ITERATIVE ALGOR ITHMS FOR GLOBAL FLOW ANALYSIS

by

Robert Endre Tarjan

STAN-CS-76-547
MARCH 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

Iterative Algorithms for Global Flow Analysis

*
Robert Endre Tarjan—/

Computer Science Department
Stanford University
Stanford, California 9305

February 1976

Abstract. This paper studies iterative methods for the global flow
analysis of computer programs. We define a hierarchy of global flow
problem classes, each solvable by an appropriate generalization of
the "node listing" method of Kennedy. We show that each of these
generalized methods is optimum, among all iterative algorithms, for
solving problems within its class. We give lower bounds on the time

required by iterative algorithms for each of the problem classes.

Keywords: computational complexity, flow graph reducibility,
global flow analysis, graph theory, iterative algorithm,

lower time bound, node listing.

*
—/ Research partially supported by National Science Foundation grant
M8 75-22870.

1. Introduction.

A problem extensively studied in recent years [2,3,5,7,8,9,12,13,1L,
15,27,28,29,30] is that of globally analyzing computer programs; that is,
collecting information which is distributed throughout a computer program,
generally for the purpose of optimizing the program. Roughly speaking,
global flow analysis requires the determination, for each program blockf/r
of a property known to hold on entry to the block, independent of the path
taken to reach the block.

" A widely used approach to global flow analysis is to model the set of
possible properties by a semi-lattice (we desire the "maximum" property
for each block), to model the control structure of the program by a
directed graph with one vertex for each program block, and to specify,
for each branch from block to block, the function by which that branch
transforms the set of properties. If the semi-lattice of properties and
the set of transforming functions satisfy certain axioms, efficient methods
are available for producing a maximum property for each block [1,7,8,12,15,
27,20]. 1In essence, finding such properties involves solving a set of
linearequations.

The known algorithms are of two types: "iterative" algorithms, which
use only the semi-lattice meet operation and function application [9,12,
14,15], and "elimination™ algorithms, which use in addition function
composition and meet extended to functions [3,5,7,8,27,28,30]. Most of
the elimination algorithms are refinements of the "interval analysis"
method of Cocke and Allen [3,5], which requires that the program flow

graph have a special property, called "reducibility". However, it is

*
W) A block is a set of statements with a single entry and a single exit
point.

possible to formulate a general elimination method, related to Gaussian
elimination, which applies to all graphs and is particularly efficient

on reducible or almost-reducible graphs [27]. This algorithm requires
only O(n a(n,n)) time on an n vertex reducible program flow graph
(a(n,n) 1is a very slowly growing function related to a functional inverse
of Ackermann's function).

The elimination algorithms apply to very general global flow problems
and are asymptotically efficient, but they are rather complicated to
program: There are several iterative algorithms which are much simpler
but which work only on restricted kinds of global flow problems. These
include the propagation algorithm of Kildall [15], studied by Hecht and
Ullman [9] and related to early work by Vyssotsky [29], and the '"node
listing" algorithm of Kennedy [14]. Kam and Ullmf&n [13] have derived a
necessary and sufficient condition for global flow problems to be efficiently
solvable by Hecht and Ullman's "depth-first" version of Kildall's algorithm.
.Aho and Ullman [1], by giving an algorithm for constructing short node
listings, have shown that Kennedy's algorithm can be implemented to run
in O(n log n) time on an n vertex reducible program flow graph.

This paper extends the results of Kennedy [14] and Kem and Ullman [13].
We present a hierarchy of global flow problem classes, each solvable by
an appropriate generalization of Kennedy's algorithm. One of the classes
is the one considered by Kam and Ullman. We show that each of the
generalized algorithms is optimum, among all iterative algorithms, for
solving problems in its class. We give lower bounds on the time required

by iterative algorithms for each of the problem classes.

The paper contains five sections. Section 2 contains the necessary
graph theory, including lemmas'needed to derive the lower bounds.
Section 3 gives an abstract framework for global flow analysis, defines
the hierarchy of problem classes, and presents the corresponding
hierarchy of algorithms. Section 4 shows the optimality of the algorithms
and provides a lower bound on the time required for each problem class.

Section 5 contains further remarks.

2. Directed Graphs and Iteration Sequences.

A directed graph ¢ = (V,E) 1s a finite set of n =|V[elements
called vertices and a finite set E of m =‘E| elements called edges.
Each edge (v,w) is an ordered pair of distinct vertices. The edge
(v,w) leaves v and enters w ; we say v 1s a predecessor of w . The
in-degree of a vertex v 1is the number of edges entering Vv ; the out-degree
of v is the number of edges leaving v . The reverse of a graph is
formed by reversing the direction of all its edges.

A path p of length k from v to_w is a sequence of edges
p = (vl’vz)’(VQ’vi)’""(vk’vk+l) with vy = v and v, ; = w . The
path p contains vertices vy, --+)V,,; and edges (Vi’VQ)"'”(vk’vk+l)
and avoids all other vertices and edges. There is a path of no edges

from every vertex to itself. A vertex w is reachable from a vertex v

if-there is a path in G from v to w

A triple G = (V,E,r) is a flow graph if (V;E) is a directed
graph, TreV , and every vertex is reachable from r . G 1s a program
flow graph if the out-degree of every vertex is at most two. Every
program flow graph has m < 2n . A flow graph G = (V,E,r) is reducible
if it can be reduced to the flow graph.({r},¢,r) by applying a sequence

of transformations of the following form.

T: Let w # r be a vertex with exactly one entering edge (v,w) .
Replace (V,E,s) by (V',E',s) , where V' = V-{w} ;

E' = {(X:y) €k lw)é {x,y}} U {(V’Y) I (W:Y) eE and y é {V’W}} .

Cocke and Allen introduced reducible graphs [3,5]; the definition
above is Hecht and Ullman's [10,11], modified to avoid the creation of
loops (edges of the form (v,v)). There is an O(m a(m,n)) time
algorithm to test reducibility and to construct a reducing sequence of
transformations for any reducible flow graph [24,25].

Let k>1 . A k-path in a flow graph G = (V,E,r) is a path
p = (vl,vz) (VE’vi) .. (vl,v“l) such that no vertex appears more
than k times among Voreeos Vg - A ks—-path is a k-path which begins
at . and contains T no more than k times. A k-sequence for
G = (V,E,r) 1s a sequence of edges which contains every k-path of G
as a subsequence. A ks—sequence is a sequence of edges which contains
every ks—path of G as a subsequence. Our lower bound proofs require
the following results concerning lengths of k-sequences and ks-sequences.
The first two lemmas are immediate corollaries of results in [20]. The

third lemma is new.

Lemma 1 [20]. For infinitely many n , there is a program
flow graph G = (V,E,r) with |V] = n , such that the reverse of G
is reducible and any ks-sequence for G contains at least

*
¢c. n logn edges-/.

1

Lemma 2 [20]. For infinitely many n , there is a (non-reducible)
program flow graph G = (V,E,r) with ‘V\ = n such that any sequence
containing each Is-path ending at a predecessor of r contains at least

2
c2n edges.

*
J Throughout this paper, CyCqsCpy e denote suitable positive constants.

Corollary 1. For infinitely many n , there is a (non-reducible)
program flow graph G = (V,E,r) with |V| = n such that any ks-sequence

for G contains at least c2kn2 edges.

Proof. Any ks—sequence for one of the graphs given by Lemma 2 must
contain k disjoint subsequences, each containing all Is-paths

ending at a predecessor of r . [

For any k > 1 , let s(k) be the length of the shortest sequence
containing each permutation of the numbers 1,2,...,k as a subsequence.
Newey [21] gives the following values of s(k) : s(ly =1, s(2) =3,
s(3) =7, s(b) =12, s(5 =19, s(6) = 28 , s(7) = 39 . Newey [21]
and Koutas and Hu [18] have shown that for all k , s(k) < k2-2k+h .
Kwiatowski and Kleitman [19] have shown that, for all positive ¢ ,

/e

s(k) > k2 -c(e)k7 for all k

Lemma 3. Let k >1 . For infinitely many n there is a reducible

program flow graph G = (V,E,r) with IV\ =n such that any ks-sequence

log, s(k)
contains at least c(k)n edges.

Proof. For any fixed k , .we recursively construct a sequence of flow
graphs G(k,i) . Each G(k,1) will have a unique start vertex r(k,i)
and a unique finish vertex f(k,1) . Let

G(k,0) = ({r(x,0),£(k,0)}, {(r(k,0),£(k,0)) , (£(k,0),r(k,0))} , r(k,0)) .
We construct G(k,i+l) from k copies of G(k,i) and three new
vertices r(k,i+l) , f£(k,i*+1l) , and x(k,i+l) , as follows. Let

Gl(k, i), G2(k, i),..., Gk(k’ i) be k copies of G(k,i+l) . Let

G(k,i+1l) = (V(k,itl) , E(k,i+1) , r(k,i+1)) , where

k
UV,(k,i)U{r(k,i+l) , x(k,i+l) , f(k,i+1)} ;

V(k, i+1) =
j=1*
k

E(k,itl) = U (E. (ki) U {(x(k,i+1),r.(k,1)) , (f.(k,1),x(k,i+1)) ,
j=1 9 J J

(fj (k,1),f(k,i+1)) })

u {(r(k,i+1),x(k,i+1)) (f(k,i+1),r(k,i+1))} .

Figure 1 illustrates G(k,i+l) .

£k, i+1)

Figure 1. G(k,i+l) for k = 4 .

If p(1),p(2), ...,p(k) are ks-paths in G(k,1i) ending at f(ki) ,

then
(r(k,i+l),x(k,i+1)) (x(k,i+1), rcr(l) (k,1))Pc(l) (1) (fc(l) (k,1),x(k,i+1))

(x(k,i+1) ’ro(2) (k, i))Po(Q) 2 ... Po(k) (k) (fo(k) (k, 1), f(k,i+1))

is a ks-path in G(k,i+l) ending at f(k,i+l) , where ¢ is any
ermutation on 1,2,...,k and o\ (J is the path in G_,.y\(k,1

p u 1 Sy) pU(J) (J) p O’(J)(:))
corresponding to p(j)

be any sequence for G(k,i+l) containing

Let S = e --,e

128700 %
all ks-paths ending at f(k,i*tl) . Form a sequence S' = ZysZpyceerZ,
of occurrences of 0,1,2,...,k from S as follows. Suppose zl’ZQ"""Zb
have been defined. Let j be such that e, is an edge of Gj(k,i+l) .
(If there is no such j , let Z'b+l =0) Let b' be the maximum
b' < b such that zye = J . (If there is no such b', let b'=0 .)
If the sequence of edges eb'+l""’e'b+l contains every ks-path of
Gj(k,i) as a subsequence, let Zb+l = j . Otherwise let Zb+l =0

We claim S' , so defined, contains every permutation of 1,2,...,k
as a subsequence. For, let 0 be any permutation of 1,2,...,k . Let
2 (1) be the first occurrence of ¢(1l) in S8' , and let pc(l)(l) be
a ks-path in Go(l) (k, i) ending at fc(l) (k, i) and contained in
"el,.mﬁe.b(l) but not in el""’eb(l)-l) In general, let Zb(j+l)
be the first occurrence of o(j+l) following Zb(J) in S' , and let
p0(5+l)(,j+1) be a ks-path in Gy(5+1) (k, i) ending at fa(j+l) (k, 1)
and contained in eb(j)+l’.o neb(j+l) but not in‘ eb(j)+l’°°’ °eb(j+l)-l‘
It must be possible to define b(1),b(2),...,b(k) since otherwise there

is a ks-path

10

(S(k,i+l),X(k,i+l))(X(k,i+1),So(l)(k,i))pc(l)(l)(fo(l)(k,i),x(kgi+1))

(X(k,i+l),sc(2)(k,i))pc(e)(Q) "'Pc(k)(k)(fd(k)(k:i),f(k:i+l))

in G(k,i+*1l) , ending at f(k,i+l) , which is not contained in S . Thus

o 1s contained in S' .

Let £(k,i) be the length of the shortest sequence containing all
ks-paths of G(k,i) ending at f(k,i) . Clearly £(k,i) > 1 . The

above argument implies that £(k,i+1l) > £(k,i)-s(k) . Thus

(1) £(k,1) > (s(e)t

Let |V(k,i)| = n(k,i) . Then n(k,0) = 2 and n(k,i+1l) = kn(k,i)+3 .

Thus
1 i+1
(2) n(k,i) < 3 & kI < 3k
j=0
It' follows that
log, s(k)
. (3) £(k,i) > c(k) n(k,i) for some constant c (k)
Each G(k,i) is reducible. (To reduce G(k,i+l) , reduce each

Gj(k:i) to ({rj(k,i)},¢,rj(k,i)) » then delete the remaining vertices
in the order rl(k,i),re(k,i),. @m@rk(k,i),f(k,i+l),x(k,i+l).) Further-
more the out-degree of each vertex of G(k,i) is at most max{k,3} .
From G(k,i) we can form a reducible program flow graph G'(k,i) by
replacing each vertex of out-degree greater than two by a binary fan-out
tree.

G'(k,1) contains 0(n(k,i)) vertices. Furthermore every ks-path
of G(k,i) ending at f(k,i) is contained in a ks-path of G'(k,i)

ending at f(k,i) . The lemma follows from (3). O

A slight modification of this proof gives:

Corollary 2. Let k >1 . For infinitely many n there is a program

flow graph G = (V,E,r) with |V| = n such that the reverse of G is

log, s (k)
reducible and any ks-sequence for G contains at least c(k)n

edges.

Aho and Ullman's construction [1] of an O(n log n) length
l-sequence for any reducible program flow graph shows that the bound
in Lemma 1 is tight to within a constant factor. The bound in
Corollary 1 is obviously tight to within a constant factor, as is the
Lemma 5 bound for l-sequences. For k > 2 , it is an open problem

whether the Lemma 3 and Corollary 2 bounds are tight.

3. Global Flow Problems and Iterative Algorithms.

Let L be a set with a binary meet operation Asatisfying the

following axioms.

A0: L is closed under a .
Al; xA(yAzZ) = X AY)AZ.
A2: XANYy=YAX.

A3: X A X =X .

1
(@]

AL: There is an element OeL such that 0 A x

A5: There 1is an element leL such that 1 A x

1}
bes

As a consequence of A0 -A> we can define a partial order on L by x <y
if and only if x Ay = x .
Let F be a set of functions f: L - L satisfying the following

axioms.

Ab: F is closed under function composition and A , where f A g is
the function h defined by h(x) = f(x) A g(x)
A7: There is a function eeF such that e(x) = x
A8: F(X Ay) = £x) Af(y)
* *
B: For all feF there is a function £ €F such that f g is the

maximum solution to fhAg=h

Such-a pair (L,F) is a global analysis framework.

Let G = (V,E,r) be a flow graph, let (L,F) be a global analysis
framework, let f: E - F , and let a: V- L . (I,F,G,f,a) is a global

flow problem. The solution to this problem is the maximum solution to

the set of equations

e xw) = A\ W (x(v) A a(w) , Wev .

(vyw)€eE

15

We can extend f to paths by defining f(p) = f(vk’vki-l) f(vk_l,vk).—e f(vl,vz)

if p= (vppvp) (Vpevs) . . . (VViq) , and £(p) = e if p is a path of
no edges.
; Observation 1. If xwis a solution to Q and p is any path from

a vertex v to a vertex w , then x(w) < f(p)(a(v))

% Under the assumed axioms, Q always has a unique maximum solution x

[such that x(w) is the meet of f(p) (a(v)) for all paths p from v

% to' w . The existence of the closure operation * guarantees that this

| meet of a possibly infinite set of paths exists and can be computed
[4,22,23,27]. The asymptotically fastest method known for solving global

flow problems uses a form of Gaussian elimination and achieves a time

bound of O(m Q(myn)) on reducible flow graphs [27].

For most practical global flow problems, the closure operation can
be defined in terms of function meet and function composition.Insuch
cases, it is possible to compute solutions using only function application
and meet on L . We shall consider a hierarchy of global flow problems

of this kind. Consider the following axioms.

i k-1,
Bk: Fx) > a 1) a £Q) (k > 1)
=0
k-1 |
" Bks: £5(x) > A £1(x) (k > 1)
1=0

Any global flow problem whose framework satisfies Bk we call a k=hounded

global flow problem.. Any global flow problem whose framework 'satisfies

Bks and such that a(w) = 1 if w # r we call a ks-bounded global flow

-Problem.

14

Observation 2. Bks implies Bk . Bk implies B(k+l)s

Bk implies B

The k-bounded and ks-bounded global flow problems form a hierarchy
which includes some, but not all, of the global flow problems
mentioned in the literature. The transitive closure [6,271 and
dominators problems [p, 26,27] can be formulated as Is-bounded problems.
Problems which use bit vectors, such as available expressions [28] and
live variables [9,14] are 1-bounded but not Is-bounded. Problems which
use "structured partition" lattices, such as common subexpression
detection, [7,13,15] are 2s-bounded but not l-bounded. Global flow
problems involving type checking [30] are not k-bounded unless some
bound is artificially imposed.

Kam and Ullman [13] have shown that l-boundedness is a necessary
and sufficient condition for fast convergence of Hecht and Ullman's
version of Kildall's algorithm. We shall show that there is a general
iterative algorithm, an extension of Kennedy's node listing method, for
solving any k-bounded or ks-bounded problem. The algorithm is optimal,
among all iterative algorithms, for each k . We give a lower bound on
the running time of the algorithm, a bound which shows that the algorithm
becomes markedly less efficient, and thus less competitive with the
best ‘elimination algorithm, as k increases.

Let (L,F,G,f,a) be a global flow problem, with G = (V,E,r) .

Let S be a sequence of edges of G . Consider the following algorithm.

15

procedure ITERATE (set V, set E, ‘m r, function f, function a,
list s, function x)
begin
for wev igx(w) := a(w);

for (vw)es do x(w) - x(w) A £(v,;¥) (x()) ;
ﬁe_'rl(il_‘ ITERATE;

This algorithm propagates information along paths which are subsequences

of s

Observation 3. Any function x computed by ITERATE satisfies

x(w) = A {£(p(v,w))(a(v)) | p(v,w)eP} , where P is some set of paths

leading to w .

Theorem 1. If (L,F) is ks—-bounded, S is a ks-sequence for G , and

a(w) =1 for w ;é r , then the function x computed by ITERATE is a

- maximum solution to Q .

Proof. Let y(w) =a {f(p)(a(x)) | p a ks-path to w} for weV .
Let z be any solution to Q . By Observations 1 and 3, z2<x . It

is easy to prove by induction on the length of p that x(w) < £(p)(a(r))

for any ks-path to w . Thus x <y . It remains to be shown that y

is a solution to Q .

y(w) = A {£(p) (a(r)) | p & ks-path to w}

N\

= (v,W)cE

£(v,w) (A {£(p) (a(z)) | peP(v)])
where P(v) 1is a suitable subset of ks-paths to v

> N 2v,w) (y(v)

T (v,w)€E

16

Let (v,w)eE . Let p be a ks-path to v . If p(vyw is a ks-path,
then £(p(v,w))(a(r)) > y(w). Otherwise, p(v,w) = Py Py Py o pk >
where Py starts and ends at w for 1 < i < k , and Py is possibly

empty. Then

k k
pr) (a(r)) > (A f(pi>> £(p,) (a(x)
i=
k-1 [x i
> A A f(py) | f(py(alr)) by Bks
j=0 \Ui=1
= A{f(p") (a(r)) | p'eP} where P is a suitable

subset of paths from r to w , each a

proper subsequence of p(v,w) .

By applying the same decomposition repeatedly, we eventually have

flp(v,w))(a(r)) >A{f(p') (a(r))]|p'ep’ 3 where P' 1is a set of

ks-paths from r to w

> y(w) .

It follows-that y(w) < A f(v,w)(y(v)) , and y is a solution
(v,w) €E

to Q . Thus y =x and x is the maximum solution to Q . U

Theorem 2. If (L,F) is k-bounded, and S is a k-sequence for G ,

then the function x computed by ITERATE is a maxim-urn solution to Q .

Proof. -Let y(w) = A {f(p(v,w))(a(v)) |p a k-path to w} . Let z be
any solution to Q . As in the proof of Theorem 1, 2z <x <y , and we

must show that y 1is a solution to Q

17

y(w)

A {£(p(vsW))(a(v)) | P a k-Path to ¥}

A (W) (A (20w v) (a(w) | per(v)}) where P(v)
(v,W) E

is a suitable subset of k-paths to v

> A f(v,wy(v)
(vyw)€E
Let (v,w)eE . Let p be a k-path to v . If p(v,w) is a k-path,

then f£(v,w)(a(v)) >y(w) . Otherwise, p(v,w) = PyPy Py . ¢+ P, where

pi starts and ends at w for 1 <i <k, and P, is non-empty.

Then
k k
(p() (a) 2{ A f(pi)) £(p,) (a(v))
i=
x-1/ k j X X
= A (A f(pi)> £(p,) (a(v)) /\(A f(pi)) (1)
3=0 \Ui=1 i=1
> A {£(p"(w,w))(a(u)) | prep} , where P is a

suitable subset of paths to w , each a proper

subsequence of p(v,w) .
By repeating this decomposition, we eventually have

£(p(v,w))(a(v)) > A {f(p'(w,w))(a(u)) | p'ep'} , where P' is some

set of k-paths to w .

It follows that y(w) < A £f(v,w)(y(v)) , and y is a solution
(v,w)€E

to Q . Hence y = X and x 1is the maximum solution to Q . .

18

ITERATE gives a uniform method for solving k- and ks-bounded global
flow problems, with the length of the necessary sequence § dependent
upon k . The ks-bounded problems require propagation only from the start
vertex; the k-bounded problems require propagation from all vertices. We
have left unresolved the problem of finding a k- or ks-sequence to use as
input to ITERATE.

Kennedy's algorithm as originally stated is the version of ITERATE
which solves l-bounded global flow problems. Aho and Ullman [1] have
given a method for constructing, in O(n log n) time, an O(n log n)
length l-sequence for any reducible program flow graph. Thus ITERATE
can be implemented to solve l-bounded problems on reducible program
flow graphs in O(n log n) time.

Hecht and Ullman's [9] depth-first ordering gives a l-sequence of
O(dn) length for any reducible program flow graph, where d is the
largest number of "cycle" edges [13,27] on any l-path. For typical FORTRAN
programs, d < 2.75 [17]. Thus the depth-first ordering gives a linear
time implementation for typical programs, although the worst case
is o(n°) .

Lemmas 1, 2, and 3 give lower bounds on the lengths of k- and
ks-sequences , and thus on the worst case running time of all implementations
of ITERATE. We shall see in the next section that these lower bounds
apply not only to ITERATE, but to any iterative algorithm for solving

k- or ks-bounded problems.

19

4, Lower Bounds on Iterative Algorithms.

To provide lower bounds on the number of operations required to
solve k- or ks-bounded problems by iterative algorithms, we will
construct certain "worst-case" global flow frameworks. Let
(Ll’Fl)’“" (LI’FI) be global flow frameworks. We can define a cross
product framework (LlXLQX xLz ’ FlXFEX sz) , where operations
are performed component-wise. That is,

(fl' .. "ft)(xl""’xl) = (f(xl),...,f(x!)) . It is easy to show that
(Ll,xsz coeexLy , FyxFox ... sz) is a global flow framework with
zero element (O,...,O) , one element (l,...,l) , and identity function
(e,....€) . Furthermore (xl’x2""’x£) < (yl,yz,--.,yz) if and only
if x; <y; for all i . Also, (L x . e XL, , Fyx . ..xFl) is
k-bounded (ks-bounded) if all the (Li’Fi) are k-bounded (ks-bounded).

Let G = (WLE, r) be a flow graph. Let k >2 and let p be any

ks-path of G . Let Ls(p) be the semi-lattice defined by

Ls(p) = {0,1} U {P(v) | P(v) 1is a non-empty set of subsequences of p,
each of which is a path from r to v}
(A , the empty path from r to r, is an allowable

subsequence if v = r)

XxXAO OAXx =0

X

xALl = 1AX

Pl(v) U P2(w) if v=w

) l(v) A Pg(w)
0 if viw

It is clear that Ls(p) satisfies AO - AS.

20

Let Fs(p) be the smallest set of functions closed under meet and
composition which contains the identity function e , the function 1
such that 1(x) = 1 , and a function fp(v,w) for each edge (v,w)

in p , defined by

fp(v,w) (0) = 0

f (v,w)(l) = 1
1Y
{p,(v,w e P(y and p,(v,w) is a subsequence of p
1 P1 Y 1
fp(v,w) (P(v)) = if this set is non-empty
1 otherwise
fp(v,w)(P(u)) =0 if u # v
Lemma 4. (Ls(p),FS(p)) is a ks-bounded global flow framework.

proof. A6 and A7 hold by definition. Consider A8. Suppose
f(xAy)=f (x) Af(y) and g(xAy)=g(x)Ag(y). Then

fe(xny) = £(g(x)Ag(y)) - fg(x)Afe(y) and

(£AE) (xAY) = £x) A ... Ag(x)Ag(y) . (fAg) (x)A(£Ag) (¥) .
Thus we need verify A8 only for e , 1 and fP(V,W) . A8 clearly

holds for e and 1 . Consider fp(V,W) .
fp(v,w)(x/\O):fP(v,W)(O) = 0 = fp(V,W)(X)Afp(V:W)(O)

(B (xAD) - 2 (@) - LW AL - £ mW () A £ (v ()

£,(vsw) (P (V) AP5(V))

£,(vw) (B (V) UBy())

1]

(VW) (B (7)) A £, (%) (B,(1)

fp(v,w) (P (w) AR, (%)) =0 = fp(v,w) (P (w)) A £ (vw) (By(x))

if ufgv or x £V

In all cases A8 holds.

21

To prove Bks , consider any function g efg(p) . We can write
J
g = A 8 where each 8y is either e or a composition of functions
i=1
fp(v,w) , possibly followed by 1
k-1 5
We wish to prove Bks : g"(x) >Ag (x) . We need only prove
i=1

this inequality for x = 0 , x = 1, or x containing a single ks-path.
The result is obvious for x = 0 or x = 1 . Let x be a ks-path.

Consider any term 93(1) gi(2) Lo gi(k) ({x1]) of

. J k
k
g ({x}) = (A gi) ({X}) . If gi(k)({x}) does not denote a ks-path,
i=1
then either the left side of Bks is 1 or the right hand side of Bks
is 0, and Bks holds. If & (k) ({x}) is a ks-path but gk ({x})
does not end at the end of x , then gi(k)({x})A{x} = 0 and the right
side of Bks is zero. Extending this argument, we can show that Bks

holds wunless gi(k)({x}) is a ks-path which contains the last

91(1)
vertex of x ktl times. But this is impossible. Thus Bks holds. O

Lemma 5. Let p be a ks—-path in G . Consider the global flow problem

fp(V’W) if (v,w) is on P

(LS(P)’FS(P)}G)g:a) , Where g(v,w)
1 otherwise

a(w) =1 if wir .
The solution to this problem is

({p' | P' is a ks-path to w which is a subsequence of p
x(w) = ﬁ if this set is non-empty}

1 1 otherwise.

22

Proof. Similar to the proof of Theorem 1. O

To deal with the case of Is-bounded problems, we shall use a special
construction. Let G = (V,E,r) be any flow graph and let p be any

ls-path of G Let Ls(p) be the semi-lattice defined by

L (p) = {0,1} U {p'| p' is an initial segment of p (p' = A is included)}

OAx = xXAO =0 , IAx =

'p2/\pl = PJADy = Py if p1 is an initial segment of P, -

Let Fs(p) be the smallest set of functions closed under meet,

composition, and containing e , 1, and a function fp(v,w) for each

edge (v,w) on p , defined by

Y
f (v,w)(1) = 1
p
pt(v,w) if this is an initial segment of p
fp(v,w) (p') =
P! otherwise.
Lemma 6. (Ls(p) , Fs(p)) is a Is-bounded global flow framework.

Proof. AO-AT hold obviously. A8 clearly holds for e and 1 .

Consider fp(v,w) .

fp(w},w) (xA0) = £ (v,w) (0) =0 - fp(v,w) (X) AL (v,w)(0)

fP(V’W) (x A1) = fP(V:W) (x) fp(V:W) (x) A fp(V:W) (1)

25

fP(V,W)(Pl/\Pz) = fp(V,W)(Pl) = pl(V’W)
= £, (py) Apy = T(VsW) (p,) AL (VW) (pp)
if pl<p2 and Pl ends at v

£p(vw) (B ABp) = £,(vsw)(By) =y = £ (mW)(R) A £,(v>¥) (D)

if Py <p2 and Py ends other than at v .

In all cases A8 holds.

‘Note that the functions f e (e, 1, fp(v,w)} satisfy £ > e . It
follows that all functions f in Fs(p) satisf'y £ > e . Thus

(Ls(p),Fs(p)) is a Is-bounded global flow framework. O

Lemma 7. Let p be a Is-path in G . Consider the global flow problem

f;)(v,w) if (v,w) is on p

(LS(P):FS(P):G: g,a) where g(v,w) =

1 otherwise
a(r) = A
a(w) =1 if wi#r
The solution to this problem is
f
p'! if p' starts at r , ends at w , and is an
initial segment of p
x(w) =
1 if there is no path from r to w which is an

initial segment of p

proof. Similar to the proof of Theorem 1.

oL

Let G = (V,E,r) be a flow graph. Let k >1 and let p be any

k-path of G starting at some vertex s . Let L(p) be the semi-lattice
defined by
L) = 0,13 U{P(v) | F(v) 1is a non-empty set of subsequences of p,
each a path to v, such that P(v) contains A(v), the
empty path from v to v]
xANO = 0OAX = O
xA1l = 1IAx =0

Pl(v) U PE(W) if v=w
P, (v) AP,(W) -
0 if vEw

It is clear that L(p) satisfies AO - AS.
Let F(p) be the smallest set of functions closed under meet and
composition which contains the identity function e , the function 1

such that 1(x) =1, and a function fp(v,w) for each edge (Vv,w)

on p , defined by

0]

fP(V:W) (0)

fP(V:W)(l) = {(v,w),A(w)]

]

fp(v,w) (P(v)) {pl(v,w) | pleP(v; and pl(v,w) is a subsequence of p]
U {A(W) 1

0 if ufv.

£,(vsw) (P())

Lemma 8. (L(p) , F(p)) 1is a k-bounded global flow framework.

25

Proof. A6 and A7 hold by definition. Consider A8. A8 clearly holds

for e and 1 . Consider fp(v,w) .

fp(v,w) (xA0) - fp(v:w) (0) = o = fp(v’w) (x) A fp(V,W) (0)
fp(v,w) (P(v) A1) — fp(v,w)P(v) - fp(v,w) (B(v)) A {(vsw), A(W))
= fp(v:w) (P(v)) A fp(V)W) (1)
£,(vsw) (P(w) A 1) - fp(v,w) (P(w)) =0 = fp(v,w) (P(w)) A £,(v>w) (1)

if ufgv

£(vW) (By(¥) ARy(V)) = 2,(vsw) (B (MU, (V)

2,(v) (By(¥)) A 2, (v,) (Py(v))

£,(vsW) (Py () ARy(x)) = O = £(v;w) (P () A £ (v, w)(By(x))

if wfEv or xfv .

In all cases A8 holds.

To prove Bk , suppose k > 2 and consider any function g eF(p) .

J. " . " "

We can write g = Agi’Where each gi is either e or a composition
i=1

of functions fp(v,w) , possibly followed by 1 . We wish to prove Bk :

K k-1 . K

g (x) > A gl(x) Ag (1) . We need only prove this inequality for

i=1
X =0, X=1, or x of the form x = {p',A(W)} where p' 1is a path

from v to w . The result is obvious for x = 0 and for x =1

Suppose x = {p',A(w)} , where p' is a path from v to w

J k
Consider any temm 95 (1) gi(2).** gi(k) (x) of gk(x) = (i/—\l gi> (x) .

If any g.(j) contains 1 , Bk holds. If 8 (k) (x) is not a set of

1

k-paths, the right side of Bk is 0 and Bk holds. If &.

1 (k) (x) does

26

not denote a set of k-paths ending at w , gi(k)(x) Ax= 0 and Bk
holds. Extending this argument, we can show that for all 1 < j <k,
cray oo X is a set of k-paths ending at w . The onl ossible
85(5) " Big) ®) P g y P
kind of path occuring in gi(l) gi(E).*. gi(k)(x) which does not occur
in a set on the right side of Bk is a path of the form
. . ces Do ', where p.,.\ is the sequence of edges
Pi1)Pi(e) "t Pi(w) P P1(3) E 7
corresponding to the functions composed to form gi(j) and p' is
non-empty. But such a path is not a k-path and thus does not occur in
gi(l)" . gi(kgxl Hence Bk holds. A similar argument shows that

Bk holds if k =1 . O

Lemma 9. Let p be a k-path in G starting at s . Consider the global
flow problem

-

fp(v,w) if (v,w) is on p
(L(p),F(p),G,g,a) , where g(v,w) =
1 otherwise

a(s) = {A(s)]}

a(w) =1 for w # s
The solution to this problem is

{p'lp' is a k-path to w which is a subsequence of p}
X (w) = if w lies on p
1 otherwise.

Proof. Similar to the proof of Theorem 2. O

Consider any algorithm, which, starting from the values a(v) , 0, 1,

computes a solution to the global flow problem (L,F,G,f,a) by computing

2T

meets of elements in L and applying functions in {£(v,w)} . We call

such an algorithm an iterative global flow algorithm. The derived sequence

of such an algorithm is the list of edges (v,w) such that f(v,w) is
applied by the algorithm, with the edges occuring in the order the
functions are applied. We provide lower bounds on the number of operations
required by iterative algorithms by showing properties of their derived

sequences.

Theorem 3. Let G = (V,E,r) be any flow graph. Consider the global

flow problem

(L,F) = X(T () » F(P)) |P a ks-path}.
Let

fp(v,w) if (v,w) lies on p

2ww) = (gy(vw) , where g (v,w) -
1 otherwise.

Let a(r) = (MAy-eesh) , a(w) = (1,1,...,1) for w ;é r . Then the
derived sequence for any iterative algorithm which solves (L,F,G,f,a)

must contain a ks-sequence.

Eroof. Let p=(r= vl"v2) (V2,V5) c .. (vk’vki'l = w) be a ks-path.
Consider the p-component of the solution x to Q . The only way to
build up the correct value in the p component of x(w) is to apply

f(vl’v2)""’f(vk’vk+l) in sequence. O

Theorem 4. Let G = (V,E,r) be any flow graph. Consider the global

flow problem

(L,F) = X{(L(p) , F()) | » a k-path]

28

Let

fp(v,w) if (v,w) lies on p
f(v,w) = (gp(v;w)) , Wwhere gp(v;w) =
1 otherwise.
Let
A(v) if p starts at v

a(w) = (gphﬂ) , where a, (v) =
1 otherwise.

Then the derived sequence for any iterative algorithm which solves

(L,F,G,f,a) must contain a k-sequence.
Proof. Similar to the proof of Theorem 3. O

Thus Theorems 1, 2, 3, and 4 characterize the exact number of function
applications needed to solve a k- or ks-bounded global flow problem in
the worst case. This number is equal to the length of the shortest
k- or ks-sequence for the graph. Lemmas 1, 2, and 3 give lower bounds

on this length, and hence we have the following corollaries:

Theorem 5. In the worst case, the solution of a k- or ks-bounded global
flow problem on an n-vertex (non-reducible) program flow graph requires
at least c¢ kn2 function applications, 1if no function compositions or

function meets are used.
Proof. Immediate from Corollary 1 and Theorem 3. O

Theorem 6. In the worst case, the solution of a k- or ks-bounded global

flow problem on an n-vertex reducible program flow graph requires at

log, s(k)
least c(k)n function applications, 1f no function compositions

or function meets are allowed.

29

proof. Immediate from Lemma, 3 and Theorem E<D O

Theorem 7. In the worst case, the solution of a l-bounded global flow
problem on an n-vertex reducible program flow graph requires ¢nlog n

function applications if function compositions and function meets are

not used.
Proof. Immediate from Lemma 1 and Theorem 4. O

Some global flow problems, notably the live variables problem [9,10]
require propagating information backward through the graph. By Corollary 2,
the lower bound of Theorem 6 applies to program flow graphs whose reverses

are reducible. We also have the following lower bound.

Theorem 8. In the worst case, the solution of a Is-bounded global
flow problem on an n-vertex program graph whose reverse is reducible
requires ¢n log n function applications if function compositions

and function meets are not used.
proof. From Lemma 1 and Theorem 4. 0

Our worst case global flow problems are somewhat contrived.
However, it is possible, for instance, to construct a worst-case bit-
vector type problem and use it in place Of-(E%’Er) in the l-bounded
case.
Let G = (V,Eyr) be any flow graph and let p = (Vl:Vé)(Vé:VB).sm(Vl:Vl+l)

be any-l-path of G . Let LP be the semi-lattice defined by

L = (slsg{xijlosigjgz}}

S, AS, = SlﬂS2

30

Let

o=¢ and1={xij|0<i§j5/z}

Clearly LP satisfies A0 - AS.

Let FP be the set of functions closed under composition and
intersection and containing the identity function € , the function
}(x) - 1, and a function fp(Vi,Vi+l) for each edge (vi’vi+l)'
defined by

fp(vi,vi+l)(s) = s (xy li<j < I}U{xji o<y <i} .

The pair (LP,FP) is an example of a typical global flow framework for
available expressions or any similar bit vector type problem and is
1-bounded [12].
Let (L.p,Fp,G,g,a) be the global framework with
fphg W) if (v,w) 1is on p

g(v,w) =
1 otherwise

If x is the solution to this problem, a computation shows that
= < i < 7 x..|1 <3 < 2}.In order to compute

x(vyq) = by |1 <4 < 1< Uyl <y <]

x(v£+l) from 0 , 1 , or a(vl) , fp(vi’vi+l) for 1 = 1,2, ...,5!

must be applied in sequence.

Thus, by using the appropriate product framework, we can show that

Theorems 4, 5, 7hold for all iterative algorithms which solve bit-vector
type problems. We have not tried constructing "natural" worst-case

examples for other values of k

31

Remarks.

We have exhibited a hierarchy of global flow problems, an optimal
iterative algorithm for solving any problem in the hierarchy, and lower
bounds on the time necessary for solving worst-case problems in each level
of the hierarchy. For k- and ks-bounded problems on non-reducible program
graphs, the lower bound is c kn2 , and this bound is tight to within a
constant factor independent of the boundedness. For l-bounded problems
on reducible program graphs, the lower bound is O(n log n) , which is
tight to within a constant factor by a result of Aho and Ullman [1]. For

k- and ks-bounded problems on reducible program graphs, the lower bound is

1
c(k)n %k 3

Both the tightness of this bound and the exact value of
s (k) are unknown.
The lower bounds indicate that, at least theoretically, iterative
methods become markedly less competitive with elimination methods (which
- have an O(n a(n,n) log k) running time for k-bounded problems on
reducible program flow graphs) as K increases. For instance, for k = 2 ,

log. 3
2 > cnl'59 Of course,

the lower bound on iterative algorithms is cn
real-world problems may exhibit a different behavior, especially since
iterative algorithms are so easy to program.

A natural next step in this research would be to prove a non-trivial
(i.e., cna(n,n)) lower bound on the time required by any elimination

algorithm for solving global flow problems on reducible program flow graphs.

The lower bounds in [24,26] are probably relevant to this question.

Acknowledgments. My thanks to Prof. Jeffrey Ullman, for helpful discussions

on the ideas used in the lower bound results, and to Prof. Richard Karp, for

suggesting an improvement in the result of Lemma 3.

32

References

[1] A. V. Aho and J. D. Ullman, "Node listings for reducible flow
graphs," Proc. Seventh Annual ACM Symposium on Theory of Computing
(1975), 177-185.

(2] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and

Compiling, Vol. II: Compiling, Prentice-Hall, Englewood Cliffs, N.J.
(1972) .
[3] F. E. Allen, "Control flow analysis," SIGPLAN Notices, Vol. 5

[4] R.C. Backhouse and B. A. Carré, "Regular algebra applied to
path-finding problems," J. Inst. Maths. Applics., Vol. 15 (1975),
161-186.

[5] J. Cocke, "Global common subexpression elimination, ** SIGPLAN
 Notices, Vol. 5 (1970), 20-2k.

[6] J. Eve, "On computing the transitive closure of a relation,'*
STAN-CS-75-508, Computer Science Dept., Stanford University (1975).

[7] 2. Fong, J. Kam, and J. Ullman, "Application of lattice algebra to
loop optimization," Conf. Record of the Second ACM Symposium on
Principles of Prog. Lang. (1975), 1-p.

[8] S. Graham and M. Wegman, "A fast and usually linear algorithm for
global flow analysis," J. ACM, vol. 29 (1975), 172-202.

[9] M. 8. Hecht and J. D. Ullman, "A simple algorithm for global flow
analysis problems," SIAM J. Comp., to appear.

[10] M. S. Hecht and J. D. Ullman, "Flow graph reducibility," SIAM ;.
Comp., Vol.1l (1972), 188-202.

[11] M. S. Hecht and J. D. Ullman, "Characterizations of reducible flow
graphs," J. ACM., Vol. 21 (197k4), 367-375.

[12] J. Kam and J. D. Ullman, "Global optimization problems and
iterative algorithms," s. acm., Vol.23 (1976), 158-171.

[13] J. Kam and J. D. Ullman, "Monotone data flow analysis frameworks,"
unpublished report, Princeton University (1975).

[14] K. W. Kennedy, "Node listings applied to data flow analysis,"
Conf. Record of the Second ACM Symposium on Principles of Prog.
Lang. (1973, 10-21.

[15] 6. A. Kildall, "A unified approach to global program optimization,"
Conf. Record of the ACM Symposium on Principles of Prog. Lang.

(1973), 19k-206.

[16] S. c. Kleene, "Representation of events in nerve nets and finite
automata, " Automata Studies, Shannon and McCarthy, eds., Princeton
University Press, Princeton, n.J. (1956), 3-40.

[17] D. E. Knuth, "An empirical study of FORTRAN programs," Software
Practice and Experience (1971), 105-13k.

33

[18] P. J. Koutas and T. C. Hu, 'Shortest string containing all
permutations," Discrete Mathematics, Vol. 11 (1975), 125-132.

[19] D.1. Kwiatowski and D. J. Kleitman, "A lower bound on the length
of a sequence containing all permutations as subsequences,”
submitted to J. Comb. Theory, Series A.

[20] G. Markowsky and R. Tarjan, "Lower bounds on the lengths of node
sequences in directed graphs," Discrete Mathematics, to appear.

[21]) M. Newey, "Note on a problem involving permutations as subsequences,"
STAN-CS-73-340, Computer Science Dept., Stanford University (1973).

[22] A. Salomaa, "Two complete axiom systems for the algebra of
regular events," J. ACM., Vol. 13 (1966), 158-169.

(23] A. salomaa, Theory of Automata, Pergamon Press, Oxford, England
(1969), 120-127.

[24] R. Tarjan, "Efficiency of a good but not linear set union
algorithm," J. ACM., Vol. 22 (1975), 215-225.

[25] R. Tarjan, "Testing flow graph reducibility," J. Comp. Sys.
Sciences, Vol. 9 (1974), 355-365.

[26] R. Tarjan, "Applications of path compression on balanced trees,"
STAN-CS-75-512, Computer Science Dept., Stanford University
(1975) -

[27] R. Tarjan, "Solving path problems on directed graphs," STAN-M-75-528,
Computer Science Dept., Stanford University (1975).

[28] J. D. Ullman, "A fast algorithm for the elimination of common
subexpressions, " Acta Informatica, Vol. 2 (1973), 191-213.

[29] v. A. vVyssotsky, private communication to M. §. Hecht, 1973.

[30] B. Wegbreit, "Property extraction in well-founded property sets,"
Computer Science Division, Bolt Beranek and Newman, Inc.,
Cambridge, Mass. (1973).

34

