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{ shown to minimize total cost.
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Introduction.

For a positive integer n , by a chain to n we mean a sequence

C = ((aq5b;) » (85505) CL, (a,b) where a_ and b, are positive
integers satisfying:

(i) a+b =n, |
(11) for all k , either ay = 1 or ay = a, +b, for some 1 <k ,

with the same also holding for ob, .

The cost of C , denoted by $(C) , is defined by

Tr

$(C) = 2 gb
kx

The minimum cost required among all chains to n 1s denoted by f(n) .

(In the case of ordinary addition chains $(C) is just equal tor ;

e.g., see [1].) A few small values of £f(n) are given in Table 1.

n = 1 2 3 4 5 6 7 8 9 10

f(n) = 0 1 3 5 9 12 18 21 29 34

Table 1

The function f arises in connection with determining the optimal

multiplication chain for computing the n-th power of a number by ordinary
a
k

multiplication If a number x has d digits, then computing x from
a b.

2

X 1 and x © requires (a;b,)-d digitwise multiplications in general.
Let g be defined by

g(l) = 0,
2

g(2n) = g(n) +n

o » nn >1.
g(2ntl) = g(n)+n + en

It was conjectured by D. P. McCarthy[2] that f(n) = g(n) for all n .

In this note we prove his conjecture.
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Two Properties of g .

: Wc first establish several facts concerning the function g which

| will be used later.

| Fact 1. For m,t >0 with m odd we have
t t

| (1) g(2’m) -g(2'm-1) = t+m-1 .

| Proof. For t = 0, (1) follows at once from the definition of g .

| Assume t >0 . Then

| t t-1 t—1 \2

: g(2m) = g(2 m+ (27 m)” ,

! + - t-1 2 t-1
| g(2%m-1) = g(2 h-1) + (2 m-1)"+ 2(2° "m-1)

— t - 2

— g(2t l-1y+ (2 In) -1.

Thus

| t-1 t-1

g(2%m) - g(2%m-1) = g(2° Tm) -g(2” m-1) +1

and consequently, (1) holds by induction on t . UJ

Fact 2.

(2) gn) -g(x) > (n-x)°+2x-n , for x+2 < n < owl .

Proof. Note that for n = 2x and 2xt1 , this 1s just the definition

of g . The validity of (2) for x = 1,2,52 is immediate. We assume by

induction on x that (2) holds for all values less than some X > 2 .

The proof of (2) can be most easily accomplished by splitting it into

4 cases, depending on the parity of n and x .

Case 1. n =2N, x = 2X .

By hypothesis

2X+2 < 2N < 4X+1

i.e.

+1 < N < 2ZX .



For N = X+1

| g(2N) - g(2X) = g(x+1) + (X+1)° - g(X) =~ X

| = g(X+1) - g(x) + 2%+1

> 2x+2 = (2x+2 - 2x)° + Lx-2(x+1).

by Fact 1 and (2) 1s proved in this case. For N >X+2 , the induction

hypothesis applies and

| 2 2
| g(an) - g(x) = g(N) - g(x) + N° -X

2

| > (N-X)° + 2%X-N + N° _ %°

and so (2) will hold in this case provided

(N-X)° FNS - X° + 2X-N > (2N-2X)° + Lx-en .

However, this equality can be rewritten as

; (2N - 2X - 1) (2X-N) > 0

which certainly holds for X+2 < N < 2X .

] The other three cases are similar and will be omitted.

: The Main Result.

Theorem. For all n ,

f(n) , gn) .

Proof. It is clear that f(n) < g(n) for all n since the definition

of g(n) determines a unique chain to n with cost g(n) . Hence, it

will suffice to show that f(n) > g(n) . In fact, it will be enough to

establish the following analogue of (2) for f :

>

(21) f(n) f~(x) > (n-x)" + 2x-n , for x+2 < n < 2x+l .

| For this implies

; 2 2
| £(2x) - £(x) > x, f(ex+l) - £f ) > xT2x

s and so, by induction,
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f (2x) > f(x) + x > g(x) + x= = g(x) ,

f(2x+l) > F(x) + x° + 2x > g(x) + x + 2x = g(2x+l) .

From Table 1, (2') certainly holds for x = 1,2,3 . Assume that for

| some X > 3, (2%) holds for all x < X and all n with x+2 < n <2xt1 .

In particular, this implies f(m) = g(m) for 1 < m <2X-1 . Suppose N

satisfies X+2 < N < 2X+1 . If N < 2X-1 then in fact,

2

f(N) - £(X) > (N=X)~ + 2X-N

holds by applying (2') with x = X-1 . Hence, we are left with the two

cases N =2X and N = 2X+1 .

(1) N =2X . Suppose the last step 1n some arbitrary chain C

to N is (a,b) with atb = N and X <b < 2X .

Thus,

2

$(C) > f(b) + ab = f(b) + b(2X-b) > £(X) + X

since the last inequality is immediate for Db =X , and follows by

" induction from (1) and (2) for b >Xt1 . Since C was arbitrary then

2

£(2X) >f(X) + X

which is the desired inequality.

(11) N = 2X+1 . Again, assume the last step in some chain C

to N is (a,b) with atb = N and X+1 < b < 2X+1.

(a) If b >X+1 then

$(C) > f(b) + b(2X+1 -D)

2
> £(X) + X + 2x

since

f(b) - £(X) > (b-X)° + 2X-Db

holds for X+2 <b <-2X-1 by induction and for b = 2X by the preceding

case (1).
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; (b) If b = X+1 then a = X . Consider the step (a',b')

| of C for which a'+b' = b . We have

. $(C) >f(x) + a'd' + ab

: = fX) + b'(X+1-b')+ X + X
2

> £(X) +X + 2x

sinc e for 1 <b' <X-1,

b'(X+1-Db') > X .

Hence

£(2X+1) > £(X) + x5 + 2%

| This completes the induction step and the Theorem 1s proved. i.

: Concluding Remarks.

We should note that the optimal chains to n are not unique. This

1s due to the fact that

f(entl) = f(n) + n° + 2n

| can be realized in going from n to 2n+l by either

(n,n), (2n,1) with additional cost n-n + 2n.l = n° + 2n
or

a

| (n,1),(n+1l,n) with additional cost n:l1 + (ntl)'n =n + 2n .

| One might consider generalizations of the problem in which the cost

| of a chain C = ((a5bq)5 005 (asbL)) is given by

| r

$,(C) = 2 Aa, sb.) >
A eo] kk

| where \ maps ZxZ =» R . It would be interesting to know for which \
the "binary representation" chain to n is always optimal. This 1s the

case for example for A(X,y) = (x+1) (y+1) , but it is not the case for

AMX,y) = xty
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