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1. Introduction.

A problem extensively studied 1n recent years [2,3,5,7,8,9,12,13,14,

15, 27,28,29,20] is that of globally analyzing computer programs; that is,

collecting information which is distributed throughout a computer program,

generally for the purpose of optimizing the program. Roughly speaking,

global flow analysis requires the determination, for each program block

of a property known to hold on entry to the block, independent of the path

taken to reach the block.

"A widely used approach to global flow analysis is to model the set of

possible properties by a semi-lattice (we desire the "maximum" property

for each block), to model the control structure of the program by a

directed graph with one vertex for each program block, and to specify,

| for each branch from block to block, the function by which that branch

transforms the set of properties. If the semi-lattice of properties and

| the set of transforming functions satisfy certain axioms, efficient methods

are available for producing a maximum property for each block [ 1,7,8,12,15,

27,50]. In essence, finding such properties involves solving a set of

linearequations.

The known algorithms are of two types: "iterative" algorithms, which

use only the semi-lattice meet operation and function application [9,12,

14,15], and "elimination™ algorithms, which use in addition function

composition and meet extended to functions [3,5,7,8,27,28,%0]. Most of

the elimination algorithms are refinements of the "interval analysis"

method of Cocke and Allen [ 3,5], which requires that the program flow

graph have a special property, called "reducibility". However, it is

point.
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possible to formulate a general elimination method, related to Gaussian

| elimination, which applies to all graphs and 1s particularly efficient

| on reducible or almost-reducible graphs [27]. This algorithm requires
only O(n a(n,n)) time on an n vertex reducible program flow graph

| (a(n,n) is a very slowly growing function related to a functional inverse

of Ackermann's function).

The elimination algorithms apply to very general global flow problems

and are asymptotically efficient, but they are rather complicated to

program: There are several iterative algorithms which are much simpler

but which work only on restricted kinds of global flow problems. These

include the propagation algorithm of Kildall [15], studied by Hecht and

Ullman [9] and related to early work by Vyssotsky [29], and the "node

listing" algorithm of Kennedy [14]. Kam and Ullmin [ 13] have derived a

necessary and sufficient condition for global flow problems to be efficiently

solvable by Hecht and Ullman's "depth-first" version of Kildall's algorithm.

Aho and Ullman [1], by giving an algorithm for constructing short node

listings, have shown that Kennedy's algorithm can be implemented to run

in O(n log n) time on an n vertex reducible program flow graph.

This paper extends the results of Kennedy [14] and Kam and Ullman [13].

We present a hierarchy of global flow problem classes, each solvable by

an appropriate generalization of Kennedy's algorithm. One of the classes

is the one considered by Kam and Ullman. We show that each of the

generalized algorithms is optimum, among all iterative algorithms, for

solving problems in its class. We give lower bounds on the time required

by iterative algorithms for each of the problem classes.



The paper contains five sections. Section 2 contains the necessary

graph theory, including lemmas'needed to derive the lower bounds.

Section J gives an abstract framework for global flow analysis, defines

the hierarchy of problem classes, and presents the corresponding

hierarchy of algorithms. Section 4 shows the optimality of the algorithms

and provides a lower bound on the time required for each problem class. ]

Section 5 contains further remarks.



2. Directed Graphs and Iteration Sequences.

A directed graphG = (V,E) 1s a finite set of n =|vr elements

called vertices and a finite set E of m = |E] elements called edges.

Each edge (v,w) 1s an ordered pair of distinct vertices. The edge

(v,Ww) leaves v and enters w ; we sayv 1s a predecessor of w. The

in-degree of a vertex v 1s the number of edges entering Vv ; the out-degree

of v is the number of edges leaving v . The reverse of a graph 1s

formed by reversing the direction of all its edges.

A path p of length k fromv to _w is a sequence of edges

| p= (vp)(Vr¥g)s ees (Vis Viy 1) with vy = v and vi; = w . The

| path p contains vertices Vys sees Vy, 4 and edges (vsV5)s eves (Vio Vy q)

and avoids all other vertices and edges. There is a path of no edges

from every vertex to itself. A vertex w 1s reachable from a vertex v

i1f-there 1s a path in G from v to w .

| A triple G = (V,E,r) is a flow graph if (V,E) is a directed

graph, Tr€V , and every vertex is reachable from r . G 1s a program

| flow graphif the out-degree of every vertex is at most two. Every
| program flow graph has m < 2n . A flow graph G = (V,E,r) 1s reducible

if it can be reduced to the flow graph ({r3},@,r) by applying a sequence

of transformations of the following form.

T: Let w # r be a vertex with exactly one entering edge (v,w) .

" Replace (V,E,8) by (V',E',s) , where V' = vV-{w};

E' = { (x,y) ek | w # {x,v}} U {(vy¥) | (Ww, ¥) cE and y £ {v,w}}



Cocke and Allen introduced reducible graphs [3,5]; the definition

above is Hecht and Ullman's [10,11], modified to avoid the creation of

loops (edges of the form (v,v) ). There is an O(m a(m,n)) time

algorithm to test reducibility and to construct a reducing sequence of

transformations for any reducible flow graph [24,25].

Let k >1 . A k-path in a flow graph G = (V,E,r) is a path

p = (vs v,) (Vp Vz) Co. (v)s7,,1) such that no vertex appears more

than k times among Vor eeesVyq . A ks-path 1s a k-path which begins

at .¥ and contains TY no more than k times. A k-sequence for

G = (V,E,r) 1s a sequence of edges which contains every k-path of G

as a subsequence. A ks-sequence 1s a sequence of edges which contains

every ks-path of G as a subsequence. Our lower bound proofs require

the following results concerning lengths of k-sequences and ks-sequences.

The first two lemmas are immediate corollaries of results in [20]. The

third lemma is new.

Lemma 1 [20]. For infinitely many n , there 1s a program

flow graph G = (V,E,T) with |v] =n , such that the reverse of G

1s reducible and any ks-sequence for G contains at least

*

¢, n log n edges.

Lemma 2 [20]. For infinitely many n , there is a (non-reducible)

program flow graph G = (V,E,r) with |v| = n such that any sequence

containing each Is-path ending at a predecessor of r contains at least

2

ch edges.

*

*/ Throughout this paper, JPIOVERE denote suitable positive constants.
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Corollary 1. For infinitely many n , there is a (non-reducible)

program flow graph G = (V,E,r) with |v] = n such that any ks—-sequence

for G contains at least c, kn edges.

Proof. Any ks-sequence for one of the graphs given by Lemma 2 must

contain k disjoint subsequences, each containing all Is-paths

ending at a predecessor of r .

For any k > 1 , let s(k) be the length of the shortest sequence

containing each permutation of the numbers 1,2,...,k as a subsequence.

Newey [21] gives the following values of s(k) : s(l) =1, s(2) = 3,

s(3) = 7 , s(b) =12 , s(5) =19 , s(6) = 28 , s(7) = 39 . Newey [21]

and Koutas and Hu [ 18] have shown that for all k , s(k) < k® - Ok + bi :

Kwiatowski and Kleitman [19] have shown that, for all positive ¢ ,

s(k) > k’ Ce(e)k/Me for all k .

Lemma 3. Let k >1 . For infinitely many n there is a reducible

program flow graph G = (V,E,r) with {V| =n such that any ks-sequence

log, s(k)
contains at least c(k)n edges.
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Proof. For any fixed k , we recursively construct a sequence of flow

graphs G(k,i) . Each G(k,1) will have a unique start vertex r(k,i)

and a unique finish vertex f(k, i) . Let

G(k,0) = ({r(k,0),f(k,0)} ’ {(r(k,0),f(k,0)) ’ (£(%,0),r(k,0))] , r(k,0)) .

We construct G(k,itl) from k copies of G(k,1) and three new

vertices r(k,i+l) , f(k,i+1l) , and x(k,i+l) , as follows. Let

G4 (k, i), G,, (ks i),..., Gy (K i) be kK copies of G(k,i+l) . Let

G(k,i+l) = (V(k,i+l) , E(k,i+1) , r(k,itl)) , where

k

Vi, i+1) = UV,(61) Ulr(k i+) , x(k #1) , £(ki+1)} ;
j=1

k

E(k,itl) = U (E(k, 1) U (x(k, 141), 7, (k, 1) ) , (£5 (k, i),x(k,i+1)) ,
J=1

(£,(k,1),£(k, 1+1)) })

u {(r(k,i+1),x(k, 3+1)) | (£(k,i+1),r(k,i+1))}

Figure 1 illustrates G(k,i+l) .



r(k,i+l1)

fk, i+1)

Figure 1. G(ky,i+l) for k = 4 .



If p(1),p(2), ...,p(k) are ks-paths in G(k,i) ending at f(k,1i) ,

then

(x(k, 3+1),2(k, 1+1)) (x(k, +1), 7 13 (5 1))P 93 (1) (£73 (5 1), x(k 1 1))

(x(k, 1+1),7 0) (k, 1))P42) (2) ... Po(k) (k) (fork) (k,1), f(k,i+1))

is a ks-path in G(k,i*+l) ending at f(k,i+l) , where 0 is any

ermutation on 1,2,...,k and \ (J is the path in G_,.\(k,1p [X=3) ’ Pa(3) (J) p o(5) ) )
corresponding to p(]j) .

Let S = ej5e,,-..,€, be any sequence for G(k,i+l) containing

all ks-paths ending at f(k,i+l) . Form a sequence S' = Zy3Zpy ces?

of occurrences of 0,1,2,...,k from S as follows. Suppose STE IVRRRFEN

have been defined. Let J be such that Sel 1s an edge of G, (ky i+1) .

(If there 1s no such j , let Zbl = 0 .) Let b' be the maximum

| b' < b such that z, = j . (If there is no such b', let b'=0 .)

If the sequence of edges Sre1? "2 Spe contains every ks-path of

G (k, 1) as a subsequence, let 2z,, = j . Otherwise let z,, =0 .
We claim S' , so defined, contains every permutation of 1,2,...,k

as a subsequence. For, let 0 be any permutation of 1,2,...,k . Let

2 (1) be the first occurrence of ¢(1l) in §' , and let Po(1) (1) be

a ks-path in Co(1) (k, 1) ending at £a1) (ko i) and contained in

©12 v m8 Gy (7) but not 1n 15028 (1) 1 In general, let Zo (5+1)

be the first occurrence of o(j+l) following Zh (5) in 8' , and let

Po 541) (31) be a ks-path in Go( +1) (k, i) ending at fo(3+1) (k, i)
d tained i x ] but not i i

an contalne in “b(3)+1%. « Sb (+1) in “b(j)+1’--* Cp (+1) -1"
It must be possible to define b(1),b(2),...,b(k) since otherwise there

1s a ks-path
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(501, 31), x(k, 141) (x(k, 2#1)58 13 (8 8)) Dy (1) (£51 (ky 1), x(k, $41)

(x(key 141) 58 oy (551) IP 0 (2) ++ Pore) (B) (Ege) (B51), £(k, 341) )

in G(k,i+*1l) , endingat f(k,i*+l) , which is not contained in S . Thus

oc 1s contained in S'.

Let £(k,i) be the length of the shortest sequence containing all

ks-paths of G(k,i) ending at f(k,i) . Clearly #(k,i) > 1 . The

above argument implies that £(k,i+1l) > £(k,1i)-s(k) . Thus

(1) 11) > (s(x).

Let |V(k,i)| = n(k,i) . Then n(k,0) = 2 and n(k,i+l) = kn(k,1)+3 .

Thus

1 . .

(2) n(k,i) < 3 & x <tt.
j=0

It" follows that

log, s(k)
. (3) 0(k,i)> c(k) n(k,1i) for some constant c(k) .

Each G(k,i) is reducible. (To reduce G(k,i+l), reduce each

G, (k, 1) to (ir; (k1) },0,7,(k,1)) » then delete the remaining vertices

in the order r,(ki),r (k 1), ana Ty (Ky 1), £(k, i+1) , x(k, i+1) .) Further-

more the out-degree of each vertex of G(k,i) is at most max {k, 3} .

From G(k,i) we can form a reducible program flow graph G'(k,1i) by

replacing each vertex of out-degree greater than two by a binary fan-out

tree.

G'(k,1i) contains 0(n(k,1i)) vertices. Furthermore every ks-path

of G(k,i) ending at f(k,i) is contained in a ks-path of G¢'(k,i)

ending at f(k,i1) . The lemma follows from (3). O
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A slight modification of this proof gives:

Corollary 2. Let k >1 . For infinitely many n there 1s a program

flow graph G = (V,E,r)with |V| = n such that the reverse of G is

log, s(k)
reducible and any ks-sequence for G contains at least c(k)n

edges.

Aho and Ullman's construction [1] of an O(n log n) length

l-sequence for any reducible program flow graph shows that the bound

in Lemma 1 is tight to within a constant factor. The bound in

Corollary 1 is obviously tight to within a constant factor, as 1s the

Lemma J bound for l-sequences. For k > 2 , it is an open problem

whether the Lemma 3 and Corollary 2 bounds are tight.
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3. Global Flow Problems and Iterative Algorithms.

Let L be a set with a binary meet operation Asatisfying the

following axioms.

AO: L 1s closed under a .

Al; x A(y Az) = (XAY AZ.

A2: XANYy=yYy AX.

A3: XANAX =X .

AL: There is an element OelL such that 0 A x = 0 .

A5: There is an element lel such that 1 A x = x .

As a consequence of AO -A5 we can define a partial order on L by x <y

if and only 1f x Ay = x .

Let F be a set of functions f: L =» L satisfying the following

axioms. |

Ab: F is closed under function composition and A , where £f A g is

the function h defined by h(x) = f(x) A g(x) .

A7: There is a functioneel such that e(x) = x .

A8: F(x Ay) = £x Af(y) .

B: For all feF there is a function £ cP such that fg is the

maximum solution to fhAg=h.

Such-a pair (L,F) is a global analysis framework.

Let G = (V,E,r) be a flow graph, let (I,F) be a global analysis

framework, let f: E - F , and let a: V -» L . (L,F,G,f,a) is a global

flow problem. The solution to this problem is the maximum solution to

the set of equations

we: x) = IN rw) (xv) A a(w) , WeV.
(vy,W)€eE

13



| We can extend f to paths by defining f(p) = £(Vis Vip 1) (vy 12 Vy) —€ £(vy5V,)
| 1f p= (v1s75) (vps v3) - oe . (Vis Vie 1) , and f(p) = e if p 1s a path of

| no edges.
|

Observation 1. If xw 1s a solution to Q and p 1s any path from

| a vertex v to a vertex w , then x(w) < f(p) (a(v)) .

Under the assumed axioms, © always has a unique maximum solution x
|

| such that x(w) 1s the meet of f(p) (a(v)) for all paths p from v

to’w . The existence of the closure operation ¥ guarantees that this

|
meet of a possibly infinite set of paths exists and can be computed

[4,22,23,27]. The asymptotically fastest method known for solving global
|

flow problems uses a form of Gaussian elimination and achieves a time

| bound of O(m &(myn)) on reducible flow graphs [27].

For most practical global flow problems, the closure operation can

be defined in terms of function meet and function composition.Insuch

cases, 1t 1s possible to compute solutions using only function application

and meet on IL . We shall consider a hierarchy of global flow problems

of this kind. Consider the following axioms.

| k-1 ,
Bk: (x) > a £5(x) a £52) (k > 1)

i=0

k-1

"Bks: 5x) > A £7 (x) (k >1) .
i=0

Any global flow problem whose framework satisfies Bk we call a k=hounded

| global flow problem.. Any global flow problem whose framework 'satisfies
Bks and such that a(w) = 1 1f w # r we call a ks-boun 1 1 flow

-Problem.

14



Observation 2. Bks implies Bk . Bk implies B(k+l)s .

Bk implies B .

| The k-bounded and ks-bounded global flow problems form a hierarchy

which includes some, but not all, of the global flow problems

mentioned in the literature. The transitive closure [ 6,271 and

dominators problems [p, 26,27] can be formulated as Is-bounded problems.

Problems which use bit vectors, such as available expressions [28] and

live variables [ 9,14] are l-bounded but not Is-bounded. Problems which

use "structured partition" lattices, such as common subexpression

detection, [7,13,15] are 2s-bounded but not l-bounded. Global flow

problems involving type checking [30] are not k-bounded unless some

bound 1s artificially imposed.

Kam and Ullman [13] have shown that l-boundedness is a necessary

and sufficient condition for fast convergence of Hecht and Ullman's

version of Kildall's algorithm. We shall show that there is a general

iterative algorithm, an extension of Kennedy's node listing method, for

solving any k-bounded or ks-bounded problem. The algorithm is optimal,

among all iterative algorithms, for each k . We give a lower bound on

the running time of the algorithm, a bound which shows that the algorithm

becomes markedly less efficient, and thus less competitive with the

best elimination algorithm, as k increases.

Let (L,F,G,f,a) be a global flow problem, with G = (V,E,r) .

Let S be a sequence of edges of G . Consider the following algorithm.

15



procedure ITERATE (set Vv, set E, vertex r, function f, function a,
list s, function x)

begin

for weV do x(W) := a(w);

for (v,w)eS do x(w) = x(w) A £(v,w)(x(v));
end ITERATE;

This algorithm propagates information along paths which are subsequences

of s .

Observation 3. Any function x computed by ITERATE satisfies

x(w) = A {£(p(v,w))(a(v)) | p(v,w)eP} , where P is some set of paths

leading to w .

Theorem 1. If (I,F) is ks-bounded, S is a ks-sequence for G , and

a(w) = 1 for w £ r , then the function x computed by ITERATE 1s a

- maximum solution to Q .

Proof. Let y(w) =a {f(p)(a(r)) | p a ks—-path to w} for weV .

Let z be any solution to Q . By Observations 1 and 3, 2< x . It

is easy to prove by induction on the length of p that x(w) < £(p)(a(r))

for any ks-path to w . Thus x <y . It remains to be shown that y

1s a solution to Q .

y(w) = A {£(p) (a(r)) | p a ks-path to w}

AN £(v,0) (A (£02) (a(x) | peR(v)])

where P(v) 1s a suitable subset of ks-paths to v

> N twee)
(v,w)€E
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Let (v,w)eE . Let p be a ks—-path to v . If p(v,w is a ks-path,

then f£(p(v,w))(a(r)) > y(w). Otherwise, p(v,w) = Dy Pq Ps ® pk »

where Py starts and ends at w for 1 <1 < k , and Py 1s possibly

empty. Then

k k

£(p(v,w) (a(x) > ( A 20) | f(r) (a(x)
i=1 |

k-1 k J

> A A fp) | f(py(alr)) by Bks
J=0 i=1

= A{£(p") (a(r)) | p'eP) where P is a suitable

subset of paths from r to w , each a

proper subsequence of p(v,w) .

By applying the same decomposition repeatedly, we eventually have

f{p(v,w))(a(r)) >A{£(p') (a(r))|p'eP' 3 where P' is a set of

ks—-paths from r to w

> yw) |

It follows-that y(w) < A f(v,w)(y(v)) , and yv is a solution
(v,w) ell

to Q . Thus vy =x and x is the maximum solution to Q .

Theorem 2. If (L,F) is k-bounded, and S is a k-sequence for G ,

then the function x computed by ITERATE 1s a maxim-urn solution to Q .

Proof. -Let y(w) = A {f(p(v,w)){(a(v)) |p a k-path to w} . Let z be

any solution to Q . As in the proof of Theorem 1, 2z <x <y , and we

must show that y 1s a solution to Q .

17



y(w) = A {£(p(v,w)) (a(v)) | P a k-Path to WJ

= A £(v,w)(A {£(p(u,v))(a(w)) | pep(v)}) where P(v)
(vyW) €E

1s a suitable subset of k-paths to v

> A f(v,w)y(v) .
(vyW)€E

Let (v,w)eE . Let p be a k-path to v . If p(v,w) is a k-path,

then f(v,w)(a(v)) >y(w) . Otherwise, p(v,w) = PoP;Py, - +P, where

pi starts and ends at w for 1 <i<k, and Py is non-empty.

Then

k k

£(p(v,w))(a(v)) > AN £(p.) £(p,) (a(v))
i=1 ~

k-1 k J k k

> ALA £0) | fey)a() Af A £(py) | (1)
j=0 i=1 i=1

> A {£(p'(u,w))(a(u)) | prep} , where P is a

suitable subset of paths to w , each a proper

subsequence of p(v,w) .

By repeating this decomposition, we eventually have

£(p(vs¥)) (a(v)) > A {£(p' (u,¥))(a(u)) | p'ep'} , where P' is some

set of k-paths to w .

It follows that y(w) < A f(v,w)(y(v)) , and vy is a solution
(v,W)cE

to QO . Hence y = Xx and x 1s the maximum solution to Q . .

18



ITERATE gives a uniform method for solving k- and ks-bounded global

flow problems, with the length of the necessary sequence § dependent

upon k . The ks-bounded problems require propagation only from the start

vertex; the k-bounded problems require propagation from all vertices. We

have left unresolved the problem of finding a k- or ks—-sequence to use as

input to ITERATE.

Kennedy's algorithm as originally stated is the version of ITERATE

which solves l-bounded global flow problems. Aho and Ullman [1] have

given a method for constructing, in O(n log n) time, an O(n log n)

length l-sequence for any reducible program flow graph. Thus ITERATE

can be 1mplemented to solve l-bounded problems on reducible program

flow graphs in O(n log n) time.

Hecht and Ullman's[9] depth-first ordering gives a l-sequence of

O0(dn) length for any reducible program flow graph, where d is the

largest number of"cycle" edges [13,27]on any l-path. For typical FORTRAN

programs, 4d < 2.75 [17]. Thus the depth-first ordering gives a linear

time implementation for typical programs, although the worst case

is 0(n°) :

Lemmas 1, 2, and 3 give lower bounds on the lengths of k- and

ks-sequences, and thus on the worst case running time of all implementations

of ITERATE. We shall see in the next section that these lower bounds

apply not only to ITERATE, but to any iterative algorithm for solving

k- or ks-bounded problems.

19



4, Lower Bounds on Iterative Algorithms.

| To provide lower bounds on the number of operations required to

solve k- or ks-bounded problems by iterative algorithms, we will

construct certain "worst-case" global flow frameworks. Let

(L5Fp)s. «5 (LF) be global flow frameworks. We can define a cross

| product framework (Ly xLj X coe XL, , Fi xFyXx ceo XF,) , where operations
are performed component-wise. That is,

(f,, . (Xs ee 0rx)) - (£(x1)5--05£(x,)) . It is easy to show that

(Ly xLyx . ee XL, , Fy xFyx--. xF,) is a global flow framework with ,
zero element (Oy +440) , one element (1,...,1) , and identity function

(e, ....e) _ Furthermore (X1s%55 005%) < (¥15¥0s ++ 25¥,) if and only

if x, <y; for all i . Also, (Ix . co xL, , Fix. ++ XF,) is

k-bounded (ks-bounded) 1f all the (Ls» Fy) are k-bounded (ks-bounded).
Let G = (WWE, r) be a flow graph. Let k >2 and let p be any

ks-path of G . Let L(p) be the semi-lattice defined by

L.(p) = {0,1} U {P(v) | P(v) is a non-empty set of subsequences of p,

each of which is a path from r to Vv}

(A , the empty path from r to r, is an allowable

subsequence 1f v = r)

XxXANO = OAX =0

xAN1l = LAX= X

( U FP, (w) if v=w- P,(v) A P,(w) =
0 if vEW

It is clear that L,(p) satisfies AO - AS.
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Let F.(p) be the smallest set of functions closed under meet and

composition which contains the identity function e , the function 1

such that 1(x) = 1 , and a function £,(vs¥) for each edge (v,w)
in p , defined by

£,(vsw) (0) = 0

{p, (v,w)] p1 € P(y and p, (VsW) is a subsequence of p}

£,(vsW) (P(v) ) = if this set is non-empty
1 otherwise

£,(vsw) (P(w)) = 0 if u # v .

Lemma 4. (L.(p),F (p)) is a ks-bounded global flow framework.

proof. A6 and A7 hold by definition. Consider A8. Suppose

f(xAy)=f (x) Af(y) and g(xAYy)= g(x) Ag(y). Then

fe(x Ay) = f(g(x)Ae(y)) - fa(x)Afe(y) and

(fag) (xAY) = £(X) A... Ag(x)Ag(y). (Erg) (x) A (EAE) (Y).

Thus we need verify A8 only for e , 1 and £,(vs¥) . A8 clearly

holds for e and 1 . Consider £ (vs) .

£ (vyw)(xA0) =F (v,w)(0) = 0 = ££ (v,w)(x)ATL (v,w)(0)
1Y D b D

1 (vw) (xAl) = £,(vsw) (x) = £,(V>%) (x) AL = £,(vsw) (x) A £,(vsW) (1)

£(vw) (BL (v) ABy(V)) = £,(vW) (Py(V)UBy(v))

= 2 (vy) (By (0) A 2,(v5)(By(1)

£(vw) (BL) ABy(x)) = 0 = £(vw) (Py(w) A £,(v,W) (By(x))

if ufgEv or x Evo.

In all cases A8 holds.
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To prove Bks , consider any function g eF (p) . We can write
J

g = A eg: s where each 9 1s either e or a composition of functions
i=1

£, (vs) , possibly followed by 1 .
| k=l oy

We wish to prove Bks : g" (x) >Ag (x) . We need only prove
i=1

this inequality for x = 0 , x = 1 , or x containing a single ks-path.

The result is obvious for x = 0 or x = 1 . Let x be a ks-path.

Consider any term 9i(1) 8i(2) + -- Bi(k) ( {x}) of
k, : K

g ({x}) = N “: ) ({x1) If 8; (x) (x1) does not denote a ks—-path,i=1

then either the left side of Bks 1s 1 or the right hand side of Bks

is 0, and Bks holds. If 83 (x) ( {x}) is a ks-path but gj x) ( {x})

does not end at the end of x , then 95 (x) {IED A lx] = 0 and the right
side of Bks 1s zero. Extending this argument, we can show that Bks

holds unless Ii) 8; (5) (1x1) is a ks-path which contains the last
vertex of x k+l times. But this is impossible. Thus Bks holds. O

Lemma, 5. Let p be a ks—-path in G . Consider the global flow problem

£,(vsW) if (vyw) is on p
(L.(p),F (P),G, 85a) _ where g(v,w) _

1 otherwise

a(r) = A

a(w) = 1 if wir.

The solution to this problem 1is

( {p | P' is a ks-path to w which is a subsequence of p
x(w) = if this set is non-empty}

| 1 otherwise.
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Proof. Similar to the proof of Theorem 1. [J

To deal with the case of Is-bounded problems, we shall use a special

construction. Let G = (V,E,r) be any flow graph and let p be any

ls-path of G . Let L (p) be the semi-lattice defined by

L,(p) = {0,1} U {p° | p' 1s an initial segment of p (p' = A is included)}

OAX = xAO0 =0 IAX= XA1l =X

Py A Pq — Py AD, =P if p1] is an initial segment of Py

Let F.(p) be the smallest set of functions closed under meet,

composition, and containing e , 1 , and a function £ (vow) for each
edge (v,w) on p , defined by

ff (v,w) (0) =0
b

b

pt(v,w) if this is an initial segment of p

£ (vw) (p') =
p! otherwise.

Lemma 6. (1 (p) , F.(p)) is a Is-bounded global flow framework.

Proof. AO-AT hold obviously. A8 clearly holds for e and 1 .

Consider £,(vsw) :

£_(v,w) (xA0) = £ (v,w) (0) =0 = £ (v,w) (x) ATL (v,w)(0)
D AY 1Y IY

£ (vyw) (x AL) =F (v,w) (x) =F (v,w) (x) A £_(v,w) (1)
1Y b D p
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= £,(vs%) (py) AP, = £,(vsW) (P.) AE (vs w) (v,)

| if P1 <P, and Pq ends at wv

£,(vsw) (p{ A Dy) = SNCAY (py) = Pp = £,(V>W) (p,) A £,(v>w) (p,)

if Py < P, and 1 ends other than at v .

In all cases A8 holds.

‘Note that the functions f e (e, 1, £,(vsw)} satisfy £ > e . It
follows that all functions f in F (p) satisf'y f > e . Thus

(L (2), Fy (P)) is a Is-bounded global flow framework. OJ

Lemma 7. Let p be a Is—-path in G . Consider the global flow problem

£,(vsw) if (v,w) is on p
(L,(p),F (p),Gs85a) where g(v,w) =

1 otherwise

a(r) = A

aw) =1 if w#r .

The solution to this problem 1s

oo p' if p' starts at r , ends at w , and is an

| initial segment of p

x(w) =
1 if there is no path from r to w which 1s an

initial segment of p .

-

proof. Similar to the proof of Theorem 1. {J
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Let G = (V,E,r) be a flow graph. Let k >1 and let p be any

k-path of G starting at some vertex s . Let L(p) be the semi-lattice

defined by

L(P) = {0,1} U {P(v) | F(v) 1s a non-empty set of subsequences of p,

each a path to v, such that P(v) contains A(v), the |

empty path from v to v]

xANO = OAX =O

xALl = IAx =O

P, (Vv) U P,(W) if v=w
P, (v) A Py (w) _

0 if vw .

It is clear that L(p) satisfies AO - AS. |

Let F(p) be the smallest set of functions closed under meet and

composition which contains the identity function € , the function 1

such that 1(x) = 1, and a function £,(VsW) for each edge (v,w)
on p , defined by

£f_(v,w)(0) = ©
bP

(mW)(1) = {(v,w),A(W)

£,(v,w) (P(v)) = {pq (v,w) | py eP(y and py (v;¥) is a subsequence of p]
U {A(w) 1

£,(Vs¥) (P(u)) = 0 if u gv.

Lemma, 8. (L(p) , F(p)) is a k-bounded global flow framework.
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Proof. A6 and A7 hold by definition. Consider A8. A8 clearly holds

| for e and 1 . Consider £ (Vs) .
£ (v,w)(xA0) =f (v,w)(0) = 0 = f (v,w)(x)A£ (v,w)(0)

LL Pp bY p Pp

| | £,(vsw) (P(v) AL) = £,(vsW)P(v) = £,(Vs) (P(v)) A (vow), Aw)

| _ £ (nw) (BV) A 2, (vw) (2)

£,(v,w) (Pw) A 1) = £,(v¥) (P(w) = O = £(vw) (P(w) A 2(v,w) (1)

| if ugv

£,(vsW) (By (v) AR(V)) = £,(v,w) (By (V)UP,(V))

= 2,00) (By(v)) A 2, (vw) (By())

2(vw) (By(1) ABy(X) = 0 = £(vw) (Py(w) A £(v,w)(By(x))

| if ugv or x fv.
i .
bo

In all cases A8 holds.

| To prove Bk , suppose k > 2 and consider any function g eF(p) .
: We can write g = Ag, where each 9 1s either e or a composition

i=1

| of functions £,(Vs¥) , possibly followed by 1 . We wish to prove Bk :
| . k-1 o
| g (x) > Ag (x) Ag (l) . We need only prove this inequality for

i=1

X =o, X=1, or x of the form x = {p',A(Ww)} where p' 1s a path

from v to w . The result 1s obvious for x = 0 and for x = 1 .

| Suppose x = {p',A(W)} , where p' is a path from v to w .
J k

Consider any term g g g.,.\ (x) of g(x) = Ng. (x) .
YOURE Ti) Bie).+x Pi(k) i=l +

| C/o Bk holds. If g. x) 1s not a set ofIf any 85 (3) contains 1 , 8; (x) )
k-paths, the right side of Bk is 0 and Bk holds. If 8; (x) (¥) does
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! not denote a set of k-paths ending at w , 8; (x) (x) Ax=0 and Bk
holds. Extending this argument, we can show that for all 1 < j <k,

| Cray cee E. X is a set of k-paths ending at w . The only possible855)" B(x) ®) p g yp

; kind of path occuring in 81 (1) 8i(2). *. 8; (x) ¥) which does not occur
| in a set on the right side of Bk is a path of the form

. . ees PD. ' where p.,.y 1s the sequence of edges
FLFR) TT Pie) Bo P13) ? K

corresponding to the functions composed to form 91 (3) and p' 1s
non-empty. But such a path is not a k-path and thus does not occur in

8(1)" - . 85 (14%): Hence Bk holds. A similar argument shows that
Bk holds if k = 1 . O

Lemma 9. Let p be a k-path in G starting at s . Consider the global

flow problem

£,(vsw) if (v,w) is on p
(L(p);F(p),G,g5a) , where g(v,w) =

1 otherwise

a(s) = {A(s)}

aw) = 1 forw # s .

The solution to this problem is

{p' | p' is a k-path to w which is a subsequence of p]}

. X(w) = 1f w lies on p

1 otherwise.

Proof. Similar to the proof of Theorem 2. [OO

Consider any algorithm, which, starting from the values a(v) , 0, 1,

computes a solution to the global flow problem (L,F,G,f,a) by computing
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meets of elements in L and applying functions in {f(v,w)} . We call

such an algorithm an iterative global flow algorithm. The derived sequence

of such an algorithm is the list of edges (v,w) such that f(v,w) is

applied by the algorithm, with the edges occuring in the order the

functions are applied. We provide lower bounds on the number of operations

required by iterative algorithms by showing properties of their derived

sequences.

Theorem 3. Let G = (V,E,r) be any flow graph. Consider the global

flow problem

(L,F) = X(,(») , F(P)) |p a ks-path},
Let

£,(vsw) if (v,w) lies on p
£(v,w) = (8, (vsw)) , where 8,(Vs) =

1 otherwise.

Let a(r) = (AsAy-eesl) , aw) = (L,1,...,1) for w # r . Then the

derived sequence for any iterative algorithm which solves (L,F,G,f,a)

must contain a ks-sequence.

proof. Let p=(r= V1 Vy) (vps v3) Co. (Vir Vien = w) be a ks-path.
Consider the p-component of the solution x to Q . The only way to

build up the correct value in the p component of x(w) 1s to apply

£(vysVp)s ee es FV Vie 1) in sequence. 0

Theorem 4. Let G = (V,E,r) be any flow graph. Consider the global

flow problem

(L,F) = X{(L(p) s F(P)) | » a kx-path] .
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i

Let

£(vsw) if (v,w) lies on p
f(v,w) = (8, (v>w)) , where g,(V>W) =

1 otherwise.

Let

Av) if p starts at v
a(w) = (a_(v)) , where a, (v) =

b 1 otherwise.

Then the derived sequence for any iterative algorithm which solves

(L, F,G, f,ya) must contain a k-sequence.

Proof. Similar to the proof of Theorem 3. Ul

Thus Theorems 1, 2, 3, and 4 characterize the exact number of function

applications needed to solve a k- or ks-bounded global flow problem in

the worst case. This number is equal to the length of the shortest

k—- or ks-sequence for the graph. Lemmas 1, 2, and > give lower bounds

on this length, and hence we have the following corollaries:

Theorem 5. In the worst case, the solution of a k- or ks-bounded global

flow problem on an n-vertex (non-reducible) program flow graph requires

at least c kn° function applications, 1f no function compositions or

function meets are used.

Proof. Immediate from Corollary 1 and Theorem 3. od

Theorem 6. In the worst case, the solution of a k- or ks-bounded global

flow problem on an n-vertex reducible program flow graph requires at

log, s(k)
least c(k)n function applications, 1f no function compositions

or function meets are allowed.
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proof. Immediate from Lemma, 3 and Theorem EB QO

Theorem 7. In the worst case, the solution of a l-bounded global flow

problem on an n-vertex reducible program flow graph requires cnlog n

function applications 1f function compositions and function meets are

not used.

Proof. Tmmediate from Lemma 1 and Theorem 4. O

Some global flow problems, notably the live variables problem [9,10]

require propagating information backward through the graph. By Corollary 2,

the lower bound of Theorem 6 applies to program flow graphs whose reverses

are reducible. We also have the following lower bound.

Theorem 8. In the worst case, the solution of a Is-bounded global

flow problem on an n-vertex program graph whose reverse 1s reducible

requires ¢n log n function applications if function compositions

and function meets are not used.

proof. From Lemma 1 and Theorem 4. 0

Our worst case global flow problems are somewhat contrived.

However, it 1s possible, for instance, to construct a worst-case bit-

vector type problem and use 1t in place of (LE) in the l-boundedi 4

case.

Let G = (V,E,r) be any flow graph and let p = (v15 5) (Vor vs)... (v,5v,,1)

be any-l-path of G . Let Ly be the semi-lattice defined by

L = (s]|s Cx... 10<1<<j<!, = lsc lo<i<cisel)

Sq AS, = 5, M5, .
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: Let

= = .. | 0 1 < J < .o=¢ and1 EN <i<j <i}

Clearly Ly satisfies AO= As.

Let Fj be the set of functions closed under composition and
intersection and containing the identity function € , the function

1(x) = 1, and a function £o(V32 Vip) for each edge (viv, q) ,
defined by

= s- i LL. 1 0O< J <1iy£(V4Viq) (8) S (243 1 < J < £} U (x5 | —_ J 3

The pair (LF) 1s an example of a typical global flow framework for
available expressions or any similar bit vector type problem and is

l-bounded [12].

Let (Lp Fr Gr 852) be the global framework with

£5 (Vs W) if (v,w) is on p
g(v,w) =

: 1 otherwise

a(v)) = Ixl1<icgcnulxlr<y <a]

a(w) = 1 forw £ v, .

If x 1s the solution to this problem, a computation shows that

z= 1 <1 < 93 <1 x. .l1 <i < 2}.In order to computex(v,, 1) Ep i 3 1} U{ 0; |L <j }
x(v,, 1) from 0 , 1 , or avy) , £ (Vir Vi4q) for 1 = 1,2, «..,!
must be applied 1n sequence.

Thus, by using the appropriate product framework, we can show that

Theorems 4, 5, 7hold for all iterative algorithms which solve bit-vector

type problems. We have not tried constructing "natural" worst-case

examples for other values of k .
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Remarks.

We have exhibited a hierarchy of global flow problems, an optimal

iterative algorithm for solving any problem in the hierarchy, and lower

bounds on the time necessary for solving worst-case problems 1n each level

of the hierarchy. For k- and ks-bounded problems on non-reducible program

graphs, the lower bound 1s c kn , and this bound 1s tight to within a

constant factor independent of the boundedness. For l-bounded problems

on reducible program graphs, the lower bound is O(n log n) , which is

tight to within a constant factor by a result of Aho and Ullman [1]. For

k— and ks-bounded problems on reducible program graphs, the lower bound is

log, s(k)
c(k)n . Both the tightness of this bound and the exact value of

s(k) are unknown.

The lower bounds indicate that, at least theoretically, iterative

methods become markedly less competitive with elimination methods (which

. have an O(n a{n,n) log k) running time for k-bounded problems on

reducible program flow graphs) as K increases. For instance, for k = 2 ,

toe, 3 1.59
the lower bound on iterative algorithms 1s cn > cn . Of course,

real-world problems may exhibit a different behavior, especially since

iterative algorithms are so easy to program.

A natural next step in this research would be to prove a non-trivial

(i.e., cna(n,n)) lower bound on the time required by any elimination

algorithm for solving global flow problems on reducible program flow graphs.

The lower bounds in [24,26] are probably relevant to this question.

Acknowledgments. My thanks to Prof. Jeffrey Ullman, for helpful discussions

on the ideas used in the lower bound results, and to Prof. Richard Karp, for

suggesting an improvement in the result of Lemma 3.
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