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"An Adaptive Finite Difference Solver for Nonlinear Two Point Boundary

Problems with Mild Boundary Layers," M. Lentini and V. Pereyra

ABSTRACT. A variable order variable step finite difference algorithm

for approximately solving m-dimensional systems of the form
y' = £(t,y), t € [a,b]
subject to the nonlinear boundary conditions
gly(a),y(®)) = 0

is presented.

A program, PASVAR, implementing these ideas have been written
and the results on several test runs are presented together with
comparisons with other methods. The main feautres of the new pro-
cedure are: a> Its ability to produce very precise global error
estimates, which in turn allow a very fine control between desired
tolerance and actual output precision;

b) Non-uniform meshes allow an economical and accurate
treatment of boundary layers and other sharp changes in the solutions.
¢) The combination of automatic variable order (via
deferred corrections) and automatic (adaptive) mesh selection
produces, as in the case of initial value problem solvers, a versatile,

robust, and efficient algorithm.
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AN ADAPTIVE FINITE DIFFERENCE SOLVER FOR NONLINEAR TWO POINT

BOUNDARY PROBLEMS WITH MILD BOUNDARY LAYERS

* +
M. Lentini and V. Pereyra

1. Introduction

We are interested in developing usable software for two-

point boundary problems for m-dimensional systems of the form

Y = £(t,y) » te [a,b]
(1.1)

g(y(a),y(p)) = O
In [8,9] we have already presented a finite difference
algorithm (SYSSOL), based on deferred corrections, which has variable
order capabilities. SYSSOL uses only uniform meshes, which can be
refined automatically in order to reduce the maximum norm of the (esti-
mated) global error on the current mesh below a requested tolerance.
SYSSOL behaves quite adequately for many problems (see

[8,9]), but becomes inefficient or does not work at all as soon as the
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solution to the problem or some of its derivatives have sharp
gradients. Unfortunately, this type of phenomenon is frequently
found in the applications.

In [ 9 ] we described-the deferred correction algorithm
for general nonuniform meshes, even allowing for multipoint boundary
conditions and data with jump discontinuities.

In this paper we describe an implementation of an algorithm
(PASVAR) for approximately solving (1.1) which is based on the results
of [9]. The main new features in PASVAR consist of an automatic
procedure for choosing nonuniform meshes, and various modifications
in the general strategy of the method. Since in [ 9] and other earlier
work we have described the necessary theoretical results and implemen-—
tation details, we shall concentrate in this 'paper on the new features
mentioned above, giving only the minimum general information necessary
to make it readable. This basic groundwork will be found in Section 2,
while Section 3 will be devoted to the mesh placement problem. Some
theory justifying our mesh placement procedure has been published
elsewhere [ 13 ]. 1In Section 4 we discuss the practical aspects of the
mesh placement algorithm, which is based on the idea of equidistributing
the norm of the local truncation error.

Section 5 is devoted to an operation count and storage
requirements. In Section 6 we present numerical results on various
problems with the type of difficulties mentioned earlier, i.e. boundary
layers, steep spikes, and so on. We compare PASVAR with various other
programs available : (a) SYSSOL, our uniform step deferred correction
solver; (b) RICHAR, a Richardson extrapolation procedure developed by

Hilda Lopez and Iuis.Ruiz [ 10], using some of the basic components of



SYSSOL; (¢) a multiple shooting algorithm due to Bulirsch, Stoer,
and Deuflhard [2]; (d) IDCBVP and PREV5, two deferred correction
codes for scalar second order equations [12,25]; and (e) suport,

a linear systems solver based on superposition and orthogonalization

[26].

The thickness of the boundary layers that can be resolved with
PASVAR depends, as can be expected, on the maximum number of grid
points that can be used. Thus the "mild" in the title stands for the
fact that we have limited, for storage reasons, that maximum number of
grid point¥ in our program to 650/m, where m is the dimensionality
of the system being solved.

We see that PASVAR performs efficiently and reliably in all
the problems considered, within the limitations imposed by the maximum

number of grid points allowed. That limitation is computer dependent.

We emphasize that all the finite difference codes presented
here have provisions for estimating the global error of the computed
solution, and that in all the problems run this estimate has given either
the true error with at least one significant figure, or have been off
for less than an order of magnitude. This is in sharp contrast with the
techniques based on initial value problem solvers, since even the state
of the art codes have no previsions to control the global error of the
entire approximate trajectory. Of course, this additional, and we think,
extremely valuable information, costs something in terms of computer time,
but this cost is amply justified by the added reliability in the numerical
results and the excellent correspondence between requested tolerance (TOL)

and actual global error in the computer solution.



2. Basic results and notation

Given the m-vector functions y(t), f(t,y), gla,8), we

consider the problem of solving approximately

y'(t) = f£(t,y(t)) , tela,p]
(2.1)

g(y(a),y(b)) = O

We assume that problem (2.1) has an isolated solution
yv¥t) (see [t 1 ). We assume also that f is smooth, so that all
involved derivatives of y*(t) exist. Piecewise smooth data and
multipoint boundary conditions can also be treated with slightly more

~.

work (see [ 4, 91).

Let 1-r = {t1""’tN+1 } be a general partition of the
interval [a,b | satisfying:
a = t1<ft2 < uee <tN+1 =b

(2.2) h, =t. ,-t. 3 h = max h, ; h = min h
i I :

h /1 <K,

with K a given positive constant. Condition (2.2) implies:
(2.3) b-a < h < K(b-a) ,
N N

and we can use h and 1/N interchangeably as equivalent asymptotic
scales.
The basic finite difference approximation considered is the

trapezoidal rule:

s
o
I
jng
1
1
e
1]

1

I f(t_“1 UL ) + I‘(ti,u,.)] =0, i=1,...,N



Keller studies also the centered Euler scheme:

-1 1
(2.5) hy (uiH-ui) = £t + 2hy 5 39y, ))

i

C

which has properties similar to (2.4) and it 1s easier to use

in the case of piecewise continuous data. However, it is considerably

more difficult to perform deferred corrections with it, because of the
|

presence of a discretization inside a nonlinear function, which forces

partial derivatives of f with respect to u in the expansion for

the local truncation error. That is the reason for our choice of the
L

scheme (2.4).

As usual, the local truncation error is defined as what is
left when one applies (2.4) to the discretization of the exact solution
k -~
to the problem. By Taylor's expansion we get:

hEv

L
- + .
.6 1p) -y v S G MR Tt IE IS
m 2v-1 2 (2y)!
v=12 (2v+1)
\
where
oV
(2v) d
(2y) . £(t,54(8) )
172 ateV t=t,+h, /2
- ii
We shorten (2.6) for further reference to
. L
+
(2.6) 7 (v}) = E T (6,) B3V + 0",
™ v 1 1
C
v=1
Let ﬂwﬁ be the mesh function obtained by adding up the
C first k terms in the asymptotic expansion (2.6), and let ﬁgd(y*) be
2k+2 , , . .
an O(h ] approximation to Tn K It is well known [9] that if
2
u(k'1) is an Oﬂﬁk) discrete approximation to y*(t) on T, and if
k- . . .
- (u( 1)-y*) has an asymptotic expansion in even powers of h, then
sék)(u(k'1)) is an O(h2k+2) approximation to Tk The operators

b



can be readily constructed via numerical differentiation, as

explained in [ 9 1, and they are the basis for the deferred correc-
tion algorithm. They are also used in the dynamical monitoring of the
(k) _ (u(k) _

global error e y*). Notice also the modification intro-

duced in [23] which eliminates some earlier theoretical difficulties.
We hope it will be clear from the context that we are

speaking of vector mesh functions on m , i.e. that an expression such

as the one above means:

eg_k)(tj) = quk)(tj) -y"{(tj) s tjen , i=1,...,m

Another important fact we shall need later is that the

method is stable in the infinite norm || . || , i.e.
k) k
1) ey,
m

where the constant ¢ 1is independent of the mesh m . The mesh func-

(k)

tion ~ represents the local truncation error after the kth
hat
correction has been performed.

We recall now the deferred correction algorithm. Letting

5(0) (y(-1)y =

0 , solve successively for k=0,1,2,...
i

k?_, (u(k_T )) ’

3 (u) = Sﬁ_

(2.8) 1-f
glu, » w,,) = 0.

We call u(k) to the solution of(2.8) (closest to y*(t)).
The main features of the deferred correction procedure are:

(a) Solutions of increased accuracy are obtained on the same mesh

(compare with the Richardson extrapolation procedure);
(b) The same system of equations is solved all the time (with different

right hand sides).



Under certain conditions, the successively corrected solutions

will satisfy on the mesh :

e = a2 0PER))

(k)

An asymptotic estimate for e can be found by solving for

A the variational (linear) equation

(2.9) 3 '(u(k)) A = S(k) (u(k'” ) - g(k+1) (u(k)) ,

(k)

where @é (uO ) is the Jacobian matrix of @n evaluated at u
If A(k) is the solution of' this linear problem then:

2.10)  pUL oK) 4 g2kt

Observe that if (2.8) is being solved by Newton's method, then 5;(u(k))

are also available, the cost

will be available, and since S(k) ’ S£k+1)

I
of the estimate (2.10) is just that of one Newton step, i.e. the solution

of a sparse system of linear equations.

For the automatic mesh placement algorithm, we will be inter-

2k+
4) estimate of the leading term in ¢ (k)
m

ested in having an O(h

For this purpose, it is necessary to use in S(k) formulas with a higher
T

order interpolation error than is necessary for the rest of the process.

In fact, we will insist that

(%)

Ok+4 )
kas

(2.11) () = 7 (y*) + Ofn

)

i.e., the numerical differentiation formula will be two orders more
precise than before.
Assuming that at the (k-1)th correction we have an expansion

for the global error of the form:



2z o€ Pt ) = e (ty) n5° + e (6) BTE s om?E™),

with e_(t,) smooth and independent of m , we conclude that

e Oy e ) o )
- T‘r[,k‘H ( i) - Tﬂ,k(y-){) - Sik)(ek(ti))hgk - O(h2k+)-|-)
= Tk+1( L) h§k+2 ) Sf(rl;)(ek(ti))h% N O(h2k+u)

Observing thatSék)(ek) is itself(XhEL we see that we have in

(k)(

™

display the leading term of T ¥*)

Lemma 2.1 Ek+1 = s (k+1)(u(k)) - S(k)(u(k-1)) is an O(h2k+h)
m m _—

approximation to the leading term of Tn(k)(y*) .

Proof': Because of (2.11) and (2.12)(with (k-1) replaced by k ) we have

S(k+?)(u§k)) = S(k+1)(y§) + S£k+1) (o) q(t5)) neE*e O(h2k+u)

m i m
T ke () + O<h2k+u) ,
and
ST(Tk)(u(ikJ ) ) = Sgk)(ﬁi) . Sr(rk)(ek(ti))hgk N O(h2k+u)

= n )+ 5 (e (8007 4 0P

In this last computation we have made use of two terms of the expansion

(h2k+h) term.

(2.12) in order to obtain the O
Subtracting these two expressions and comparing with (2.13)

the result follows. 1]



3. The mesh placement algorithm

We have seen that at the kth step of the deferred correction

algorithm, the local truncation error has the form:

k _ .2k+2 7 2k+h4
) 8 ) = WBP () ¢ 0™
where the function Tk+1(t) does not depend upon the net m . Further-

) ) 2
more the leading term of (3.1) can be estimated to order h by
SETKH )(u(k)) _ Sﬁk)(u(k--l )) .

We are interested in choosing a mesh so that the first term of the

local truncation error is nearly constant in norm on this mesh. Since
we have a limitation on the ratio of the largest to the smallest mesh
size (see (2.2)), we have to take into account the possibility that
Tkﬂ(t) be accidentally very small at some grid point. For this purpose,

and assuming that u T (t) = ﬁ we define the function
J te.fa,gl 1 Ty I

6(t) = max (T,  (6)1] , A)

~ g
where 3\ = M/ '/ (K defined in (2.2)), ¢ = 1/(2k+2)

We shall call a mesh ¢ (asymptotically) equidistributing iff

2k+2 2 k+2
3.2 h | a(t) . h’ sup | 6(t) | = E.(1+0(h))

il

i ’

where E is a positive constant called the level of equidistribution .

The norm | | .|| 1is the co-vector norm. In [13] $he properties of
equidistributing meshes are studied in detail and ‘more general Lp norms

are also considered.



For an equidistributing mesh we then have the relationship

b N
< a
(3.3) fG(t)Cy dt ~ ) byl U(r) | N . P,

a 1=

(D)

—_

Thus the level E corresponding to an equidistributing net with N

points is approximately equal to

@4 Bovyay.

1 \ .
Observe that || G ”o = (J G(t)° dt) /G is not a norm since ¢ < 1,
a
and also that (3.4) is mesh independent.

We see then that for an equidistributing mesh, the level E

itself is an asymptotic bound for the infinity norm of the local truncation

error:
(k)
. L = E(1 +0(n)).
(3.5) max || 7 *0 (yy) ( )
i=l ,-o-,N
By using (3.4) we can predict approximately how many points
will be necessary to achieve a prescribed tolerance &€ . In fact

(3.6) N> (]l G [y 2.

Lemma 3. If the mesh ™ is such that

i+l
J G(¢)° at = ¥ (1 + o(n))

1
(i.e. ° G(t)° dt is asymptotically equidistributed) then 1-T is a.e.
6
with E = ﬁ1/° =G HG/N2k+2, and hence
G e B ey (vom)) H
Proof: The proof is entirely similar to that of Lemma 3.1 of [13] e

10



Since || . ”c is not a norm it is convenient to have an

estimate in || , ”oo' To obtain that estimate we need the following

Lemma.

Lemma 3.2 Let p>1, let o (x) be a scalar Lp function, and

let 0<o <p . L_gtML={x:|@(x)|2L}withL>Ochosen

so that
b
jMycp(X)lc’ dx=%flcp(x)|cdx-
L a
Then p-o
/o op
(3.8) ey <2 [a) ] el
where “(ML) is the measure of the set M

Proof: See [13] | ||
For p =cc, (3.8) simply becomes

(3.89 e, < [2u01) 1 P Il -

If we combine (2.7) with (3.5) and (3.8'), we obtain

the following

Theorem 3.3 Let the mesh m have N+1 points and be equidistributing

for the k th step of the deferred correction algorithm. Then the

global truncation error satisfies

(%) (u(My) k2

(3.9) e )1 =c I Gypqll, (1 4+ O(0)).
N

with ML defined as in Lemma 3.2 for the function

o(t) = J1a(e) ]l .

11



Proof: From (2.7) and (3.5) we obtain

(x)

I e . N-(2k+2)

I < G, 0+ o0m) ,

and applying (3.8’) we get (3.9) . ”

Observe that “(ML) wil} be small if G(t) has sharp
peaks. We give now a simple example to see how this bound compares
with the standard one for uniform meshes in a boundary layer model
problem. The essential difference between the two bounds is the

)]2k+2

appearance of the quantity [ 2y (ML when the mesh is equi-

distributing.

Example.

Consider the first order scalar equation

5y’ = -y, y(0) = 1,1t e[0,1],
where § 1s a small positive constant. This problem has been analyzed

in detail in [ 5 ] . 1Its solution is simply y(t) = e-t/é, and there

is a boundary layer of width § at t=0 . The successive derivatives of
y(t) are
ats 6s

It is easy to see that if one applies method (2.4) to this problem,

then the stability constant c¢ is 0(l) for § -+ 0 . Also
2k+2

A a t)
f 0 (4)= o S _y&)
+
k+1 k dtek 2
-(2k+2 .
Thus || G llo° =c'’s ( ) > and from a uniform mesh estimate we deduce
that N = 5-1 points will be necessary to get an O(l) accuracy. A

simple calculation shows that in this case | (ML) = c,6 , with c,

a small constant, and we see from (3.9) that for an equidistributing

(N-(2k+2))

mesh an O error bound holds for any N, and the effect of

12



the boundary layer is completely neutralized by the equidistribution

of theoo - norm of the local truncation error. Observe also that

equidistributing any other smaller derivative of the solution (as

in Pearson [11]) will not have this effect.

7~

y(t)

For k=0, and a local truncation error level of 0.01,

mesh-step function must satisfy
Re)s 2 e 2 o001,

or
n(t) - 0.15 et/28 .

The total number of points is approximately given by

|
1 1 "
N = Zl = zhi h—zJ l'_lﬁ-) dat"20,
0

] i
i=1 i=|

and the number of points in [ 0, 8] will be

6
N[o,sla’_a{ n(e) 9 ~15-

13

the

<



We see then that for any § more than half of the
grid points will be concentrated on the boundary layer, as one expects.
Of course, N = 20 is the optimal number of points for that level of

error, but we have also to enforce the condition h/ h < K , with a

moderate K which may mean increasing somewhat the density of the
mesh outside the boundary layer. Still this will require far less points
than the (106)—1 points required by a uniform mesh algorithm to give the
same order of accuracy.

More general results of the type described in this Section,

detailed proofs, and references to related work can be found in [13].

14



4. Practical mesh placement algorithm

In introducing the concept of asymptotically equidistributing
meshes we have taken a step towards the practical implementation of the
ideas in Section 3.

As a matter of fact, we won't strive to make our computed
meshes even approximately equidistributing, but rather we shall use a
somewhat more lax criterion. The first ground rule in our iterative
procedure to obtain a grid = is that we will only add points, and
once a point is in the mesh it will never be touched again.

In other algorithms proposed [ 11, 17, 21 ], either a fixed
number of points is moved around, or points are added and removed in
order to satisfy some equidistribution condition. In our experience
those procedures have a tendency to be more unstable and to produce
rougher meshes than can be tolerated. There are, of course, ways of
improving that situation, like smoothing, but that only complicates the
algorithm unduly. On the other hand, the closer the mesh is to an equi-
distributing one, the fewer number of points it will have for a given toler-
ance; so that fact and the cost of producing such a mesh must be carefully
balanced. Also, from our example above, it is seen that, for a given level
of truncation error, there is an order of the method which minimizes the
number of points required for a given problem. Of course, one should
take into consideration the amount of work for each order when drawing
true optimality results. For the time being, these considerations are
far too complicated to be taken strictly into account in our algorithm,
but they provide guidelines for useful heuristics.

(0)

Our procedure starts with a given mesh m with N.+1 points.

0

If no a priori information is available about the problem difficulties

0
then n(o) will usually be a uniform mesh with step size h( )-

15



Obviously, because of computer storage restrictions, one will also have
a maximum number of mesh points that can be considered in any given

mesh, say NMAX . In our program we have chosen NMAX = 650/m .

(o) (o)

2 .
On ™ we obtain an approximate O(h®) solution u (o)
T

by solving & (y(u) = 0, gy, oy ) = o (see (2.8))
™

Then we compute S(1) (u(ozo)) , which is an estimate for the leading
lﬁ(o) m
o e .
term in the local truncation error T((g) The infinity norm is used

o
k -
throughout. If we want || ¢£ )(y)”(;a ¢ , then from Lemma 3.1 and (3.4)

we obtain that

41) =27
~(0)

The initial tolerance requested, € » 1s up to a certain
extent arbitrary, but nevertheless it should be chosen judiciously. As

?(O) becomes smaller, more points will be added to the mesh at the

(o)

beginning, which may be unwise. Let TEM= |[Ju'"/]| . We put
"(0) - *

(4.2) € = max (BMA * TEM , TOL) ,

where BMA is a parameter used to control the size of E(o). The

maximum norm of the approximate solution, TEM, is what connects the
level G(o) with the particular problem being solved. Essentially

what we are saying is that we would like to have an equidistributing

mesh with sufficiently many points as to achieve, at the start, a rela-

tive precision BMA with the O(ha) method. BMA should not be too
small, since at the early stages of the game the information available
(u(o)) will tend to be more unreliable, especially for problems with

difficulties.

16



We call (see Section 3 for the definition of A ):

EJ(I) = h; max (| Trepq (550 115 A =

~ o
h; max (llTk+1(ti)||’ A)

and N b
vuN= 2. EJ(I) ~ f a(t)%at .
I=
a
The equidistributing procedure adds points, according to the
following rule. "In the present interval (xI,xi+1[;3gd 1QJ(I) -1

uniformly distributed points, where

(4.3) T/(1) & | BI(1) JE] .

and | | ~stands for "integer part of ".

Thus the total number of points added in each sweep is

N

—

10 = | 1QJ(I) , where (N+1) is the number of points in the mesh
J=1

being modified.

These new points are actually added into the mesh if the

following conditions are satisfied

(k.h) 0.04 N < IQ< min (NMAX-N, 70)

If IqQ < .O4N , and the mesh has been modified during the present process

then the equidistribution terminates.

The condition on the right of (4.4) prevents too many points

being added in any given sweep.

We observe that with the notation above

UUN/'E~N+IQ+1.

If IQ violates one of conditions (4.4) and this is not terminal,
we can attempt to find the "right level" E* which will bring in a

17



preset number of points IQ* , by putting

(4.5) E¥X - ExXN+IQ+1 ,
N + IQ% + 1

and going again through the mesh in order to obtain a vector 1QJ(I)

for this new level. We use in our program
N+ I@¥ +1 = min (ALG¥N, NMAX)

with ALG = 1.1(0.1)1.4. 1If the case IQ < .O4N is not terminal,

then we redefine the level as in (4.5) with ALG = 1.4 . If that level
still does not bring enough new points into the mesh, then we decrease
the correction index k by 1 , until either the mesh is modified or
k=0 . 1In this latter case a complete bisection of the mesh is requested
(if possible). If the right hand condition (4.4) is violated then we
define a new level, also with AIG = 1.4 , but now we allow AU to
decrease down to 1.1 in steps of 0.1 . This process is of course

stopped whenever an allowable number of new points is produced.

This series of tests and modifications are intermixed in a
somewhat complex logical structure which is better understood by looking
at a flowchart or the actual computer program. Here we have only tried
to list some of the main features of the algorithm.

In particular, indefinite cycling is precluded by various
controls so that the mesh refinement process always terminates, though
not necessarily with an equidistributed mesh.

We have insisted in not removing points from the mesh since
this provides an easy way of insuring that the condition h/ ﬁ_f K is

fulfilled with a reasonable K , and also produces smoother meshes.

18



As we shall see in the nmerical examples, in problems with
-3

transition regions as thin as 10 (on an interval of size 0.2), the
algorithm has produced solutions accurate to 10'8 with a mesh in

which K <50.

19



5. Operation count and storage requirements

In this Section we shall make an operation count for algorithm
PASVAR. There are essentially three large modules in PASVAR, and two main
loops: the deferred correction iteration and the Newton solver.

(a) The linear equation solver (SYSLIN).

SYSLIN is an implementation of the algorithm of Section 3 of
[ 9 ]. SYSLIN is called at each Newton step, and at the end of each
correction, in order to estimate the global error.

The relevant parameters for SYSLIN are: m the number of
differential equations in the system, and N the number of mesh points.
The systems solved by SYSLIN are then of size m (N+1) x m (N+1) .

They are also sparse and highly structured. 71 fact the coefficient

matrices involved have the form

G, 0 - . GN+1“
_ -~

That is, they are block bidiagonal, with the exception of the first block
row. The blocks are of size m xm . The system of equations have the

form

20



We solve the superblock 2 x 2 gsystem by Gaussian elimination,

and that implies solving subsystems with the lower block bidiagonal mat-

~ ~

rix D . Putting C = [ C|b], V=[V/|w] we have
=1 )

(5.2a) x5 = (A -BV) (b, - BY) ,

(5.2) x = D (b - Cxy )

where V=D C, w=D b are obtained by solving the system

Ql

(5.3) DV =

This is done by means of the recursion

(5.4) V.= R (G = S.V. L), 5 = M,eaa,N .

Forming the expression in each parenthesis of (5.4) takes

3

2 . - . o
m P + m S operations , where P stands for multiplications or divisions,

and S stands for additions or subtractions. Solving one matrix system

(5.4) takes L w (P + S) operations, and thus we have a total of
3
N (7 m5P + (4 m5 + m2) S) operations for the recursion (5.4).
3 3

The calculation of (5.2.a) and (5.2.b) takes ( lim5 + NmE) P+
3

2
(4 W+ §m™ + Nm) S , and the total number of operations for SYSLIN is
3

(most significant terms only)

(5.5) N

3
(cf. [ 71 also).

(7P + Lk 3)
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This is about twice the number of operations obtained by
Varah [ 16 | for the case of uncoupled boundary conditions. In that
case, by arranging the equations properly one obtains a band matrix, or

a block tridiagonal one, depending how he looks at it.

() (a1

(b) Calculation of the correction vectors®

This calculation is performed in Subroutine U2DCGS . The
relevant parameters here are : k the correction number, and m, N
as before.

For each grid point we have to generate weights for a differen-
tiation formule approximating Tﬁ’k(yﬁ) to order h2k+u . Since the
abscissas are not uniformly distributed, and since Tn,k is 0(n%) ,
then (2k+2) ordinates are necessary to produce the required approximation.

The weights are obtained in Subroutine COEGEN; for each grid
point the weight generation takes K (4P + 65 ) operations (see [I]),
()

and thus, forming costs

(5.6) Nk ((bk + 2m) P + (6k + 2m) S )

(c) The mesh selection procedure is a process taking a small multiple

of mN operations. Under certain circumstances it may also require a call

to U2DCGS

The Newton loopn. For each correction, a sparse system of mN non-linear

equations must be solved. We use a descent Newton iteration with step
and angle control to solve those equations. In cases where there are
convergence difficulties, an optional automatic continuation procedure

is also available (see [9,22]).
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Each Newton iteration takes one evaluation of the right hand
side f(t,u) (vector mesh function), and one evaluation of its Jacobian
matrix. Then, a computation of the residual @n(u) is required (see
(2.4)); this is a (mN) operations process. Finally we have a call to
SYSLIN.

If the process is going to converge at all, it usually takes
no more than three iterations to achieve I g}#u) |l < EPS . The tolerance
EPS varies with the correction order, and with the actual estimated
global error, in such a way that the equations are solved to a level
compatible with the truncation error. After the first system is solved,
and some accuracy has been obtained, the following systems take usually
fewer iterati;hs since better initial values are used,

Thus we can reasonably assess the work for a complete Newton

process, including one extra iteration for the error estimate, as:

(5.7) N [% m (7P + 4S) + 16m (Prs). + b (FE+ JE)|,

where FE, JE stand for evaluation of f and its Jacobian over the

whole mesh.

If the problem is linear, and the system of linear equations
is not too ill conditioned, this work estimate should be halved. 1f the
system is ill conditioned, and after passing through SYSLIN the residual

has not been diminished sufficiently (it should be zero!), then more
"New-ton iterations"will be performed. This process is actually equiva-
lent to iterative refinement, a procedure to improve the precision of
numerical solutions to linear systems, and it is automatically built

into the program.
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The total work for the kth correction is essentially

(5.8) N f (%§m3 £ 02+ (2k + 16)m) P+ (—%—%ﬁ 662 +(2k+16)m)S) + U(FEWIE) .

There are indications that more sophisticated equation solvers (both
linear and nonlinear) can be valuable in difficult problems [4,24],

and we are presently working in this direction.

In order to analize the cost of any given actual run, we have
to consider the following quantities. No p N1, —_ Nr :  the different
number of grid points used; Co 7 Cys e @me C 2 the number of corrections
performed with each fixed mesh. Since the amount of work in a correction
depends upon its order, we also have to consider as parameters the

starting orders ko, k.]y-”) kr . Clearly kO =0 . From (5.8), and

after some simplifications, we obtain the following estimate

ul 28 3 2
| Njcj {§ m” + 16m + h(kj +cj) + 2(kJ. + cj)m) p
=0
16 3 2
(5.9) + (3 m’ + 16m + 6(kJ. + cJ.) - 2(1:{_j + cj)m) s )

+ hcj(FE + JE)

Except for small systems (m < 5), this estimate can be further

simplified to

r

(5.9'>Z Njcjm5(9P +58) + hey(FE + JE)
j=0
For a given problem it is impossible to predict the program path,
i.e. to determine a priori the 'parameters Nj’ cj, kj, unless some very
strong and unrealistic hypotheses are made.
It is plausible that with the information we have provided here,

a more elaborate complexity analysis could be performed. Also, comparisons
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of the type carried out by Keller [18] can be performed by making
appropriate hypotheses. For instance, assuming that instead of SYSLIN
the same linear equations solver as in [18] is used, that the same
number of Newton iterations is required, and that the basic mesh need
not be changed, then iterated deferred corrections require always less
operations and function evaluations (for a given order) than successive
Richardson Extrapolations. We feel, however, that these work estimates
give only pointers and general indications. A computer test on several
actual implementations and on a large, representative set of problems is
what 1s required in order to make more final assessments. One step in
this direction--.is furnished by the results of the following Section. See
also [10] .

Storage requirements. The storage requirements (most significant

terms)for our implementation, depending upon the two problem parameters

m,N, are given below. In the case that no dynamical array space allocation is
available, those parameters should be replaced by maximal values. e have
considered a maximum of 20 deferred corrections, which should be more than
sufficient for most problems, but in any case that is not a storage consuming
part of the algorithm. The expressions below correspond to number of real
words required. The actual storage in bytes will depend upon the kind of

. computer and precision being used.

PASVAR : Data : 2 me + (m+l) N
Working area : LbmN+2N+ 170 .
SYSLIN
Working area : n° (N+8)

Thus the total storage required is

(5.10) Storage = m2(N+Hn + (5m+3) N + 170

real numbers.
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6. Numerical results and comparisons

In this Section we give results for program PASVAR, and compare
them with results obtained with other FORTRAN programs:
SYSSOL: the uniform mesh version..of PASVAR [9];
RICHAR: a Richardson extrapolation, finite differences code [ 10] ;
MUISHO: a multiple shooting code [ 2 ] ;
IDCBVP: A deferred correction code for scalar second order equations

with no y' present [12];

PREV5 : an improved version of IDCBVP by Daniel and Martin [25];

SUPORT: A linear systems solver based on the Godunov method [26].

In [8}we have anticipated similar results, but the ones here corres-
pond to different versions of the various programs (with the exception of
SYSSOL ). For instance, RICHAR can now perform extrapolations with any
sequence of steps ho/lg1 , 1 =0,1,.... We call RICHAR! to the one using
the sequence ki = 21, and RICHAR2 to the one using #. =1,2,3,4,6,8,12,16...

The results for MULSHO were obtained by MM. Deuflhard, Rentrop
and Pesch, under the direction of R. Bulirsch, and we are very grateful
to them for their cooperation. Appropriately chosen parameters and
shooting points now produce convergence from zero initial values in all
cases tested. Also, much improved results in terms of total number of
function evaluations are obtained with MULSHO2 , in which the integration
routine has been replaced by VOAS , an initial value code provided by
T. Hull.

The results for SUPORT were obtained by M. Scott and H. Watts,

using a Runge-Kutta-Fehlberg integrator for achieving the absolute
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error tolerance of 10 ° and a variable order Adams integrator for

absolute tolerances of 10_8 and below. Since SUPORT, as opposite to

all our codes, has no way of requesting (and obtaining) a desired accuracy

in the computed solution (see [26], Section 12), the results given

in Tables 1 and 2 were obtained by running each problem with a large

spectrum of input tolerances and selecting those results which satisfied

the output tolerances more closely (and with the least work, of course).
The test problems are all small systems, but they show in one

way or another troublesome behavior. One exception is Problem 6,

which is E;ed as an indicator of how the programs behave when confronted

with a smooth problem. All problems and programs were started with

17 points, uniform meshes, and initial values for Y identically zero

with the exception of the shooting programs for which we indicate the

shooting points in each instance, and of SUPORT which does not

require a starting mesh. We have collected all the numerical

results in Table 1. 1In the case of convergence to the desired

tolerance we record: EFE = equivalent function evaluations = F + wJ,
where F is the number of times the right-hand side fﬁny) has

been evaluated for one value of t, and J is the number of Jacobian
evaluations. The weight w varies from problem to problem and it

is indicated in Table 1; in all cases w < 1, and it reflects the
relative cost of evaluating the Jacobian matrix as compared with
that of evaluating the vector function f. Otherwise we print

the precision reached (if it is close to the one requested), or:
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NC = no convergence;

— = results not available.

In our programs we request that the estimated maximum absolute
error on the whole grid, and for all components of the solution vector,
be less than TOL for successful termination. MUISHO has a relative
tolerance parameter available to the user (EPS), and we give its value
in the various cases run.

We give computer times (when available) as a matter of reference.
The times for SUPORT were obtained at a different installation (same
computer but a different compiler). The computer times (in seconds)
can be found in Table 2. The high order scalar equations have been
treated as first order systems in the standard way. The exact solutions

(when available) are given in [8].

Problem 1 [151

y"' = hoo(y + cos2 ) + on° cos 2Tt

This is a problem which is troublesome for methods based on standard
initial value problems techniques. It can also be interpreted as a
problem with boundary layers of thickness 1/20 at t = 0, 1. MULSHO

used here three equally spaced shooting points, and MULSHO2 used five.
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Problem 2 Falkner-Skan equation [3].

"t gyt + Bl -1 =0

y(0) = y'(0) = 0, y' (o) = 1

As B approaches the value 2, the solutions of the initial value
problem associated with this equation become very sensitive with
respect to the value of the missing initial condition y"(0). This
problem has required continuation in order to provide adequate starting
values for the Newton iteration in all the programs with the exception
of PASVAR. We have used B 1in SYSSOL and RICHAR as a natural con-
tinuation parameter, performing just one Newton iteration for each of
the values B = o (0.2) 1.8, and then completing the process for g = 2.
This is done only once, at the very beginning, on the coarsest mesh
and with the basic second order method. Afterwards, the initial values
provided are sufficiently accurate to produce convergence without
difficulties. All this process is performed automatically, using a con-
tinuation option. The results reported below correspond to the full
computation for B = 2 and » = 10.

MULSHO and MULSHO? used the four shooting points Xy = 0,1,3,

and 6.

Problem 3 An artificial boundary layer problem [12]

)l

" -3ey
y' = 2
(e + x°)°
y(-0.1) = - ; 313£b2 ) y(0.1) = -y(-0.1)
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For ¢ » 0, y(t) > sign t. The problem has a turning point at t = 0
of thickness 61/2‘ The values of € are indicated in parentheses on
the heading of the respective columns. In this problem, all programs
with the exception of SUPORT used the final values for an € to start
the computation for the following smaller e.

MULSHO used 5 equally spaced shooting points (including the

origin), and it was successful up to e = 10-9, using 26139 r.e. for

that case.

Problem 4 [1k4]

y' + (3 cotan t + tan t)y'+ 0.Ty = 0

y(30°) =0, y(60°) =5

This problem has a sharp spike at approximately t = 30.650, where
y(30.650) ~ 285, and the high order derivatives are even larger.
The MULSHO codes used the four shooting points Xj = 300,

51°, 35°, 60°.
Problem 5 [11] Another artificial boundary layer problem.

y'+ ey =0

y(-1) =1, y@)=2, e>o0.

This problem has a boundary layer of thickness € at t = -1, where
the solution passes from the value one to the value two. The results

reported correspond to € = .0l.
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MULSHO shooting points were Xj = -1, -0.8, -0.5, 1; while
MULSHO2 used the sequence x:] = -1, -0.8, -0.5, 0, 0.5, 1.
This problem was also solved successfully with PASVAR for

3 -8

» and for € = 0.001, TOL = 10 -, 5 X 10_10.

e = 0.001, 0.0001, TOL = 10~
In this last case PASVAR required 2753 equivalent function evaluations
and used 3.75 seconds of computer time on a CDC 6600/6400 machine.

The meshes and solutions for large € were used to start the computation

for smaller e.

Problem 6[12] An easy problem.

wo_ 3

¥ - sin t-(1 + sin® t)

MULSHO and MULSHO2 used the three shooting points xj =0,

T/2, .
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J

e s r s r
;R 1 2 3(107) 3(1070) 3(1077) 4 5 6
S adobians | 01 0.75 0.75 0.75 0.75 0.75 0.75 0.5
TOL = 10 -3
SYSSOL 419 829 — NC 'NC NC NC 229
RICHAR1 531 815 671 NC NC NC 1378 227
RICHAR? - 143 451 NC NC NC 1248 -
PASVAR 327 543 1088 7691 9997 18% 1140 195
MULSHO 2061 1657 1232 13076 5892 15815 16363 1866
LSHO2 100k 1188 912 2631 3508 2700 3960 559
IDCRVP 15 — 398 NC NC — - 115
PREV5 75 - 306 NC NC -- - 115
SUPOQRT 312 — 334 1246 1880 403 802 --
TOL = 10 -8
SYSSOL 1203 3063 2990 NC NC NC NC 331
RICHAR1 1733 NC 1378 NC NC NC NC 1052
RICHAR2 1008 3135 1248 NC NC NC NC 732
PASVAR 806 1425 2325 12982 621 7264 2753 297
IDCBVP 385 -- 2hol NC NC - . 148
PREV5 354 - 1460 NC NC -- L 148
SUPORT 572 -- 626 2580 3460 688 3832 --
Table I. Equivalent Function Evaluations: F + w*J

Weights for IDCBVP, PREV5 were w

0, 1, 0.1 in Problems 1, 3,

6 respectively.
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e c r C r
Problem
-3 -6 -7
Code 1 ') 3 (107) 3(r07) 3 (w0") 4 5 6
Limiting
PLECISIORL 2472 4418 616
SYSSOL 10-13 o.hx 10712 o NC NC NC 10-13
209¢_ 2139 3559 9827 3212 747
PASVAR 1.6%x 10 12 1071k 7.8X 10 H - -- 1.6x 1071 8.2x 10711 1071
IDCBVP 200 2866 573
10-55 - 18—13 NC NC - - 10-13
PREVS 1002 19?9l 371
10-13 - 10713 NC NC -- -~ 10-13
3832 .
SUPORT  |3.2X2@0-10 - 3.6%710712 n1.7%21079 [4.2% 1078 10-8 4.8%920 -
Table I Cont. Equivalent Function Evaluations: F + w*J

Weights for IDCVBP, PREV5 were w = 0, 1,

0.1 in Problems

1, 3, 6 respectively.



Problem -3 -6 -7

oas 1 2 3(007) | 3(107°) |3(207") | & 5 6

TOL = 10-3

PASVAR 0.57 | 0.87 1.16 9.90 11.33 2,11 |10.13] 0.19

IDCBVP 0.02 —- 0.03 -- -- -- -- | 0.01

PREVS 0.02 -- 0.04 -- -- -- -- | 0.02

SUPORT* 0.08 — 0.07 0.23 0.35 [~ 0.12-|10.15] -~

roL, = 1070

PASVAR A.77 | 2.607 19.60 20.42 | 12.77{3.78] 0.34

IDCBVP | 0.15 —- 0.12 -- -- -- -- 1 0.03

PREVS 0.15 - 0.09 -- -- -- -- 0.03

SUPORT* 0.42 -- 0.50 2.06 2.81 0.74 [ 2.51( --

Limiting

precision

PASVAR 7.34 ] 8.34 2:23 -~ --  [9.19 |u.62 1.28

IDCBVP 0.83 - 0.43 -- -- -- |I -- | 0.12

PREVS 0.72 - 0.41 - - b 0.12

SUPORT* 1.65 -- 0.95 2.70 3.17 50. 90 -
Table 2.

CPU times in seconds on CDC 6600/6400 at IBL, University of California
Berkeley; RUNT6 compiler.

*
On CDC 6600 at Sandia Labs., Albuquerque; FUN compiler.
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Conclusions

From this limited set of tests we can draw some preliminary
conclusions.

Overall,PASVAR is far supérior to RICHARL and SYSSOL for all
accuracies, and this is more marked for higher accuracy. RICHAR2
is competitive for low accuracies in the problems in which it works
(c.f. [10] for comparisons on smooth problems). In all fairness,
we should use a Richardson extrapolation program with nonuniform
mesh capabilities, but this code isstill to be developed. It is
clear, that whenever applicable, the scalar equations codes are by

far the fastest and most efficient.

The multiple shooting code MULSHO2 compares well with PASVAR
in terms of total number of function evaluations and reliability for
most of the problems tested. The main exception is the turning point
Problem 3 where MULSHO2 obtains the solution with considerably fewer
function evaluations than PASVAR . Furthermore, MULSHO2 obtains
good results for € = 10_8,16_9, while PASVAR cannot resolve the
boundary layer with the allotted maximum number of grid points.

However, it is worth mentioning that in Problem L4 MULSHO2 takes

4ofh more computer time than MULSHO , despite the fact that this last
program requires almost 6 times more function evaluations to achieve
convergence. We should point out also that the multiple shooting codes
do not choose the shooting points and various other parameters automati-
cally, and only give final results on the shooting points. Thus, PASVAR

requires much less user interaction and foreknowledge, and outputs a much

more detailed mesh solution. This detail is automatically more dense in
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the regions of rapid variation of any component of the solution
vector. It would be also useful to compare the performance of
MULSHO2 for higher accuracy. Professor Bulirsch has indicated
that a more user oriented version of his program, correcting some

of these drawbacks, will be available in the future.

The comparisons with SUPORT show that PASVAR work too hard in
solving the turning point problem 3 for all tolerances and the spike
problem 4 for TOL = 10-3, 10_8‘ This indicates that our net selection
procedure is too slow for handling this type of quasi-singularities.

The performance of SUPORT is consistently good for low and

moderate accuracies, though we have to keep in mind that the user has

no way of assuring that he will get that accuracy by specifying an input
parameter. We should also keep in mind that, so far, SUPORT only solves
linear problems, and that it can take advantage of certain special
situations, like homogeneous equations (probs. 3, 4, 5) and zero initial
values (Probs. 1, 4). The somewhat disappointing results for high or
limiting tolerance seem to stem from the inability of the initial wvalue
codes to produce such accuracies. Apparently the boundary value
techniques can reach tolerances close to full machine accuracy without
excessive degradation.

We are presently working on a new version of PASVAR which among
other features has a new system of equations solver (both linear and
nonlinear). Preliminary results indicate that this new code will solve
problems for which PASVAR fails, and also that it will cut the number

of function evaluations and time by half in most cases.
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In Table 3 we report some information about the mesh place-
ment and deferred correction procedures on the various problems.
We give Nl,the number of timesnthat a mesh refinement was requested.
Each one of these refinements requires several mesh modifications. The
quantity Né is the average number of these modifications. The row
% gives the higher correction reached, and K is the total number of
corrections performed.

We see from these results that the mesh placement routine
'does not wander" since the average number of inner sweeps is never
large than 3, which is reached in only one case (Prob. 5,
Tol = 10_13). On the other hand we see that high order methods really
came into play, and although we do not claim that a correction of
index k = 10 will produce an OGFQ) accurate solution, it is quite

remarkable that such high order corrections do actually produce visible

improvements in the computed solution.
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Problem 1 2 3(=3) 3(-6) 3(-7) 4 5
Tol = 10 -3
N, 1 1 2 4 2 3 1
No 1 1 1.5 1.25 2 2 2
& 3 3 2 5 4 3 2
K 4 6 5 11 8 8 3
Tol = 10 -8
N 2 2 3 3 6 2
N, 1| 2 1.33 1.33 0.5 1.85| 1.5
k 6 5 4 8 10 7 6
K 9 | 10 9 13 13 17 8
Tol = 1071
N1 2 N - - - - 3
o, 1 1.75 - - - - 3
"k 10 8 - - - - 7
K 13 17 - - - - 11
TABLE 3
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