
REMOVING TRIVIAL ASSIGNMENTS FROM PROGRAMS

by

Bernard Mont-Reynaud

STAN-CS-76-544

MARCH 1976

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Removing Trivial Assignments from Programs

Bernard Mont-Reynaud

Abstract

An assignment X « Y 1n a program 1s "trivial" when both X and Y

are simple program variables. The paper describes a transformation which

removes all such assignments from a program P , producing a program P!

which executes faster than P but usually has a larger size. The number

of variables used by P' 1s also minimized. Worst-case analysis of the

transformation algorithm leads to nonpolynomial bounds. Such inefficiency,

however, does not arise in typical situations, and the technique appears to

be of interest for practical compiler optimization.

Keywords and phrases: optimizing compilers, program optimization,

program transformation, program schemas,

register allocation, renamings of variables.

CR categories: 4.12

This work was supported by a graduate fellowship from the IBM

Corporation; the National Science Foundation, grant MCS T72-03752AG?2,
at Stanford University, and the Office of Naval Research, contract

NOOO1k4-75-C -0816, at Stanford Research Institute.

1

|

1. Introduction.

| An assignment X « Y in a program is "trivial" when both X and Y

are simple program variables. An empirical study of FORTRAN programs

conducted by D. Knuth[1] suggests that trivial assignments occur quite

frequently in practical programs. Such assignments are also introduced

| when rewriting recursive definitions as iterative ones. In this paper

we consider a transformation which removes all trivial assignments from

| programs. The method can be impractical in pathological cases, but

behaves quite efficiently in most typical situations. It 1s thus of

interest for practical compiler optimization.

| Let us consider Euclid's algorithm for computing the greatest

common divisor of two nonnegative integers:

gcd(A,B) = (1f B = 0 then A else gcd(B, A mod B)) .

| - Here x mod y denotes the remainder of the integer division of x by vy .

| This concise recursive definition 1s easily implemented in iterative form

| (see Figure 1).

| INPUT(A, B)

CG =o DE Cram)>
F

|

|
B +A mod B

Figure 1. Flowchart GCDI1.

2

The program GCD1l performs one test and three assignments for each

iteration. Two of the assignments, C « B and A « C , are trivial,

that 1s, both the left- and right-hand sides are simple program

variables. We will show how to transform any flowchart involving trivial

assignments into an equivalent flowchart which has no such assignments.

For example, there 1s a flowchart for Euclid's algorithm in which only

one test and one assignment are needed for each iteration. Consider

Flowchart GCD2, shown in Figure 2. Note that every execution of the loop

in GCD2 corresponds to two iterations in GCD1. This will be called

2-fold loop unrolling.

INPUT (A, B) |

CB =0 > RETURN (4)
- F

A ~ A mod B

Coa Es mm
F

/

B ~ B mod A

Figure 2. Flowchart GCD2.

- The reader should convince himself that the two flowcharts are indeed

equivalent, in a rather strong sense: The computation performed by GCD2

1s step-wise 1dentical to that performed by GCDl, except for renamingsof

variables and the omission of trivial assignments. We observe that GCDZ

runs faster and uses fewer variables than GCD1.

>

Such optimizations can be carried out systematically, using the

technique described below. Since the transformation is independent

of the interpretations of the program variables (e.g., as 1ntegers) or

of the primitive operations (e.g., the mod operation), 1t 1s best

viewed as a transformation of program schemas. We introduce basic

concepts and notations for discussing flowchart schemas and describe

an algorithm to transform them into schemas without trivial assignments.

The algorithm 1s then strengthened to minimize the number of

variables used. The inclusion of the technique in a practical system

(e.g., an optimizing compiler) raises some difficulties which are

discussed briefly. The examples given in Appendices A-E illustrate further

aspects of this technique.

2. Basic Concepts and Notations.

) 2.1 Flowchart Schemas.

In this section we briefly define a certain class of flowchart schemas.

This class 1s essentially equivalent to those used in classic papers

on the subject [2, 3 |]; minor differences in notation are introduced for

convenience 1n stating and illustrating our transformations.

A flowchart schema (or simply a schema) 1s a directed graph whose

nodes represent computational instructions or boolean tests. It uses a

setofvariables, X = DEPP SPITTS oy ; a set of function symbols,

F = (£555, --.] (including constants); and a set of predicate symbols,

P = {PysPys e+}. In the following we let x stand for a finite

sequence of elements of X ; for example, x may be (X3,X1,%),X,) .
Then we let £, (%) and p, (X) stand for fy (X2X1,X),X,)

and P, (X3,X15X),X,) , with f, €F and Dp, €P . Let X. and X be
arbitrary variables in X .

We consider the following kinds of nodes.

trivial assignment node: | Xs - Xx, |

(proper) assignment node: Xs © £, (x)

effect node: | £, (x) |

test node: TGD
start node:

stop—node:

Flowchart schemas are constructed by combining one start node with

one or more nodes of the other kinds.

These definitions are largely self-explanatory except for the

role of effect nodes. Effect nodes may represent operations such as

altering data structures or printing intermediate results, which do not

affect the values of the schema's variables. More generally the interpre-

tations of function and predicate symbols are allowed to have side-effects

as long as all changes to the values of the variables Xs are explicitly

made by assignments.

0

| The flowcharts GCD1l and GCD2 are examples of schemas in our class.

| (Note that A mod B should really be written mod (A,B) to fit our
definitions; similarly we need to write equalzero for the test

| B = 0.) The example given in Appendix A illustrates the use of

| effect nodes in representing destructive operations on data structures.

| 2.2 Renamings of Variables.
| The use of renamings of variables, that 1s, mappings from the set

| X =X 5%. 0X] of variables into itself, 1s central to our technique.
The relevance of such renamings to problems of register allocation has

| already been noted elsewhere [4]. In our case we allow many-to-one

| mappings. In terms of register allocation, this may be called register

| sharing: at some point in the execution of a program, a single register
; holds the values of several variables.

We also make use of partial mappings, or total mappings from X into

| XU {w} , wherew stands for "undefined". A typical renaming of

X = {X,¥52,t} is the mapping S defined by S(x) = S(y) =v ,

S(z) .=w and S(t) = z :

~
| y—Yy

Z Z

w

We can write S = (v . °) , extending the notation for permutations,
or simply S = (vy y w 2) since the upper line is held constant for a

given schema. There are (+1) distinct renamings of X when |X| = N .

b

It 1s convenient to borrow from the vocabulary of register allocation

when describing properties of renamings. For the current example, we say

| that the variables x and y are found in the "register" y . Register
| y 1s "shared" since it holds more than one variable. Registers x and

t , which hold no variable, are said to be "available" or "free". This

suggestive terminology, however, does not limit the technique to register

machines, or to cases where there are enough registers to hold all program

| variables. The actual register allocation and generation of appropriate

| load and store operations, on a register machine, are not considered

here.

Given a renaming S of the set X of variables, and a functional

| term £(2) , where X is the argument list (a sequence of elements of X),

we use f(S(x))to denote the expression obtained by simultaneously

substituting 8(X,) for X10 0 ow S(Xy) for Ln in f(x) . This
notational convenience also applies to predicates and to the special

functions INPUT and RETURN used in the start and stop nodes. It

1s defined only when does not appear after the substitution.

5. Basic Algorithm for Removing Trivial Assignments.

3.1 A Simple Example.

Before considering the algorithm in its full generality, let us follow

1ts operation on a simple example of a straight-line flowchart. (See

Figure 3.) The input flowchart has three variables x , yv , z . We

begin the construction of the output flowchart by copying the start node,

and we use (x y w) for initial mapping since =z has no value so far;

X and y might as well be mapped to themselves. Processing the trivial

assignment node =z « x results in changing the mapping to (x y x),

ih
<5

2) ™

5 = = 3
0 pL —_

- = Pw 0
B] 1 3
= N >> E
O <

Q
ul

QQ

a
or

7

[;cl0)ol[| | ©&
Kh)
14)]

a0
x pi
|

— ~~ ~~ 5
- 0] 3 4 "i pd or

£ i)

i | = by > sy aa > pe N N E
Q ~~ ~—r O
8 of

H 79}
&y

Q

£4
or

Fy

1
® N N
ys! - ~
Oo 4 oe oe)

2 l ba od
~~ hy Sg S——
GH | G4 oY)

P|.

2 y= >
—

reflecting the fact that z is now found in register x . This node,

| like all trivial assignments, needs no counterpart in the output flowchart;

| 1t 1s convenient to use a no-operation (NOP) node for this case.

| Next we process the assignment x « f(x,y,z) . Its counterpart has the
| right hand side f(x,y,x) , obtained by the obvious substitution of

; registers for the corresponding variables. For the left hand side, we

can't use register x since it 1s currently shared by variables x and z .

| But registerz 1s free, so we can use it to hold the value f(x,y,x) .
The mapping changes to (z,y,x) , reflecting the fact that x is now

| found in register z . The right hand side of the transform of the
| assignment y « g(x,y,2) is now clearly g(z,y,x) . For the left hand

side, we can use y since it is not shared. The mapping is unchanged.

| Copying the stop node with variables renamed completes the transformation.

| 3.2 Case of Loop—free Schemas.

| The algorithm uses the auxiliary recursive function TASS (for

| "remove Trivial ASSignments"). Thisfunction takes two arguments:

| a reference a to a node in the input flowchart, and a mapping S .

| The call TASS(a,S) creates a new node in the output flowchart and

| returns a reference @.S to that node. The algorithm is defined by six

transformation rules, one for each kind of node. The first rule initializes

the computation, and the remaining five rules define the recursive function

TASS. Given the current mapping S , the node a (on the left) 1s

transformed to the node &.S (on the right). The letters Bg and y stand

for references to nodes in the input flowchart.

9

3.2.0 Start node:

:

B TASS (B, 85)

where 0 is the initial mapping ju.(if uex then u else w) .

5.2.1 Trivial assignment node:

1 J

8 TASS(B,S")

where S' =)u.(if u = X; then S(X;) else S(u)) .

3.2.2 Effect node:

B TASS(B,S)

5.2.5 Test node:

-

| Bo y TASS(B,S) TASS(7, S)

10

3 5.2.4 Assignment node:

|

| X, = £(%) > S'(X,)= £(8(%))
|

| 8 TASS(B,S')

|
|

| where S' 1s determined as follows. Let S" be the mapping
| wu. (if u = Ks then w else S(u)) . Choose R arbitrarily among the
| free registers of S" (note that there is at least one such register).

| Let S8' be the mapping \u.(if u = Xs then R else S"(u)) . (The reason
| we define S' using S" and not S will become clear in Section 4.2.)
|

| 5.2.5 Stop node:

-

|

.

| The rules 5.2.0- 5.2.5 completely define the transformation for

| loop-free flowcharts. The algorithm amounts to a forward propagation

| of a mapping through the input flowchart. For each node encountered,
| a copy 1s created in the output flowchart, with variables renamed as

dictated by the current mapping.

For simplicity in stating the algorithm, we have transformed trivial

assignment nodes to NOP nodes. It 1s easy to imagine how such nodes can

be eliminated from the output flowchart (or better, how the algorithm

could be adapted to avoid their generation in the first place).

11

2.5 Treatment of Loops.

The algorithm described so far does not terminate when the input

flowchart has a loop. This case will be handled in the following way.

We strengthen the definition of TASS so that the reference (or node name)

@.S returned by the call TASS(Q,S) is canonically associated with the

pair (®,S) . The nodes @ of the input flowchart are initially given

unique names. The distinct mappings S which arise during the computation

also have unique names; for example, they may be encoded as integers

between 0 and (1) . One can construct a unique name @.S by pairing

the names of @ and S in any reasonable way. A critical property here

is that we can compute the name &.5 which will be returned by the call

TASS(®,S) before we determine the attributes associated with that name,

and in particular before any recursive call is made. We will use a

global variable, CREATEDNODES, to keep track of the set of names «.S

corresponding to all the calls TASS(Q,S) performed so far. Initially

CREATEDNODES 1s a set of one element, the name of the start node in the

output flowchart. (At the end of the process, CREATEDNODES is the set of

nodes of the output flowchart.)

The recursive function TASS becomes:

TASS (Q,S) :

begin let a.S be the unique name canonically

associated with the pair (a,8);

if a.S #CREATEDNODES

then include @.S in CREATEDNODES, and compute the attributes

(contents and successors) of &.S using the appropriate

rule among 3.2.1 -3%.2.5 (the successors are determined

by recursive calls of TASS)

else do nothing;

return @.S as the value of the function

end

12

Termination 1s now insured, since every edge of the input graph 1s

followed at most once for each of a finite number of mappings.

3.4 Correctness and Worst-case Analysis.

Proving (or even stating precisely) the correctness of the algorithm

falls outside the scope of this informal paper. The idea behind the proof

1s fairly simple, however:

(a) For loop-free flowcharts it 1s sufficient to prove (by considering

rules 5.2.0- 3.2.5 individually) that the input and output flowcharts are

logically equivalent.

(b) For flowcharts with loops we consider the infinite tree schema

associated with the output schema (see Figure 4). Imitating part (a)

above, we show that the nonterminating algorithm defined by rules

5.2.0 = 25.2.5 constructs an infinite tree schema which is equivalent to

the input flowchart. Then we show that the introduction of the global

variable CREATEDNODES described in Section 5.3 results in a schema

withloops, such that the associated infinite tree schema 1s precisely

the schema just shown to be equivalent to the input flowchart.

A rough analysis of the algorithm shows that, if n and e denotes

. the number of nodes and edges of the input flowchart, n' and e' the

same quantities in the output flowchart, and N the number of variables:

? N L] N .» we have n' < n(N+1l)" and e' < e(N1l)” ;

® the number of calls of TASS during the execution of the algorithm

1s exactly e';

15

<

| I

= (2)
[7 i T F

(9) © EI
F T F

y «5 Gor (2)I=
T F

io B

@ (2

Figure 4. A schema with loops and the associated infinite tree schema.

® 1f suitable representations are chosen for the set CREATEDNODES and

for the mappings, the total running time is O(e'(N+ log e')) .

Thus the algorithm is "efficient" in terms of the size of its output.

However the size of the output can grow more than polynomially with the

size of the input.

L. An Improved Algorithm.

4.1 Back to the gcd Example.

The algorithm described in Section J, when applied to GCDl, does not

produce GCD2, as might be expected, but GCD> (Figure 5). One may wonder

why there are two occurrences of the test , together with their

associated stop nodes; 1t seems that we could jump directly from the node

[tp ane ainitial test CB =0D . The reason is that
the two tests 1n question are generated under different mappings: B25)

for the first, (% 2 ©) for the second. The basic algorithm overlooks
the crucial fact that the variable C 1s "dead", that is, its value 1is

no longer needed, when we reach the test B=0 . The mapping should have

been (So0) in both cases.
There 1s another difference between GCD? and GCD2: the former uses

] three variables and corresponds to a 5-fold loop unrolling of GCD1

(cf. exercise 1.1.3 in [5], first edition, p. 465), while the latter

uses only two variables and its loop covers two iterations of GCDI.

This difference will also be removed by the inclusion of dead variable

analysis.

15

INPUT (A,B)

| C «AmodB |

Cc-0 > ‘ RETURN (B)
F

Ca=0 D1 CCremumn(c)>
F

B «C mod A

Figure 5. Flowchart GCD?.

16

4.2 The Improved Algorithm.

The reader 1s referred to [6 | for a general treatment of dead

variable analysis.

For our purposes 1t 1s sufficient to know that the "last uses" of

each variable can be identified in the program text. (More precisely, we

assume that dead variable analysis has been performed prior to our algorithm

and that each node @ in a flowchart schema now has an additional

attribute: last used at(a) , which is the set of variables (possibly

empty) which become dead at a . We need to be even more specific.

If @ is an assignment of the form x « f(x,y) , we consider the

following steps:

(1) f(x,y) is evaluated: x and y 'are live.

(2) x is now dead, since it will receive a new definition before

1t 1s used again (possibly y also dies here).

(3) x gets a new definition, and is live again.

In such a case, we would include x in the set last used at (a) - the

new value of x might well be placed in a register different from the

register which held x when evaluating f(x,y) .

Rule 5.2.1 is modified by replacing

'S' = zu. (if u = X, then 5(X,) else S(u))
with

'S' = zu. (if u = X; then S(X,) else if uc last usedat(x)
then w else S(u)) '.

Rule 3.2.4 is modified by replacing

tgn = a. (if u = Xs then w else S(u))
with

'8" = \u.(if u elast used at{a) then w else S(u)) '.

17

It can be shown easily that 8" (X;) is w , whether or not Xs belongs

to last used at(a) , so that 8" always has at least one free

register R , as before.

Rules 7.2.2 and 5.2.3 are modified by replacing the recursive calls

TASS(*,S) by TASS(*,S") , where 8" is again defined as

Au. (if ue last usedat(a) then w else S(u)) . Rule 3.2.5 is unchanged.

| The resulting algorithm has a source of nondeterminism, due to the

| arbitrary choice of a free register among the available registers, 1n the

| case of a proper assignment. This nondeterminism can be removed by

| ordering the set X of variables and choosing the free register of

lowest possible rank in that set. The ordering is such that the input

variables (those appearing in the arguments to INPUT in the start node)

precede other variables in the ordering of X . With these conventions,

| the modified algorithm minimizes the number of variables used; that is,

1f k 1s the largest number of variables simultaneously live at any

| point in the input flowchart, then the output flowchart has at most k
variables. Other ways of taking advantage of the nondeterminism (for

example, to minimize the size of the output flowchart) will not be

considered here.

5. Discussion.

5.1 Interest of the Technique.

The removal of trivial assignments, as performed by the basic algorithm,

does not dramatically change the time complexity of a program. Instead,

the transformation usually reduces the constants involved in the analysis

of the program; in the case of the gcd algorithm, the work done by the

inner loop 1s reduced from one division, one test, and three assignments

18

to one division, one test, and one assignment. On the other hand, trivial

. assignments are quite frequent in practical programs. In an empirical

study of a representative sample of FORIRAN programs [1, p 112],D. Knuth

reports that 35 percent of all assignments, Or 22 percent of all statements

executed, have no arithmetic operation on the right-hand side. These

percentages represent dynamic counts as the programs were being executed,

not merely static counts on the program text. Unfortunately[1]

does not tell how many of these assignments are indeed trivial; no

distinction 1s made there between simple variables and array elements.

The examples given 1n Appendices A-E, particularly in Appendix C, should

help convey the potential of the technique.

On a register machine, additional savings may result from the

reduction in the number of variables used. Also, independently of the

removal of trivial assignments, the use of renamings and node copying

solves the problem of "optimizing register allocation around a loop" [7 J,

by unrolling loops as many times as necessary to achieve the optimization.

Surprisingly, this 1s done without any explicit consideration of the loops

in the input flowchart.

5.2 Practical Difficulties.

One major drawback of the technique 1s that the size of the output

flowchart can exceed any fixed polynomial in the size of the input.

A remarkable example of this behavior, due to R. S. Boyer [8], is

| presented in Appendix E. There are also cases where only minor gains

in efficiency are obtained at the expense of major increases 1n program

size (see Appendix D). These difficulties can be remedied in several

ways, including (a) the use of effort bounds and cost functions to

19

decide whether the transformation should be applied or not; (b) working

from the inside out, that 1s, beginning with inner loops; and especially

(c) the combination of (a) and (b).

Another practical difficulty, which 1s familiar in object code

optimization, arises from the idiosyncrasies of the primitive machine

operations. For example, when the operation C < A mod B used by the

ged algorithm 1s implemented usinga single hardware division instruction,

one will not usually be free to choose the register C independently ofA

and B . Tuning the method to a particular machine architecture 1s a

problem in itself.

5.3 Extensions.

The practical difficulties discussed in the previous paragraph point

to various improvements and extensions of the method. Some other

extensions under investigation are:

® Including the actual register allocation within the technique; in

the virtual register allocation currently performed, there 1s no

limit on the number of registers.

® Performing the transformation on an Algol-like text (source language)

rather than on flowchart schemas (intermediate language).

® Defining a metaalgorithm which generalizes the technique described

in this paper.

® Adding transformations to the class covered by the metaalgorithm,

such as boolean variable elimination and various optimizations

associated with loop unrolling.

20

Acknowledgments.

While teaching a data structure course at Stanford University in 1973,

Edward McCreight showed how a certain machine-language program for

destructive list reversal could be improved by a rather tricky use of

loop unrolling (see Appendix A). The puzzlement created by this

isolated example motivated an investigation which eventually led to the

ideas expressed in this paper.

These results would never have been obtained, however, without the

illuminating comments and continued encouragement provided by the author's

thesis advisor, Donald E. Knuth. Thanks are also due to Bob Boyer,

Rob Shostak and Jay Spitzen of Stanford Research Institute for enjoyable

discussions and helpful suggestions.

21

| References

[1] D. E. Knuth, "An empirical study of FORTRAN programs," Software -

| Practice and Experience 1 (1971), 105-133.

| |2] D. C. Luckham, D. M. R. Park and M. S. Paterson, "On formalized
computer programs," Journal of Computer and System Sciences 4 (1970),

v0 =2hg

[© | “4. Manna, Mathematical Theory of Computation, (McGraw-llill, L9(h),

| W148 p.

[4] I. Logrippo, "On some equivalence-preserving transformations in

program schemas,' Proving and Improving Programs, I.R.I.A.

Symposium held at Arc et Senans, France, July 1975.

[5]D. E. Knuth, Fundamental Algorithms, The Art of Computer Programming1

(Reading, Mass.: Addison-Wesley, 1968, 2nd edition 1973), 634 pp.

[6] J. Cocke and J. T. Schwartz, "Programming languages and their

| compilers," Courant Institute of Mathematical Science, New York
University, 1970.

[7] K. Kennedy, "Index register allocation in straight line code and

cimple loops," in Design and Optimization of Compilers (R. Rustin,ed.)

Prentice-Hall, Englewood Cliffs, N. J., 1972, 51-6h.

[8] R. S. Boyer, personal communication, December 1975.

22

| —Appendix A. Destructive list reversal.

: The example in Figure A-1 1s due to Edward McCreight of Xerox Palo

Alto Research Center. The program takes as input a pointer to a linked

| list, and returns a pointer to the reversed list, obtained by destructive

updating of the original list. The meaning of resetlink(P,q) is

| LINK(P) « Q . The first form 1s used to make 1t clear that the correspcnding
| node 1s an effect node, not an assignment node. The constant null is

written null() , i.e., as a function without arguments, to distinguish

it from a variable. The test is null(P) checks whether P = null .

|

input flowchart output flowchart

| Q « null() | Q « null()

1

TE

F IF

R « LINK (P) | R « LINK (P) |

reset1link(P,Q) resetlink(P,Q)

Ciomai(8 >To mmom(e)>
F

resetlink(R,P)

Cio_mti(@ D-Ts Gammi()>
F

P « LINK(Q)

resetlink(Q,R) |

Figure A-1l. Destructive list reversal.

2

| —i

FP Fr +
» . ™

l

- AA []

"3 i
I 2 Pes
. 5 =

: ~ MN

— © — |

~~ QO . +
>< +42 TD

TER
OT v l
5K
EE =a) ol
~ as -
=i ¢) 0 _
a 1

+ Gy
oO
dC od
S03

S00
— 2 Pp

oo 4
+ —~ 0 >>
SH a3

BE po + 2
4) + or ¢

| ” : © i :
5 0 i <
5 Kel or

3 aC a 5
g «dQ oy ~~ 5— + : .

© ~ ~~ ”g HO © ™

+ l 5 S —~ QJ port =Gy our 2 | 4 O
Qo ™ 2 9 l l A | <5
S G4 > | eH | = ~™ +

- qQ 42 Gq ot Ta th
| 3a + ~- cl

. £0 ow 3 hd or
C - 4

CM © a) 5 5 Aa

«3 +2 o I oo
0 as JIE

© > ~ a) —Eh)

ACH:
£5 5 .

§ 8 5 8 =
5 4 © 4 =
Nm haor

£ 5B =
4) + l

| < 3 Bo
Ere J ~ SB i
ou) Fy fo) EH
or 8 0 oP Sy
fo] UnTNOO RT od EH
- wu > Ne
or Q -] ¢)
Fo a BEET 2
SR 9 _ ;

. SE il 1
m 0 AH 4 l

" 0 d Qo. ol
Sl 5B 4 © hs
ol an TS
Q CG

a+

<q <P

25

|

|
| Appendix C. Recurrence relations.

i The example in Figure C-1 1s typical of all recurrence relations of

: the form a = flay 128 pr sa 1) . The program computes a, , given

i the value of n . The transformation results in k-fold loop unrolling| and saves k assignments per iteration. The figure illustrates the case
k=25.

|

2

| treat cases n =1, 2, 3 treat cases n =1,2, 7

| and initialize xy RO Xz and initialize CERTE ZL.
5

: pe |

1 |

: 7% Ky = £(X1,%5,X,)
| |

| »

| Fi c-1. =

: igure Recurrence a flay 178, 072, 3)

|

Appendix D. A costly optimization.

input output

Very

large

program

P

Figure D-1. A costly optimization.

Figure D-1 illustrates the need for evaluating the gain in execution

time versus the gain in program size (and/or for focusing on inner loops).

27

Appendix E. A pathological case.

The program shown in Figure E-1 takes n inputs Kyo Xpy ees X and

returns them in ascending order of the values. The auxiliary variable X'

helps perform exchanges.

Ces DO
\\4

F T T
<

Ap-1ncits n |

lo

] X' =X X' eX, X' eX |
Xp «= X, co =X EE X 1 © X, RETURN (X | ,X,,5 coos XK)
) — YX! ee YI! — YX!
Xs X : xe X x X

] -
h 7d

Figure E-1. Sorting n variables.

This flowchart has ntl variables and Ln-2 nodes. The transformed

flowchart has n.n!'+l nodes: the stop node, and each of the (n-1) test

nodes are copied exactly once for every permutation of the variables

KyseenX

28

