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Abstract

If each step in an addition chain is assigned a cost equal to the
product of the numbers added at that step, "binary" addition chains are

shown to minimize total cost.
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Introduction.

For a positive integer n , by a chain to n we mean a sequence
C = ((al;bl),(a2,b2),,, "(aT’br)) where a  and bk are positive
integers satisfying:

(i) a +b_ =n,

(ii) for all k , either ak =1 or ak = ai-l-'b:.L for some i<k,

with the same also holding for bk .

The cost of C , denoted by $(C) , is defined by
T
$(c) = L gb
k=18k k

The minimum cost required among all chains to n is denoted by f(n)
(In the case of ordinary addition chains $(C) is just equal to r;

e.g., see [1].) A few small values of £f(n) are given in Table 1.
n= 1 2 3 L4 5 6 7 8 9 10
f(n) = 0 1 3 5 9 12 18 21 29 34

Table 1

The function f arises in connection with determining the optimal

multiplication chain for computing the n-th power of a number by ordinary
a

k
multiplication If a number x has d digits, then computing x from
a b.

X 1 and x requires (aibi)-d2 digitwise multiplications in general.
Let g be defined by

g(l) =0,

2
g(2n) = g(n) *n

2
g(2ntl) = g(n)+n +2n

It was conjectured by D. P. McCarthy [2] that f(n) = g(n) for all n

In this note we prove his conjecture.



Two Properties of g

Wc first establish several facts concerning the function g which
will be used later.

Fact 1. For m,t >0 with m odd we have
(1) g(2"m) - g(2"m-1) = tm-1
Proof. For t =0, (1) follows at once from the definition of g .

Assume t >0 . Then

g(2®n) - g(@"m)+ (25 7m)?

4

- t-1 2 -1
g(2tm-1) = g2 Tm-1)+ (2" m-1)%+ 2(2% " n)
= g(‘2t_1m—l)+ (Et_lm 2.1
Thus
t-1 t-1
g(th)—g(2tm—l) = g(2 "m) -g(@ m-1) *1
and consequently, (1) holds by induction on t . d
Fact 2.
(2) g(n) -g(x) > Obx)2+2x41, for x+2 < n < 2x+1
Proof. Note that for n = 2x and 2xtl1 , this is just the definition
of g . The validity of (2) for x = 1,2,3 is immediate. We assume by

induction on x that (2) holds for all values less than some X > 5.
The proof of (2) can be most easily accomplished by splitting it into

4 cases, depending on the parity of n and x
- Case 1. n=2N, x = 2X .
By hypothesis

2X+2 < 2N < 4X+1

i.e.,

X*1 < N < 2X



F‘(Jr N = X+l 3

o

g(x+l)4—(X+l)2 - g(x) - x°

g(an) - g(ex)

g(X+1) - g(x) + 2X+1

S 2x+2 = (2x+2 -2%)° + hx-2(x+l).

by Fact 1 and (2) is proved in this case. For N > X+2 , the induction
hypothesis applies and

g(N) - g(x) + N - X0

g(2N) - g(2X)

2
> (X)7 + 2X-N + N °

and so (2) will hold in this case provided

2

)2+ 1 - %%+ 2xN > (eN-2X)? + lx-on

(N-X

However, this equality can be rewritten as
(2N - 2X - 1) (2X-N) > 0

which certainly holds for X+2 < N < 2X .

The other three cases are similar and will be omitted.

The Main Result.

Theorem. For all n ,

£f(n) . &(n)
Proof. It is clear that f(n) < g(n) for all n since the definition
of g(n) determines a unique chain to n with cost g(n) . Hence, it
will suffice to show that f(n) > g(n) . 1In fact, it will be enough to

establish the following analogue of (2) for £
' 2
(21) f(n)  £(x) > (n-x)° + 2x-n ,  for x+2 < n < 2x+l

For this implies
f(ex) - f(x) > x° > f(ex+l) - £ ) > Xo+2x ,

and so, by induction,



f(2x) > f(x) + X > g(x) + = g(2x)

f(ex+l) > f(x) + x2 +ox > p(x) + xr‘) + 2x = g(2xt+l)
From Table 1, (2') certainly holds for x = 1,2,3 . Assume that for
some X >3, (2') holds for all x < X and all n with x+2 <_n < 2x+1 .
In particular, this implies f(m) = g(m) for 1 < m < 2X-1 . Suppose N
satisfies X+2 < N < 2x+l . If N < 2X-1 then in fact,

f(N) - £(xX) > (1\1-}()2 + 2X-N

holds by applying (2') with x = X-1 . Hence, we are left with the two
cases N =2X and N = 2X+1 .

(i) N=2X. Suppose the last step in some arbitrary chain C
to N is (a,b) with atb =N and X <b <2X .
Thus,

2

$(C) > £(b) + ab f(b) + b(2X-b) > £(X) + X

since the last inequality is immediate for b =X , and follows by

* induction from (1) and (2) for b >X+1 . Since C was arbitrary then

£(2X) > £(X) + X°

which is the desired inequality.

(ii) N = 2X+1 . Again, assume the last step in some chain C
to N is (a, b) with a+tb = N and X+1 < b < 2X+1.

(a) If b >X+1 then
$(C) > f£(b) + b(2X+1-D)

> £(X) + X2 + 2x
since
f(b) - £(X) > (b-X)2 + 2X-b
holds for X+2 <b <-2X-1 by induction and for b = 2X by the preceding

case (i).



(b) If b = X+1 then a = X . Consider the step (a',b')
of C for which a'+b' = b . We have

$(C) > £(x) + a'd'+ ap

2
£X) + b'(X+1-b') + X + X

> £(X) P X° o+ 2x

ginc e for 1 <Db' <X-1,

b'(X+1-b') > X

Hence

£(2X+1) > £(X) + X+ 2x

This completes the induction step and the Theorem is proved. -

Concluding Remarks.

We should note that the optimal chains to n are not unique. This
is due to the fact that

f(en+tl) = f(n) + n® + 2n

can be realized in going from n to 2ntl by either
(nyn), (2n,1) with additional cost n-n + 2n.1 = n® + 2n

or

2
(n,1),(n+1,n) with additional cost n:1 + (n+l):n = n" + 2n .

One might consider generalizations of the problem in which the cost

of a chain C = ((al’bl)""’(a‘r’br)) is given by

Ir
$.(C) = Z Alab,)
A PR
where A maps ZxZ - R . It would be interesting to know for which A

the "binary representation" chain to n is always optimal. This is the

case for example for A(xX,y) = (x+1) (y+1) , but it is not the case for
Mxy) = xty .
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