S

Stanford Artificial Intelligence Laboratory March 1976
Memo AIM-278 -

Computer Science Department
Report No. STAN-CS-76-549

Automatic Program Verification V:
VERIFICATION-ORIENTED PROOF RULES

for
ARRAYS, RECORDS AND POINTERS
by

David Luckham a n d Norihisa Suzuki

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University







W —— ———

Stanford Artificial Intelligence Laboratory March 1976
Memo AIM-278

Computer Science Department
Report No. STAN-CS-76-549

Automatic Program Verification V:

VERIFICATION-ORIENTED PROOF RULES
for
ARRAYS, RECORDS AND POINTERS

by

David Luckham and Norihisa Suzuki

ABSTRACT

A- practical net hod 1is presented for automating in a uniform way the verification of Pascal
programs that operate on t he standard Pascal data structures ARRAY, RECORD, and
POINTER. New assertion language primitives are introduced for describing computational
effects of operations on these, data structures. Axioms defining the semantics of the new
primitives are given. Proof rules for standard Pascal operations on pointer variables are then
defined in terms of the extended assertion language. Similar rules for records and arrays are
special cases. An extensible axiomatic rule for the Pascal memory allocation operation, NEW, is
also given.

These rules have. been implemented in the Stanford Pascal program verifier. Examples
illustrating t he verification of programs which operate on list structures implemented with
pointers and records are discussed. These include programs with side-effects.

T his research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract DAHC 15-73-C-0435 . The views and conclusions contained in this
document are those of the author(s) and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of Stanford University, ARPA, 07 the V. S.
Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Virginia 2 2 1 5 1






-

1. INTRODUCTION

This paper presents axiomatic proof rules for standard PASCAL operations on
the data structures ARRAY, RECORD and POINTER, Axiomatic semantics for these
data structures have been given in some form in previous publications ([Hoare &
Wirth), [Burstall], [Spitzen & Wegbreit]). However, here, our emphasis is on the
notion of a proof rule. That is, we are interested in defining proof rules for
operations on these structures that are suitable for addition to the existing set of
proof rules employed by current automatic verifiers -- this we call verification
oriented semantics. These rules not only define the semantics of operations on the
data structures axiomatically. They are also programmable reduction rules suitable
for automating a significant part of the search for proofs of programs that operate
on complex data structures.

The main problem from the point of view of extending the present verifiers, is
to be able to cope with certain forms of the assignment statement. The semantic
definition of assignment given in [Hoare 69] is entirely adequate for assignment to a
variable of any arbitrary type. In this paper we are concerned with finding
verification rules for assignment in the case when the left hand side is an expression
containing operations which select a substructure of a data structure. For example,
array assignment rules given in [King], [Igarashi, London, & Luckham] (henceforth
called [ILL]), and [Suzuki a] define the semantics of A[I}¢E. Here the index I “selects”
or picks out an element of the array data structure A, so the meaning is different
from assignment to the variable A itself-- a specified part of the value of A is
changed!

We shall give rules for standard Pascal operations such as XT.FeY where X is a

pointer to a record with field F. Rules for these kinds of operations are needed in

2 -



order, to improve, program verification methods to a point where certain classes of
complex programs such as garbage collectors and schedulers can be verified.

The idea presented here is to generalize the rule in standard use for assignment
to an array element. This leads to a single scheme which defines proof rules for
assignment to substructures of array, record and pointer structures as special cases.
In addition, the allocation operation, NEW(X), whereby new structures can be created
during a computation, needs to be given a verification oriented rule. We do this here
at the same time.

Section 2 presents an overview of both the way proof rules can be used in
automating verification, and of how considerations similar to those which led to the
array rule will lead to. our generalization of it for records and pointers. We feel that
it is reasonable to say something about the use of the proof rules since some of our
decisions are based on facilitating implementation. However we do rely on earlier
papers [ILL, Suzuki b] for full details about verification systems. Section 3 gives the
general definitions of the extended assertion language and the most general form of
the new proof rules. Section 4 is devoted to illustrating how a verifier with these
rules can be used to obtain proofs of properties of programs which operate on tree
structures built up from pointers and records. It is shown here that our extended

verification system is capable of proving such properties as " program A does not
introduce loops into list structure L" for actual programs containing about a page of
Pascal code.

In this paper we omit formal justification of our rules. Normally, this would
take the ‘form of a soundness proof. A model of PASCAL computations would be

defined and then it would be shown that the proof rules describe state

transformations of, the model. Instead we rely on the motivation in Section 2 to

-3 -



convince the reader that our formal rules do correspond to his intuitive

understanding of the PASCAL semantics.

2. MOTIVATION

The reasoning which leads us to our proof rules can be paraphrased as follows. First
we have to "know" intuitively what the PASCAL operations do; that is, what
* transformations they make to data structures. We extend the standard assertion
language (i.e.. Pascal Boolean expressions with the addition of quantifiers and defined
relations --see [ILL,” Suzuki b)) so that it contains expressions which formally
represent data structures and transformations of data structures. These new
assertion language expressions are called data structure representations. Then we can
give formal proof rules for Pascal operations in terms of such representations. The
representations  themselves have semantic definition rules which permit
simplifications to be made automatically, This enables proofs of simple programs to
be completely automated. Below we outline this’ reasoning by giving first the
“intuitive” transformation rule for an operation on a structure, then the new
expressions that we add to the assertion language to represent the transformation
and the semantics of the expressions, and then the formal proof rule for that
operation. - We deal in succession with the cases of Arrays, Records, and finally,
Pointers. This should clarify the general definitions of representations and proof
rules in Section 3. We begin here with a short discussion of verification oriented

rules in general.



2.1 Reduction Rules.
Axiomatic semantic rules within Hoare’s weak logic of programs [Hoare 69,71,

ILL] are nearly all of the form

meaning “if A and B are both true (the premisses of the rule) then C is also true
{conclusion)". Here, A, B, C, are either Boolean formulas or statements about
programs. The latter kind of statement has the form P{S}Q where P and Q are
Boolean formulas and S is a program part (i.e, a sequence of Pascal statements). P and
Q are the input and output specifications for S. In the deduction rule, C is always a

statement about a program part.

We can regard a deduction as taking place by applying a rule “downwards”. However,
such a rule is employed “upwards” as a problem reduction rule in a typical verifier
[ILL]. This means that if some problem C’ matches C in the sense that C’ = Co¢ where
o¢ is a substitution of actual parameters for formal parameters, then Ao¢ and Bo¢ will
be generated as “reduced” problems to be solved. This reduction process can be
continued until all the reduced problems are purely logical formulas and do not
contain any program statements. These formulas are called Verification Conditions
(VC’s). The reader is referred to [ILL] for examples of problem reduction and

generation of VC’s.



2.2 Forwards Rules and Backwards Rules.

The semantic meaning of the assignment statement is defined by axioms in
Hdare’s system. For example, assignment to a simple variable may be defined by (AVF

stands for Assignment to a Variable Forwards):

AVE., POX)AX=X0{X<E}P(X0)AX=E |,

where E |)>§0 denotes the substitution of X0 for X in E.

The axiom AVF is a true statement of the Logic of Programs for ail formulas
P. Intuitively, this axiom describes the way X¢E changes the state of any
* computation:

It says, suppose PAX=X0 is true of the state before X«E. Then after executing
X
X€E, two things will be true: (a) the value of X will change to E IXB and (b) true

statements about the value of X before assignment are still true of the old value X0
after.

We call this axiom a “forwards” rule because the postcondition (after
execution) shows how the precondition (before execution) is changed. Such rules are

not the easiest to implement in automatic verification systems because of the

equality terms X=E I xg in the post condition, The basic problem is the question of

when-to substitute E I §B for X in any formulas that may get generated later on in

-6 -



the process. It is easier to avoid the generation of equalities altogether. So, in

verification systems we often use “backwards” axioms like AVB (from [Hoare]).

AVB. P(E) {X«E}P(X)

where P(E) is P with E substituted for all occurrences of X. This is a “backwards”
rule: it states that if P(X) is to be true after X«E is executed then P(E) must be true
before. This is equivalent to saying that the effect of X«E will be to give X the value
E. The forwards and backwards versions of the rules are equivalent, and the
verification conditions produced by verifiers using either version are also equivalent.

A verifier, given a problem ENTRY {81;.;Sn}EXIT, and using backwards axioms
“will work backwards in the following sense. Starting with EXIT it will deduce (using
either upwards or backwards rules) what has to be true before statement Sn, and
from that it will deduce what must be true before Sn-1, and so on.

In the following we shall develop backwards rules since they are easier to

implement.

2.3 Assignment to Array Elements.

Now consider an axiomatic semantic rule for assignment to an element of an
array (Assignment to Array Backwards) given in terms of an informal assertion

language:

AAB. If I=] then P(E) else P(ALJD{AlIl«E}P(A[J]

-7 -



We might ail agree (given that we understand the meaning of “if-then-else”) that this
defines the meaning of "A[IlE". The rule states what must be true of the .
computation state of a program before performing A[l}«E if P(A[J]) is to be true
after. The semantics is defined by the change in the computation state. Rule AAB is a
scheme in that it holds for all formulas .P. However, if we add this rule to a verifier,
we have the complication that if we are trying to verify, say

ENTRY {B;A[l)<E}P(A[J)), an application AAB will leave us to verify

(1). ENTRY(B) (if I=J then P(E) else P(A[J]).

And we will not know at the time (1) is generated whether I=J or not. The
information required to determine if I=J is most likely contained in the preceding
program B.

Thus rule AAB requires the assertion language to contain array and index
variables, and conditionals. in addition, the reduction rules will have to allow for
conditional assertions.

Nested conditional assertions grow exponentially, and it is advisable for
implementation to replace them by an explicit representation in the assertion
language of the the change to A resulting from A[lIJ«E. To achieve this, we have
introduced assertion language expressions that represent the result of selector and
assignment operations on arrays. It should be emphasized that the expressions

represent structures resulting from operations.

Syntax of REWRITE and SELECTOR expressions for Arrays:

-8 -



REWRITE: <A, [1}, E>
SELECTOR: [J]
where A is an array of elements of type T, I and J are indices,

and E is an expression of type T.

Intuitively, the rewrite expression represents the array obtained from A by
assigning E to A[l} And <A|[ILE>[J}epresents the Jth element of this array. The
two kinds of expressions can be concatenated together (see example 1 below), and the
rewrites may be nested to represent the result of sequences of operations on A.

These assertion language expressions obey the following rules which define

their semantics:

SEML. <A, [I}E>[J]= E if IsJ,
<A, [1], E>[J] = ALJ] if InJ,

The verficiation-oriented rule for assignment to arrays may now be given using the

extended assertion language:

V1. P(<A[IJLE>)XA[Il-E}P(A)
_where ail occurences of A in P(A) are replaced by <A,[ILE> to form P(<A,[ILE>).

Note the special case of V1:  P(<A,IILE>[JD{A[1}«E}P(ALI]).

This is our version of AAB.

-9 -



Let us see how the rules Y1 and SEM1 work on a simple example.

EXAMPLE 1. 1. AlKl«l
2. ATAIK]]«E
EXIT P(A[Il).

We want the exit assertion to be true after the two operations. Successive
applications of (V1) state that P(<A,[A[KILE>[I]) must be true before instruction 2,
and P(<<AK]I>[<AKI>[KILESID must be true before 1. Using SEM1 this last

assertion reduces to P(E).

Essentially, the introduction of the REWRITE expressions into the assertion
language, is to represent the changes in the data stucture that occur as the result of
assignment to an array element. The semantics of programming language statements
assigning to array elements are then defined in terms of such changes by rule V1. The

- rule SEM1 enables us to simplify expressions containing rewrites and selectors when
the values of indices are determined. It is clear that both rules are easy to implement
so that both the construction of the representations and their simplification can be
automated.

The notation for REWRITE used here is due to [Hoare and Wirth]; different .
notation appears in [King]. One of the nice features of this notation is its compact

nesting property for representing successive assignments.

2.4 Assignment to Record Fields.

An assignment, RF€E where R is a record with a field F, changes a record data

- 10 -



structure in exactly the same way as assignment to an array element changes an
array. Analogous assertions and rules are used to define the semantics of assignment

to a record field. We describe them briefly here.

Syntax of REWRITE and SELECTOR expressions for Records:

REWRITE: <R, .F, E>
SELECTOR: F
where R is a record, F is an identifier of a field

of R of type T, and E is an expression of ‘type T.

The semantics of these new assertion language expressions are given by:

SEM2. <R, .F, E>G = E if F=G,
<R,.F,E>G* RG if F#G.

The verification proof rule for assignment to record fields is:

V2. P(<R, .F, E>){RF«E}P(R)

2.5 Assignment to Dereferenced Pointers.

Let us now define similar axiomatic rules for assignment to dereferenced

pointers,-i.e. assignments of the form XT«E. Intuitively, XT¢E means that the value in

- 11 =




the memory location to which X points is changed to E.
We might try to define the semantics of such statements by a backwards rule

such as
APB. if X*Y then P(E) else P(YD{XT«E}P(Y?)

The rule is an obvious backwards way saying that if X and Y point to the same
memory location (i.e. X=Y) before XT«E, then Y=E afterwards.

This rule resembles the intuitive backwards array rule, AAB, with X playing the
role of an index 1. In AAB, I picks out an element of the array A. However, in this
case we do not have a name in the assertion language for the set of values X can
point to (i.e., reference). So the first thing we shall do is to introduce names for such
sets of values called REFERENCE CLASSES (the early Pascal definition contains the
concept of a reference class [Wirth]). Of course, a reference class is unbounded, but
it can be accessed and parts of it selected in exactly the same way as an array. So the
notation we shall use for representing computations on reference classes will be very
similar (in fact the differences are merely to distinguish them from operations on
arrays). For example, if PsREF is a reference class then PsREFeX> will denote the
value that X points to (i.e. the same thing as Xt). The result of XTe¢E can be
represented by <P«REF,cX>,E>. In this notation the round brackets are analogous
to the square brackets for indexing arrays.

Thus we extend the assertion language in order to represent computations

involving assignment to dereferenced pointers as follows.

For each pointer type declaration,

- 12 =



TYPE namel = Tname2

we add Psname2 to the assertion language. This is the name of the finite reference

class of elements of’type name?2 that exist at the start of a computation.

Syntax of REWRITE and SELECTOR expressions for Reference Classes.

REWRITE: <C, €X>, E>
SELECTOR: cX>
where C is a reference class of elements of type T, X is a pointer

of type 1T, and E is an expression of type T.

These expressions satisfy semantic rules similar to previous ones:

SEM3. <G, cX>,E>cYo = E if XsY
<G, €X>,E>cYo s CcYo if XY

The verification rule for assignment to dereferenced pointers is:

v3  a. P(<Psname2, cX>, E>){ Xt<E}P(P#name2)
and

b. P(<P#name2, cX12, E>cY2){XT«E}P(Y?)
for ail occurrences in P of Y of type namel.

The reader may note that our extension of the ‘assertion language has

- 13-



introduced different notation for the same thing; YT and Psname2cY> both
represent the value Y points to. If the verifier uniformly eliminates one notation in
favour of the other, we shall need only one of the V3 rules.

Let us see how this rule will work on a typical “side-effects” example.

EXAMPLE 2. TYPE A =1B;

VAR X,Y:A;

1. Y X5

2. Xtels

30 YT"Z:

EXIT X%=2.
This example has a side effect in the sense that instruction 3 mentions only the value
-Y?T but also changes the value XT.

If the exit is true after 3, then by (V3)b.<P#B,cY>2>cX>= 2 must be true
before 3. By (V3)a, <<P#B,cX>,1>,cY>2>cX>=2 must hold before 2. But now the
simple  assignment rule for variables, P(X){ YeX]P(Y), tells us that
<<P#B,cX>,1>,cX>2>cX>=) has to hold on entry. This is easily seen to reduce to

2=2 by SEM3.

2.6 Storage Allocation.

A reference class is indefinitely extendible by the Pascal allocation operation,
NEW(X). The intuitive meaning of NEW(X) is that a memory ceil which has not
previously occurred in the computation is appended to the reference class P#name2,
and the value of X is changed so that X “points to” this new cell. The value of XT is

undefined? It is assumed that such a new ‘ceil always exists. This semantics is defined

- 14 -



by means of memory mapping functions in [Hoare & Wirth].

Our assertions must be able to represent such extensions, so we introduce the
notation Psname2U{X’} to represent the reference class of X extended by the
operation NEW(X), where X’ is a “new” identifier. More generally, DU(X’} represents
an extension of the class represented by D. We refer to "U" as the extension
operation on data structures. We now have to see if this addition to the assertion
language is sufficient to permit the definition of a proof rule for allocation.

The problem facing us here is to define a semantic proof rule which states how
an arbitrary assertion about a computation state is affected by allocation. Our rule
must express both of the effects of NEW(X), namely the extension of the reference

class and the “newness” of X. Let us discuss these two aspects seperateiy.

First, suppose a reference class has a representation of the form, <P«T,cY>,E>.
After NEW(X) its representation will be <P#T,cY>, ESU{X’} where X’ is an identifier
not occurring in any expression so far (i.e. a new identifier). But the newness of X’
clearly implies that <P#TU{X’},cY>,E> also represents the same structure. More

generally, we have:
SEM4 If <D,S,E> represents a reference class and X is a new
identifier, then <D,S,E>U{ X’} and <DU{X'},S,E> represent the

same reference class.

So a first approximation, to a backwards rule for allocation, expressing only the

extension of a reference class (analogous to the backwards rule for assignment) is:

- 15 -



Q(P+TU{ X’){NEW(X)}Q(P+T)
where X’ is a new identifier, and P#T is the name of the reference

class of elements of type-of Xt, and X does not occur in Q.

Secondly, how does an allocation NEW(X) affect an assertion about X, say
. Q(X)? Theini endedsemantics is that X is given a “new” value X’ which is distinct
from any previous pointer, and nothing else in the state is changed. Any arbitrary
new value X’ may be allocated to X. Ignoring the extension of P«T, these properties

are expressed by the following backwards rule:

A(Yi¢SET_OF P«T)(X#Yi)2Q(X){NEW(X)}Q(X)
where X’ is a new identifier, and SET-OF PsT is the set of

ail pointer expressions of type-of X that do not contain X’.

This rule states that if Q(X) is to be true after NEW(X), then Q(X’) must be
true of any “new” X’ before.

We may combine the two rules above as follows.

X
NE W B. A(Yi€SET_OF P«T)(X’#Yi)=>Q | gﬂu 1 I x (INEW(X)}Q

where P#T is the name of the reference class of elements of
type-of XT, X’ is a new identifier, and SET-OF PsT is the set of

ail pointer expressions of type-of X that do not contain X’.

This rule assumes the axioms SEM4. In addition we have further

axiomatic properties of the extension operation:

- 16 -~



SEMS. DU(Y)e® =DcX> if X#Y, and is undefined if X=Y,

where D is a representation of a reference class.

We cannot implement NEWB as it stands because SET-OF PsT is too large.
The verification rule for NEW in Section 3 is weaker but can be strengthened by

additional axioms from the user.

2.7, Sequences of selectors.

So ‘far Wé have dealt with assignments in which the left side contains only one
selector operation. Pascal allows sequences of selector operations. We have to extend
the assertion language still further by introducing sequences of selectors in order to
represent the data structure changes made by such assignments.

For example, consider XT.FT.G. This is a selector sequence that would be
applicable to a list of records where the ‘F field of each record was a pointer to the
next record in the list. We can compute the representation as follows. P#NeX>
represents X T ; PeNeXo.F represents XT.F which is another pointer; so
PsNcPsNcX>.F> represents XT.FT and the representaton of the entire sequence
above is P#NcPsNcX>o.Fo.C. This is a sequence of the form P#NeZ>3.G where Z is
not a simple pointer variable, but is a representation of a data structure of type
pointer. So our selectors will not be as simple as before.

Simultaneously, the set of rewrite expressions that will now be used to

represent data structures within the assertion language must also be extended. Thus,

- 17 -



the change to the reference class P#N that occurs when XT.FT.G€E is executed can be
represented by the rewrite, <P#N,cPsNcX2F2.G,E>, As we see from this example,
the syntax of rewrites must be extended to permit representations of the form

<X,S,E> where S is a selector sequence.

It should be noted that the rule for assignment with a single selector on the
left is not sufficient to express the general assignment even if we introduce dummy
program variables, For example, we could try to rewrite XT.F1.G ¢E as
YeX1.FT;Y.G<E. However,. in the second case, E is placed in the G field of a new copy

of XT.F1, whereas in the first case E is placed directly into the original record.

- 18 -



3. PROOF RULES FOR OPERATIONS ON DATA STRUCTURES.

In this section we define proof rules for assignment statements with
expressions involving data structure selectors in the most general case. The rule for
assignment presented here can be regarded as defining the semantics of assignment. In
the case of dereferenced pointers it fills in a gap in the axiomatic semantics of Pascal
assignment in [Hoare & Wirth]. We shall also present a rule for storage allocation
which is not complete in any reasonable sense, but which represents a compromise
between a logically complete rule and what is computationally feasible for automating
proofs. It can be extended by the user to handle any particular problem.

First, we must define the extensions of the standard assertion language
(e.f.IILL] section 2) that have been introduced expressly for the purpose of making
statements about complex data structures (i.e. structures containing identifiable

substructures).

3.1 New Assertion Language Primitives

Notation: We will use ® to denote concatenation.

¢ denotes the empty sequence.

Complex data structures are represented by Assertion Language expressions of
the form <A,LE> and A®J where A and E. are themselves data structure
representations, and I and J are sequences of applicable selectors. Intuitively, <A,l,E>

represents “the structure obtained from A by replacing the substructure of A’

- 19 -



selected by I, with E". A®] represents “the substructure of A selected by J". This
notation generalizes the notation. for arrays used by earlier writers ([McCarthy],

[King], [Hoare & Wirth]). We will first define the syntax of the representations.

Terminology: A TYPE-NAME is any identifier introduced as the name of a

type by a Pascal type declaration.

DEFINITION (reference class identifier)
For each pointer type declaration, TYPE T=1T@; where TO is a
type ‘identifier, we introduce a reference class identifier

PsT@ for the reference class of TO.

Intuitively, P#T@ represents an unbounded set of data structures of type TO that
pointer variables of type T may refer to, These sets are called reference classes.
They are not types. in Pascal (although the syntax for reference class appears in the
early version of the Pascal specification [Wirth ]l They are assertion language
primitives and behave very much like unbounded arrays; their semantics are defined

by axioms in Section 3.2.

DEFINITION (types)
i) INTEGER, REAL, and BOOLEAN are types.
ii) If T, TO, ... ,Tn are types and FO, . . . ,Fn are identifiers
(field identifiers) then
ARRAY[K.L]OF T,
RECORD F0:T0; F1:T1; .. ; Fn:Tn END,

- 20 -



1T, and
PsT
are types.

iii)They are the only types.

In the definitions below. we use the following notation:
D,D’-- data structure representations,
C -- a reference class representation,

E  -- aPascal expression ,
[ -- aninteger type data structure representation,
N-- a .type name,
Y -- a pointer type variable,
X--a pointer type data structure representation,
F--a field identifier,

S-- a selector sequence,

DEFINITION (selector sequences)

S u= ¢ |[I]eS | €XoeS | FeS

" DEFINITION (S is applicable to D)

S is empty,

- 2] =



D is of type ARRAY[K..L] and S=[1]eS’ and K<I<L and S’ is applicable to D[1],
D is of type RECORD and S=.F@$’ and F is a field of D and S’ is applicable to D.F,
D is of type REFERENCE CLASS of N, and S=cX>8¥’

and X is of type TN and S’ is applicable to DeX>.

DEFINITION

(a) (reference class data structure representations)

C ==PsN| CU(Y} |<CS,D>

(b) (data structure representations)
D :=E | C |<DS,D’>|DeS
subject to the restrictions:

(i) S is applicable to C and D.

(ii) In <C,S,D> and <D,S,D’>,
type_of (C®S)=type_of(D) and type_of(D&S)=type_of(D’).

" This completes the definition of the syntax of data structure representations.

-2 -



3.2 Axioms for data structure representations.

Ax 1. Dedp = D
Ax 2. <D, ¢, E>=E

Ax 3. <D, [Ilel E>[J]eK =

if i =J then <DII] , L, E>eK else DelJdleK.
AX 40 <D ’ OFQL ’ E>O.G®K =

if F =G0 then <0e.F , L, E>ek else De.GeK.
A 5. <D, cXosl , E>ecYoeK =

if X« Ythen <DecXo , L , E>eK else DecYoeK.

Ax 6. <D, L, DeL> =0D.

AT <<D , [IleL , V>, [JleK , W> =
if I =J then <D, (1), <<Delll , L V> K 6 HW>>
else <<D, [JleK , W> , [lleL , V>,
Ax 8. <<D, FeL , V> 6 .GeK , UW> =
if F=0then <D, .F, <BDe.F, L, Vo, K, W>>
A else <<0 , .GeK , W> , .FeL , V>,
Ax S. <D, cXoel , V>, cYoeK , W> =
if X« Ythen <D, cXo, <<DecXo , L, V>, K, W>>
else <<D , cYoeK , UW> , cXosl , V>,

Ax 10. Du{X}ecYoeK =
if X= Y then Undefined else DecYoeK.

Ax 11. if X » Y then
<D, cXoeL , E>UIlY) = <DUiY} , cXoel , E>

Examples

We illustrate how properties of data structure representations can be proved

using these axioms.

1) I#J o <<A[111>,[1125[1] = |

This statement says that after assigning 1 to the I-th element and 2 to the

J-th element , the value of the I-th element is 1 if I#],
. Using Ax 3, the statement is reduced to

I#) o <A[I],1>[1]=1.
Then using Ax 3 again, it becomes

I#] o 1=1.

- 23 -



2) <<A,[1]0J3,2>,[K],B>[I][L]
-= if K= then
(if L=J then 2 else A[INL)) else BII)[L]
Applying Ax 3 to the left-hand side of the equation reduces it to
if K=l then
<<A,[1]0112>[13,6,B>[L] else <A,l1]0I1,2>(1](L]
Applying Ax 2 to the then-part and Ax 3 to the else-part, we get
if K=l then B[L] else <A[1],[J]2>[L].
This finally reduces by Ax 3 to
if K=I then B[L]else if JsL then 2 else A[I][L].

- 24 -




3.3 Axioms for assignment and storage allocation.

Rule I(Introduction of Reference Class Identifiers)
In all Boolean formulas, all dereferenced pointers, XT , are replaced by

P#TcX> where type_of(X)=1T.

Examples:

Xt o PHTcX>  assuming type-of (X)aT,
XTOF - P#TCXD.F .
A IX*.Fl+ A [P#TcX>. Fl
X*.F*.G » PHScPHTCcX>.F>.G  assuming type-of (X*F)=S.
Note that the introduction
nust take place from inside out.

The reference class introduction rule can be formally defined by the following

function ar. ( ar stands for actual representation. )

-ar(V) = V ; if Vis a simple variable
ar(A[1D= ar(A)ar(D)] ;
ar(R.F) = ar(R).F " ;
ar(Z1) = PaTcar(Z)>; where type_of(Z1)sT.

Rule 2(General rule for assignment).

arn (V) .
Plearn ), are v, 6> ( VEE} P

where arn(V) is the name part of the actual representation of V and ars(V) is the

selector sequence part of V. Thus, ar(V)=arn(V)®ars(V).

- 25 -



We can define arn(V) and ars(V) formally as follows.

arn(V) = V ;if V is a simple variable
arn(A[l))= arn(A) ;

arn(R.F) = arn(R) ;

arn(Z1) = P«T ; where type_of(Z1)sT.

ars(V) = ¢ ;

ars(A[I])= ars(A)e[ar(D] ;
ars(R.F) = ars(R)e.F ;
ars(Z1) = car(Z)> .

Rule 2 reduces in simple cases to rules in [Hoare & Wirth]:
1) Simple variable V.
In this case arn(V)® V and ars(V)=¢

So the rule becomes
v
Plev.ggs (VEE} P
However, from Ax 2, <V,¢,E>= E. Thus, we obtain the original rule.
2) Simple ‘array V=A[l]
arn(V)=A and ars(V)=[I}. So the simple array assignment rule is obtained
from the general rule.
A
Plea, t11,e- (Al E)P.

3) Simple record V=R.F'

- 26 -



Then arn(V)=R and ars(V)s.F. So the simple record assignment rule is

obtained from the general rule.

R
Pl .res (RF€E} P

Rule 3(Storage allocation)

PH#T X

VeF
whdre type_of(X)*1T. X’ is a newly created variable which does not appear anywhere,

and F is the set of variables of Q whose types are TT.

The allocation rule NEWB (Section 2.6) cannot be derived from Rule 3. NEWB is not
suitable for implementation because of the potentially large number of terms in the
SET-OF P#T each of which contributes an inequality in the premiss. This leads to
very large Verification Conditions with large numbers of irreievent inequalities. The
set F in Rule 3 is a “first approximation” to SET-OF P«T. The union notation for
the extension of the reference class P#T permits the user to add documentation

statements which have the effect of adding extra assumptions to the premiss.
For example, suppose we introduce a predicate NOTEQUAL(G,D,D’) satisfying:
i. NOTEQUAL(C,E,F)»EFF for ail reference classes C and terms E and F,

ii. NOTEQUAL(P«TU{X"},Y1.5,X’) for ail variables Y and selector sequences S,

"~ X’ being the newly created variable,’

- 27 -



iii. NOTEQUAL(P«TU{ X’},Y,X’) for ail variables Y different from X’.

Then we will be able to prove TRUE {NEW(Z)] Z#X1.CDR , This is not

provable using Rule 3 alone although it is a consequence of NEWB.

- 28 -



4. EXAMPLES.

The extensions to the assertion language and proof rules defined in Section 3
have been implemented in the Stanford Pascal verifier. The verifier also uses axioms
Ax1-Ax6 (Section 3.2) to simplify VC’s.

Some example verifications of programs with pointer type parameters are given
below. Details of the verifier and studies of other applications can be found in
[Suzuki a,b], [v.Henke & Luckham], and [Luckham & Suzuki]. In particular a
methodology for verifying programs with this sort of verifier is outlined in [v.Henke

& Luckham].
4.1 Side effects in pointer data structures.

Example 1. .

TYPE LINEAR- RECORD VAL:INTEGER; NEXT:tLINEAR END:
VAR W, X,Y,Z: *LINEAR;

BEGIN _
NEW (W) s NEW(X) s NEW (Y) ;NEW(Z) ;
Wr.VAL = 13
WA NEXT := X;
XM VAL = 2;
X*.NEXT := Y;
Yt VAL := 3;
Y*.NEXT := Z;
2 VAL = 4;
{At this point there is a four cell linear list. Fig. 1}
Xt .NEXT 1= Z;
{Now, Y* has been cut out of the linear list. Fig. 2l
éSMSJERT Wt NEXT?, NEXT?. VAL-4

- 29 -



® c——

looks like this:

Fig.2

- 30 -

Fig. 2 shows the final state of the reference class PsLINEAR. The only operation
involving WTNEXTTNEXT®.VAL assigns 3 to the cell. That cell is then “short

circuited” out of the list by an operation that does not explicitly mention it.

The result of giving example 1 to the verifier is a single VC; before simplification it




FOR THE MAIN PROGRAM
THERE ARE 1 VERIFICATION CONDI TI ONS

#1 .

(~Y00=200 & .

-X09%=2088 &

-WBB=788 &

-WBB=Y00 &

-X00=Y08 &

~hBB=X08 §

TRUE
-

<<<<<<<<PHLINEARU {88} U {XBB} U {YBB} U {208} ,clB@B>. VAL, 1>, clBB>.NEXT, X88>,
<X80>, VAL, 2>, cX88>,NEXT, Y085, cYBdo, VAL, 3>, cYB88>. NEXT, 208>, <2885, VAL , 4>,
cX88>.NEXT, Z88>c<<<<<<<<PHLINEARU {00} U {XBB} U {YBB} U {288} , clBB>. VAL, 1>,
- clBB>.NEXT, X88>, cX88>. VAL, 2>, cXB88>.NEXT, Y885, cY885. VAL, 3>, cYBBs. NEXT, 284> .
<Z0B>. VAL, 4>, cXB8>.NEXT, Z88>c<<<<<<<<P#LINEARU {W88} U {X88} U {YBB} U {ZBG} ,
ch88>. VAL, 1>, clBB>.NEXT, X88>, cX88>. VAL, 2>, cX88>.NEXT, YB88>, cY88>. VAL , 3>,
CYOBD.NEXT.ZBB>,cZBGD.VALt4>,cXBBD.NEXT.ZBU>CN08:.NEXT3.NEXT:.VAL=4)

AFTER SORE SIMPLIFICATION, YOU CAN GET

#1
TRUE

TIME: 21 CPU SECS, 54 REAL SECS
AOKKKK

The unsimplified VC has the form Q=(D®S=4) where D represents all the changes
made to P#LINEAR (in order), and S selects WI.NEXTT.NEXTT.VAL. (Clearly it wouid
be _nice to have a picture of D such as Fig. 2!) Variables X00, YOO, etc. and the

inequalities between them result from the allocation rule.

In this example the simplification axioms (Section 3.2) reduce the VC compieteiy ta

TRUE and no additional information is required of the user.

- 31 =




4.2 Verification Bases.

Verifications normally depend on user-supplied lemmas. The verifier uses these
lemmas to simplify and prove VC's. If all VC’s are reduced to TRUE this means that
there is a-proof that the program satisfies its ENTRY/EXIT specifications assuming
the lemmas. The set of lemmas is called a BASIS of the verification. A basis is not
necessarily a complete axiomatization of given programming concepts but need be
only a set of lemmas provable from such an axiomatization. Indeed, the verifier can
be viewed as an instrument for searching for reasonable sets of assumptions that
imply the consistency of a program with its specifications. Methods for constructing
and analysing bases are described in [v.Henke & Luckham].

Lemmas are stated in simple logical forms called AXIOMS and GOALS. They
contain information about how they are to be used in proof searches; this need not
concern us here. To read the lemmas as logical statements, simply ignore all "@" signs
. in the examples. Then a lemma of the form AXIOM A®B is the logical equivalence
AeB, and COAL A SUB B is the implication B2A.

The following examples deal with verifying that programs maintain the
loopfreeness of the list structures they operate on. The examples also show (a) the
use of the extended assertion language to express concepts such as loopfreeness of

lists, and (b) the characterization of concepts by lemmas in the basis.

4.3 ‘Reachability in Linear Lists.

We -wish to verify the* loopfreeness of linear lists, in which each cell has one

- 32 -



pointer field, the NEXT field, which points to the next cell in the list. One way to
approach this ‘problem is to introduce a predicate Reach(D,X,Y), where D is a
reference class representation of type reference class of T, and X,Y are both pointer
variables of type 1T.REACH(D,X,Y) means that the sequence X, XT.NEXT,
XT.NEXTT.NEXT,.. in the reference class D contains (or reaches) Y. This implies that
the list structure between X and Y in D is loopfree under the NEXT operation,
Notice that NEXT ought to be an explicit parameter of REACH, but since we are
assuming that our list structures have only one NEXT field, we have omitted it.
Example 2 is the insertion of an element into the middle of a linear list. We
verify that Reach(D,ROOT,SENTINEL) is still preserved after the insertion, ROOT
and SENTINEL being pointers to the beginning and end of the list.
SENTINELT.NEXT=NILL means that SENTINEL points to the last element of the list.

Example 2.

ENTRY REACH (P#WORD,ROOT,SENTINEL) A (Y=SENTINEL) A(SENTINEL®.NEXT=NILL) A
REACH (PHWORD, ROOT, Y ) AREACH (P#WORD, Y, SENT I NEL )3

EXI'T REACH (P#WORD,ROOT,SENTINEL);

TYPE REF =%WORD;.
TYPE WORD = RECORO COUNT: INTEGER; NEXT: REF END,

VAR Y,Z,R0O0T, SENTINEL : REF;

BEGIN .
NEW(Z)
22 NEXTeYP NEXT:
YP. NEXTeZ;

END .

- 33 -



The set of lemmas in the goalfile below’ is a Basis for verifying example 2. We
do not claim that it is a complete characterization of REACH(D,X,Y), but merely
that each of the lemmas is an obvious property of REACH that would be provable
given a complete set of axioms,

Thus Goal 1 states that for W to be reachable from X in a reference class
resulting from class D by performing YT.NEXTeZ, it is sufficient that REACH(D,X,Y)
and REACH(D,Z,W) and also ~REACH(D,Z,Y) to ensure that no loop is introduced by
the operation. Clearly the truth of this lemma depends on more atomic properties e.g.
REACH(D,Y,YT.NEXT), transitivity (Coal 4), and REACH(D,Y,Y) (from which
-REACH(D,Z,Y) implies Z*Y ).

Goal 2 is a statement about a “short circuit” operation; <D,cZ>.NEXT,
DcYoNEXT> represents the reference class that results from D by
ZTNEXTeYT.NEXT. This excludes Y from the sequence Z, ZL.NEXT, . . . provided Y#Z
and Y cannot be reached from YTL.NEXT. A loop might however, be introduced into
the new structure unless ~-REACH(D,Y,Z).

Coal 3 states sufficient conditions for Y not to be reachable from YT.NEXT.

Coal 5 is a typical frame axiom for storage allocation. It means that
reachability is not affected by the allocation of a new cell; Goals 6 and 7 are similar.

Coals 8 and 9 state conditions for Reachability when operations are performed
on a new cell.

It turns out that only goals 1,2,3,6,89 are used in proving the verification

condition below.

- 34 -



GOALFILE

Gl: GOAL REACH(<eD,ceY>.NEXT,eZ>,eX,el}
SUB REACH(D, X, Y)A-REACH(D,Z, Y)AREACH (D, Z,W) ;

G2: GOAL -REACH(<eD, ceZ>.NEXT,ebDceY>.NEXT>, @Z, @Y)
SUB (Z=Y)A -REACH(D,DcY>.NEXT,Y);

G3: GOAL -REACH (@D, @DceY>.NEXT, aY)
SUB (NILL=DceSo>.NEXT)A REACH(D,Y,aeS);

(4: GOAL REACH(eD,eX,aY)
SUB REACH(D,X,@Z) AREACH(D,eZ,Y);

G5: GOAL REACH (eDU {@Z}, eX,aY)
SUB REACH(D,X,Y)A(ZuX)A(ZuY);

G6: GOAL -REACH (eDu {eZ}, eDu {eZ} ceXo.NEXT,eY)
SUB -REACH(D,DBcX>.NEXT,Y);

G7: GOAL (a0U {@Z} caSo=NILL)
SUB (DcSo=NILL);

G8: GOAL REACH(<eDU {@Z},ceZ>.NEXT, el>,aX,aY)
SUB REACH (D, X, Y)A{ZeX)A(ZxY)

G9: GOAL REACH (<eDU {@Z}, ceZ>.NEXT, @DU {@Z} ceY>.NEXT>, @Z, el)
SUB REACH(D,Y,W)A(ZeY); -

The result of giving the verifier the goalfile and example 2 is the following:

AORAAK

FOR THE MAIN PROGRAM
THERE ARE 1 VERIFICATION CONDI TI ONS

#1
(-SENTINEL =228 &
-~RO0T=2908 &
-Y=7008 & ,
REACH (P#ORD, ROOT, SENTINEL) &
- Y- SENTI NEL &
PHWORDCSENTINEL>. NEXT=NILL &
REACH (P#WORD, ROOT, Y) 6
REACH (P#WORD, Y, SENTINEL)

REACH (<<PH#WORDY {2881 , cZ80>.NEXT, PAWORDU {Z88} cY>.NEXT>, cY>.NEXT, Z88>, ROOT,

SENTINEL))

- 35 -



AFTER SORE SIMPLIFICATION, YOU CAN GET

# 1 TRUE

AHkdokk

Notice that the reference class expression in the unsimplified VC conclusion
represents the result of executing example 2. So this VC might itself be accepted as a

lemma about insertion operations in the verification of more complex programs.

- 36 -



Example 3 illustrates what happens when we reverse the order of instructions
in the example 2. The program is no longer correct in that it does introduce a loop
into a loopfree structure. The program was run through the verifier with the same

GOALFILE that was used previously.

Example 3.

ENTRY REACH (P#WORD,ROOT,SENTINEL)A (Y#SENTINEL)A(SENTINEL®.NEXT=NILL)A
REACH (P#WORD, ROOT, Y) AREACH (P#WORD, Y, SENTINEL) ;

EXIT REACH(P#WORD,ROOT,SENTINEL);

TYPE REF =tORD;
TYPE WORO = RECORO COUNT:INTEGER; NEXT: REF END:

VAR Y,Z,R0O0T,SENTINEL:REF;

BEGIN

NEW(Z) ;

Y2 . NEXTeZ;

21 . NEXTeY4.NEXT;
END .;

- 37 -



HAAKK

FOR THE MAIN. PROGRAM
THERE ARE 1 VERIFICATION CONDITIONS

H1

(~SENTINEL=208 &

-ROOT-200 &

~Y=Z08 & _

REACH (PA#WORD,ROOT, SENTINEL) &
-Y=SENTINEL 8

PHWORDCSENT I NEL>, NEXT=NI LL & -
REACH (P#WORD,R00T, Y ) &

REACH (P#WORD, Y, SENTINEL)

-

REACH (<<P#WORDU {208}, cY>. NEXT, 200>, cZ88>. NEXT, <P#WORDU {288} , cY>. NEXT, 28~
B>cY> . NEXT>,RO0T,SENTINEL) )
AFTER SOME SIMPLIFICATION, YOU CAN GET
#1
(~Z288=Y &
REACH (P#WORD,ROOT,SENTINEL) &
-Y=SENTINEL &
PHUORDCSENTINELS, NEXT=NI LL &
REACH (P#WORD,ROOT, Y) &
REACH (P#WORD, Y, SENTINEL) &
. =~Z00=SENTINEL &
-Z08=R0O0T
-
REACH (<<P#WORDU {208} ,cY>.NEXT,Z280>,cZ88>.NEXT,Z08>,R00T, SENTINEL) )

ANk K

The loop construction can be seen by analysis of the reference class expression
in the conclusion of the simplified VC. The simplification results from Axioms 3.2. It
is now easy to see that the final operation represented is ZENEXTeZ which clearly

introduces a loop.

- 38 -



4.4 Root and Sentinel Problem

This program was suggested by N. Wirth. It operates on a linear list. Each cell
of the list has three fields: KEY, COUNT, and NEXT. KEY field contains the
identification name for the cell, COUNT field contains the number of times SEARCH
is called with the corresponding KEY, and NEXT field contains the pointer to the
next cell in the list. ROOT points to the first cell and SENTINEL points to the next

to the last cell. The last cell a dummy cell.

TYPE REF="WCRD;

TYPE WORD=RECORD KEY: INTEGER;COUNT: INTEGER;NEXT:REF END;
VAR K:INTEGER;

ROOT, SENII NEL: REF;

PROCEDURE SEARCH (X: INTEGER; SENTINEL : REF ; VAR ROOT: REF)

VAR W1,W2:REF;

BEGIN  W1<ROOT; .
SENTINEL?.KEYeXs
[F W-SENTINEL THEN

BEGI N
NEW (ROOT)
ROOTA.KEYeX; ROOT#.COUNTe«1; ROOT#,NEXT«SENTINEL ;
END ELSE .
%IZEGIIIfIIT.KEY =X THEN W14.COUNT«W14.COUNT+1ELSE
REPEAT W2¢W1; WleW2t,NEXT
UNTI L W1%.KEY=X;
IF WI-SENTINEL THEN
BEGIN
W2+ROOT; NEW (ROOT) ;
ROOT?.KEY«+X; ROOT?.COUNT«1l; ROOT?.NEXTeW2
END ELSE
BEGI N
W1t,COUNTeW11, COUNT+1;
W21 NEXTeW11.NEXT;
W11.NEXT<ROOT; ROOTeW1
END
END

END”

- 33 -



In order ‘to verify this program we have to show that several properties hold.
Here are some of them. (1) The list structure is always loopfree and SENTINEL is
reachable from ROQT. (2) If a cell with the given KEY exists in the list, no new cell
is added; otherwise, one cell is added. (3) No two KEY’s of cells in the list are the
same. (4) After execution the list is reordered so that the first cell has the same KEY
as the given KEY argument of SEARCH, and the order of the other cells is
unchanged. (5) Only the COUNT field of the cell with the given KEY is incremented
by 1, and the rest are unchanged. And finally the program terminates, Here we are
going to show a verification that the first two properties -- reachability and non

deletion -- hold.

Example 4 is the program with assertions about reachability. The ENTRY and EXIT
assertions state that loopfreeness is maintained. The only additional documentation is

an invariant describing obvious properties of the variables in the REPEAT loop.

- 49 -



Example 4.

PASCAL

TYPE REF=tlORD;

TYPE WORD=RECORD KEY: INTEGER;COUNT: INTEGER; NEXT:REF END:
VAR K: INTEGER;

ROOT, SENTINEL:REF:

PROCEDURE SEARCH(X: I NTEGER;SENTINEL:REF;VAR ROOT:REF);
ENTRY REACH (P#WORD,ROOT, SENTINEL) A (SENTINEL®. NEXT=NILL)
EXIT REACH (PA#WORD,ROOT, SENTINEL)

VAR W1,UW2:REF;
BEGIN  W1<R0OOT;

SENTINELT.KEYeX;
IF W1=SENTINEL THEN
BEG N
NEW (ROOT) ;
ROOT4.KEY«X; ROOT®.COUNT«1; ROOT4.NEXTSENTINEL;
END ELSE
IF W1t.KEY =X THEN W1%.COUNTeW1%.COUNT+l ELSE
BEGIN
REPEAT W2W1; W1eW2t NEXT
I NVART ANT
REACH (P#WORD, ROOT, W2) A (W1 =21 . NEXT) A (W2uSENTINEL) A
REACH (P#WORD, W1, SENTINEL) A (SENTINEL®.KEY=X) A
(SENTINEL®.NEXT=NILL)
UNTIL W11.KEY=X;
IF W-SENTINEL THEN
BEGIN
W2<ROOT; NEW(ROOT); ,
ROOT®.KEY«X; ROOT#.COUNTel; ROOT#.NEXTeW2
END ELSE
BEGIN
W11.COUNT«W11.COUNT+1;
W2+ NEXTeW14, NEXT;
W11.NEXT<ROOT; ROOT«W1
END
END

END: . :

- 41 -



Below is a GOALFILE containing a basis that is sufficient to verify Example 4 (i.e.
that the program satisfies its documentation). Comments explaining some of the goals

appear between % signs. It turned out that goals 9,12, were not used in this

verification.

GOALFILE
Gl:  AXI OM REACH(eD,eX,eX) « TRUE;

G2:  GOAL REACH (aD,aX,aY)
. SUB REACH(D,X,®Z)AREACH (D,eZ,Y);

G3: GOAL REACH (@D, @R, @DceX>.NEXT) SUB REACH(D,R,X);

GOAL 'REACH (@D, @DceX>.NEXT,@Y) SUB =-(X=Y)AREACH(D,X,Y);
%X? NEXT is between X and Y%

GS:¢ GOAL -(eX=eY) SUB -{(eDcX>.KEY = @DcY>.KEY);
XKEY fields of distinct cells are distinct%

G6: GOAL -{eW=eDceY>.NEXT) SUB

-REACH (D, DcY>.NEXT, W) 3
_%This is a special case of: if Wis not reachable from
X then X=W.% .

Gr: AXI OM REACH (<D, ceX>.KEY,eE>,@Y,@Z) » REACH(D,Y,2);
G8: AXI OM REACH (<@D, ceX>.COUNT, @E>, @Y, ®Z) » REACH(D,Y,2);

%AXIOMS 7and 8 state that operations on the KEY and COUNT fields
do not alter loopfreeness%

G9:  GOAL -REACH(eDu {eX},@X,@Z) SUB =~(X=Z);
G18: GOAL -REACH(eDu{eX},e@Z,eX) SUB -(X=Z);

Gll: GOAL REACH(sDu {eZ},eX,aY)
SUB -(Z=X)A -(Z=Y)AREACH(D,X,Y);
X3-11 define the Reachability relation on newly allocated cells%

Gl12: GOAL REACH(<aDu {@Z},caZ>.NEXT, @DU {@Z} caY>.NEXT>, @Z, al)
SUB -(Z=Y)AREACH (D, Y,W);

G13: - GOAL REACH(<eD,ceY>.NEXT,eZ>,eX,eW)
SUB REACH(D, X, Y) A-REACH(D, Z, Y) AREACH (D, Z,W) ;
%12,13 describe sufficient conditions for preservation of
Reachability when Z is inserted by operations simlar

- 42 -



to exanple 2%

Gl4: GOAL REACH(<eD,ceY>.NEXT,eZ>,eX,al)
SUB REACH(D, X, Y) AREACH D,Y, Z)AREACH(D Z,Wyn~(Y=Z};
%14 gives sufficient conditions for preservation of Reachability
when cells between Y and Z are cut out of the list%

G15: GOAL -REACH (<eD.caY>., NEXT.eZ>, eX. el) SUB
REACH (D, X, Y) AREACH (D, Y, W) AREACH (D, W, Z) A-REACH (D, Z, W) A

-(Y-U)-(N-Z)
%15 states that if Wis strictly between Y and Z, and there are no
loops back to Wafter Z, then W cannot be reached after cutting
out the cells between Y and Z. %

G16: GOAL -REACH (eD, eDceX>. NEXT. eV )
SUB REACH(D,Y,X) AREACH (D, X, @S) A (Dc@So.NEXT=NILL);

%Y cannot be reached from X*NEXT if X can be reached from Y and there
are no loops after X Here S is the end cell of the list structure and
if it is reachable from X then there are no loops after X.%

- 43 -



Below is the annotated program to prove the subset property, i.e. the cells of the
input list are a subset of those of the output. We have introduced a function
LIST(X,Y,D) which is defined if REACH(D,X,Y) and whose value is the set of cells
between pointers X and Y excluding YT in reference class D. Also we use the
predicate SUBSET(A,B).

Example 5.

PASCAL

TYPE REF=*WORD;

TYPE WORD=RECORD KEY:INTEGER;COUNT: INTEGER;NEXT:REF END;
VAR. K: INTEGER;

ROOT, SENTINEL:REF;

PROCEDURE SEARCH (X: INTEGER; SENTINEL : REF; VAR ROOT:REF) ;
ENTRY (P#WORD=PB).(RODT=R8) AREACH (P#WORD,ROOT, SENTINEL) A
(SENTINEL® . NEXT=NILL);
EXI T SUBSET(LIST(R8,SENTINEL,P8),LIST(ROOT,SENTINEL,PA#WORD) )¢
VAR W1,W2:REF;
BEGIN  W1«ROOT;
SENTINELT.KEYeX;
IF W-SENTINEL THEN

BEGIN
NEW (ROOT) 5
ROOT*.KEY«X; ROOT?.COUNT«1; ROOT®.NEXT<SENTINEL;
END ELSE
IF W1t.KEY=X THEN W1%.COUNT<W1%.COUNT+1 ELSE
BEGI N
REPEAT W2eWl; WleW24,NEXT
I NVART ANT
SUBSET (LIST(R@,SENTINEL,P8),L1ST (ROOT, SENTINEL , PAUORD) )
A(SENTINEL® . KEY=X) A (SENTINEL®.NEXT=NILL)
AREACH (P#WORD, ROOT, W2) AREACH (P#WORD, W1, SENTINEL)
n(<PB,cSENTINEL>.KEY, X>=P#UWORD)
A (W1 =U21 . NEXT) A (W2=SENTINEL)
UNTTL W1t.KEY=X;
IF W-SENTTNEL THEN

BEGI N
W2¢RO0T; NEW(ROOT) 4
ROOT4.KEY«X; ROOTH.COUNT«1l; ROOT?.NEXTeW2

W1%.COUNT«W1%.COUNT+1;
W24, NEXTeW11 . NEXT;
W1%.NEXT<ROOT; ROOTeW1
1 END
END
END, ., -

- 44 -



This GOALFILE together with the previous GOALFILE for reachability form a Basis
for verifying Example S. The AXIOMS here describe straightforward properties of
LIST and SUBSET. UNION is the usual union operation on sets.

GOALFILE

AXI OM LIST (eX, @Y, <eD, ceK>.KEY,@Z>) « LIST(X,Y,D);

l.
2. AXIOM LIST(eX,eY, <eD, ceK>.COUNT,@Z>) « LIST(X,Y,D);
3. AXIOM IF (XuZ)Aa(Y=Z) THEN LIST(eX,aY,eDu {eZ}) « LIST(X,Y,D);
4. AXIOM, IF REACH(D,R@,X}AREACH(D,Y,R1) A~REACH (D, Y, X)

THEN  LIST (@R, eR1, <eD, ceX>.NEXT, @Y>)

» UNION(LIST (R8,DcX>.NEXT,D),LIST(Y,R1,D));

5. AXIOM IF REACH(D,Z,X)an -REACH(D,X,Z)

THEN LIST(eX,eY, <eD,ceZ>.NEXT,eE>) « LIST(X,Y,D);
6. AXIOM LIST(eR,eR,eD) « ZERO,
7. AXIOM UNION (eD, ZERO) » D;
8.  AXI OM UNION(LIST (eX,eY,eD),

UNION(LIST (eR, @X,@0),LIST (@Y, @S,eD)))
o LIST(R,S,D);

9. AXIOM SUBSET (eX,eX) « TRUE:

18. AXIOM SUBSET (ZERO, @X) « TRUE;
_11. AXIOM SUBSET (eX,UNION (@Y,@X))  TRUE;

- 45 -



Acknowledgement
We, ‘wish to thank our colleagues Derek Oppen and Robert Cartwright for

many debates and discussions based on early drafts of this paper which were very

helpful and resulted in definite improvements.

- 4B -



Bibliography

[Burstall] Burstall, R. M.,
Some Techniques for Proving Correctness of Programs which Alter Data Structures,
Machine Intelligence 7,
Edinburgh University Press,
Nov. 1972.

[von Henke & Luckham] von Henke, F. W. and D. C. Luckham,
A Methodology for Verifying Programs,

Proceedings of International Conference of Reliable Software,
IEEE, pp.156-164, 1975.

[Hoare 69] Hoare, C. A. R.,
An Axiomatic Basis for Computer Programming,

CACM, Vol. 12, 1969, Oct., pp.516-580.

[Hoare 11]1Hoare, C. A. R.,
Procedures and Parameters: an axiomatic approach,

Symposium on Semantics of Algorithmic Languages,
E. Engeler(ed.), Springer-Verlag, 1971, pp.102-116.

[Hoare & Wirth] Hoare, C. A. R. and N. Wirth,
An Axiomatic Definition of the Programming Language PASCAL,

Acta Informatic, Vol. 2, 1973, pp.33593SS.

[ILL] Igarashi, S. and R. L. London, and D. C. Luckham,
Automatic Program Verification I: Logical Basis and Its Implementation,

Acta Informatica, Vol. 4, pp.145-182, 1975.
[King] King, J. C.

A Program Verifier,

Ph.D. thesis, Carnegie-Mellon University, 1969.

[McCarthy] McCarthy, }J.
A Formal Description of a Subset of ALGOL,

- 47 -



0

Formal Language Description Languages for Computer Programming,
Proc. IFIP Working Conference 1964(T. B. Steel, Jr. ed.),pp.1-12,
North-Holland Publishing Co., Amsterdam, 1966.

[Luckham & Suzuki] Luckham, DC. and N. Suzuki,
Automatic. Program Verification IV :
Proof of Termination within Weak Logic of Programs,
Stanfor Artificial Intelligence Laboratory Memo 269,
October, 1975.

’

[Oppen & Cook] Oppen, DC. and S.A. Cook,
Proving Assertions about Programs that Manipulate Data Structures,

Proc. of 7th Annual ACM Symp. on Theory of Computing, May 1975.

[Spi tzen & Wegbrei t]
T he Verification and Synthesis of Data Structures,
Acta Informatica, Vol. 4, No. 2, 1975, pp.127-144.

[Suzuki a] Suzuki, Norihisa,
Verifying Programs by Algebraic and Logical Reduction,
Proceedings of Intl. Conf. on Reliable Software,
SICPLAN Notices, June , 1975, pp.4713-481.

[Suzuki b] Suzuki, Norihisa,
Automatic Verification of Programs with Complex Data Structure,
Ph.D. Thesis, Stanford University, 1975.

[Wirth71] Wirth, Niklaus,

The Programming Language Pascal,
ActaInformatica, Vol. 1, No. 1, 1971, pp.35-63.

- 48 =






