
Stanford Artificial Intelligence Laboratory March 1976
Memo AIM-278

| Computer Science Department
| Report No. STAN-CS-76-549

| Automatic Program Verification V:
| VERIFICATION-ORIENTED PROOF RULES
] for

ARRAYS, RECORDS AND POINTERS

| by

David Luckham an d Norihisa Suzuki

Research sponsored by

| Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT

Stanford University

RUNGE,

[

Stanford Artificial Intelligence Laboratory March 1976
Memo AIM-278

Lo

Computer Science Department
Report No. STAN-CS-76-549

Automatic Program Verification V:
| VERIFICATION-ORIENTED PROOF RULESfor

ARRAYS, RECORDS AND POINTERS

| by

oo David Luckham and Norihisa Suzuki

| ABSTRACT

a

A- practical net hod 1s presented for automating in a uniform way the verification of Pascal
programs that operate on t he standard Pascal data structures ARRAY, RECORD, and
POINTER. New assertion language primitives are introduced for describing computational
effects of operations on these, data structures. Axioms defining the semantics of the new
primitives are given. Proof rules for standard Pascal operations on pointer variables are then
defined in terms of the extended assertion language. Similar rules for records and arrays are
special cases. An extensible axiomatic rule for the Pascal memory allocation operation, NEW, 1s
also given.

: These rules have. been implemented in the Stanford Pascal program verifier. Examples
: illustrating t he verification of programs which operate on list structures implemented with

pointers and records are discussed. These include programs with side-effects.

: + This research was supported by the Advanced Research Projects Agency of the Department of
| Defense under Contract DAHC 15-73-C-0435 . The views and conclusions contained in this
i document are those of the author(s) and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of Stanford University, ARPA, 07 the V. §S.
ro. : Government.

Reproduced in the U.S.A. Available from the National Technical Information Service, Springfield,
Virginia 2 2 1 5 1 .

-

' gE —

1. INTRODUCTION

This paper presents axiomatic proof rules for standard PASCAL operations on

| the data structures ARRAY, RECORD and POINTER, Axiomatic semantics for these

data structures have been given in some form in previous publications ([Hoare&

Wirth), [Burstall], [Spitzen& Wegbreit]). However, here, our emphasis is on the

notion of a proof rule. That 1s, we are interested in defining proof rules for

: operations on these structures that are suitable for addition to the existing set of

, proof rules employed by current automatic verifiers -- this we call verification

i oriented semantics. These rules not only define the semantics of operations on the
(data structures axiomatically. They are also programmable reduction rules suitable

| for automating a significant part of the search for proofs of programs that operate
on complex data structures.

| The main problem from the point of view of extending the present verifiers, 1s
: to be able to cope with certain forms of the assignment statement. The semantic

| definition of assignment given in [Hoare 69] is entirely adequate for assignment to a
| variable of any arbitrary type. In this paper we are concerned with finding

verification rules for assignment in the case when the left hand side 1s an expression

containing operations which select a substructure of a data structure. For example,

array assignment rules given in [King], [Igarashi, London, & Luckham] (henceforth

| called [ILL]), and [Suzuki a] define the semantics of A[l}«E. Here the index I “selects”
or picks out an element of the array data structure A, so the meaning 1s different

from assignment to the variable A itself-- a specified part of the value of A is

| changed!| We shall give rules for standard Pascal operations such as XT.FeY where X is a

pointer to a record with field F. Rules for these kinds of operations are needed in

| order, to improve, program verification methods to a point where certain classes of

oo complex programs such as garbage collectors and schedulers can be verified.

The 1dea presented here 1s to generalize the rule in standard use for assignment

| to an array element. This leads to a single scheme which defines proof rules for

assignment to substructures of array, record and pointer structures as special cases.

In addition, the allocation operation, NEW(X), whereby new structures can be created

during a computation, needs to be given a verification oriented rule. We do this here

at the same time.

Section 2 presents an overview of both the way proof rules can be used in

automating verification, and of how considerations similar to those which led to the

array rule will lead to. our generalization of it for records and pointers. We feel that

it 1s reasonable to say something about the use of the proof rules since some of our

decisions are based on facilitating implementation. However we do rely on earlier

papers [ILL, Suzuki b] for full details about verification systems. Section 3 gives the

general definitions of the extended assertion language and the most general form of

the new proof rules. Section 4 1s devoted to illustrating how a verifier with these

rules can be used to obtain proofs of properties of programs which operate on tree

structures built up from pointers and records. It 1s shown here that our extended

verification system is capable of proving such properties as " program A does not

introduce loops into list structure L" for actual programs containing about a page of

Pascal code.

In this paper we omit formal justification of our rules. Normally, this would

take the ‘form of a soundness proof. A model of PASCAL computations would be

defined and then it would be shown that the proof rules describe state

transformations of, the model. Instead we rely on the motivation in Section 2 to

- 3 -

convince the reader that our formal rules do correspond to his intuitive

understanding of the PASCAL semantics.

2. MOTIVATION

The reasoning which leads us to our proof rules can be paraphrased as follows. First

we have to "know" intuitively what the PASCAL operations do; that is, what

transformations they make to data structures. We extend the standard assertion

language (i.e.. Pascal Boolean expressions with the addition of quantifiers and defined

relations --see [ILL,” Suzuki b}) so that it contains expressions which formally

represent data structures and transformations of data structures. These new

assertion language expressions are called data structure representations. Then we can

give formal proof rules for Pascal operations in terms of such representations. The

representations themselves have semantic definition rules which permit

simplifications to be made automatically, This enables proofs of simple programs to

be completely automated. Below we outline this’ reasoning by giving first the

“intuitive” transformation rule for an operation on a structure, then the new

expressions that we add to the assertion language to represent the transformation

and the semantics of the expressions, and then the formal proof rule for that

operation. - We deal in succession with the cases of Arrays, Records, and finally,

Pointers. This should clarify the general definitions of representations and proof

rules in Section 3. We begin here with a short discussion of verification oriented

rules in general.

- § - | |

2.1 Reduction Rules.

Axiomatic semantic rules within Hoare’s weak logic of programs [Hoare 69,11,

ILL] are nearly all of the form

A,B

“oe

meaning “if A and B are both true (the premisses of the rule) then C is also true

{conclusion)". Here, A, B, C, are either Boolean formulas or statements about

programs. The latter kind of statement has the form P{S}Q where P and Q are

Boolean formulas and S is a program part (i.e. a sequence of Pascal statements). P and

Q are the input and output specifications for S. In the deduction rule, C 1s always a

statement about a program part.

We can regard a deduction as taking place by applying a rule “downwards”. However,

such a rule 1s employed “upwards” as a problem reduction rule in a typical verifier

[ILL]. This means that if some problem C’ matches C in the sense that C’ = Co¢ where

o¢ is a substitution of actual parameters for formal parameters, then Ao¢ and Boe will

be generated as “reduced” problems to be solved. This reduction process can be

continued until all the reduced problems are purely logical formulas and do not

contain any program statements. These formulas are called Verification Conditions

(VC’s). The reader is referred to [ILL] for examples of problem reduction and

generation of VCs,

- 5 -

2.2 Forwards Rules and Backwards Rules.

The semantic meaning of the assignment statement 1s defined by axioms in

Hdare’s system.-For example, assignment to a simple variable may be defined by (AVF

stands for Assignment to a Variable Forwards):

AVE., P(X)AX=X0{X<E}P(X0)AX=E | x,

where E lo denotes the substitution of X0 for X in E.

The axiom AVF 1s a true statement of the Logic of Programs for ail formulas

P. Intuitively, this axiom describes the way XeE changes the state of any

computation:

It says, suppose PAX=X0 is true of the state before X«E. Then after executing

XE, two things will be true: (a) the value of X will change to E xg and (b) true

statements about the value of X before assignment are still true of the old value XO

after.

We call this axiom a “forwards” rule because the postcondition (after

execution) shows how the precondition (before execution) 1s changed. Such rules are

not the easiest to implement in automatic verification systems because of the

equality terms X=E xg 1n the post condition, The basic problem is the question of

when-to substitute E on for X in any formulas that may get generated later on in

- 8 -

the process. It 1s easier to avoid the generation of equalities altogether. So, in

verification systems we often use “backwards” axioms like AVB (from [Hoare]).

AVB. P(E) {X<E}P(X)

where P(E) 1s P with E substituted for all occurrences of X. This 1s a “backwards”

rule: it states that if P(X) is to be true after X«E is executed then P(E) must be true

| before. This is equivalent to saying that the effect of X«E will be to give X the value

E. The forwards and backwards versions of the rules are equivalent, and the

verification conditions produced by verifiers using either version are also equivalent.

A verifier, given a problem ENTRY ({S1;.;Sn}EXIT, and using backwards axioms

‘will work backwards in the following sense. Starting with EXIT it will deduce (using

either upwards or backwards rules) what has to be true before statement Sn, and

from that 1t will deduce what must be true before Sn-1, and so on.

In the following we shall develop backwards rules since they are easier to

implement.

| 2.3 Assignment to Array Elements.

Now consider an axiomatic semantic rule for assignment to an element of an

array (Assignment to Array Backwards) given in terms of an informal assertion

language:

AAB. If Is] then P(E) else P(A[JI{A[Il«E}P(ALJ])

- 7 -

We might ail agree (given that we understand the meaning of “if-then-else”) that this

Lo defines the meaning of "A[ll€E". The rule states what must be true of the .
| computation state of a program before performing A[lJ«E if P(A[J)) is to be true

after. The semantics is defined by the change in the computation state. Rule AAB 1s a

scheme in that it holds for all formulas .P. However, if we add this rule to a verifier,

we have the complication that if we are trying to verify, say

ENTRY {B;AllJ«E}P(A[J]), an application AAB will leave us to verify

(1). ENTRY(B) (if I=] then P(E) else P(A[J])).

And we will not know at the time (1) is generated whether I=} or not. The

information required to determine if I=} is most likely contained in the preceding

program B.

Thus rule AAB requires the assertion language to contain array and index

variables, and conditionals. in addition, the reduction rules will have to allow for

conditional assertions.

Nested conditional assertions grow exponentially, and it is advisable for

implementation to replace them by an explicit representation in the assertion

language of the the change to A resulting from A[lJ«E. To achieve this, we have

introduced assertion language expressions that represent the result of selector and

assignment operations on arrays. It should be emphasized that the expressions

represent structures resulting from operations.

Syntax of REWRITE and SELECTOR expressions for Arrays:

- 8 -

| REWRITE: <A, [I] E>

SELECTOR: [J]

| where A is an arrayof elements of type T, I and J are indices,
and E is an expression of type T.

Intuitively, the rewrite expression represents the array obtained from A by

assigning E to All} And <A,[[ILE>[J}lepresents the Jth element of this array. The

| two kinds of expressions can be concatenated together (see example 1 below), and the

| rewrites may be nested to represent the result of sequences of operations on A.

| These assertion language expressions obey the following rules which define

their semantics:

SEML. <A, [1 E>[J]=E if I=],

<A, (1, E>[J] = ALJY if Iu),

The verficiation-oriented rule for assignment to arrays may now be given using the

extended assertion language:

| V1. P(<A[I1LE>)A[IJ-E}P(A)

where ail occurences of A in P(A) are replaced by <A,[IJL,E> to form P(<A,[ILE>).

Note the special case of V1: P(<A,[ILE>[JD{A[l}J«E}P(A[J]).

This 1s our version of AAB.

_ 9 -

Let us see how the rules Y1 and SEM1 work on a simple example.

EXAMPLE 1. 1. AlK)el

2. ATAIK]]«E

EXIT P(AIIl).

We want the exit assertion to be true after the two operations. Successive

: applications of (V1) state that P(<A,LA[K]LE>[I])) must be true before instruction 2,

and P(<<A[K)I> [<A KI>[KILE>[ID) must be true before 1. Using SEMI this last

assertion reduces to P(E).

Essentially, the introduction of the REWRITE expressions into the assertion

language, is to represent the changes in the data stucture that occur as the result of

assignment to an array element. The semantics of programming language statements

assigning to array elements are then defined in terms of such changes by rule V1. The

- rule SEM1 enables us to simplify expressions containing rewrites and selectors when

the values of indices are determined. It 1s clear that both rules are easy to implement

so that both the construction of the representations and their simplification can be

automated.

The notation for REWRITE used here is due to [Hoare and Wirth]; different .

notation appears in [King]. One of the nice features of this notation is its compact

nesting property for representing successive assignments.

2.4 Assignment to Record Fields.

An assignment, R.Fe€E where R is a record with a field F, changes a record data

- 10 =

| structure In exactly the same way as assignment to an array element changes an

| array. Analogous assertions and rules are used to define the semantics of assignment

to a record field. We describe them briefly here.

Syntax of REWRITE and SELECTOR expressions for Records:

REWRITE: <R,.F, E>

SELECTOR: .F

where R 1s a record, F 1s an identifier of a field

of R of type T, and E is an expression of ‘type T.

The semantics of these new assertion language expressions are given by:

SEM2. <R, .F, E>G = E if F=G,

<R,.F,E>C= R.G if FAG.

The verification proof rule for assignment to record fields is:

V2. P(<R, .F, E>){R.F¢E}P(R)

2.5 Assignment to Dereferenced Pointers.

Let us now define similar axiomatic rules for assignment to dereferenced

‘ pointers,-i.e. assignments of the form XT«E. Intuitively, XT«E means that the value in

- 11 -

the memory location to which X points 1s changed to E.

We might try to define the semantics of such statements by a backwards rule

such as

g APB. if X=Y then P(E) else P(YD{XPE}P(Y1)

The rule 1s an obvious backwards way saying that if X and Y point to the same

memory location (i.e. X*Y) before XT¢E, then YT*E afterwards.

This rule resembles the intuitive backwards array rule, AAB, with X playing the

role of an index I. In AAB, I picks out an element of the array A. However, in this

case we do not have a name in the assertion language for the set of values X can

point to (1.e., reference). So the first thing we shall do 1s to introduce names for such

sets of values called REFERENCE CLASSES (the early Pascal definition contains the

concept of a reference class [Wirth]). Of course, a reference class 1s unbounded, but

| it can be accessed and parts of it selected in exactly the same way as an array. So the
| notation we shall use for representing computations on reference classes will be very

similar (in fact the differences are merely to distinguish them from operations on

arrays). For example, if P#REFis a reference class then P#REFeX> will denote the

| value that X points to (i.e. the same thing as Xt). The result of XTeE can be

represented by <P«REF,cX>,E>. In this notation the round brackets are analogous

to the square brackets for indexing arrays.

Thus we extend the assertion language in order to represent computations

involving assignment to dereferenced pointers as follows.

| For each pointer type declaration,

- 12 -

TYPE namel = Tname2

we add P#name2 to the assertion language. This is the name of the finite reference

class of elements of’type name?2 that exist at the start of a computation.

Syntax of REWRITE and SELECTOR expressions for Reference Classes.

REWRITE: <C, €X>o, E>

SELECTOR: cX>

where C 1s a reference class of elements of type T, X 1s a pointer

of type TT, and E is an expression of type T.

These expressions satisfy semantic rules similar to previous ones:

SEM3. <C,cX>,E>cYo = E if X=Y

<C, cX>3, E>cYo = CcYo if X¥Y

The verification rule for assignment to dereferenced pointers 1s:

v3 a. P(<Psname2, cX>, E>){ XT«E}P(P#name2)

and

b. P(<P#name2, cX13, E>cY2){XT«E}P(YT)
for ail occurrences in P of Y of type namel.

The reader may note that our extension of the ‘assertion language has

- 13-

introduced different notation for the same thing; YT and P#name2cY> both

represent the value Y points to. If the verifier uniformly eliminates one notation in

favour of the other, we shall need only one of the V3 rules.

Let us see how this rule will work on a typical “side-effects” example.

EXAMPLE 2. TYPE A =1B;
‘VAR X,Y:A;
I. Y «X;
2. XPel;
3. Y1e2;
EXIT X*t=2,

This example has a side effect in the sense that instruction 3 mentions only the value

YT but also changes the value XT.

If the exit is true after 3, then by (V3)b.<P#B,cY>,2>cX>= 2 must be true

before 3. By (V3)a, <<P#B,cX>,1>,cY>2>cX>=2 must hold before 2. But now the

simple assignment rule for variables, P(X){ YeX}P(Y), tells wus that

<<P#B,cX>,1>,cX>2>cX>=2 has to hold on entry. This is easily seen to reduce to

2=2 by SEM3.

2.6 Storage Allocation.

A reference class 1s indefinitely extendible by the Pascal allocation operation,

NEW(X). The intuitive meaning of NEW(X) 1s that a memory ceil which has not

previously occurred in the computation is appended to the reference class P#name2,

and the value of X is changed so that X “points to” this new cell. The value of XT is

undefined? It 1s assumed that such a new ‘ceil always exists. This semantics 1s defined -

- 14 -

by means of memory mapping functions in [Hoare & Wirth].

Our assertions must be able to represent such extensions, so we introduce the

notation P#name2U{X’} to represent the reference class of X extended by the

operation NEW (X), where X’ 1s a “new” identifier. More generally, DU(X’} represents

an extension of the class represented by D. We refer to "U" as the extension

operation on data structures. We now have to see if this addition to the assertion

language 1s sufficient to permit the definition of a proof rule for allocation.

The problem facing us here is to define a semantic proof rule which states how

an arbitrary assertion about a computation state 1s affected by allocation. Our rule

must express both of the effects of NEW(X), namely the extension of the reference

class and the “newness” of X. Let us discuss these two aspects seperately.

First, suppose a reference class has a representation of the form, <P«T,cY>,E>,

After NEW(X) its representation will be <P«T,cY>, ESU{X’} where X’ is an identifier

not occurring in any expression so far (i.e. a new identifier). But the newness of X’

clearly implies that <P#TU{X’},cY>,E> also represents the same structure. More

generally, we have:

SEM4 If <D,S,E> represents a reference class and X’ is a new

identifier, then <D,S,E>U{X’} and <DU{ X’},S,E> represent the

same reference class.

So a first approximation, to a backwards rule for allocation, expressing only the

extension of a reference class (analogous to the backwards rule for assignment) is:

- 15 -

Q(P+TU{ X’D{NEW(X)}Q(P«T)

| where X’ is a new identifier, and P#T is the name of the reference

class of elements of type-of Xt, and X does not occur 1n Q.

: Secondly, how does an allocation NEW(X) affect an assertion about X, say

. Q(X)? Theint endedsemantics 1s that X 1s given a “new” value X’ which 1s distinct

from any previous pointer, and nothing else in the state 1s changed. Any arbitrary

new value X’ may be allocated to X. Ignoring the extension of P#T, these properties

are expressed by the following backwards rule:

AYI€SET_OF P«T)(X#Yi)2Q(X}{NEW(X)}Q(X)

where X’ is a new identifier, and SET-OF PsT is the set of

ail pointer expressions of type-of X that do not contain X’.

This rule states that if Q(X) is to be true after NEW(X), then Q(X’) must be

true of any “new” X’ before.

We may combine the two rules above as follows.

: ve PHT X
NEW B. A(Yi€SET_OF P+T)(X’#*Yi)2Q | PAT (X’] | x» (NEW(X)}Q

where P#T is the name of the reference class of elements of

type-of XT, X’ is a new identifier, and SET-OF PsT is the set of

ail pointer expressions of type-of X that do not contain X’.

This rule assumes the axioms SEM4. In addition we have further

axiomatic properties of the extension operation:

- 16 -

~~ SEMS. DU(Y)c®=DcX> if X#Y, and is undefined if X=Y,

| where D 1s a representation of a reference class.

| We cannot implement NEWB as it stands because SET-OF P=T is too large.

The verification rule for NEW in Section 3 1s weaker but can be strengthened by

additional axioms from the user.

2.1, Sequences of selectors. |

So far we have dealt with assignments in which the left side contains only one
selector operation. Pascal allows sequences of selector operations. We have to extend

the assertion language still further by introducing sequences of selectors in order to

represent the data structure changes made by such assignments.

For example, consider XT.FT.G. This is a selector sequence that would be

applicable to a list of records where the °F field of each record was a pointer to the

next record in the list. We can compute the representation as follows. P#NeX>

represents XT; PeNcXo.F represents XT.F which is another pointer; so

, PaNcPsNcX>.Fo represents XT.FT and the representaton of the entire sequence

above is PsNcPeNecX>.Fo.C. This is a sequence of the form P#NeZ>.G where Z is

not a simple pointer variable, but 1s a representation of a data structure of type

pointer. So our selectors will not be as simple as before.

Simultaneously, the set of rewrite expressions that will now be used to

represent data structures within the assertion language must also be extended. Thus,

- 17 -

the change to the reference class P#N that occurs when XT.FT.G¢E is executed can be

represented by the rewrite, <P#N, cPsNcX2.F2.G,E>, As we see from this example,

the syntax of rewrites must be extended to permit representations of the form

<X,S,E> where S is a selector sequence.

It should be noted that the rule for assignment with a single selector on the

left 1s not sufficient to express the general assignment even if we introduce dummy

program variables, For example, we could try to rewrite XT.FT.GC «KE as

YeXT.FT;Y.G«E. However,. in the second case, E is placed in the G field of a new copy

of XT.F1, whereas in the first case E is placed directly into the original record.

- 18 -

3. PROOF RULES FOR OPERATIONS ON DATA STRUCTURES.

In this section we define proof rules for assignment statements with

expressions involving data structure selectors in the most general case. The rule for

assignment presented here can be regarded as defining the semantics of assignment. In

the case of dereferenced pointers it fills in a gap in the axiomatic semantics of Pascal

assignment in [Hoare& Wirth]. We shall also present a rule for storage allocation

which 1s not complete in any reasonable sense, but which represents a compromise

between a logically complete rule and what 1s computationally feasible for automating

proofs. It can be extended by the user to handle any particular problem.

First, we must define the extensions of the standard assertion language

(e.f.[ILL] section 2) that have been introduced expressly for the purpose of making

statements about complex data structures (i.e. structures containing identifiable

substructures).

3.1 New Assertion Language Primitives

Notation: We will use ® to denote concatenation.

@ denotes the empty sequence.

Complex data structures are represented by Assertion Language expressions of

the form <A,LE> and A®] where A and E- are themselves data structure

representations, and I and J are sequences of applicable selectors. Intuitively, <A,LE>

represents “the structure obtained from A by replacing the substructure of A’

- 19 -

selected by I, with E", A®]J represents “the substructure of A selected by J". This

notation generalizes the notation. for arrays used by earlier writers ([McCarthy],

[King], [Hoare & Wirth]). We will first define the syntax of the representations.

: Terminology: A TYPE-NAME is any identifier introduced as the name of a

type by a Pascal type declaration.

DEFINITION (reference class identifier)

For each pointer type declaration, TYPE T=TT8; where TO is a

type ‘identifier, we introduce a reference class identifier

P«TO for the reference class of TO.

Intuitively, P«T® represents an unbounded set of data structures of type TO that

pointer variables of type T may refer to, These sets are called reference classes.

They are not types. in Pascal (although the syntax for reference class appears in the

early version of the Pascal specification [Wirth J. They are assertion language

primitives and behave very much like unbounded arrays; their semantics are defined

by axioms in Section 3.2.

DEFINITION (types)

i) INTEGER, REAL, and BOOLEAN are types.

ii) If T, TO, .. ,Tn are types and FO, . . . ,Fn are identifiers

(field identifiers) then

ARRAY[K.L] OF T,

RECORD F0:T9; F1:T1; ...; Fn: Tn END,

- 20 -

| TT, and

| | | PaT
are types.

iii)They are the only types.

| In the definitions below. we use the following notation:

| | D,D’-- data structure representations,

| C -- a reference class representation,

| | | E -- aPascal expression ,

| | | -- an integer type data structure representation,

N-- a type name,

| Y -- a pointer type variable,

| X--a pointer type data structure representation,

| a F--a field identifier,
| S-- a selector sequence,

| DEFINITION (selector sequences)

| S:u=¢|[lleS | eXoeS | Fes

" DEFINITION (8 is applicable to D)

Sis empty,

- 21 -

D is of type ARRAY[K.L] and S=[I}®S’ and K<IKL and S’ is applicable to D[1],

D is oft type RECORD and S=F@§’ and F is a field of D and S’ is applicable to D.F,

D is of type REFERENCE CLASS of N, and S=cX>@§’

and X is of type TN and S’ is applicable to DeX>.

DEFINITION

(a) (reference class data structure representations)

C :=PsN| CU(Y) |<CS,D>

(b) (data structure representations)

D == E|C|<DS,D’>|DeS

subject to the restrictions:

(i) S is applicable to C and D.

(ii) In <G,S,D> and <D,S,D’>,

type_of(C®S)=type_of(D) and type_of(D@S)=type_of(D’),

“ This completes the definition of the syntax of data structure representations.

- 2)

3.2 Axioms for data structure representations.

Ax 1. Ded =D

A 2. <D, 6 E>=E

Ax 3. <D, [llel E>(JleK =
if i = J then <DII] , L , E>eK else DelJleK.

if F =G then <0e.F , L , E>eK else De.GeK.
Ax 5. <0 , cXoelL , E>ecYoeK =

if X= Y then <DecXo , L , E>eK else DecYoeK.

Ax 6. <D, L , DelL> =D.

Ax". <<D , [IleL , V> , [JleK , W> =
ifI =J then <D, [1], <<Dell]l , L ¥V> K 6 UW>>

else <<D , [JleK , W> , [lJeL , V>.

if F =0 then <B, F, <<Be.F, L, Vo6 Kk Ws>
| else «<0, .GeK , UW> , .FeL , V>,

Ax 9. <<D, cXoel , V> , cYoeK , W> =
if X= Ythen <D, cXo, <<DecXo, L , V>6 K, UW»

else <<D , cYoeK , W> , cXoelL , V>.

Ax 10. Du iX}ecYoeK =

if X= Y then Undefined else DecYoeK.

Ax 11. if X=Y then

<D , cXoeL , E>UfY} = <DUiY} , cXoel , E>

Examples

We illustrate how properties of data structure representations can be proved

using these axioms.

1) 18) 2 <<A|[1]1>,0J],2>(1] = |

This statement says that after assigning 1 to the I-th element and 2 to the

J-th element , the value of the I-th element is 1 if 14].

. Using Ax 3, the statement 1s reduced to

12) o <A,[I]1>[1]=1.

Then using Ax 3 again, it becomes

[#4] o =f, |

- 23 -

2) <<A|[1J3,2>,[K},B>[I](L]

-= if Kl then

(if L=J then 2 else A[IJL])) else B{I1)J[L]

Applying Ax 3 to the left-hand side of the equation reduces it to

if Ksl then

<<A,[1]0J,2>[1],¢,B>[L] else <A,[1]0J],2>[1][L]

Applying Ax 2 to the then-part and Ax 3 to the else-part, we get

if K*I then B[L] else <A[1},[J]1.2>[L].

This finally reduces by Ax 3 to

if K*I then B[L] else if JsL then 2 else A[I][L].

- 24 -

3.3 Axioms for assignment and storage allocation.

Rule I{Introduction of Reference Class Identifiers)

In all Boolean formulas, all dereferenced pointers, XT , are replaced by

PsTcX> where type_of(X)=1T.

Examples:

Xt o PHTcX> assuming type-of (X)aT.
X*F +» PHTcXo.F
A IX. Fl- A [P#TeXo.Fl

Xt F*G +» PASCP#TcX>.Fo.G assuming type-of (X*.F)«S.
Note that the introduction

must take place from inside out.

The reference class introduction rule can be formally defined by the following

function ar. (ar stands for actual representation.)

-ar(V) = V ; if Vis a simple variable

ar(Al1D)= ar(A)ar(D];

ar(R.F) = ar(R).F

ar(Zt) » PaTcar(Z)2; where type_of(Z1)=T,

Rule 2(General rule for assignment).

oo arn (V) |
Plenty, are 0,6 (VEE) P

where arn(V) is the name part of the actual representation of V and ars(V) is the

selector sequence part of V. Thus, ar(V)=arn(V)®ars(V).

- 25 =

We can define arn(V) and ars(V) formally as follows.

arn(V) = V if Vis a simple variable

arn(A[ID= arn(A) ;

arn(R.F) = arn(R) ;

arn(Zt) = PT ; where type_of(Z1)sT.

ars(V) = ¢ ; |
ars(A[ID= ars(A)e[ar(])] ;

ars(R.F) = ars(R)e.F

ars(Z1) = car(Z)> .

Rule 2 reduces in simple cases to rules in [Hoare & Wirth]:

1) Simple variable Vv.

In this case arn(V})=® V and ars(V)=¢

So the rule becomes

Pl gen (VEE) P.
However, from Ax 2, <V,¢,E>= E. Thus, we obtain the original rule.

2) Simple ‘array VsAlll

arn(V)=A and ars(V)=[1]. So the simple array assignment rule is obtained

from the general rule.

Plo, ure (AIDCE)P
3) Simple record VsR.F

- 26 -

Then arn(V)=R and ars(V)s.F. So the simple record assignment rule is

obtained from the general rule.

R

Rule 3(Storage allocation)

PHT X

A VEX 3 Ql purus Ix {NewX)} Q
VeF

whdre type_of(X)=1TT. X’ is a newly created variable which does not appear anywhere,

and F is the set of variables of Q whose types are TT.

The allocation rule NEWB (Section 2.6) cannot be derived from Rule 3. NEWB is not

suitable for implementation because of the potentially large number of terms in the

SET-OF P#T each of which contributes an inequality in the premiss. This leads to

~ very large Verification Conditions with large numbers of irreievent inequalities. The

set F in Rule 3 is a “first approximation” to SET-OF P#T. The union notation for

the extension of the reference class P#T permits the user to add documentation

statements which have the effect of adding extra assumptions to the premiss.

For example, suppose we introduce a predicate NOTEQUAL(G,D,D’) satisfying:

i. NOTEQUAL(GC,E,F)»EFF for ail reference classes C and terms E and F,

ii. NOTEQUAL(P«TU{X"},Y1.S,X’) for ail variables Y and selector sequences S,

~ X’ being the newly created variable,’

- 27 -

|

iii. NOTEQUAL(P«TU{ X’},Y,X’) for ail variables Y different from X.

Then we will be able to prove TRUE {NEW(Z)] Z#X1T.CDR , This is not

provable using Rule 3 alone although it 1s a consequence of NEWB.

- 28 -

4. EXAMPLES.

The extensions to the assertion language and proof rules defined in Section 3

have been implemented in the Stanford Pascal verifier. The verifier also uses axioms

AxI-Ax6 (Section 3.2) to simplify VC's.

Some example verifications of programs with pointer type parameters are given

below. Details of the verifier and studies of other applications can be found in

[Suzuki a,b}, [v.Henke& Luckham], and [Luckham& Suzuki]. In particular a

methodology for verifying programs with this sort of verifier is outlined in [v.Henke

& Luckham]

4.1 Side effects in pointer data structures.

Example 1. .

TYPE LINEAR- RECORD VAL: INTEGER; NEXT:fLINEAR END:
VAR W,X,Y,Z: LINEAR;
BEGIN |

NEW (W) s NEW (X) s NEW (Y) ; NEW (2);
Wr.VAL = 1;
WA NEXT t= X;
Xt. VAL := 2;
X*.NEXT := Y;

YA. NEXT := Z;

{At this point there is a four cell linear list. Fig. 1}
Xt. NEXT = Z;

(Now, Y* has been cut out of the linear list. Fig. 2l
ASSERT W*, NEXT?, NEXT?. VAL-4
END. .

- 29 «

W X Y Z

|

Fig, 1

W X Y Z

an
Fig.2

Fig. 2 shows the final state of the reference class PsLINEAR. The only operation

involving WTNEXTT.NEXT?.VAL assigns 3 to the cell. That cell is then “short

circuited” out of the list by an operation that does not explicitly mention it.

The result of giving example 1 to the verifier 1s a single VC; before simplification it

looks like this:

AAAKK

- 30 -

FOR THE MAIN PROGRAM

THERE ARE 1 VERI FI CATT ON CONDI TI ONS

#1

: (-Y00=200 & .
~X08=Z08 &

-W0BB=2088 &

: -W0@=Y00 &
-X00=Y00 &

-h@B=X88 8

| TRUE

<<<<<<<<PH#LINEARU {LWB@} U {X08} U {YBB} U (Z8B} , cWBB>. VAL, 1>, clBB>. NEXT, X88>,
| cX80@o. VAL, 2>,cXB8>,NEXT, Y00>,cYB8>, VAL, 3>,cYB8>. NEXT, Z88>, c208>. VAL , 4>,

 €X@8>. NEXT, Z200>c<<<<<<<<PHLINEARU {LBB} U {XBB} U {YBB} U {ZB8B} , clBB>. VAL, 15>,
cWl@Bo>, NEXT, X88>, cX88>. VAL, 25>, cXB@>. NEXT, YB8>, cYBBo. VAL, 3>, cYB8>. NEXT, 288
cZ00>. VAL, 4>,cXB8>, NEXT, Z88>c<<<<<<<<PHLINEARU {WB0} U {XBB} U {YBB} U {Z88} ,
cWB0>. VAL, 1>, cliBB>. NEXT, X88>, cXB8>. VAL, 2>, cX88>.NEXT, Y88>, cY88>. VAL, 3»,
cYB88>5.NEXT, 280>,cZ008>. VAL, 4>, cXB08>5.NEXT, Z88>cl@B>. NEXT>. NEXTo. VAL =4)

AFTER SORE SIMPLIFICATION, YOU CAN GET

#1

| TRUE

TIME: 21 CPU SECS, 54 REAL SECS

| KHKHHKK

The unsimplified VC has the form Q=(D®S=4) where D represents all the changes

| made to P#LINEAR (in order), and S selects WIL.NEXTT.NEXTT.VAL. (Clearly it wouix

be . nice to have a picture of D such as Fig. 2!) Variables X00, YOO, etc. and the

| inequalities between them result from the allocation rule.

In this example the simplification axioms (Section 3.2) reduce the VC compieteiy ts

TRUE and no additional information 1s required of the user.

- 31 =~

4.2 Verification Bases.

Verifications normally depend on user-supplied lemmas. The verifier uses these

lemmas to simplify and prove VC's. If all VC’s are reduced to TRUE this means that

there is a proof that the program satisfies its ENTRY/EXIT specifications assuming

the lemmas. The set of lemmas is called a BASIS of the verification. A basis 1s not

necessarily a complete axiomatization of given programming concepts but need be

only a set of lemmas provable from such an axiomatization. Indeed, the verifier can

be viewed as an instrument for searching for reasonable sets of assumptions that

imply the consistency of a program with its specifications. Methods for constructing

and analysing bases are described in [v.Henke& Luckham].

Lemmas are stated in simple logical forms called AXIOMS and GOALS. They

contain information about how they are to be used in proof searches; this need not

concern us here. To read the lemmas as logical statements, simply ignore all "@" signs

. in the examples. Then a lemma of the form AXIOM A®B is the logical equivalence

A«B, and COAL A SUB B is the implication B=A.

The following examples deal with verifying that programs maintain the

loopfreeness of the list structures they operate on. The examples also show (a) the

use of the extended assertion language to express concepts such as loopfreeness of

lists, and (b) the characterization of concepts by lemmas in the basis.

4.3 ‘Reachability in Linear Lists.

We -wish to verily the* loopfreeness of linear lists, in which each cell has one

- 32 -

pointer field, the NEXT field, which points to the next cell in the list. One way to

approach this ‘problem is to introduce a predicate Reach(D,X,Y), where D is a

reference class representation of type reference class of T, and X,Y are both pointer

variables of type TT.REACH(D,X,Y) means that the sequence X, XT.NEXT,

XT.NEXTT.NEXT,.. in the reference class D contains (or reaches) Y. This implies that

the list structure between X and Y in D is loopfree under the NEXT operation,

Notice that NEXT ought to be an explicit parameter of REACH, but since we are

assuming that our list structures have only one NEXT field, we have omitted it.

Example 2 is the insertion of an element into the middle of a linear list. We

verify that Reach(D,ROOT,SENTINEL) is still preserved after the insertion, ROOT

and SENTINEL being pointers to the beginning and end of the list.

SENTINELT.NEXT=NILL means that SENTINEL points to the last element of the list.

Example 2.

ENTRY REACH (P#WORD,ROOT, SENTINEL) A (Y=SENTINEL) A(SENTINEL®.NEXT=NILL) A
REACH (P#WORD, ROOT, Y) AREACH (P#WORD, Y, SENT I NEL);

EXIT REACH (P#WORD,ROOT,SENTINEL) ;

TYPE REF =tWORD;.
TYPE WORD = RECORO COUNT: INTEGER; NEXT: REF END;

VAR Y,Z,R0O0T, SENTINEL: REF;

BEGIN
NEW (Z) ;
Z* NEXTeY?. NEXT;
Y*.NEXTeZ;

END .;

- 33 -

The set of lemmas in the goalfile below’ is a Basis for verifying example 2. We

do not claim that it is a complete characterization of REACH(D,X,Y), but merely

that each of the lemmas 1s an obvious property of REACH that would be provable

given a complete set of axioms,

Thus Goal 1 states that for W to be reachable from X in a reference class

resulting from class D by performing YL.NEXTeZ, it is sufficient that REACH(D,X,Y)

and REACH(D,Z,W) and also ~REACH(D,Z,Y) to ensure that no loop is introduced by

the operation. Clearly the truth of this lemma depends on more atomic properties e.g.

REACH(D,Y,YT.NEXT), transitivity (Coal 4), and REACH(D,Y,Y) (from which

~REACH(D,Z,Y) implies Z#Y).

Goal 2 is a statement about a “short circuit” operation; <D,cZ5.NEXT,

DcYS NEXT> represents the reference class that results from D by

LTNEXTeYT.NEXT: This excludes Y from the sequence Z, ZT.NEXT, . . . provided Y¥Z

and Y cannot be reached from YT.NEXT. A loop might however, be introduced into

the new structure unless ~REACH(D,Y,Z).

Coal 3 states sufficient conditions for Y not to be reachable from YT.NEXT.

Coal 5 is a typical frame axiom for storage allocation. It means that

reachability is not affected by the allocation of a new cell; Goals 6 and 7 are similar.

Coals 8 and 9 state conditions for Reachability when operations are performed

on a new cell.

It turns out that only goals 1,2,3,6,8,9 are used in proving the verification

condition below.

- 34 -

GOALFILE

| Gl: GOAL REACH (<eD,ceY>.NEXT,eZ>,eX,eH)
SUB REACH (D, X, Y) A-REACH (D, Z, Y) AREACH (D, Z,W) ;

| (2: GOAL -REACH(<eD,ceZ>.NEXT,elceY>.NEXT>, @Z, @Y)
| SUB (Z=Y)A -REACH(D,DcY>.NEXT,Y);

G3: GOAL -REACH(e@D, eDcaeY>.NEXT,aY)

| SUB (NILL=Dc@S>.NEXT)A REACH(D,Y, eS);

G4: GOAL REACH(eD, eX, eY)
| SUB REACH (D, X, @2) AREACH (D, eZ, Y) ;

GS: GOAL REACH(eDu {eZ}, eX,sY)
SUB REACH (D, X,Y) A(ZuX) A(ZxY) ;

| G6: GOAL -REACH(eDu {eZ}, Du {eZ} ceX>.NEXT,eY)
| SUB ~REACH (D,DcXo. NEXT, Y)

G7: GOAL (aDU {@Z} caSo=NILL)

| SUB (DcSo=NILL):

| G8: GOAL REACH (<eDU {eZ}, ceZ>. NEXT, ald>, aX, a)
| SUB REACH (D, X, Y)A(Z=X)A(ZxY)

G9: GOAL REACH (<eDU {eZ}, ceZ>.NEXT, eDU {eZ} ceY>. NEXT>, @Z, el)
SUB REACH (D,Y,W)A(ZrY);

The result of giving the verifier the goalfile and example 2 is the following:

HOKKHKK

FOR THE MAIN PROGRAM

| THERE ARE 1 VERI FI CATI ON CONDI TI ONS

| #1
| (-SENTINEL=208 &

| ~RO0T=298 &

~Y=208 & |
REACH (P#WORD,ROOT, SENTINEL) &

_Y- SENTINEL &

P#WORDCSENTINELS. NEXT=NILL &

REACH (P#WORD,ROOT, Y) 6
REACH (P#WORD,Y, SENTINEL)

-)

REACH (<<P#WORDU {288} , cZ280>. NEXT, PAWORDU (2081 cYo. NEXT>, cY>. NEXT, Z08>, ROOT,
SENTINEL))

- 35 -

AFTER SORE SIMPLIFICATION, YOU CAN GET

#1 TRUE

HKKHKKK

Notice that the reference class expression in the unsimplified VC conclusion

represents the result of executing example 2. So this VC might itself be accepted as a

lemma about insertion operations in the verification of more complex programs.

- 36 -

| Example 3 illustrates what happens when we reverse the order of instructions

in the example 2. The program is no longer correct in that it does introduce a loop

| into a loopfree structure. The program was run through the verifier with the same

COALFILE that was used previously.

| Example 3.

ENTRY REACH (P#WORD, ROOT, SENTINEL) A (Y#SENTINEL) A(SENTINEL®.NEXT=NILL)} A
REACH (P#WORD, ROOT, Y) AREACH (P#WORD, Y, SENTINEL) ;

EXIT REACH (P#WORD,ROO0T,SENTINEL);

| TYPE REF =tWORD;
| TYPE WORO = RECORO COUNT: INTEGER; NEXT: REF END:

VAR Y,Z,R00T,SENTINEL:REF;

BEGIN

NEW (Z) ;
| Y*.NEXTeZ:

END .;

- 37 =

FOR THE MAIN PROGRAM |
THERE ARE 1 VERIFICATION CONDITIONS

#1

(~SENTINEL=Z08 &

-ROOT-Z00 &

~Y=Z00 & |
REACH (P#WORD, ROOT, SENTINEL) &
-Y=SENTINEL 8

PHWORDCSENTI NEL>, NEXT=N] LL & °
REACH (P#WORD,RO0T, Y) &
REACH (P#WORD, Y, SENTINEL)

REACH (<<P#WORDu {288}, cY>. NEXT, Z08>, cZ88>. NEXT, <«P#WORDuU {288} , cYo. NEXT, Z8~
8>cY>.NEXT>,R00T, SENTINEL))

| AFTER SOME SIMPLIFICATION, YOU CAN GET

| #1

(-Z08=Y &

REACH (P#WORD,ROOT, SENTINEL) &
-Y=SENTINEL &

| P#WUORDCcSENTINELS. NEXT=NI LL & |
REACH (P#LIORD, ROOT, Y) &
REACH (P#WORD, Y, SENTINEL) &

©. =Z00=SENTINEL &
-~Z08«R00T

-d

REACH (<<P#WORDU {208} ,cY>.NEXT, 2808>,cZ88>,NEXT,Z88>,R00T,SENTINEL))

HKKKK

The loop construction can be seen by analysis of the reference class expression

in the conclusion of the simplified VC. The simplification results from Axioms 3.2. It

is now easy to see that the final operation represented is ZFNEXTeZ which clearly

introduces a loop.

- 38 =

4.4 Root and Sentinel Problem

This program was suggested by N. Wirth. It operates on a linear list. Each cell

of the list has three fields: KEY, COUNT, and NEXT. KEY field contains the

identification name for the cell, COUNT field contains the number of times SEARCH

1s called with the corresponding KEY, and NEXT field contains the pointer to the

next cell in the list. ROOT points to the first cell and SENTINEL points to the next

to the last cell. The last cell a dummy cell.

TYPE REF=MJORD;
TYPE WORD=RECORD KEY: INTEGER; COUNT: INTEGER; NEXT:REF END;
VAR K: INTEGER;
ROOT, SENTI NEL: REF;

PROCEDURE SEARCH (X: INTEGER; SENTINEL:REF; VAR ROOT: REF) 5

VAR W1,W2:REF;
BEGIN W1<ROOT; :

SENTINEL? .KEYeX;
IF W-SENTINEL THEN

BEGIN

NEW (ROOT)
ROOT?.KEYeX; ROOT#.COUNTel; ROOT? NEXT«SENTINEL;

END ELSE ‘

LE Wit. KEY =X THEN W1%.COUNTW1%.COUNT+1ELSEBEGIN

REPEAT W2eW1l; Wlel2%.NEXT
UNTIL Wi%.KEY=X;

IF WI-SENTINEL THEN

BEGIN

W2«RO0T; NEW (ROOT) ;
ROOT4.KEY«X; ROOT#.COUNT«1l; ROOT?.NEXTeW2

END ELSE

BEGIN

Wit, COUNTeW11, COUNT+1;
W271. NEXTeW14. NEXT;

W1%.NEXT+ROOT; ROOTeWl1
END

END

- 33 -

In order ‘to verify this program we have to show that several properties hold.

Here are some of them. (1) The list structure is always loopfree and SENTINEL is

reachable from ROOT. (2) If a cell with the given KEY exists in the list, no new cell

| is added; otherwise, one cell is added. (3) No two KEY’s of cells in the list are the
same. (4) After execution the list 1s reordered so that the first cell has the same KEY

as the given KEY argument of SEARCH, and the order of the other cells 1s

unchanged. (5) Only the COUNT field of the cell with the given KEY is incremented

by 1, and the rest are unchanged. And finally the program terminates, Here we are

going to show a verification that the first two properties -- reachability and non

deletion -- hold.

Example 4 1s the program with assertions about reachability. The ENTRY and EXIT

assertions state that loopfreeness 1s maintained. The only additional documentation 1s

an Invariant describing obvious properties of the variables in the REPEAT loop.

- 40 -

Example 4.

PASCAL

TYPE REF=?MWORD: |
TYPE WORD=RECORD KEY: INTEGER; COUNT: INTEGER; NEXT:REF END:
VAR K: INTEGER;
ROOT, SENTINEL:REF;

PROCEDURE SEARCH(X: I NTEGER;SENTINEL:REF;VAR ROOT:REF)
ENTRY REACH(P#WORD,ROOT, SENTINEL) A (SENTINEL? .NEXT=NILL) ;
EXIT REACH (P#WORD,ROOT, SENTINEL)

VAR W1,W2:REF;
BEGIN W1<ROO0T;

SENTINEL? .KEYeX;
IF Wl=SENTINEL THEN

BEGIN

NEW (ROOT) ;
ROOT4.KEY«X: ROOT?.COUNT«1;: ROOTH.NEXT«SENTINEL;

END ELSE

IF W1%.KEY =X THEN W1%.COUNTW1%.COUNT+l ELSE
BEGI N

REPEAT W2eW1l: WleW2%. NEXT
[NVARI ANT

REACH (P#WORD, ROOT, W2) A (W1 «W249. NEXT) A (W2=SENTINEL) A
REACH (PH#WORD, W1, SENTINEL) A (SENTINEL?.KEY=X) A
(SENTINELA.NEXT=NILL)

UNTIL Wit.KEY=X;
[F W- SENTINEL THEN

BEGIN

W2-RO0T; NEW (ROOT) ; |
ROOT? .KEYeX; ROOTA.COUNTel; ROOT4.NEXTeW2

END ELSE

BEGIN

W1%.COUNT«W14.COUNT+1;
W2% .NEXTeW14. NEXT:
W1t.NEXT<ROOT: ROOT«W1

END

END

- 4] =

Below is a GOALFILE containing a basis that is sufficient to verify Example 4 (i.e.

that the program satisfies its documentation). Comments explaining some of the goals

appear between % signs. It turned out that goals 9,12, were not used in this

verification.

GOALFILE

Gl: AXIOM REACH (eD,eX,eX) « TRUE; :

G2: GOAL REACH(aD, eX,eY)
. SUB REACH (D,X,®Z)AREACH (D,eZ,Y);

(3: GOAL REACH(eD,eR,eDceX>.NEXT) SUB REACH(D,R,X);

4: GOAL ‘REACH (aD, @DceX>.NEXT,aY) SUB -(X=Y)AREACH(D, X,Y);
AXP. NEXT is between X and Y%

GS: GOAL -(eX=eY) SUB -{eDcX>.KEY = eDcY>.KEY);
XKEY fields of distinct cells are distinct%

G6: GOAL -{el=eDceY>.NEXT) SUB
~REACH (D, DcYo. NEXT, W) ;

_%This is a special case of: if Wis not reachable from
X then X=W.% .

GT. AXI OM REACH (<@D, ceX>.KEY,eE>,@Y,eZ) « REACH(D,Y,Z):

G8: AXI OM REACH (<aD, ceX>.COUNT, eE>,@Y,@Z) « REACH(D,Y,2);

XAXIOMS7 and 8 state that operations on the KEY and COUNT fields
do not alter loopfreeness%

G3: GOAL -REACH(eDu {eX} ,eX,@Z) SUB =(X=Z);

G18: GOAL -REACH(eDu {eX} ,eZ,eX) SUB =(X=Z);

Gll: GOAL REACH(eDu {eZ} ,eX,eY)
SUB =(Z=X)A -~(Z=Y)AREACH(D,X,Y);

X3-11 define the Reachability relation on newly allocated cells%

Gl2: GOAL REACH (<eDu {eZ}, ceZ>.NEXT, DU {@Z} caY>. NEXT>, aZ, al)
SUB ~(Z=Y)AREACH(D,Y,W);

G13: - GOAL REACH (<eD,ceY>.NEXT,eZ>,eX, el)
SUB REACH (D, X, Y)A-REACH(D,Z, Y) AREACH(D, Z,W) ;

%12,13 describe sufficient conditions for preservation of
Reachability when Z is inserted by operations simlar

- 42 -

to exanple 2%

; Gl4: GOAL REACH (<eD,ceY>.NEXT,eZ>,aX,ak)
: SUB REACH(D, X,Y) AREACH (D,Y,Z)AREACH(D,Z,W} n=(Y=Z)};

%14 gives sufficient conditions for preservation of Reachability
when cells between Y and Z are cut out of the list%

| G15: GOAL - REACH (<eD,ca¥>. NEXT.eZ>, eX. eh) SUB
REACH (D, X, Y) AREACH (D, Y, W) AREACH (D, UW, Z) A-REACH (D, Z, UW) A

~(Y=ld) A= (Wel); y

i %15 states that if Wis strictly between Y and Z, and there are noloops back to Wafter Z, then cannot be reached after cutting
out the cells between Y and Z.%

| G16: GOAL -REACH (a, eDceXo. NEXT. eV)
SUB REACH (D,Y, X) AREACH (D, X, ®S) A (Dc@So.NEXT=NILL);

%Y cannot be reached from X#.NEXT if X can be reached from Y and there

are no loops after X Here S is the end cell of the list structure and
if it is reachable fromX then there are no loops after X.%

- 43 -

Below 1s the annotated program to prove the subset property, i.e. the cells of the

input list are a subset of those of the output. We have introduced a function

LIST(X,Y,D) which is defined if REACH(D,X,Y) and whose value is the set of cells

between pointers X and Y excluding YT in reference class D. Also we use the

: predicate SUBSET(A,B).

| Example 5.

PASCAL

TYPE REF=*WORD;
TYPE WORD=RECORD KEY: INTEGER; COUNT: INTEGER; NEXT:REF END;
VAR. K: INTEGER;
ROOT, SENTINEL:REF;

PROCEDURE SEARCH (X: INTEGER; SENTINEL:REF; VAR ROOT:REF) 3
ENTRY (PH#WORD=P®).(RODT=RB)AREACH (P#WORD,RO0T, SENTINEL) A

(SENTINEL? NEXT=NILL);
EXIT SUBSET (LIST (R®,SENTINEL,PB),LIST(ROOT,SENTINEL,P#WORD))
VAR W1,W2:REF;
BEGIN W1«ROOT;

SENTINEL? .KEYeX;
IF W-SENITNEL THEN

BEGIN

NEW (ROOT) ;
ROOT*.KEY«X; ROOT?.COUNT«1; ROOTH.NEXT<SENTINEL;

END ELSE

IF W1t.KEY=X THEN W1%.COUNT<W11,COUNT+1 ELSE

BEGIN

REPEAT W2eW1ls WleW21, NEXT
I NVARI ANT

SUBSET (LIST (RB, SENTINEL, P8),LIST (ROOT, SENTINEL, P#WORD) }
A (SENTINEL? .KEY=X) A (SENTINEL®.NEXT=NILL)

AREACH (P#WORD, ROOT, W2) AREACH (PAWORD, W1, SENTINEL)
A (<PB,cSENTINEL>.KEY, X>=PH#WORD)
A (W1=W2%, NEXT) A (W2=SENTINEL)

UNTIL W1t.KEY=X;
IF W-SENTINEL THEN

BEGIN

W2<R0OOT; NEW (ROOT);
ROOT4.KEY«X; ROOT4.COUNT«1l; ROOT?.NEXTeW2

END ELSE

BEGIN

W14.COUNT«W1%.COUNT+1;
W2%. NEXTeW11NEXT;
W14.NEXT<ROOT; ROOTW1

END

END

END, .,

- 44 -

| This GOALFILE together with the previous GOALFILE for reachability form a Basis

| for verifying Example S. The AXIOMS here describe straightforward properties of
| LIST and SUBSET. UNION is the usual union operation on sets.

| GOALF ILE

| I. AXIOM LIST (eX,@Y, <eD, ceK>.KEY,@Z>) « LIST(X,Y,0);
2. AXIOM LIST(eX,eY, <eD, ceK>.COUNT,eZ>) « LIST(X,Y,D);
3. AXIOM IF (XwZ}Aa(Y=Z) THEN LIST (aX,eY,eDu{eZ}) « LIST(X,Y,D);
4. AXIOM, IF REACH(D,R@,X)AREACH(D,Y,R1)A-REACH(D,Y,X)

| THEN LIST (eR@,eR1, <eD, ceX>. NEXT, @Y>)
o» UNION(LIST (R@,DcX>.NEXT,D),LIST(Y,R1,D));

5. AXIOM IF REACH(D,Z,X)A -REACH(D,X,2)
THEN LIST (eX,eY, <aD,ceZ>.NEXT,eE>)« LIST(X,Y,D);

| 6. AXIOM LIST(eR,eR,eD) « ZERO;

| 7. AXIOM UNION(eD, ZERO) » D;
8. AXIOM UNION(LIST(eX, eY,eD),

| UNION (LIST (eR, eX,eD) ,LIST (eY,@S,eD)))

| « LIST(R,S,D);

| ‘9. AXIOM SUBSET (@X,eX) « TRUE:
18. AXIOM SUBSET (ZERO, @X) « TRUE;

| 11. AXIOM SUBSET (@X,UNION (@Y,@X)) « TRUE;

- 45 -

Acknowledgement

We, ‘wish to thank our colleagues Derek Oppen and Robert Cartwright for

many debates and discussions based on early drafts of this paper which were very

helpful and resulted in definite improvements.

- 4B -

Bibliography

| [Burstall] Burstall, R. M.,
Some Techniques for Proving Correctness of Programs which Alter Data Structures,

Machine Intelligence 7,

Edinburgh University Press,
Nov. 1972.

| [von Henke & Luckham] von Henke, F. W. and D. C. Luckham,
A Methodology for Verifying Programs,

Proceedings of International Conference of Reliable Software,

IEEE, pp.156-164, 1975.

| [Hoare 69] Hoare, C. A. R.,
An Axiomatic Basis for Computer Programming,

CACM, Vol. 12, 1969, Oct., pp.o16-580.

[Hoare 11] Hoare, C. A. R.,
Procedures and Parameters: an axiomatic approach,

Symposium on Semantics of Algorithmic Languages,

E. Engeler(ed.), Springer-Verlag, 1971, pp.102-116.

[Hoare & Wirth] Hoare, C. A. R. and N. Wirth,
An Axiomatic Definition of the Programming Language PASCAL,

Acta Informatic, Vol. 2, 1913, pp.33593SS.

[ILL] Igarashi, S. and R. L. London, and D. C. Luckham,
Automatic Program Verification I: Logical Basis and Its Implementation,

Acta Informatica, Vol. 4, pp.145-182, 1975.
|

| [King] King, J. CG.
: A Program Verifier,

| Ph.D. thesis, Carnegie-Mellon University, 1969.

[McCarthy] McCarthy, J,
A Formal Description of a Subset of ALGOL,

- 47 =

Formal Language Description Languages for Computer Programming,

Proc. IFIP Working Conference 1964(T. B. Steel, Jr. ed.),pp.1-12,
North-Holland Publishing Co., Amsterdam, 1966.

[Luckham & Suzuki] Luckham, DC. and N. Suzuki,
Automatic. Program Verification IV:

| Proof of Termination within Weak Logic ofPrograms,

Stanfor Artificial Intelligence Laboratory Memo 269,
October, 1975.

[Oppen & Cook] Oppen, DC. and S.A. Cook,
Proving Assertions about Programs that Manipulate Data Structures,

Proc. of 7th Annual ACM Symp. on Theory of Computing, May 1975.

[Spi tzen & Wegbrei t]
T he Verification and Synthesis ofData Structures,
Acta Informatica, Vol. 4, No. 2, 1975, pp127-144.

[Suzuki a] Suzuki, Norihisa,

Verifying Programs by Algebraic and Logical Reduction,

Proceedings of Intl. Conf. on Reliable Software,
SICPLAN Notices, June , 1973, pp.413-481.

[Suzuki b] Suzuki, Norihisa,

Automatic Verification of Programs with Complex Data Structure,

Ph.D. Thesis, Stanford University, 1913.

[Wirth71] Wirth, Niklaus,
The Programming Language Pascal,

Acta Informatica, Vol. 1, No. 1, 1971, pp.35-63.

- 48 =

