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. "An Adaptive Finite Difference Solver for Nonlinear Two Point Boundary

Problems with Mild Boundary Layers," M. Lentini and V. Pereyra

C ABSTRACT. A variable order variable step finite difference algorithm

for approximately solving m-dimensional systems of the form

y' = £(t,y), t € [a,b]
LC

subject to the nonlinear boundary conditions

g(y(a),yb)) = 0

1s presented.

A program, PASVAR, implementing these ideas have been written

C and the results on several test runs are presented together with

comparisons with other methods. The main feautres of the new pro-

cedure are: a> Its ability to produce very precise global error

estimates, which in turn allow a very fine control between desired

tolerance and actual output precision;

i b) Non-uniform meshes allow an economical and accurate

treatment of boundary layers and other sharp changes in the solutions.

¢) The combination of automatic variable order (via

deferred corrections) and automatic (adaptive) mesh selection

C produces, as 1n the case of initial value problem solvers, a versatile,

robust, and efficient algorithm.
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AN ADAPTIVE FINITE DIFFERENCE SOLVER FOR NONLINEAR TWO POINT

BOUNDARY PROBLEMS WITH MILD BOUNDARY LAYERS

C L¥ :
M. Lentini and V. Pereyra

“

1. Introduction

We are interested in developing usable software for two-

S point boundary problems for m-dimensional systems of the form

Yy = f(ty), te [a,b]

(1.1)
g(y(a),y(v)) = 0

In [8,9] we have already presented a finite difference

algorithm (SYSSOL), based on deferred corrections, which has variable

order capabilities. SYSSOL uses only uniform meshes, which can be

refined automatically in order to reduce the maximum norm of the (esti-

) mated) global error on the current mesh below a requested tolerance.

SYSSOL behaves quite adequately for many problems (see

(8,9]), but becomes inefficient or does not work at all as soon as the
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solutionto the problem or some of its derivatives have sharp

| gradients. Unfortunately, this type of phenomenon 1s frequently

found in the applications.

In [ 9 ] we described-the deferred correction algorithm

n for general nonuniform meshes, even allowing for multipoint boundary

conditions and data with jump discontinuities.

In this paper we describe an implementation of an algorithm

. (PASVAR) for approximately solving (1.1) which is based on the results

of [9]. The main new features in PASVAR consist of an automatic

procedure for choosing nonuniform meshes, and various modifications

LC in the general strategy of the method. Since in [ 9 |] and other earlier

work we have described the necessary theoretical results and implemen-

tation details, we shall concentrate in this 'paper on the new features

L mentioned above, giving only the minimum general information necessary

to make 1t readable. This basic groundwork will be found in Section 2,

while Section 3% will be devoted to the mesh placement problem. Some

L theory justifyingour mesh placement procedure has been published

elsewhere [ 13]. In Section 4 we discuss the practical aspects of the

mesh placement algorithm, which 1s based on the idea of equidistributing

the normof the local truncation error.

Section 5 1s devoted to an operation count and storage

requirements. In Section 6 we present numerical results on various

. problems with the type of difficulties mentioned earlier, i.e. boundary

layers, steep spikes, and so on. We compare PASVAR with various other

programs avallable : (a) SYSSOL, our uniform step deferred correction

solver; (b) RICHAR, a Richardson extrapolation procedure developed by

Hilda Lopez and ILuis.Ruiz [ 10], using some of the basic components of

2
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C SYSSOL; (¢) a multiple shooting algorithm due to Bulirsch, Stoer,
and Deuflhard [2]; (d) IDCBVP and PREVS,two deferred correction

codes for scalar second order equations [12,25]; and (e) SUPORT,

C a linear systems solver based on superposition and orthogonalization
[26].

The thickness of the boundary layers that can be resolved with

L PASVAR depends, as can be expected, on the maximum number of grid

points that can be used. Thus the "mild" in the title stands for the

fact that we have limited, for storage reasons, that maximum number of

C grid point® in our program to 650/m, where m is the dimensionality

of the system being solved.

We see that PASVAR performs efficiently and reliably in all

the problems considered, within the limitations imposed by the maximum

number of grid points allowed. That limitation 1s computer dependent.

We emphasize that all the finite difference codes presented

here have provisions for estimating the global error of the computed

solution, and that in all the problems run this estimate has given either

the true error with at least one significant figure, or have been off

(. for less than an order of magnitude. This 1s 1n sharp contrast with the

techniques based on initial value problem solvers, since even the state

of the art codes have no previsions to control the global error of the

C entire approximate trajectory. Of course, this additional, and we think,

extremely valuable information, costs something in terms of computer time,

but this cost 1s amply Justified by the added reliability in the numerical

C results and the excellent correspondence between requested tolerance (TOL)

and actual global error in the computer solution.

3
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2. Basic results and notation

“

Given the m-vector functions y(t), f(t,y), glas8), we

consider the problem of solving approximately

y'(t) = £(t,y(t)) ’ tela,b] ’
(2.1)

g(y(a),y(v)) = 0 .

We assume that problem (2.1) has an isolated solution

ne v*¥t) (see[lh 1 ). We assume also that f is smooth, so that all

involved derivatives of y*(t) exist. Piecewise smooth data and

multipoint boundary conditions can also be treated with slightly more

L work (see [ b, 91).

Let 1-r = { SEEERPRIE } be a general partition of the
interval [a,b ] satisfying:

a = t. < t, < ee <T 41 =Db

(2.2) h, = City ; h = max h, ; h = min h, ;

. h / bh < kK ,

with K a given positive constant. Condition (2.2) implies:

(2.3) b-a < h < K(b-a) ,
LL. N N

and we can use h and 1/N interchangeably as equivalent asymptotic

scales.

The basic finite difference approximation considered 1s the

trapezoidal rule:

~1 - - + + f(t = 0, i=1,...o (uw); = hy (uw o-uw)- 3 [f(y u,,) + £(6,u)]=0,1=1,....0
“

(2.4)

glu, 5 uy) = 0

ly
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Keller studies also the centered Euler scheme:

= 1

(2.5) ny (u,,- u,) £(t; + zh, 5 310,79)
= []

which has properties similar to (2.4) and it is easier to use

in the case of piecewise continuous data. However, 1t 1s considerably

more difficult to perform deferred corrections with it, because of the
oC

presence of a discretization inside a nonlinear function, which forces

partial derivatives of f with respect to u in the expansion for

the local truncation error. That 1s the reason for our choice of the

L

scheme (2.4).

As usual, the local truncation error is defined as what 1s

left when one applies (2.4) to the discretization of the exact solution
Gg —

to the problem. By Taylor's expansion we get:

L 2V
- h, 2L+2, .

(2.6 T (y*) =) Vv {Zp = + (neh Yoi=1,00e,N,mod SY-N 2 (2y)!
Vv=1 2 (2y+1).

where

(ov) _ aV

f. 17 = f(t,y*(t) )
12 PC t=t_ +h, /2 .

- i i

We shorten (2.6) for further reference to
. L

* 2 ~~, 22

(2.6) 7 (v5) _ T(t.) n° + O(n LH ).A) v 1 i
K.

v=1

Let 7, x be the mesh function obtained by adding up the

C first k terms in the asymptotic expansion (2.6), and let 38) (4) be
2k+2

an O(h | approximation to Tok It is well known [9] that if2

ne 1) is an (hn) discrete approximation to y*(t) on T, and if
k=(- (un 1) yx) has an asymptotic expansion in even powers of h, then

Ak k-1 : 2k+2 :

a ) )\ is an Oh ) approximation to Tk The operators
p,
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C

st can be readily constructed via numerical differentiation, as

C explained in [ 9 ], and they are the basis for the deferred correc-
tion algorithm. They are also used in the dynamical monitoring of the

global error (kK) = (ul®) - y*¥). Notice also the modification intro-

C duced in [23] which eliminates some earlier theoretical difficulties.
We hope it will be clear from the context that we are

speaking of vector mesh functions on nw , 1.e. that an expression such

C as the one above means:

(k) = wey ays t i= m

Another important fact we shall need later is that the
\

method 1s stable in the infinite norm || . || , i.e.

k) k2.1) 1 Fp cey Hy,
-

u where the constant c¢ 1s independent of the mesh m . The mesh func-

(k) kthtion 7 represents the local truncation error after the
™

correction has been performed.

. We recall now the deferred correction algorithm. Letting

5(0) (=) = 0, solve successively for k=0,1,2,...
TT

k k-1

3 (un) = s{) (uly“ r
(2.8) 1-f

We call ne to the solution of (2.8) (closest to y*(t)).

~ The main features of the deferred correction procedure are:

(a) Solutions of increased accuracy are obtained on the same mesh

(compare with the Richardson extrapolation procedure);

~ (b) The same system of equations is solved all the time (with different

right hand sides).

6
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Under certain conditions, the successively corrected solutions

L will satisfy on the mesh :

(k k Ok +2ey =p aE)= oR)

An asymptotic estimate for o ) can be found by solving for
C

A the variational (linear) equation

k k k-1 k+1 k(2.9) 5 (uy4 = gl) (uli) gH) (G(R)
m ul

«

where 3! (u® ) 1s the Jacobian matrix of § evaluated at 4K) |I

If AE) 1s the solution of' this linear problem then:
+

C 2.10) AU (BE) 4 ont

Observe that 1f (2.8) 1s being solved by Newton's method, then 5 (ul®))1

will be available, and since 5%) r slit) are also available, the cost
- of the estimate (2.10) 1s just that of one Newton step, i.e. the solution

of a sparse system of linear equations.

For the automatic mesh placement algorithm, we will be inter-

2k+

L ested in having an O(h * es Ima te of the leading term in ¢ (%)
i

For this purpose, it is necessary to use in ¢ (k) formulas with a higher
TT

order interpolation error than 1s necessary for the rest of the process.

“ In fact, we will insist that

(k) _ Ok+h
(11) 8) = a(3%)+ oT)

C i.e., the numerical differentiation formula will be two orders more

precise than before.

Assuming that at the (k-1)th correction we have an expansion

for the global error of the form:

7



(k-1) _ 2k 2k+2 2kth
(2.12) ug - y(t) = e, (t;) h eq (B;) h + O(n ),

L

withe, (t,) smooth and independent of mm , we conclude that

(k) (k) , (k-1)2.1 % = ¥) =13) + Fr) =(vp) - 57) ET)

y (x) !_ | _ ok Dl+
= ren 0) =r) = 88 (6) + 0H

_ 2k+2 (k) ok Ok+l
: = Te (Ey ) hy - 5. (e (t;))n + 0O(h yo.
L

Observing that UF) (e, is itself 0h), we see that we have in
| (k)

display the leading term of T_ (y*) .

- - k+lLemma 2.1 T = 5 (k RAMON - s\ 8) (yk 1) is an o(h® )Zeiilia e.1 +1] - T =

Co (k)
approximation to the leading term of T (y*) |

L Proof: Because of (2.11) and (2.12)(with (k-1) replaced byk ) we have

(k+1), (k)y  (k+1), (k+1) 2k+2 2k+L
Sy lug) = os yE) rs (ey, (£5) BTC + 0(nTH)

C
_ k+l

. and

(kx), (k-1) , _ .(k) (k) 2k k+l
C 5 (a; ) = S (v¥) + S_ (e, (t,))h + O(h )

(k) 2k k+l— a

= rl)+ sie(6)PF + 0(nPEh)

In this last computation we have made use of two terms of the expansion

2k+h
(2.12) in order to obtain the 0¢(h ) term.

Subtracting these two expressions and comparing with (2.13)

C the result follows. 1]

8



3. The mesh placement algorithm
C

We have seen that at the kth step of the deferred correction

algorithm, the local truncation error has the form:

C ~ Dk+hk _, 2k+2

(3.1) rl ) (v5) = noo I(8) + oT)

where the function Ty pq (E) does not depend upon the net m . Further-
2

. more the leading term of (3.1) can be estimated to order hh by

(k+1),, (k) (k),. (k=1)

We are interested in choosing a mesh so that the first term of the
C .

local truncation error is nearly constant in norm on this mesh. Since

we have a limitation on the ratio of the largest to the smallest mesh

size (see (2.2)),we have to take into account the possibility that

C

Tp (P) be accidentally very small at some grid point. For this purpose,

and assuming that su T ..(t) - M we define the function

G(t) = max (JIT, (Il , A)

~, 1/0where 3 = M/ K (K defined in (2.2), a = 1/(2k+2) .

We shall call a mesh nn (asymptotically) equidistributing iff

2k+2 2 k+2

(3.2) h’, | Gt) , y= Hh; sup | a(t) || = E.(1+0(h)) ,
RR RA

where E 1s a positive constant called the level of equidistribution .

The norm | | , || 1s the co-vector norm. In [13] the properties of

equidistributing meshes are studied in detail and more general iN norms
are also considered.
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For an equidistributing mesh we then have the relationship

b N

o NN a(3.3) [ ae dt ~ ) nh, || U(t) | N . P ,
a i=1

« Thus the level E corresponding to an equidistributing net with N

points 1s approximately equal to

=1/C

@4) =vyay
: b 0] 1 /o :

Observe that | G Il = G(t)” dt) is not a norm since o < 1,
a

and also that (3.4)is mesh independent.

C We see then that for an equidistributing mesh, the level E
itself is an asymptotic bound for the infinity norm of the local truncation

error:

(k): I = E(1 +0(h)),(3.5) max || (v0 ( )
1=1 gees N

By using (3.4) we can predict approximately how many points

will be necessary to achieve a prescribed tolerance € . In fact

~\O
N > G .(3.6) > ( Is / g)

| Lemma 3.1 If the mesh m 1s such that

i+]

| a(¢)° dat = TF (1 + 0(h))
1

b

(i.e. a(t) dt is asymptotically equidistributed) then 1-T is a.e.
6

Kk +

withE = fo = || G | eE ° and hence
k -(2k+2 |

Go ne ne ER ey arom) |Proof: The proof is entirely similar to that of Lemma 3.1 of [13] oe

10



Since || . Ig 1s not a norm it 1s convenient to have an

C estimate in || , ls - To obtain that estimate we need the following
Lemma.

Lemma 3.2 Let p> 1, let o (x) be a scalar L function, and

C let 0<g <p. Let M. = { x: | 9 (x)] >L} with L > 0 chosen
so that

b

o

Ji [eo (0° ax =3 | Jo(x)| © ax.C M |
L

a

Then Do
1 op

(3.8) Hol <2 ug) IP qe. CO b
C

where u (Mp) is the measure of the set M,

Proof: See [13] I
C

For p =c0, (3.8) simply becomes

1/0
BN }(3.89 Mel, < Taw) 17 qe

C ' / .
If we combine (2.7) with (3.5) and (3.8%), we obtain

the following

Theorem 3.3 Let the mesh m have N+1 points and be equidistributing

C

for the k th step of the deferred correction algorithm. Then the

global truncation error satisfies

( k 2, (M_) 2k+2 |
C (3.9) pen =e GUIYEE ye 04 om).

N

with ML defined as in Lemma 3.2 for the function

ot) = | Gt) .
ao

11
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Proof: From (2.7) and (3.5) we obtain

je ew BH) a wr om
C

and applying (3.8) we get (3.9) . |

Observe that u (Mp) will be small if G(t) has sharp

| peaks. We give now a simple example to see how this bound compares

Ny with the standard one for uniform meshes in a boundary layer model
problem. The essential difference between the two bounds 1s the

appearance of the quantity | py (1) 1°57 when the mesh is equi-
- distributing.

Example.

Consider the first order scalar equation

sy’ = =y, y(0) = 1,tel0,1],

where § 1s a small positive constant. This problem has been analyzed

C in detail in [ 5 ] . Its solution is simply y(t) = oe t/6 and there

1s a boundary layer of width § at t=0 . The successive derivatives of

v(t) are

yr) = (1) HE
qs 5S

. It 1s easy to see that 1f one applies method (2.4) to this problem,

then the stability constant c¢ is O(l1) for§ » 0 . Also

k+2

ep(8) = cp ye) ’
dt

Thus || G I = c / 5 ~(2kr2) » and from a uniform mesh estimate we deduce
that N = 5” points will be necessary to get an O(l) accuracy. A

simple calculation shows that in this case (M) = c,6 , with c,

a small constant, and we see from (3.9) that for an equidistributing

mesh an o(n(2E+2), error bound holds for any N, and the effect of

12
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the boundary layer 1s completely neutralized by the equidistribution

of the oo - norm of the local truncation error. Observe also that
C

equidistributing any other smaller derivative of the solution (as

in Pearson [11]) will not have this effect.

C

y(t) |

L 1

\

\

C ha |
L |] |

6 r t

For k=0, and a local truncation error level of 0.01, the

mesh-step function must satisfy

-2  -tPie) 2 eS = 001,

or

n(t) = 0.14 6 U/26

The total number of points 1s approximately given by

N N : :
= = — ~ nw

N y. y hy h - h(t) dat"20,
i=1 i=| 0

and the number of points in [ 0, 8] will be

[N —— dt 13.[ 0,6 17 h(t) ’
“0

13



We see then that for any§ more than hall of the

grid points will be concentrated on the boundary layer, as one expects.

Of course, N = 20 1s the optimal number of points for that level of

error, but we have also to enforce the condition h/ h < K , with a

C

moderate K which may mean increasing somewhat the density of the

mesh outside the boundary layer. Still this will require far less points

than the (108) points required by a uniform mesh algorithm to give the
C

same order of accuracy.

More general results of the type described in this Section,

detailed proofs, and references to related work can be found in [13].

C

«

“

«

14
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3

4. Practical mesh placement algorithm

In introducing the concept of asymptotically equidistributing

meshes we have taken a step towards the practical implementation of the

ideas in Section 3.

As a matter of fact, we won't strive to make our computed

N meshes even approximately equidistributing, but rather we shall use a

somewhat more lax criterion. The first ground rule in our iterative

procedure to obtain a gridmw 1s that we will only add points, and

q once a point is in the mesh it will never be touched again.

In other algorithms proposed [ 11, 17, 21], either a fixed

number of points 1s moved around, or points are added and removed in

u order to satisfy some equidistribution condition. In our experience

those procedures have a tendency to be more unstable and to produce

rougher meshes than can be tolerated. There are, of course, ways of

. improving that situation, like smoothing, but that only complicates the

algorithm unduly. On the other hand, the closer the mesh is to an equi-

distributing one, the fewer number of points it will have for a given toler-

. ance; so that fact and the cost of producing such a mesh must be carefully

balanced. Also, from our example above, it is seen that, for a given level

. of truncation error, there 1s an order of the method which minimizes the

w number of points required for a given problem. Of course, one should

take into consideration the amount of work for each order when drawing

true optimality results. For the time being, these considerations are

« far too complicated to be taken strictly into account in our algorithm,

but they provide guidelines for useful heuristics.

Our procedure starts with a given mesh (0) with Nyt points.
If no a priori information is available about the problem difficulties

then 7(0) will usually be a uniform mesh with step size n'0)

15
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C

Obviously, because of computer storage restrictions, one will also have

. a maximum number of mesh points that can be considered in any given

mesh, say NMAX . In our program we have chosen NMAX = 650/m .

On n(©) we obtain an approximate 0(n®) solution u'®))
-

C by solving ON = 0, glu, oy wm) = o (see (2.8) .
Then we compute s(1) (ul®) ) , which is an estimate for the leading

, (0) ne)

C term in the local truncation error lo) The infinity norm 1s used
throughout. If we want ERAN , then from Lemma 3.1 and (3.4)
we obtain that

‘ (4.1) E =O.

The initial tolerance requested, z(0) , 1S up to a certain

C extent arbitrary, but nevertheless it should be chosen judiciously. As
=(0) becomes smaller, more points will be added to the mesh at the

beginning, which may be unwise. Let TEM= a (0) . We put

C (4.2) =(©) _ hax (BMA * TEM , TOL) |

. where BMA is a parameter used to control the size of z(0), The

« maximum norm of the approximate solution, TEM, 1s what connects the

level z(0) with the particular problem being solved. Essentially

what we are saying 1s that we would like to have an equidistributing

C mesh with sufficiently many points as to achieve, at the start, a rela-

tive precision BMA with the O(h”) method. BMA should not be too

small, since at the early stages of the game the information available

(ul) will tend to be more unreliable, especially for problems with
difficulties.

16
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C

We call (see Section 3 for the definition of A ):

_ = og ~
EJ(I) = h, max (|| T,, (t;) ||, A) =

~ o

and N b

C y oUUN= EJ(I) ~ a(t)°at
I=1

a

The equidistributing procedure adds points, according to the

C following rule. "In the present interval (x5 Xr )add IQJ(I) -1
uniformly distributed points, where

(4.3) 1o7(I) & | B3(1) / BE ,

and | | “stands for "integer part of ",

Thus the total number of points added in each sweep 1s

oN
IQ = | IQJ(I) , where (N+1) is the number of points in the mesh

J=1

being modified.

These new points are actually added into the mesh if the

following conditions are satisfied

] (4.4) 0.04 N < IQ< min (NMAX-N, 70) .

If IQ< .O4N , and the mesh has been modified during the present process

then the equidistribution terminates.

The condition on the right of (4.4) prevents too many points

being added in any given sweep.

We observe that with the notation above

UN / Ex N+ IQ +1.

If IQ violates one of conditions (4.4) and this 1s not terminal,

we can attempt to find the "right level" E* which will bring in a

17
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preset number of points I@* , by putting

C (4.5) EX = Ex N+ iIq+ ,Q*+ 1

and going again through the mesh in order to obtain a vector TIQJ(T)

for this new level. We use in our program

C

N + IQ¥+ 1 = min (ALG*N, NMAX)

with ALG = 1.1(0.1)1.4. If the case IQ < .ON is not terminal,

C then we redefine the level as in (4.5) with AIG = 1.4 . If that level

still does not bring enough new points into the mesh, then we decrease

the correction indexk by 1 , until either the mesh is modified or

k=0. In this latter case a complete bisection of the mesh 1s requested

(1f possible). If the right hand condition (4.4) is violated then we

define a new level, also with ALG = 1.4 , but now we allow AU to

L decrease down to 1.1 in steps of 0.1 . This process is of course

stopped whenever an allowable number of new points 1s produced.

This series of tests and modifications are intermixed in a

somewhat complex logical structure which 1s better understood by looking

at a flowchart or the actual computer program. Here we have only tried

to list some of the main features of the algorithm.

In particular, indefinite cycling 1s precluded by various

. controls so that the mesh refinement process always terminates, though

not necessarily with an equidistributed mesh.

We have insisted in not removing points from the mesh since

this provides an easy way of insuring that the condition h/ fi < K 1s

fulfilled with a reasonable K , and also produces smoother meshes.

18
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As we shall see in the mmerical examples, in problems with

transition regions as thin as 1072 (on an interval of size 0.2), the
C -

algorithm has produced solutions accurate to 10 8 with a mesh in

which K < 50.

Ig —

AN

19



5. Operation count and storage requirements

In this Section we shall make an operation count for algorithm

PASVAR. There are essentially three large modules 1n PASVAR, and two main

loops: the deferred correction iteration and the Newton solver.

(a) The linear equation solver (SYSLIN).

SYSLIN 1s an 1mplementation of the algorithm of Section 3 of

[ 9 ]. SYSLIN is called at each Newton step, and at the end of each

correction, in order to estimate the global error.
_

The relevant parameters for SYSLIN are: m the number of

differential equations in the system, and N the number of mesh points.

The systems solved by SYSLIN are then of size m (N+1)x m (N+1) .

They are also sparse and highly structured. 1p fact the coefficient

matrices involved have the form

| 0 . : Co
Ss. R, 0 . m A + B

1 1 ! }

GOR = 100s, By _ Sh
: mN C ( D |

! J [J [J LJ \ J 4 J

| m miN
« 0 . . vy Ry

That 1s, they are block bidiagonal, with the exception of the first block

row. The blocks are of size m xm . The system of equations have the

form

i

A |
B xq by

— fom PS NR
f

' A A

C { D X b
i
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We solve the superblock 2 x 2 system by Gaussian elimination,

and that implies solving subsystems with the lower block bidiagonal mat-

rixD . Putting C = [ Cb], V=[V]w] we have

(5.2a) Xy = (A - BY)” (by - BW) ,
C

(5.2b) x = p~ (b - Cxq )
i 1 A

where V=D'C, w=D bb are obtained by solving the system

C ~ ~

(5.3) D V = C .

This 1s done by means of the recursion

S (5.4)  V.7= Ry (Cu = SV.) , J = Tyeee,N.
J J SJ JJ]

Forming the expression in each parenthesis of (5.4) takes

5 2 : Ca Ce
m P + mS operations , where P stands for multiplications or divisions,

and S stands for additions or subtractions. Solving one matrix system

(5.4) takes k w (P + S) operations, and thus we have a total of
3

N (7 wp + (4 mw + n°) S) operations for the recursion (5.4).
5 3

The calculation of (5.2.a) and (5.2.b) takes ( hm + Mn") P+
3

2
(L w + Mn + Nm) S , and the total number of operations for SYSLIN is
3

: (most significant terms only)

- 5
(5.5) Nm” (7p + 4 8)

3

(ct. [ 7] also).
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This 1s about twice the number of operations obtained by

Varah [ 16] for the case of uncoupled boundary conditions. In that

case, by arranging the equations properly one obtains a band matrix, or

a block tridiagonal one, depending how he looks at it.

(

(b) Calculation of the correction vectorsSL® (uF) .
: This calculation is performed in Subroutine WRDCGS . The

C relevant parameters here are : k the correction number, and m, N

as before.

For each grid point we have to generate weights for a differen-

C tiation formula approximating USNS D to order pk . Since the
abscissas are not uniformly distributed, and since Tok 1s O(n") ’
then (2k+2) ordinates are necessary to produce the required approximation.

The weights are obtained in Subroutine COEGEN; for each grid

point the weight generation takes K° (4 + 6S ) operations (see [I]),

and thus, forming costs

LC (5.6) Nk ((bk + 2m) P + (6k + 2m) S ) .

(c) The mesh selection procedure 1s a process taking a small multiple

of mN operations. Under certain circumstances it may also require a call

to U2DCGS .

The Newton loop. For each correction, a sparse system of mN non-linear

equations must be solved. We use a descent Newton iteration with step

and angle control to solve those equations. In cases where there are

convergence difficulties, an optional automatic continuation procedure

is also available (see [9,22]).
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Each Newton iteration takes one evaluation of the right hand

side f(t,u) (vector mesh function), and one evaluation of its Jacobian

matrix. Then, a computation of the residual 3. (u) is required (see

(2.4)); this is a (mN) operations process. Finally we have a call to

SYSLIN.

\

If the process 1s going to converge at all, it usually takes

no more than three iterations to achieve || 8 (u) I < EPS . The tolerance
EPS varies with the correction order, and with the actual estimated

= global error, in such a way that the equations are solved to a level

compatible with the truncation error. After the first system is solved,

| and some accuracy has been obtained, the following systems take usually

~ fewer iterations since better initial values are used,

Thus we can reasonably assess the work for a complete Newton

process, 1ncluding one extra iteration for the error estimate, as:

“ ee eeemeae ereeen

(5.7) R E m (7P + LS) + 16m (+8) + bk (FE + | ,
| where FE, JE stand for evaluation of f and its Jacobian over the
“

whole mesh.

If the problem is linear, and the system of linear equations

1s not too 111 conditioned, this work estimate should be halved. 1f the

system 1s 111 conditioned, and after passing through SYSLIN the residual

has not been diminished sufficiently (it should be zero!), then more

"New-ton iterations"will be performed. This process is actually equiva-

lent to iterative refinement, a procedure to improve the precision of

numerical solutions to linear systems, and it is automatically built

into the program.
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The total work for the kth correction 1s essentially

(5.8) N f (En + hKS + (2k + 16)m) P+ (Ford + 6k" +(2k+16)m)S} + 4(FEHIE) .
There are indications that more sophisticated equation solvers (both

linear and nonlinear) can be valuable in difficult problems [4,24],

— and we are presently working in this direction.

In order to analize the cost of any given actual run, we have

to consider the following quantities. Ny , N,» Cu N, + the different
-

number of grid points used; Coy» Cys @ wo Co the number of corrections

performed with each fixed mesh. Since the amount of work in a correction

depends upon its order, we also have to consider as parameters the

\ —

starting orders ky; kK seees k_ . Clearly ky = 0 . From (5.8), and
after some simplifications, we obtain the following estimate

| — Nec. (2800 + r6m + bk, +e)?+ 2(k, + om)P
~ N53 jo jd

7=0

5.0) + z w+ 26m + 60k, + c)% + 20k; + cm) § ]

- + ke, (FE + JE) .

Except for small systems (m < 5), this estimate can be further

simplified to

- 3
N.c.m”(9P + 5S) + Le. (FE + JE

(5.91) $7 365m (9 58) 5 )
J=0

u For a given problem it 1s impossible to predict the program path,

1.e. to determine a priori the 'parameters Nos Cys Ks unless some very
strong and unrealistic hypotheses are made.

It is plausible that with the information we have provided here,

a more elaborate complexity analysis could be performed. Also, comparisons
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of the type carried out by Keller [18] can be performed by making

appropriate hypotheses. For instance, assuming that instead of SYSLIN

the same linear equations solver as in [18]is used, that the same

number of Newton iterations 1s required, and that the basic mesh need

not be changed, then iterated deferred corrections require always less

operations and function evaluations (for a given order) than successive

Richardson Extrapolations. We feel, however, that these work estimates

w give only pointers and general indications. A computer test on several

actual implementations and on a large, representative set of problems is

what 1s required in order to make more final assessments. One step in

“ this direction--.1is furnished by the results of the following Section. See

also [10] .

Storage requirements. The storage requirements (most significant

w terms )for our implementation, depending upon the two problem parameters

m,N, are given below. In the case that no dynamical array space allocation 1s

avallable, those parameters should be replaced by maximal values. We have

. considered a maximum of 20 deferred corrections, which should be more than

sufficient for most problems, but in any case that is not a storage consuming

- part of the algorithm. The expressions below correspond to number of real

5 words required. The actual storage in bytes will depend upon the kind of

. computer and precision being used.

PASVAR : Data : 2 i + (m+l) §

_ Working area : LmN+2 N+ 170 .

SYSLIN :

Working area : n° (N +8) .
Thus the total storage required 1s

v (5.10) | storage — (N+10) + (5m+3) N + 170
real numbers.
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6. Numerical results and comparisons

In this Section we give results for program PASVAR, and compare

them with results obtained with other FORTRAN programs:

SYSSOL: the uniform mesh version..of PASVAR [9];

C RICHAR: a Richardson extrapolation, finite differences code [ 10];
MUISHO: a multiple shooting code [ 2 ] ;

IDCBVP: A deferred correction code for scalar second order equations

C with no y' present [12];

PREV5 : an improved version of IDCBVP by Daniel and Martin [25];

SUPORT: A linear systems solver based on the Godunov method [26].

C In [8}we have anticipated similar results, but the ones here corres-

pond to different versions of the various programs (with the exception of

SYSSOL ). For instance, RICHAR can now perform extrapolations with any

sequence of steps ho/ky , 1 = 0,1,.... We call RICHAR! to the one using

the sequence k, = ot, and RICHAR2 to the one using K. =1,2,3,4,6,8,12,16...
The results for MULSHO were obtained by MM. Deuflhard, Rentrop

and Pesch, under the direction of R. Bulirsch, and we are very grateful

to them for their cooperation. Appropriately chosen parameters and

i shooting points now produce convergence from zero initial values in all

cases tested. Also, much improved results in terms of total number of

function evaluations are obtained with MULSHO02 , in which the integration

routine has been replaced by VOAS , an initial value code provided by

I'S T. Hull.

The results for SUPORT were obtained by M. Scott and H. Watts,

using a Runge-Kutta-Fehlberg integrator for achieving the absolute

Lv
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w

error tolerance of 107° and a variable order Adams integrator for

absolute tolerances of 1078 and below. Since SUPORT, as opposite to

all our codes, has no way of requesting (and obtaining) a desired accuracy

C in the computed solution (see [26], Section12), the results given
in Tables 1 and 2 were obtained by running each problem with a large

spectrum of input tolerances and selecting those results which satisfied

C the output tolerances more closely (and with the least work, of course).
The test problems are all small systems, but they show in one

way or another troublesome behavior. One exception is Problem 6,

which 1s used as an indicator of how the programs behave when confronted

with a smooth problem. All problems and programs were started with

17 points, uniform meshes, and initial values for Y 1dentically zero

N with the exception of the shooting programs for which we indicate the
| shooting points in each instance, and of SUPORT which does not

require a starting mesh. We have collected all the numerical

results in Table 1. In the case of convergence to the desired

tolerance we record: EFE = equivalent function evaluations = F + wJ,

where F is the number of times the right-hand side £(t,y) has

been evaluated for one value of t, and J 1s the number of Jacobian

evaluations. The weightw varies from problem to problem and it

is indicated in Table 1; in all cases Ww < 1, and it reflects the

relative cost of evaluating the Jacoblan matrix as compared with

that of evaluating the vector function f. Otherwise we print

the precision reached (1f it 1s close to the one requested), or:
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NC = no convergence;

— = results not available.

In our programs we request that the estimated maximum absolute

error on the whole grid, and for all components of the solution vector,

~ be less than TOL for successful termination. MUISHO has a relative

tolerance parameter available to the user (EPS), and we give 1ts value

in the various cases run.

- We give computer times (when available) as a matter of reference.

The times for SUPORT were obtained at a different installation (same

computer but a different compiler). The computer times (in seconds)

can be found in Table 2. The high order scalar equations have been

treated as first order systems in the standard way. The exact solutions

(when available) are given in [8].

Problem 1 [151

v"' = 4LOO(y + cos” T™) + on cos 2Tt

y(0) = y(1) = 0 .

. This 1s a problem which 1s troublesome for methods based on standard

initial value problems techniques. It can also be interpreted as a

problem with boundary layers of thickness 1/20 at t = 0, 1. MULSHO

used here three equally spaced shooting points, and MULSHO0Z used five.
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Problem 2 Falkner-Skan equation [3].

yyy + Bll -(3')S1=0

y(0) = y'(0) = 0, y'(w) = 1 .

C

As B approaches the value 2, the solutions of the initial value

problem associated with this equation become very sensitive with

C respect to the value of the missing initial condition y" (0). This
problem has required continuation 1n order to provide adequate starting

values for the Newton iteration in all the programs with the exception

of PASVAR. We have used B 1n SYSSOL and RICHAR as a natural con-

tinuation parameter, performing just one Newton iteration for each of

the values B = o (0.2) 1.8, and then completing the process for g = 2.

This 1s done only once, at the very beginning, on the coarsest mesh

and with the basic second order method. Afterwards, the initial values

provided are sufficiently accurate to produce convergence without

difficulties. All this process is performed automatically, using a con-

tinuation option. The results reported below correspond to the full

] computation for B = 2 and » = 10.

MULSHO and MULSHO2 used the four shooting points Xs = 0,1,3,
and 6.

Problem 3 An artificial boundary layer problem [12]

- Ji

(e + x%)

y(-0.1) = ——2=m,  y(0.1) = -y(-0.1) .(e + 0.0L)7=
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For € » 0, y(t)» sign t. The problem has a turning point at t = 0

of thickness 1/2 The values of € are indicated 1n parentheses on
the heading of the respective columns. In this problem, all programs

with the exception of SUPORT used the final values for an € to start
“

the computation for the following smaller e.

MULSHO used 5 equally spaced shooting points (including the

origin), and it was successful up to ¢ = 1077, using 26139 r.r. for
LC

that case.

Problem b4 [14]

y"' + (3 cotan t + tan t)y'+ 0.Ty = 0

vy (30°) = 0, y(60°) =75.

This problem has a sharp spike at approximately t = 30.65°, where

v(30.65°) ~ 285, and the high order derivatives are even larger.

The MULSHO codes used the four shooting points Xe = 30°,
0 0 0

317, 357, 60.

Problem 5 [11] Another artificial boundary layer problem.

1" -1
y' +e yt =0

y(-1) = 1, y(@)=2, e>o0.

This problem has a boundary layer of thickness € at t = -1, where

the solution passes from the value one to the value two. The results

reported correspond to ¢ = .0l.
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MULSHO shooting points were x = -1, -0.8, -0.5, 1, while

MULSHOZ2 used the sequence Xy =-1, -0.8, -0.5, 0, 0.5, 1.
This problem was also solved successfully with PASVAR for

_ _ 1n-3 _ 8 -10
e = 0.001, 0.0001, TOL = 10 °, and for ¢€ = 0.001, TOL = 10 ~, 5 X 10 .

\

In this last case PASVAR required 2753 equivalent function evaluations

and used 3.75 seconds of computer time on a CDC 6600/6400 machine.

The meshes and solutions for large ¢ were used to start the computation
C

for smaller e.

Problem 6[12] An easy problem.

- vo 3 2
yv' =v0 - sin t+ (1 + sin” t)

y(0) = yim) = 0

MULSHO and MULSHO2 used the three shooting points =x. = 0,
“ J

T/2, Tm.

A

L
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TOL = 10 -3

RICHARL

easvar_ | 327 | saz | qoss | 78 | gear | a8 | 1140 | 1%
MULSHQ

suport | s12| = | 33 | ene | asso | s03 | se | —

Ly 120 99( ; N N NC 331

rrcaarz [1008 | 3135 | awe | owe | owe | on | ye | 7m
easvarn | 806 | aus | 2s | pomp | weer | 164 | o755 | ga
ese | 3s | -- | ewew | owe | oy | o—  ] | us
erevs [34 | | we0 | owe | we | = | |g

i iE EEFEEa
Table I. Equivalent Function Evaluations: F + w*J

Weights for IDCBVP, PREVS were w = 0, 1, 0.1 in Problems 1, 3, 6 respectively.



Problem

| -3 -6 -1
Code 1 2 3 (1077) 3(L0 7) 3 (107) 4 5 6

Limiting

precision 2477 4418 616
- - N N -

SYSSOL 10°13 | aux 10712 C C NC 10-13

\N I i’NY 20°C _ 2139 3559 _ 98277 3212 147]PASVAR  |1.gx 107° 107% | 7gx 107|16x 10711] 8.2% 10-11 | 10-1%
IDCBVP 200 28606 573

PREV 1222 183% 371

| 3832
SUPORT ~~ |3.2%X2@0-10 3.6%270712 1.7%21077 [4.2% 10-8 10-9 4.8%920 —-

TableI Cont. Equivalent Function Evaluations: F + w*J

Weights for IDCVBP, PREVS were w = 0, 1, 0.1 in Problems 1, 3, 6 respectively.
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Problem -3 _6 -7 Ls

ETlll el. 0.57 | 0.87 | 1.16 11.33 | 2.311.33| 0.19

suport* | 0.08 | -- | 0.07 | 0.23 | 0.35 | 0.12[g.15| --

ToL = 107°

PASVAR d.77 vo 1 19.60 20.42 12.77} 3.78] 0.34
IDCRVP 0.15 | -- | o0.12 -- | —-

LTLLorecision

7.34 | 8.34 | 5.23 - —- [9.19 |u.62| 1.28

movs  fo2 | - | oar | | | oT. loa

- Table 2.

CPU times in seconds on CDC 6600/6400 at IBL, University of California
Berkeley; RUNT6 compiler.

“on CDC 6600 at Sandia Labs., Albuquerque; FUN compiler.
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Conclusions

From this limited set of tests we can draw some preliminary

conclusions.

Overall,PASVAR is far superior to RICHARL and SYSSOL for all

- accuracies, and this is more marked for higher accuracy. RICHAR2

1s competitive for low accuracies in the problems 1n which 1t works

E (c.f. [10] for comparisons on smooth problems). In all fairness,

- we should use a Richardson extrapolation program with nonuniform

mesh capabilities, but this code isstill to be developed. It is

clear, that whenever applicable, the scalar equations codes are by

far the fastest and most efficient.

The multiple shooting code MULSHOZ compares well with PASVAR

in terms of total number of function evaluations and reliability for

most of the problems tested. The main exception 1s the turning point

Problem 3 where MULSH02 obtains the solution with considerably fewer

function evaluations than PASVAR . Furthermore, MULSHO2 obtains

L good results for € = 1078, 162 while PASVAR cannot resolve the

boundary layer with the allotted maximum number of grid points.

) However, it is worth mentioning that in Problem 4 MULSHO2 takes

40% more computer time than MULSHO , despite the fact that this last

program requires almost 6 times more function evaluations to achieve

convergence. We should point out also that the multiple shooting codes

do not choose the shooting points and various other parameters automati-

cally, and only give final results on the shooting points. Thus, PASVAR

requires much less user interaction and foreknowledge, and outputs a much

more detailed mesh solution. This detail is automatically more dense in
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the regions of rapid variation of any component of the solution

- vector. It would be also useful to compare the performance of

MULSHO2 for higher accuracy. Professor Bulirsch has indicated

that a more user oriented version of his program, correcting some

L of these drawbacks, will be available in the future.

The comparisons with SUPORT show that PASVAR work too hard in

solving the turning point problem3 for all tolerances and the spike

- problem 4% for TOL = 1072, 1078 This indicates that our net selection

procedure 1s too slow for handling this type of quasi-singularities.

The performance of SUPORT 1s consistently good for low and

moderate accuracies, though we have to keep in mind that the user has

no way of assuring that he will get that accuracy by specifying an input

parameter. We should also keep in mind that, so far, SUPORT only solves

linear problems, and that it can take advantage of certain special

situations, like homogeneous equations (probs. 3, 4, 5) and zero initial

values (Probs. 1, 4). The somewhat disappointing results for high or

¢ limiting tolerance seem to stem from the inability of the initial value

codes to produce such accuracies. Apparently the boundary value

techniques can reach tolerances close to full machine accuracy without

¢ excessive degradation.

We are presently working on a new version of PASVAR which among

other features has a new system of equations solver (both linear and

nonlinear). Preliminary results indicate that this new code will solve

problems for which PASVAR fails, and also that it will cut the number

of function evaluations and time by half in most cases.
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In Table 3 we report some information about the mesh place-

y ment and deferred correction procedures on the various problems.

We give N,, the number of times that a mesh refinement was requested.

Each one of these refinements requires several mesh modifications. The

) quantity N, 1s the average number of these modifications. The row
g: gives the higher correction reached, andK is the total number of

| corrections performed.

- We see from these results that the mesh placement routine
'does not wander" since the average number of inner sweeps 1s never

large than 3, which is reached in only one case (Prob. 9,

Tol = 10-13). On the other hand we see that high order methods really
came into play, and although we do not claim that a correction of

index k = 10 will produce an 01°) accurate solution, it is quite

remarkable that such high order corrections do actually produce visible

improvements in the computed solution.

C
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Tol = 10 -3

N, a I! 4 2 3 1

. No 1 1 1.25 2 y 2

k 3 3 2 5 3 2 1

K 4 6 5 11 3 9 2

\ -—
Tol = 10 -8 |

N, 2 2 5 3 | 6 2 |

C N, 1 | 2 1.33 1.33 0.5 1.83 | 1.5

k 2 I: 4 8 10 7 6 3

x 9 10 | 9 13 13 17 8 L
———————— TU EE SE SI

Tol = 10°

N, 2 L 3 1

| Ns 1 1.75 3 1

k 10 8 - - - 7

K 13 17 - - - 11 |

TABLE 3
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