |PX)AQMX)} o {xc Plx)}n{x:Qlx)}

It can be shown that the operations defined here have most of the standard properties. However, the

well-known problems caused by only partial recursive predicates still remain. For example,

~(Vx€S. P(x) Js 3x€S. . P(x)

| . is true only if Pis roral on the domain under consideration.
b

It 1s obvious that the representation of sets and set operations provide a model for a theory of (finite)

sets. In particular, a first-order like calculus based on the restricted quantifiers 1s available for
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proving properties of functions. Note that this calculus 1s constructive in the sense that all

| expressions denote computable functions (cf. [Col).

| As the type system does not include basic set types, sets have to be generated from objects that are
| not sets. There 1s a canonical way of deriving set-valued functions from types. Recall that a type t,

| is a base type for a data type t; if it occurs in its definition. For each type t; that 1s a base type for t
| a function

set_ofti: {; = setot(t)

| 1s obtammed by homomorphically extending the mapping base-type = singleton-set. More precisely, in
| the homomorphic extension constructors are replaced by set union (with appropriate arity); those

| parts of a structure that do not involve elements of type %; are mapped onto the empty set. An

example can be found in section 3.

4.2 Schemes for Function Definition

In section 3 we introduced a method called “homomorphic extension” for defining new functions

| over a data type. A particularly simple special case of this method 1s the endomorphic extension of a

function. An endomorphism 1s a homomorphism from an algebra into itself. Since all the algebraic

: operations remain unchanged, the only parameters of endomorphic extension are the functions on

: the base types to be extended. A typical example 1s substitution of terms for variables. Recall the
_ data type definition for binary trees over atoms from section 3:

| bintree := mkbt(sub:atom) | comp(fir:bintree, sec:bintree)

where atom is the generating base type. The corresponding endomorphic extension functional is

| BTend := [Af. [ocE. [ Xx. is_mkbt(x) © f(atom(sub{x})),
i is_comp(x) 2 comp(E(fir(x)), E(sec(x))),
| L]]]

Now, 1f we want to solve the problem

“Find a function varsubst: bintree= bintree sich that varsubst replaces all atoms in a binary

tree by their values under the function varsub: atom = bintree,”

then a solution is simply

varsubst zBTend(varsub),

: and this solution is even unique, as it was shown in section 3.

Sofar, we have been looking at homomorphisms only. Unfortunately, many interesting functions

| can not be represented as homomorphisms. But we can apply a similar definition technique to a

larger class of functions simply by explicitly stating the non-homomorphic part of the function and
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using the extension functional for the homomorphic rest. This situation occurs often with data types
which include several composed subtypes; an example can be found in the next section.

The functionals derived from a data type definition (for homomorphic, endomorphic extension etc.)

not only permit definition of new functions in a concise Way, they also facilitate proving properties.
In fact, certain properties of those functions derive from properties of the function& like the

induction proof rule already mentioned above.

Lemma 4.5:

If the argument junctions of an extension functional are strict/total then the resulting junction is
strict/total.

Note that totality entails that any program derived from a function by "meaning-preserving"
transformations terminates on defined inputs.

There are other definition schemes that hitherto have defied a natural algebraic interpretation.

Consider, for example, the following form of function iteration. Let the expression

| Vx€S : {(x,2)]

be interpreted as “For each x in S apply [ Ay. f(x,y)] to 2" This can be made more precise by a
recursion on the sequence representing S:

[AS z. [Vx€S:(x,2)]] 5 [«F.[XS z.is_emptyseq(S)> z, F(1i(S), f(hd(S), 2))]]

However, this interpretation causes some problems. In order to be a conservative extension of the

specification language as defined so far the given interpretation has to be consistent with the notions

introduced previously. In particular, if two sets S and S’ are equal one would expect

vx €S: f(x,2) = vx €S' f(x,z)

This implies that the applications of the f{x,.) must be independent of the particular representation

of S, i.e. the “hidden order” on S ; or, at least, it must be guaranteed that the sequence of

applications of f can be executed in any order. This virtually restricts applicability of the
construction; In many cases it may not be easy or even possible to verify this kind of commutativity.
Although operators like function iteration are necessary to make the specification language powerful

enough, they will not be discussed further in this paper.

43 Transformation of Function Definitions into Programs

So far we have been discussing methods for defining functions over structured data and their

interpretation in LCF. Now, every LCF term also has an interpretation as a computation rule for
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- the function denoted by it. Given such an interpreter for LCF this allows to compute all the

functions definable in the language. However, the resulting computations would be quite inefficient,

in particular because of nestings of unnecessary recursions resulting from direct interpretation of the

constructs. Consider, for example, the expression

F(y) = Vx€S(y). P(x)

where the type of y 1s the data type list as defined above and S the standard set-valued function

set_of_atom. Since list 1s a recursive type, one recursion is required to compute S(y) and another one

to compute the quantified expression; but wc can do much better by utilizing the underlying

algebraic structure. Note that the value of F 1s determined by the values of P(x); moreover, we have

P = F o mkbt

which means that Fis a homomorphic extension of P. Because of the uniqueness property it follows

a. that

F 2 BThom(P, A)

where BThom 1s the homomorphic extension functional for bintree. This means that F can be

replaced by an equivalent function that involves only one recursion. Apart from that, the explicit
representation of the set S{y) 1s eliminated.

This 1s an example of how the algebraic concepts can be used to simplify function definitions

considerably. It shows that the interpretation of the specification language 1s not a case of simple

macro expansion, but a possibly non-deterministic process of simplifying expressions in a suitable

way, which 1s similar to, e.g., theorem proving. More heuristic methods for recursion removal have

been studied by R. Burstall and J. Darlington (BDI.

T he regular expression structure that results from defining functions by means of definition schemes

1s of advantage at all levels of program development. Apart from the techniques for proving

properties about them (see above) it permits uniform application of optimizing transformations, like
replacing recursion by iteration. Even at the implementation level it can be advantageous: For

example, functions defined by endomorphic extension can be implemented in such a way that no

additional storage (for data) is required (cf. selective updating in [Ho]). If it has been proved that

the transformation and implementation techniques preserve meanings, then the “correctness” of

resulting programs can be guaranteed. Meaning preserving transformations will be studied in

greater detail in a subsequent paper.
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: 5. An Example: Substitution with «-Conversion

5.1 ~~ The Data Types

: In the example now to be discussed we have four data types, defined by

term is mketerm{constof:const) |
mkvterm(varofivar) |

. mkapply(funeof:term, argeof:iterm) |
mklambda(bvarof:bvar, termof:term) |
mkmu(bvarofibvar, termofiterm) |
mkcond(condof:iterm, trueeofiterm, falseeofiterm)

bvar i= mkbvar(varof:var)

const = uu [tt] ff| 00

var 1s taken as basic and not further specified.

The reader will notice that these data types represent the abstract syntax of LCF terms. In algebraic

terms the types form a heterogeneous algebra with the four phyla term, bvar, var, and const and

operations

(opl ) mkcterm: const = term
. (op2) mkvterm: var = term

(op3) mkapply: termxterm= term
(op4) mklambda: bvarxterm= term

- (op5) mkmu: bvarxterm= term
(op6) mkcond:  termxtermx term =» term
(op7) mkbvar: var 2 bvar

The generating phyla (data types) are const and var. Obviously the phyla var and bvar are
isomorphic; the reason for introducing the data type bvar is that it is more convenient to separate the

binding occurrences of variables from the other ones.

From the data type definitions the following characterizing functions are generated:

term s={ocF.[Ax. is_const(x) > mkcterm{const{constof(x}),
is_mkvterm(x) > mkvterm{var(varof(x)),
is_mkapply(x) = mkapply(F(funeof (x), F(argeot(x))),
is_mklambda(x) > mklambda(bvar(bvarof(x)), F(termot(x))),
is_mkmu(x)® mkmu(bvar (bvarof (x)), F(termof (x))),
is_mkecond(x) @ mkcond(F (condof(x)), F(trueof(x)), F(falsaot(x))),
L111

bvar : = [Xx. mkbvar(var(varof (x)))]

In order to define a homomorphism we have to supply 7 operations of appropriate types. 6 of them

correspond to the constructors occurring in the characteristic function term; the last one is to replace

. mkbvar. By substituting the characteristic function for bvar in term we obtain an expression that
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. includes all operations and completely defines homomorphic extension. For endomorphic extension

only the operations on the generating subtypes (i.e. opl,0p2 and op7).-are required. Let

termhom := [A oplop2 ...0p7 [«F...]]
and

termend := [A opl op2 0p7. [«F. . . ]]

be the functionals for homomorphic and endomerphic extension.

5.2 The Problem

We want to formalize the following (cf.LAW]J):

Replace any free occurence of the variable v in the expression (term) @ by the term t after
renaming bound variables in e suitably (i.e. so that no free variable in twill become bound in a)

(a common notation is e[t[v]).

What is described above is the basic conversion rule of the X-calculus as it is incorporated in the

LCF system. It may be desirable to have a system that 1s smart enough to understand this
description of substitution and to translate it from English into a programming language, At

present, such a system is not available. It would require knowledge about what exactly is meant by

“free occurrence”, “replace”, “renaming” etc. For the time being we have to be satisfied with specifying

those notions 1n some kind of formal language and having a less ambituous system transform the

~ specification statements into executable code. In any case, we need a formal definition in order to be

able to prove anything about the function.

We construct a function subst: varx termxterm = term by stepwise specifying the informal notion in

our language. Let subst be defined by

subst := [XV t e. substfree(v, t, renamebvar(e,t))]
where

substfree(v,t,e) := “replace all free occurences of v in e by t"
renamebvar(e,t) := “rename bound variables in e that occur free in t appropriately”

a) bound variables in term. The function boundvarsin: term - setof{var) returns a set of variables for

which there is a binding occurrence in the term. This 1s just the standard set function set-of-bvar

composed with the isomorphism variso from bvar to var, extended to sets. Here we can see how the

separation of the type bvar from var facilitates definition of set-valued functions. set-of-bvar 1s the

homomorphism defied by the operations

byisbyis [ Xx. {}] (empty set)
bs i= bg t2 bg 2 U

bg +E Us .

byiz [AX. (X)] (singleton map)
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i.e. set-of-bvar =termhom(b;, . . by).
Then

boundvarsin 8 variso © set-of-bvar

b) free variables in term. The standard function set-of-vars returns all occuring variables regardless
of whether they are free or not. So we have to update that function appropriately to get a function

that returns only free variables. If we had separated the A- and cc-terms from the type term we could

use a standard set-of-dtype function for defining freevarsin. Instead, we define it directly as ‘as a
homomorphism

freevarsin: term =» setof (var).

Using the set-valued functions

fiz2 [xx. {}]

{5 i= f7 38 [Ax. {x}]

f5 +5 U

fq 32 fg 3 [Axy. y\x] (set difference)
te i= Ug

the function 1s definable by

freevarsin :=termhom(f;, . . ,f;)

¢) Renaning bound variables. We need a function newvar that “invents” new variables (which do not

occur in eithere or t). Strictly speaking the existence of newvar depends on a function that

| enumerates all variables and returns the first element with a certain property. In any practical
implementation we “know” all the variable names available to the user, so a function that generates
new names 1s available. In the abstract context it is sufficient to assume the existence of a strict and

total function newvar that returns a variable with the property

- newvar(v,e,t) € varsin(e) U varsin{t) U {v}.

Using this function we can specify.renaming of bound variables:

| renamevar(e,t) i= “rename in @ each variable that occurs free in t and bound in @"

formally:

| renamevar :s3[ et. [Vx €freevarsin(t) N bvarsin(e) : rename(t,x,e)]]
; rename’ 3&8 [AL [Xx @.termend(mketerm, replacevar, mkbvar © replacevar) ]]

where replacevar denotes the term [Az.zsx © newvar(x,e,t),2). Note that the use of the iteration

construction 1s justified by the fact that renaming of bound variables can be done in any order; all

resulting terms are equivalent.
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| d) substfree. "Free occurrence” means “not bound”, i.e. “not in the range of a A or « binding that

| variable.” So, 1n order to find occurrences of a variable v we have to search (recur in)thetree
| representing the term e. Whenever we come across a A or « (that is, a mklambda or mkmu) that binds

v, we stop and return. Then any remaining occurrence of v is a free one and isto be replaced byt.
Inthe formal language this is expressed by a construction using a modified functional for

endomorphic extension:

substfree 13 [ocS, [Xv Lt. [ Ne. is_mkvierm(e) > varof (e)sv > {,e,
(islambda(e)vis_mu(e)) A bvarot(e)sv > e,
tarm0(S(v,1),0)]1]].

Here term0 is the operator on F that defines term, i.e. term s[«F. [Xx. termO(F,x)]],

| This finishes the formal specification of the substitution function. The collection of all the function
definitions

subst iz [Xv te.substfree(v,t,ranamevar(e,t))]
substfree 38 [ «S. [ Xv t.[ Ne. is_.mkvierm(e) > varof(e)=v o t,e,

(is_lambda(e)vis_mu(e)) A bvarof(e)=v = g,
| term0(S(v,t),0)]]]

renamevar iz [ Ae t.[ Vx €freevarsin(t) N bvarsin(e) : rename(t,x,e)]]
rename :3 [At [Xx e.termend(mkcterm, replacevar, mkbvaroreplacevar)]]

| replacevar se [A2. 2=x © newvar(x,e,t),z]
bvarsin ¢8 variso ¢ set-of-bvar

set-of-bvar sx termhom([ Xx.{} J, [Xx.{)], U, U, U, Vg, [Ax.{x}])
freevarsin x termhom([Ax.{}], [Ax.{x}], U, \, \, Ug, [Ax.{x}])

1s somewhat longer than the informal description in English, yet it 1s complete in the sense that a

sufficiently smart system can transform it into a reasonably efficient program, using transformations

of the sort indicated in the preceding section.
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oC 6. Concluding Remarks

In this paper, the representation of abstract data types in LCF and the algebraic interpretation of

structures were discussed. This led to constructions that permit to specify functions operating on data

structures in a concise way and close to what may be considered “natural.” The methods were

demonstrated in an example taken from the actual LCF system.

The construction methods considered here constitute only a first step towards an elaborated language

that will allow easy and concise definition of complex functions as they are needed in, e.g., structure

manipulating systems. There are many directions in which the work presented here has to be
extended. Some have already been mentioned in the preceding sections: systematic extension ‘of the

system of data type; more general function definition schemes; general methods for transforming and

optimizing function definitions, in particular for removal of redundant recursions; the translation of
logical expressions into a “real-life” programming language. In the paper, only methods for explicit

_ function definition have been discussed. However, it appears that techniques for solving equations

that define functions implicitly can similarly be derived from the explicit representation of the data

structure by a retract. The retract could serve for guiding the search for solutions and for

structuring the resulting program. The development of such problem solving methods in the
framework of LCF has to be left to future studies.

How much of the methods discussed here can be automated? It is obvious that the generation of the

oC appropriate set of axioms, of function definition schemes and rules for structural induction from the
data type definitions is straightforward and can be completely automated. Furthermore” many checks

for simplifications and transformations can be done on a purely syntactic level accessible to

automation, So it should be easy to incorporated all these features and special knowledge about the

restricted set calculus into an interactive system for developing programs and proving theorems
N about them.
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A. Appendices

A.l Logic for Computable Functions

A.l.1 Syntax of Typed LCF

The following is an extract taken from [Mil].

| Types At bottom tr and ind are types. Further if #1 and #2 are types then (41-82)is a type.
With each term of the logic there Is an unambiguously associated type. For a term t we write $33 to
mean that the type associated with tis 4.

: Terms (metavariables s,t,sl1,tl,..) The following are terms:

| Identifiers (metavariables x,y)- sequences of upper or lower letters and digits. We assume that
the type of each identifier is uniquely determined in some manner.

| Applications - s(t) : B82 , where s:81-82 and {:41.

Conditionals -(s=t1,t2):8 , where s:tr and t1,t2:4.

| X-expressions - [Ax.s] : #12482, where x:81 and s:42.

o-expressions - [ex.s]: 8 , where x,s:8.

| The intended interpretation of the d-expression [«f.s] is the minimal fixed-point of the function or

functional denoted by [Af.s]. For example:

| [oct.[Ax.(p(x)>1(ax)),b(x))]

denotes the function defined recursively as follows:

f(x) <= if p(x) then t{a(x)) else b(x).

Constants The identifiers tt, ff denote truthvalues true and false. 1 denotes the totally undefined
| object of any type: in particular, the undefined truthvalue.

| Atomic well-formed formulae (awffs) The following is an awff:

s ct

| where s and t are of the same type. The intended interpretation of s<t is, roughly, that t is at least as
well defined as, and consistent with, s.

Well-formed formulae (wffs) (metavariables P,QP1,Ql,.) Wifs are sets of zero or more awffs,

written as lists with separating commas. They are interpreted as conjunctions. We use
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TT s st
to abbreviate sect, tes.

. Sentences Sentences are implications between wffs, written

Pi-Q

y or, if P is empty, just |=Q.

| Proofs A proof is a sequence of sentences, each being derived from zero or more preceding
sentences by a rule of inference.

The strict syntax for terms and awff's is relaxed in the machine implementation to allow a saving of
parentheses and brackets. In addition, we use the abbreviation

f(x,y) for f{x)y)
vxtes for Ax.t ¢ Xx.8

p::q8T for p @2qdL8spord ]

) Functions are used in infix notation where it is obvious what is meant.

” A.1.2 Type free LCF
- The type free version of LCF differs from the typed one essentially in the handling of truth values and

conditional expressions. Apart from that it also specifies the structure of the domain. Besides the truth

7 values there are constants T for the truth values retract and 1 for the universal domain. |n the
| _ following the additional axioms and rules of inference are listed.

: MAX l= s eT

| COND |= T sss

I= r= sts T(r) = st

[= T(s)(t) = T(s)

l= Te T=>T

| 12 [ocd Tu (l= J]

The CASES-rule is changed to

P |= Q{4/x} P |- Q{tt/x} P |- Q{f/x}P[|- Q{T/x}
. CASE-S =eeecsscmccccccccccceccccoronccnenencencnncennecccnncenace

P= Q{T/x}



| [|

f Appendices A 3

Other defined standard terms:

| D> im [Xxy2x2x2yT,2]

4 = im [Xx y. Az yxzxx]

b
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A.2 Special Functions in tfLCF

A.2.1 Definedness predicate

We want a predicate d such that

|= o(x)=tt, xed, xaT

Define o by
d=zuptU down

| where

down [A x. x2 4,4]
and

upt s [ec P. [A x. (x 2 &,1t) UPIX(TNH]] (= [Ax. uptf(x) o &,tt])

down maps everything to 4 except T which goes to T :

| down(x)sT |= T(x)eT |= xT

| upt maps everything to # except 4 which 1s mapped to 4. The desired properties of & are then
obvious.

A.2.4 istrue

| -Qur aim 1s to give a function that

- maps everything on a truth value and

| - gives the values # and 1 exactly for the arguments t and {Tf resp.

This function will enable us to test effectively variables for “well defined” truth values. In the type-
free logic, the simple conditional does not provide this function as it 1s defined “relative to the truth

| values retract T .". However, we can define istrue using a limit construction. That such a definition is

possible at all 1s due to the fact that the truth values are 1solated points in the lattice I.

| Definition: istrues[ecS. [A x. x28 US(x T), ff US(x 1) ]]

It 1s easy to show by cases that

| (1) T c istrue

Since Vx. T(x) ex we also have

| 2) - T o istrue c istrue

| From the definition follows immediately

(3a) istrue(x)= ft |- istrue(x(T)) < istrue(x)
(3b) istrue(x)z ff |= istrue(x(T)) c istrue(x)
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Bn also

_— (4) T(x)aTV |= istrue(x)aTV f o r TVsl,T

Next we show by induction on istrue

(5) Vx. istrue(x) c T(istrue(x))

I. L(x)e... OK

| II. Assume Vx. S(k) € T(istrue(x)). We have to show
x i= ®US(x T), ff U S{x T) c T(istrue(x)).

By Cases T(x):

| T(x)=zLl : trivial

T(x)=T: implies istrue{x)sT, trivial.

i T(x)=tt :

ihss ft USIxT)ctt U Tl(istruel{x T)) by Ind.Hyp.
s T(t U istrue(x T)) by L54 Mi-We

BB s T(istrue(x)).

A T(x)=ff : analog

With (2) we have shown

| (6) istrue  T o istrue.

a. which means that the range of istrue is a set of truth-values.

On the other hand we already mentioned that

| (6a) istrue(tv) = tv

| i holds for each truth value tv. Thus,in a short notation

| ( 7 )istrueocT 2 T

i.e.istrue is an identity on T. From (6) and (7) we deduce the retract property for istrue:

istruo © istruo ® istruo o(T o istrue)

5 (istrue o T) o istrue
(8) = T oistrue

2 istrue
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The ultimate goal is to show

or (x) istrue(x) = tt |= x = tt
istrue(x) = ff |= x = ff

- 1.€. istrue 1s a truth-valued function that gives the values # or ff exactly for t and ff resp. In orde:
to do so we introduce another truth-valued function:

-- Definition: uptt 5[e¢ P. [A X. T(x) UP(X(T))]]

By definition we have

(Ul) T c uptt

_ We prove the following facts about uptt:

(U2) Xx c uptf

= (9) istrue < uptf

(10) istrue(x) = & |= uptf(x) < istrue(x)

-(9) and (10) together show

.. (11) istrue(x)stt |= uptf(x)=tt

With (U2) it follows that

(12) xct

on the other hand, since #s T(x) cK we have

(13) istrue(x) = #t |= x = &.

The proof for the corresponding statement for ff follows the same line.

A.3 Structural induction

The basic 1dea of how to do structural induction in LCF is that it can actually be simulated if a

recursive function “describing” the structure is available. For the kind of structures we are interested

in in this paper the retraction constructed from the type definition serves this purpose. So, structural
induction becomes a mere application of computational induction. The derivation of the induction

) rule as in theorem 3.x is done in two steps: 1) first derive a rule involving the retraction; 2) modify
7 the rule in 1) by using the type-predicate. Since proving the rule in full generality would be rather

tedious, it 1s demonstrate by means of the example seq.
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: Recall that seq is defined by the retraction

_ seq 5 [«S. [Ax. is_emptyseq(x) © emplyseq,
is_mkseq(x) © mkseq(atom(hd(x)), S(ti(x)}),

- &]]

: First, we prove the rule

(a;) P(i) (a5) P(T) (a3) Plemptyseq) (ag) Vx.Ply) |= Vx.P(mkseg(x,y))
-- (R1) ttLL

P(seq(x))

_ where x andy do not occur inP. By computational induction, we can deduce

Vx. P(seq(x))
from

or Vx. P(d K) and Vx. P(S kK) |= Vx. P(tau(S)(x)).
Since

P(L x) <=> P(4)

. the base case 1s proved by premise (b;).

= Now assume

: Vx. P(S x)

In order to prove
. Vx. P(tau(S)(x))

we expand tau(S)to

~ tau(S)(x) = is_emptyseq(x) > emptyseq,
is_mkseqg(x) @ mkseq(atom(hd(x)), S{ti(x))),
A

and split Into cases which then can be deduced from appropriate premises:
is_exptyseq(x) = L : tau(S)(x) = 1 by premise (a;)

z= ft: 2 emptyseq by (a3)

- 8 T : : T. by (a)
a {1 : case split for is_mkseq{x) : only tt 1S interesting:

= mkseq{atom(y),S(x)) b y (a4)

Now, the rule

BE (b;) P(emptyseq) (bo) Py) |= P(mkseq(x,y))

Vx.is_seq(x) => P(x)

follows from (R 1) by virtue of the facts that the reiativiring type predicate eliminates the cases 4
and T.


