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Determining the Chromatic Number of a Graph

*/Colin McDiarmid

Computer Science Department
Stanford University

Stanford, California 94305

Abstract

Certain algorithms concerning coloring graphs involve the partial

exploration of Zykov trees. We investigate the size of such trees, and

prove that a certain class of branch-and-bound algorithms for determining

the chromatic number of a graph requires in probability a number of steps

which grows faster than exponentially with the number of vertices of the

graph.
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l. Introduction,

Graph coloring problems arise in many practical situations, for

example in various timetabling and scheduling rroblems (see for example

(13), [14]). It would be very useful to be able to determine quickly

the chromatic number of a graph. However, it is well known that this

problem is NP-complete, and thus we do not expect to find good algorithms

for the problem ([1], [10])). There has seen proposed a class of branch-
and-bound algorithms, which we call here Zykov algorithms (see [5]). We

branch on whether or not two non-adjacent vertices have the sams color

and bound by using the fact that the chromatic number of a graph is at

least the size of sny complete subgraph. 2Zykov algorithms always explore

at least a 'pruned Zykov tree’. We shall prove in Section 5 below that

for almost all graphs G, on n vertices every pruned Zykov tree has

at least

n(log n)}/2

nodes, for some constant c > 1 . It follows that any Zykov algorithm

requires in probability more than exponential time,

E. L. Lavler {11] has recently noted that a simple algorithm

involving the maximal stable sets of a graph requires only exponential

time. This algorithm is then faster than the Zykov algorithms.

In the next section we give some preliminary definitions, includiag

those of Zykov trees and Zykov algorithms, and in the following section

ve present some preliminary lemmas. After that, in Section I we investigate

the size of Zykov trees, The standard algorithm for determining the

chromatic polynomial of a graph involves the exploration of a Zykov tree

(see for example [2] Chapter 15). In Bection 5 we investigate the size

) |



of pruned 2ykov trees and deduce that Zykov algorithms are slow. Wc also

give a numerical example.

In Section ¢ we investigate a backtrack ccloring algorithm. Ue show

that it is essentially the same «us a certain Zykov algorithm, and obtain

an upper bound for the time it requires. Then in Section 7 we give an

interpretation of our earlier results in terms of the lengths of certain

proofs concerning the chromatic number. The results in this section are

similar in spirit to some recent results of V. Chvatal (&] concerning

stability numbers of graphs; and indeed the research reported in this

paper was initially motivated by discussions with Chvatal concerning

his results. Finally in Section 8 we consider ‘minimal’ coloring

algorithms, which may use more colors than necessary, and investigate

the ratio of the number of colors used to the chromatic number. This

last section is not closely related in content to the rest of the paper,

but the results there follow easily from lemmas used earlier.



5. preliminary Definitions.

A proper coloring of a graph. 5 (without loopz or :arallel edge: |
fc a coloring of the vertices of G so that no two adjucent vertice:

receive the same color. The color sets in such a coloring form a projer

partition of G . The chromatic number x(G) is the leart integer

such that there {3 a proper coloring of GG using x colnis. A gregh |i:

camplete if every two vertices are adjacent, and the cligue number elG)
is the greatest number of vertices in a complete jsubgrah of 35.

let n be s positive integer, We let & «.rnote the cet of all

graphs vith vertex set {l,...,n} . Throughout the japer will be a

constant with O<p<1l and q will be l-p . A probability distribution

is induced on the set & of gzraphs by the statement that each edge occurr

independently with procability p . If k Ls a positive integer and

9 x <1 a binamial random variable with parameter: k and x is the

sum of k independent {0,1} -random variables Xypeee)Xo. such that

Prob {X, = lj sx for is ly.eesk . Thus the number of edges in a graph

in 4 1s s binomial random varisble with parameters (2) and p .

We consider also the set J Of all graphs with vertices the sets
of a partition of {l,...,n} . If k is an integer we shall often confuse

k and {k} . Thus for examplewe may say that Ach . The use of
sets to label vertices is simply a notational convenience,

We shall sometimes make statements involving such phrases as ‘for

almostall graphs in J '. For exsmple Lemma 5.2 belov states that

for almost all graphs G, in 4

x(G,) 2 1/2n/logn .

This simply means that

Prob{Ged,: x(G,) >1/2n/logn} -1 as n-~w=,.

3



We nov move an tows ~ds our definitions of Zykov trees and ykov

algorithms. Suppose that z and y are nan-adjacent vertices in a

graph Hin 5 . Following(5) we define the reducedgraphs H:
and Hey . The former LW is obtained from H by simply adding an

edge ‘oining x and y ; and the latter Ry is obtainedfrom H by
replacing the vertices x and y by a single now vertex x Uy

adjacezt to each vertexto which x or y was adjecent. We say that

Hoy nd Hey are obtained from HH bty an ‘edge-addition' and a
‘rertex-contraction’ respectively. In any proper coloring of H either

Xx and y have different colors or they have the same calor, Thus we

have the well mown result (see [15]; that

x(H) = nin{x (HL) » x (5, ) . (¢.1)

Suppose that we have a graph H in 4 which is itself a leaf in
s binary tree. Then branching st H involves choosing non-edjacent

vertices x and y in MH and giving KE the leftsan Lo and the

rightsan Hey « Of course we cammot bramch at H {if H {ss camplete.

Now let C be a grephin 4 If we start vith the single node G,

the root of ow binary tree, and branch repeatedly we obtain a partial

Zykov tree for G . By (2.1) ve know that x(G) is the minimm value

of x(L) overall leaves L of any partialZykov tree for G .

A Zyhovtree for GCG is a partial Zykov tree in which each leai is a

complete graph. ie give below an example of a Zykov tree for a graph

in 4 - (See also [2] Chapter 15, [5]).)

h
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We have now described the 'branching' process to be used in our

hranch-and-bound algorithms. The 'bounding' process depends on the

obvious result that for any graph G

A Zykov algoritta is a branch-and-bound algorithm for determining |

the chromatic number of a graph, using branch and bound processes as |
described above. Suck an algorithm has a subroutine for determining

for each graph HE ao lower bound w'(H) for w(H) (for exsmpleby

findinga complete subgraphof H ). Also it maintains a current best

upper bound for the chromatic number, which iz always at most the number

> .



of vertices in any graph encountered. It operates On a graph GCG as

follows. It begins to (construct and) explore a partial Zykov tree

for CG , starting with the root G . Suppose that at same stage we

hae explored a partial Zykov tree T or G and we have an upper

bound b for yx(G) . The algoritlm chooses a leaf L of T with

w'Ll) <b if there is such a lea”, then tranches at 1 and updates

the upper bound: if there i: no such leaf L the algorithm returns

x(G) = b and stops. A particular example of a Zykov algorithm is

investigated in [5], and another one in Section 6 below.

It is een, LO see that a Zykov algorithm always returns the correct

valur for the chromatic number and then stops. Further if say it conducts

a depth-first search of the partial Zykov tree the storage requirement

need only be say o(n’ ) « The problem iz that Zykov algorithms are very

slow, even if we suppose that the subroutine can always determine o(H)

exsctly and without cost, and that we can alwe''s start with the upper bound

at the actual value of the chromatic number. (Both these suppositions are

of course rather unlixely, since we would be solving NP-complete problems

[1].)

Given a Zykuv tree Z for a graph C the corresponding pruned

Zykov tree consists simply of the root G if o(G) = x(G) and otherwise

is the unique maximal rooted subtree of Z containingas internal nodes

precisely the nodes H of Z with w(H) <x(G) . my Zykov algoritim

must explore at least some proved Zykov tree for G . We shall prove

that prunedZykov trees are usually very large and thus that Zykov

algorithms are usually very slow.

6



Finally let us establish some notetion. We let f§ denote the set

| of positive integers and & the set of non-negative integers. Por any

real number x we let [x] denote the least integer not less than x

and | x] denote the greatesc integer not more than x . Recall that

q is a constent with O < q <1 (except that in part of Section3 we

allow q to vary). All logarithms are to the base 1/q unless othervise

indicated.

7



3. Preliminary Results.

In this section we present some necessary preliminary lemmas, which

may be of interest in their own right. Lemma 3.1 is well known and is

used only in the proof of Lemma 3.2, which is the most used result in

this section. The remaining results, Lemmas 3.3 to 3.6 concern the

‘bounded sequential coloring algoritim', and are needed here only for
the 'converse' results in Sections 4 and 5 and for Section 8.

Let mneN and let Q= (Sy)000s8)) be a family of pairwise

disjoint subsets of {l1,...,n} . We say that Q 1s proper for a graph

G in &, if no two adjacent vertices of G are in the same set Sy

in Q. For each graph G in Kk we define a 'contracted’ graph Ga

as follows: the graph Gq has vertices S1ree0s Sg and an edge between

the vertices Sy and 8, if and only if there is an edge in G between

some vertex in the set CH and some ve:tex in the set §gy Clearly Gao
may be formed from G by a sequence of vertex-contractions if and only

if Q is proper for GCG.

Now let myneN and let Q be a partition of {1,...,n} into m

sets, It seems reasonable to think that we are likely to have more edges

in Gq the more equal in size are the sets in Q . We prove below that
this is true,

For any randcn variable X we let Py denote its 4‘stribution

function, that is

Py(t) = Prob{X Zt)

for each real number t . Given two random varisbles X and Y we

write X <Y in distribution if Py(t) > Fy(t) for euch real number t .

8



Leuma Sele Suppose that X,Y, Z are random variables, that X <Y

in distribution, and that both the pairs X,Z and Y,Z are independent.

Then X+Z < Y+Z in distribution.

Proof. For any real number t ,

Prog(t) = J Fyl(t-u) dF,(u)

> [ Fy(t-u)ar,(u) = F(t) . O

Let myneN and suppose that m is fixed. For each real number q

with 0<qg<1l, let N(q) be a binomial random variable with parameters

(5) and (1-q) , and for each partition Q of (l,...,n} let N(n,Qq)

be the number of edges in the contracted graph Gao for graphs G in > X
with edge-probability (1-q) .

lerma 3.2. For each partition Q of {l,...,n] into m sets we have

(n/m)°N(n,Qq) < K(q ) in distribution. (3.1)

Proof. We may of course assume thal m > 2 , We shall prove first

that for each partition Q of {l,...,n} into m sets we have

Tk
B(n,Quq) < N(q ) in distribution. (3.2)

let Q= (81500058) be a partition of {1,...,n} into m sets;

let 8, = |8,| for 1e=1,...,m; and suppose that s+1 < s,-1 . Let

ved, and let Q' be the partition obtained from Q by switching v

from Bs to 8, . In this part of the proof of the lemma both n and

q will be fixed. Denote K(n,Qq) and KN(n,Q',q) by 1 and LY
respectively. In order to prove (3.2) it is sufficient to prove that

No < 8p in distribution. (3.3)

9



Consider first the case =m = 2 , when Ha and LX may take only
the values 0 and 1. Clearly

Prob(N, = 1} = 1-412 < ASA - Prob{N, = 1} ,
and (3.3) follows.

Supposenow that m > 3 . Let R and R' be the partitions Q

and Q°' respectively with the last set deleted. By induction we may

assume that N, < K., in distribution ‘Yn an obvious notation). Let

D and D' be random variables giving the degree of the ‘last’ vertex

in Gq and Gor respectively. Then oY and Np are independent of

D and D', and No = NtD and N, = K,,+D' . Hence by Lemma 3.1 in
order to prove (3.3) and so (3.2) it is sufficient to prove that

D < D' in distribution. (3.4)

For {imsl,.co)m=1l let Xy 1 if 8, and 8 are adjacent as

vertices in Ga and let X; = 0 otherwise. Define random variables Xs

from Q in a sixilar manner, Then the random variables reer

are independent and sum to D ; the random variables Xiseeor Xo are

independent and sum to D' ; and KX, = X§ for i= 3,...989=1, Hance

by Lemma 3.1 in order to prove (3.4) (and so (3.3) and so (3.2)) it is

sufficient to prove that

LK, £ +X, in distribution. (3.5)

Note first that XK, snd N+X may take only the values
0,1,2 . Now

(s)08,)s,
Prod{X +X, > 1) = 1 -q = Prob{X;+X; > 1} .

Also

10
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and similarly

Prob(X; +X} >2) = Prob(X] - 1}Prob{X, = 1}
(s,+1)8 (2,-1)8

e 1-¢ > ™@-q 2M

(s,+1)8 (s,-1)s (8,+8,)8,
= 1l-q -q tq .

B

Now let t=q  , sothat 0<t <1, Then

Prob{Xs +X} > 2} - Prob{X; +X, > 2]
s s (s,+1) (s,.-1)

= t les 2 -t 1 -t 2

8 8s, «1

es (3-42 1 7° ) I

and this last expression is non-negative, since 5, <s,-1. But this

completes the proof of (3.5) amd so of (3.2). We now use (3.2) to

Givena set 8 of positive integers snd a positive integer k let

kS be the set of positive integers i such that (1/k1 isin 8S.

Given a partition Q= (8)58rs 000s 8,) of (192540050) for same integer n

let kQ be the partition (k8),k&,...,k8) of {1,2,...,km} . Por

emmple if Q is the partition ({1,2},(3}) of {1,2,3] then 2Q is

the partition ({1,2,3,4),(5,6)) of (L,2,...:6].

1



Let ne y det Q be a partition of {1,2,...,n) into 2 sets

and let q be a real numberwith 0< q<1l. Let dn, 1-g denote the
set 4 with edge-probabilities 1l-q . Them N(n,Qq) is the sum of

(3) independent {0,1} random variables X;3 (1<1<J<m) such
that

Prob{X, el] = Prob{G cd 1g some vertex in S, is adjacent to some
vertex in Sy)

15,115,

1/x° m
Let k be a positive integer. Then N(kn, kQ, gq ) is the sum of (5)

independent {0,1] random variables Yyy (1 <1 <Jj<m) such that

Prob{Y, ,=1} = Prob{Ged po! Some vertex in kS, is adjacent
1/k

n,l-q

to some vertex in kS, }
ks, | {ksIERPRY SN 3 11%,

EIEN
= l=3 i J °

Hence for each positive integer k,

1/x°
¥(n,Qq) = K(km, kQ, q ) in distribution. (3.6)

By (3.2) and (3.6) for each xe N we have that in distribution

1/x°K(n,Qq) = N(km, kQ, q )

32] |n

1m c 2

But 5%] -(3) 88 k «=, md so clearly (3.1) holds. This
completes the proof of lemma 3.2. J

12



We define an algorithm related to the sequential algorithm (SA) for

coloring graphs (see (8], (9), (13]) and which we call the bounded

sequential algorithm (BSA). We shall look at graphs G in J, for

some n in WN . Suppose that we have a positive integer 5s . The

BSA (boundedat s ) acts on each graph G in the same way as the SA,

except that we allow each color set to contain at most 8 elements.

Thus the BSA (bounded at s) colors vertex 1 with color 1 and then

colors the remaining vertices in increasing order, coloring vertex i

with color J if J is the least positive integer such that vertex i

is not adjacent to any vertex already colored J and such that there

are at rost (s-l) vertices already colored J .

Suppose now that we have also a positive integer t , For each

graph G in 4 we shall be interested in the family Q(G) (= Q, (6)
consisting of the first t color sets constructed by the BSA (bounded

at 3s); and more interested in the contracted graph G' = Ga(c) . We
say that a family Q(G) as above is full if each of the t sets contains

the full s elements.

Lemma 3.3. Let ¥ be a binomial random varisble with parameters (.)
and & . Then for each non-negative integer k

Prob{G' misses st most k edges} > Prob{N < k}Prob{Q(G,) is tall} .

Proof. let Rf (= R(n,s,t)) be the collection of all the families

Q(G) for graphs G in 4 . Thus R is the collection of all families

(81500098) of t disjoint subsets of {1,...,n} each of size at most 3
and such that for each index i in {1,...,t] and each vertex v in a

set with index greaterthen 1, if |8,|<3 or v <u for same vertex

u in 8, then v > u' for some vertex u' in 8, .

L



let Q= (S500058;) be a family in R . let X be the set of

graphs G in J such that no two vertices adjacent in G lie in the

same set 4 » and let Y be the set of graphs G in 4 such that

for each index i in {1,...,t] and each vertex v in a set with index

greater than 1, if |s, | <8 or v<u for sme vertex u in Sy
then v is adjacent in G to some vertex u' in S84 with v>u' ,

Then

{Ged : Q(G) = Q} = XNY .

Now clearly in distribution we have

|E(GQ)] < |E(GQ)| given GeY ,

and conditioning on X does not affect the distribution of the number

of edges in Gq « Thus in distribution

|E(Gy)| < [E(G)| elven QC) =Q . (3.7)

But now for each keZX ,

Prob{G' misses at most k edges)

= Prob{|E(G")| 2 (5)-X]

= J Prov{|E(G.)] > (¥) x | Q(G) = Q}Prob{Q(G) = Q)
QeR < e

> T Prob{|E(G,)]| > (L)-x)prov{a(6) = @} (by (3.7)
QeER Q 2

2 T prov{(¥)-|E(6,)] < xIProb{Q(c) = Q]
Qe e Q
Q full

= Prob{N < k}Prob{Q(G) full} . -

1h



Lemma 3.4. For any positive integers n,s,t with st <n

Proo {Q(G not full] < n(1- 8 1yn/e ml

Proof. For each graph G in & and for i= 1,...,t let s, (G)

denote the i-th set in Q(G) . Then

t

{Q(G,) not full} = ERICH] <8} .

Now for each k <n in AN and each graph G in J let 0, (G)

denote the number of vertices of G, amongst tac Mrst k which the SA

colors with the first color (see [8]). Then

t

Prob{Q(G) not full} < 1 1q Prob{|s,(c,)| < 8)
t

< 2A Prob{a, _(;.1)s(G,) < 8}
t

< I s(1-g*27/5 -(-1) (50 [8])
i=l

< st(l- &-1yn/e -(t-1)

Lema 3.5. Let ¢>0 and let 8 and t be functions fram N

to N such that s(n) < (1-e)logn and s(n)t(n) < (1-¢)n for each

n in N . Then

Prob{Q(G,) full} = 1 as n-= , (3.8)

If further s(n) > (2 log n)Y/2 for each n in N ther

Prob{G! complete] - 1 as n-e, (3.9)

15



Proof. By Lemma 3.4

log Prob{Q(G) not full] < logn - enflog n + log e n= (1-¢) |

- td as nN = » :

and so (3.8) holds. Now suppose that s(n) > (2 log n)1/2 for each n

in N . If N is as defined in Lemma 3.3 then |

2

= (1) og(1-q%)

n° 2
2 510gmn 108(1 - 1/n%)

-t 0 Q8 INI = PY

Hence

Prob{N= 0} = 1 a8 nN ~o (3.10)

Now (3.9) follows from (3.8), (3.10) and Lesma 3.3. J

Lemma 3,6. Let ¢ > 0. Then for almost all graphs G in 4 there
is a proper partition R of G into at least (1l-¢)n(2 log n)~1/2

sets such that the contracted graph Gp is complete. |

Proof. Let s(n) = [(2 10g n)Y/21 and t(n) « [(1-¢)n(2 log n)~1/21
for each n in N . Then by Lemma3.5

Nov with each graph G in & we shall associate a proper partition

R(G) related to the proper family Q(G) , and the contracted gragh

G = Gp(g) Telsted to the contracted graph G' = Go(g) + Consider a
graph G in & Supposethat the vertices of G not .n eny set in

16



| add the vertex v, to the first possible set in Q(G) (that is, to the

first set in Q(G) such that vi 1s not adjacent to any vertex in the

set) and if we cannot add vi to any already present set in Q(G) then

we add to Q(G) a new singleton set {v,] . In this way we construct a
*

proper partition R(G) of G with at least t sets. let G be the

contracted graph Gr(G) . Then clearly the number of edges missing in
G is at most the number of edges missing in G' . Hence in particular

we have by (3.11) that

Prob {G, complete] — 1 a8 Nn «o> , a

Lemmas 3.5 and 3.6 are in convenient forms for the present purposes:

they clearly are not in their strongest forms.

17



L. Zykov Trees.

In this section we investigate the sizes of Zykov trees. We have

three main reasons for doing this, Pirstly the sizes of Zykov trees are

of interect in their own right, for example if we wish to determine the

chromatic polynomial of a graph ([2], Chapter 15); secondly sams knowledge

of the sizes of Zykov trees helps us to interpret results on the sizes of

pruned Zykov trees; and thirdly same of the arguments which we use here

| are similar to those we use for proved Zykov trees in the next section,

There are two theorems in this section. The first shows in particular

that every Zykov tree for a given graph has the same size, that is the

same number of nodes. Given a graph G let us denote by C(G) the

number of proper partitions of G (that is, the number of colorings

of G with 'color indifference’).

Theorem 4,1, Every Zykov tree T for a graph G has 2C(G)-1 nodes.

Proof. It is not hard to check that the vertex sets of the leaves of

T are in 1l-1 correspondence with the proper partitions of G. [OO

The next theorem gives asymptotic results which by Theorem 4,1 above

may be stated in terms either of the size of Zykov trees for a gragh G

or of the number C(G) of proper partitions of G . We choose to state

them in terms of the latter. It is convenient to separate out part of

the proof as a lemma.

Por every n in fy and f,r in d let T.(f,r) be the set
of graphs G in & such that in every Zykov tree for G if we start

at the root G we can always make £(n) left turns and r(n) right

turns without reaching a leaf. If a graph G 1s in T,(1,7)
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then certainly every Zykov tree for G has at least | °r) nodes. We

wish to choose the functions ! and r sc that Prod T, (tr) -1

at ne and (°F) 1s as large as possible.

Lema 4.2. There exist functions ¢ and r fro KR) to f§ such

that

Prob 7, (f,r) ~1 es n-w (L.1)
and

log( 1") > n(log n - 3(3 10g n)%/)
for n sufficiently large (h.2)

Por examplewe may take { and r so that

1) = 22-22% +002)) (20g 0) (h.3)
and

r(n) = Lal - (3 log n)~1/3y . (h.b)

Proof. let f emd r be functionsfrom N to N , such that

t(n) < (2) and r(n) <n-1, whichwe shall choose below. Por each n

in NN let n(n) sn-r(n) , let x(n) en/m mad 1st k(n) = (3) .
Ve shall choose r so that x(n) == as n ~e but x(n) = o{(log n)'2) .

Let @, denote the set of partitions of (1,2,...,n} into at least =

non-empty sets. Then the complement I(f,r) of T(f,r) in & satisfies

2 (er) = U {Ged: Q proper for G and G, misses at most f edges)
QeR,

Cc Vv {Get : Ga misses at nost f edges! . (4.5)
Qer,

Let N be a binomial rendom varisble with paremsters k and & Then
by Lemma 35.2 for exch partition Q in R, we have
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Prob{G ec 4 : Go misses at most | edges} < Prob{N < 1} . (4.6)

Now clearly R, Contains at most n” partitions and so by (k.5) and (4.6)

prob ¥(1,7) < no” Prov{n <1) . (4.7)

We shall use (k.7)to ensure that Prob T(f,7) ~0 as n —~e, and s0

clearly we must take ! < E[N] (at least for large n ). We let

((n) ~ 3 E(N] = lpg ~ nto) (5.8)
Now

Prob{W < t} = T (Ea - gE x
iw0

< (1) aa Et (8.9)
(for n sufficiently large that #2(n) < E[N] ).

Bow by (4.7), (h.8) and (k.9)

log Prob 2(1,7)

<nlogn+ flogk-1log!?* { log e - x°1 - (x1) 10g « &¥ + O(log 1)
«alogn+ t(logk-(- log 2+ log k - x°) + log & - x° - 2 log ¢ + o(1))

«nlogn- (loge- log 2 + o(1))

- co @ nee

Hesce (M.1) holds. It remainsto choose r . Now

log{ ©") > (a-m)(dog ¢ - log n)

= a(1-x"!)(log 8 - 2 log x - & + 0(1))

> n(logn - xt logan - x + x(1+0(1))) . (v.10)
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Let y(n) = (% logn)/> ad mn) = [n/y1 . Now x=n/m and so
y > x > n(n/y+ 1)~% .

Thus

log n/x + x° < (log n)/y + (log n)/n + yo

- 3y° + o(1) .

Hence by (L.10)

log( #7) > n(108 n - 3(} 108 0)% + (@2 +0(1)) (208 0)}/°)

> n(log n - 3(3 log n)?/3)
for n sufficiently large. Thus we have proved (4.1). From the above

we may easily check (4.3) and (4.4). This completes the proof of

Lemma k.2. |

Theorem L.3, (1) For every graph G, in 4

log €(G,) < log C(f) = n(logn-log log n-log e+o(l)) ,

where @§ is the graph on n vertices with no edges.

(2) The expected value E[C,) of c(G,) for graphs G in § satisfies |
log E[C,] = n(log n-(2 1og n)*/2 - 5 log log n+0(1)) .

(3) Tor almostall graphs Gin

a(10g n-3(5 log n)2/%) < 10g c(q,) < n(logn-(2 10gn)/?) .

Proof. (1) The first part follows easily from the observation that C(g)

is simply the numbcor of partitions of {1,...,n} .
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(2) We first show that

1 1/2 1Og E(C ) > n(log n - (2 log n) - 5 log log n+0(1)) . (L.11)

let d be a functionfrom RY to N such that d(n) «« as n ==

but say d4(n) « 0(n/log n) . We shall choose d below. Let R, be the

set of partitions of {1,...,n} into k= |n/d) sets each of size d

and (possibly) the (n-kd) singleton set ({kd+l},...,{n} . Then the

number of partitions in Rp equals

(kd): Ss n-d):
ki(a)® = (o/a)s(ar)®/e

and the probability that a partition in R, is proper equals

( d )k 1a
q e > < .

Hence the logarithm of the expected number of proper partitions in R, is

at least

(a-d) log(n-d) - (n/a) log(n/a) - (n/d)(a log 4d) - 5 nd + O(n)

= n(logn - log n/d- logd - 34+ o(1)) . (.12)
Now let

r (x) = log n/x + log x + ¥ x

for x>0. Then £ (x) achieves a unique minimm for =>0 at

xs (2 log n +1)Y/2 «1 and this minimm equals

(2 1og n)/2 + } 10g 10g n + O(1) (v.13)
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We set d(n) = | (2 log n)¥2 for ne N and find that the right hand
side in (L.12) equals

n(log n - (2 log n)1/2 - 5 log log n + O(1)) ,
Hence certainly (Lk.11) holds,

We now show that

log E[C_] < n(log n-(2 log n)}/2 - y log log n + 0(1)) . (L.1Lk)

The inequalities (4.11) and (4.14) of course prove the second part of

the theorem.

Let k = k(n) be an integer i such that the expected number of

proper partitions into i non-empty sets is a maximm. Then clearly

E(C,) is at most n times the expected mumber of proper partitions

into k non-empty sets. Let d= d(n) ms n/k. (Thus a(n) is not

necessarily an integer.)

Let Q= (S,,...,5) be a partition of {1,...,n} and let

8, = 8, | for {= 1,...,k. Then as in [8] we see that the probability

that Q is proper equals

5 z (5,1) z (7 85-n) 3 k */x =n)
i=l

Also the number of partitions of {1,...,n} into k non-wmpty sets is at

most k/k! . Hence

n = (n°/x -n)
Ele) <n = q ’

and so
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2

log E[C.) <nlogk-klogk-3 % + On)

= nlogn-nlogd-3logn-3nd+ O(n)

= n(log n - f(a) + 0(1)) .

But by (4.13)

£,(a) > (2 1og 0)/2 + § log 20g n + 01)

and so we have proved (h.1lh).

(3) The left hand inequality in part (3) follows immediately from

Leama L.2 and the discussion preceding it. Now clearly

1/2 1/2
log E[C_] > n(log n - (2 logn)™”“) + log Prob{log c(G,) > n(log n - (2 log n)™ ©)}

and so by part (2)

log Prob{log C(G,) > n(log n - (2 log n)Y/2))

< n(- 5 log log n + 0(1))
- =m a nN —»»

This proves the right hand inequalityin part (3), and thus completesthe

proof of the theorem. J)

There is a fairly large difference between the left and right hand

sides in the third part of Theorem k.3 above. The second part suggeststhat

the right hand inequalityin the thirdpart may be quite good. It thus

| seems quite possible that the left hand inequality is rather weak. Recall

that the left hand inequality follows from Lesssa 4.2, Proposition k.l below

shows that Lemma 4.2 is in a sense best possible. Proposition k.b

corresponds to Proposition 5.7 in the next section. Ve do not prove

Proposition kb here: it ma” be proved along the lines of the proofof

Proposition 5.7, using the results in Section 3.
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Proposition 4.4. Let f and r be functions from N to N such

that

1og( ©*T) > nf{log n-(3+0(1))(} log a)*/?} . (1.15)
Then

Prob T (1,7) - 0 a8 nN ~= ,

Note that (L.15) above means that for any function f such that

£(n) = n{log n-(3+0(1))(} log n)?*/?}
we have

log( “r) > f(n) for n sufficiently large.
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5. Pruned Zykov Trees.

In this section we investigat: the size of pruned Z)kov trees. We

do not manage to find out ax much about pruned Zykov trees as we found

out sbout (vapruned) Zykov trees in the las! section, but we are able to

prove a greater than exponential lower t amd. This result shows that

2ykov algorithms for determining the chromatic number of a graph ususlly

require more than exponential time.

We have seen that every Zykov tree fora given graphhas the same

size, Thus certainly if we have to construct « Zykov tree thore is no

point in spending time choosing a ‘best’ way of branching. The situation

is quite different when we look at pruned Zykov trees. Two pruned

Zykov trees for a given graph may have different sizer.

Example. Two pruned Zykov trees for <O .

/ \ /\

EO OL OO)

/\
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For every graph G let r(G) be the ratio of the greatest size

to the smallest size for pruned Zykov trees for G ; and for each n

in N let r(n) be the maximm value of r(G) over all graphs G

on n vertices. Thus r(n) is a measure of the possible variation

in sizes of pruned Zykov trees for graphs on n vertices.

For each graph G on at most four vertices we have x(G) = w(G)

and so every pruned Zykov tree for G has exactly one node. Thus

rl) s r(2) mr(3) =a r(4) = 1 .

The example above shows that r(5) > 1 , and by adding isolated vertices

to a graph it is easy to see that r(n) (strictly) increases from n = 5

onwards. Thus

rin) > 1 for n> L4 ,

In fact r(n) grows dramatically with n .

n

Proposition 5.1. r(n) > n2 (told) .

We prove Proposition 5.1 by constructing for each integer n > 7

a graph Hy on n vertices such that

r(H ) > 2¢c(p Jel = 2 (tro(d)) . (5.1)
- zk

Here c(g,) is the number of partitions of a set of k distinct elements

(see Theorem 4.3),

First for each integer k >5 1let H be tke pentagon Cs rlus (k-5)
vertices adjacent to each other vertex. Thins Hy, is a 'wheel with (k-5)

axles': see the examplebelow for KH, . It is easy to check that e(H,)= k-3

and x(H) = k-2 ; and that every pruned Zykov tree for H has exactly three

nodes. Now for each integer n > 7 let LW be the graph To
together with | n/2|-1 isolated vertices. 2
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0

0

0

Example. H), 1s H, plus U4 isolated vertices.

By branching within the large component of LY we see that the

smallest size of a prunea Zykov tree for H is 3. Now

Ln/2)-1 < n/21-1 = x(H) .

Hence by branching first amongst the |n/2)-1 isclated vertices in HY

we gee that the greatest size of a pruned Zykov tree for Ho is at least

the size of an unpruned Zykov tree for the graph Pin/2) -1 consisting
of | n/2)-1 isolated vertices. But by Theorem 4.3 every Zykov tree

for this graph has 2¢(P\ n/a 1-1 nodes. We have now proved (5.1)
and so completed the proof of Proposition 5.1. (O

Note that if the isolated vertices are listed first then the marked

Zykov algorithm will explore at least the large pruned Zykov tree for H ’

and so the backtrack coloring algorithm will also do badly (see Section 6).

We nov move on towards our main results. We need first a lama

concerning the chromatic number of a random graph, which is taken

essentially from (8). Recall that all logaritlms are to the base 1/q

unless otherwise indicated. A set of vertices in a graph G is stable

if no two are adjacent, and the stability number a(G) is the greatest

number of vertices in a stable set.

28



Lemma 5.2. For almost all grapha G, in ’ A
1

x(G,) > 5n/logn .

Proof, If x(G_) < 2 n/log n then certainly the stability number
a(c,) of GC satisfies

(6) > n/x(G,) >21logn .

But if we cet s(n) = [2 log n| then

Ss

n ( 2 )
Probfa(G,) > s¥ < (.)q - 0 88 nN ~~ o® .

Hence Prob{y(G_) < 5 n/lognl «0 as n-o. J

The following conjecture appears essentially in [8].

Conjecture 5.5. If ¢ > 0 then for almost all graphs G, in *
1

x(6y) < (F+en/logn .

We need one more lemma in order to prove our main results. Suppose

that we have a positive constant @ and functions ( and r from N

to &4 . Por each n in NN 1et (sr) be the set of graphs G

in &, such that in every Zykov tree for (G wheneverwe start at the

root GC and make 2(n) left turns and r(n) right turns we do not

encounter any node H with w(H) >a x(G) . (Compare with the definition

of T (2,1) preceding Lesa 4.2 in Section 4.) If G is a graph in

(2,1) then certainly every Zykov tree for G has at least ( "T)
nodes H with o(H) <a x(G) . Thus setting a= 1 we gee that if G

is in (1,7) then every pruned Zykov tree for G has at least ( hr)
nodes, We wish to choose the functions I and r so that
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Frob T(t, r) ~1l as n <= and T) iz as large as possible,

Lemma 5.4, Let a be a positive constant. Then there exist functions

t and r fromN toZ such that

and

For example we may take

ta) = n*/>(10g n)™3 (5.1)
and

r(n) = {n(l12 log a) 2, . (5.5)

Leama 5.L above of course corresponds to Lemma L.2 for (unpruned)

2ykov trees, and we saw in Section L that Lemma L.2 is in a sense best

possible. At the end of this section we shall prove that Lemma 5.4 is

also in a sense best possible.

Proof. Let f and r be functionsfrom N to N , whichwe shall

choose later. let b(n) = L 5 n(log 0)? | y let B be the set of
graphs G in & such that x(G) > b(n) , and let B (2r) be the set

of graphs G in &, such that in every Zykov tree for G wheneverwe

start at the root and make ((n) left turns and r(n) right tums we

do not encounter any node H with g(H) >a b(n) . Then

a

B np(8x) ¢ T(Lr) (5.6)

By lemma 5.2 Prob(B_) <1 a8 Nn <e, Hence if Prod B (sr) -1 as

n —-e« then so does Prob T,(1,r) eo Thus we wish tochoose ¢ and r so
that Prob B (1,r) -]1 a8 nn -» and (fF) is as large as possible.
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We now look at the complement B (1,1) of B (1,r) in & .

Lec @ be the collection of all families Q = (Sys00es 8) of b disjoint

subsets of {1,...,n} with union containing r+b elements, For each

family Q in Rp 1let To be the set of graphs G in &, such that the

contracted graph GQ misses at most { edges. Now if G is a graph

in BE (fr) then some graph obtaineil from G by performing at most r
vertex-cortractions contains a subgraph on b vertices missing at most

! edges; and 80 GeTy for family Q (proper for G ) in R . Hence

B.(r) cu (Ty: qeml (5.7)

Next we find an upper bound for Prob(T) . It is convenient to let

nn (3) and x= 22, We shall choose r go that x(n)- =» as
2

n -e, Let N be a binomial random variable with parameters m and 3 .

By Lemma 3.2 for each Q in Rr,

Prob(T,) < Prob{N < 1} . (5.8)
Now clearly a contains at most nS femilies Q . Hence by (5.7)

and (5.8)

Prob fi (£,r) < n°" Prob{N <1} (5.9)

We shall use (5.9) to ensure that Prob  (£,r) =0 as n -«, and

so of course we need ((n) < E[K] (st least for large n ).

We set

1 1 xf
t(n) = | 5 en) | - | 3m } . (5.10)

Row

! 2 2
i

rosa) =» I (DH ra-&)™
2 2
’,.

< (01)(F)" Tag (5.11)
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Note that the right hand side above depends only on x (and n ). We

have

log Prob{N < t}
2

<flgm-flog!+ {loge -x1t-(mt)logeq + O(logn)
1 2 2

= {(logm- (log 5 + logm-x) + loge -x" -2 log e + o(l))

= f(log 2 - log e + o(1)) . (5.12)

Now suppose that r(n) = [an(log n)"1/2 for some constant ) with

0 << za say. Then x(n) ~ (2a/a)(log n)l/2 and
21dlog t(n) = (2 - “fa + o(1)) log n . (5.13)

But now by (5.9), (5.12) and (5.13)

Prob B (1,1) - 0 as Nn ~o ,

We next look at the value of ( “Tr and choose a value for A .
Now

log( !'7) = r{log t - log r + O(1)}

= an(log n) 22 log n - (4A°/a")(log n) - log n + O(log log n)?

a (a - WJ + o(1)) n(log 0)?

The maximm value of ) - b\° jo for A > 0 is attained at ) = 1271/24 <3a .
Thuswe give ) this value, and find that

1o6( 27) « (3/2 + 01) an(r0g n)}/2 , (5.14)
as required. The value we have chosen for r is as in (5.5). Clearly

we may decrease the value of ( from that in (5.10) if we do not thus

falsify (5.14). Thus we may set ( as in (5.4). This completes the

proof of Leama 5.4.
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From Lemma 5.4 and the discussion preceding it we may now deduce

immediately our main results.

Theorem 5.5. If a is a positive constant then for almost all graphs G,

in 4, y every Zykov tree for G, is such that the logarithm of the number

of nodes H with o(H) <a x(G,) is asymptotically at least

a n( vg n)}/2 .

The most interesting special case of Theorem 5.5 above is when

p=q=1l/2 and a=1,

Corollary 5.6. Consider the property for graphs G, on n vertices

that every pruned Zykov tree for G, has size at least

n(log, n)}/2
(1.14) .

The proportion of graphs on n vertices with this property tends to 1

as nn »e ,

Corollary 5.6 shows that any Zykov algorithm as defined in Section 2

'almost always' requires more than exponential time, Thus certainly

there exists a sequence (658s eeesGrrece) such that Gis a graph

on n vertices and the time taken by amy Zykov algorithm on G, grows

faster than exponentially with n . No camstructiom is xnown for such

a sequence,

MN. R. Garey and D. S. Jomnston [7) have shom that the problem of

determining the chromatic number of a graph to within a factor less

than 2 1s NP-complete. By analogy one might have expected some effect

in Theorem 5.5 at a = 1/2 say, but none is apparent (see also

Corollary 7.2 below).
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The above discussion is asymptotic in nature, but we may be

interested in applying a Zykov algorithm to graphs which are fairly

large but definitely finite, say to graphs with 500 vertices. Arguments

similar to those above but simpler show that we are already in trouble.

We shall see below that for more than 3/hA of the graphs on 500 vertices

every pruned Zyrov tree has more than 1012 nodes.

Set pw qm 1/2 30 that probabilities correspond to proportions.

We shall be talking about graphs in & 00 « Note first that, as in the
proof of Lemma 5.2, we have

Prob{y (G) < 39} < Prob{a(G) > 1k)
1h

-(5)

<Cpr ?

< 0.2h (5.15)

For positive integers ¢ and m let S(f,m) be the set of graphs

G in & 00 which have a subgraphan m vertices missing at most ¢

edges. Denote (3) by k and suppose that t<zk. Ther
k

Prod 8(f,m) < (°% ek z (7)
1 mkt

900 ,,-k, k\ k-stl

Ca 0) emer -

It is easy to check using the above that for example

Prob 8(53,28) < .a1 (5.16)

let A be the set of graphs G in &oy Such that 4(G) >39 amd ©
is not in 8(53,28) . Then by (5.15) amd (5.16)

Prob A > 0.75 . (5.17)
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Now let GC be a graph in A and let T be a pruned Zykov tree

for GC. Then in T if we start at the root and make 53% left turns

and 1ll right turns we can never reach a leaf; for if H 1s a leaf |
of T then H has a complete subgraph on 39 vertices and at least

39-11 = 28 of them must be original vertices of G . Hence the

number of leaves of T is more than

235) > 5x00
and so the number of nodes in T is more than 10%° . Hence by (5.17)

for more than 3/4 of the graphs G in A, every pruned Zykov tree

for G has more than 102 nodes,

The basic result in this section is of course Lemma 5.4 fram which

Theoem 5.5 and Corollary 5.6 follow immediately. We remarked earlier

that Lemma 5.4 corresponds to Lemma L.2 and we noted in Section 4 that

Leama L.2 is in a sense best possible. We now investigate how good

Leama 5.4 is. Proposition 5.7 below shows that in a (weaker) sense |

Lexma 5.4 is also best possible. This suggests that our lower bound

for the size of a smallest pruned Zykov tree for a graph may not be tor.

bed. However, our only upper bound for the size of a smallest pruned

Zykov tree for a graph is very much larger (see Corollary 6.2 in the

next section).

Proposition 2.7. Isat « be a positive constant, If f and Ir are
functions from N to AY such that

log( r) > (2+0(1)) an( 7108 n)}/2 (5.18)
then

Prob (2,7) -0 @8 Nn —o , (5.19)
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Further if the Conjecture 5.3 holds and if

1og( {T) > (1+0(1))an( log n)/2 (5.20)
then again (5.19) holds.

Proof. For each n in N let a(n) be a real number such that say

1] <x(n) <3, Suppose that ? and r are functions from MN to N

such that

Log( £T) > (8 +0o(1)) an( 5 log a)? . (5.21)
For each n in N let d(n) = (3/2) n/logn , let D be the set of

graphs G, in & such that x(G,) <d(n) , and let D (4,7) be the

set of graphs G, in J, such that in every Zykov tree for G whenever

we start at the root and make (n) left turns and r(n) right turns

we do not encounter any nodc H with w(H) >a d(n) . Then

T(£,r)0D, € D(LT) (5.22)

We shall prove tha.

Prob p (2,1) -0 a8 nN-=o , (5.23)

Once we have done this we are nearly finished.

Note first that we may assume that f(n) < (5) and r(n) <n-l.
Also if (<r for same n in N then

irr ar

(55) < (ZF) ¢ &

and so by (5.21) we have log(t+r) = log £ + 01) .

Now

(27) < (2+r)F < nor

and so by (5.21) again

r(n) > (e, +0(1)) n (log n)~1/2 for some constant c, >0 . (5.2%)
We next show that we may assume that

36



r(n) < (c,+o(1))n (log n)"/2 for same constant c, >0 . (5.25)
ror each n in N let e(n) = (2 log n)31 and t(n) = rad(n)l.

Then by Lemma 3.5

ProbfG! complete} ~1 as mn -~e (5.26)

But we may obtain the graph G' from the graph G, by performing at

most (8(n)-1)t(n) vertex-contractions, and 80 |

D,(0, st) c {G} not complete} . (5.27) |
Now by (5.26) and (5.27)

Prob D (0, st) = 0 as nN -® , |
It follows that we may assume that (5.25) holds,

We now show that for n sufficiently large we have

tn) > n2 o{F/*SN (5.28)
Let

x(n) = r(n)(log n)/2/n
so that by (5.24) and (5.25) we have log x = 0(1) . Hote that

r/ad = 2xjce (log n)/2
Now if (5.28) is false then for infinitely many values of n we have

t(n) < nd g (r/c 21)
and so

log( "T) = r(log ¢t - log r + O(1))

< x n(log n}"Y/2(2 10g n - r2/aPd® + 2rfad - log n
+ 3 log log n + 0(1))

= (x - ko JaP° + o(1))n (log n)/2

< (8 + o(1)) an( Zr108 0)?
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(see the proof of Lemma 5.4). But this contradicts (5.21) and so (5.28)

Now for each n in N let s(n) = [r(n)/ad(n)l-1 and

Prob{Q(G) full} <1 es n-~e . (5.29) |
Also |

(s(2)-1)t(n) < (v/od -1)(ad +1)

< Tr

for n sufficiently large tha? Cd >r . Hence as in the derivation

of (5.27) we have that for n sufficiently large

n, (tr) c {a2 misses more than ( edges] . (5.30)

For each n in N let N be a binomial random variable with parsmeters
2

(5) and q* . Then by Lemma3.3

Prob{G’ misses more than ! edges}

< 1 -Prob{N < 1} Prob{Q(G)) full} . (5.31) |

But f(n) == as n «ee and by (5.28) ((n)/E[N] ~e az ne,

Hence

ProbfN< ¢} =~1 as n-= . (5.32)

But now (5.23) follows by (5.29), (5.30), (5.51) ama (5.32).

Suppose that x(n) = 2+¢(n) for n in N , where ¢(n) >0

and ¢(n) -0 as n -e sufficiently slowly that by Theorem8 in (8)

we have

Prob ~1 as now (5.33)
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Theu (5.19) follows fram (5.21), (5.22) and (5.33) and s0 we have

proved that if (5.18) is true then so is (5.19). Now suppose that the

Conjecture 5.3 is true and that *(n) = L+¢(n) for n in N » where

¢e(n) >0 and ¢(n) <0 as n =e sufficiently slowly that (5.33)

holds. Then as above it follows that if the Conjecture 5.3 and (5.20)

are true then so is (5.16). This completes the proof of Proposition 5.7. OJ
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6. Backtrack Coloring.

In this section we investigate the 'backtrack' coloring algorithm

(BC algorithm) for determining the chromatic number of a graph. This

algoritlm was pointed out to the author by R. Tarjan. Given a graph G

it explores part of the 'backtrack coloring tree' (BC tree) for G,

which is an implicit enumeration of the proper partitions of G . We

shall see that the BC algorithm is essentially the same as a certain

Zykov algorithm, the 'marked’ Zykov algoritlv.. Also we shall give an

upper bound for the number of nodes of the BC tree explored by the BC

algoritim, It will follow that it is worth pruning BC and Zykov trees,

We first describe the backtrack coloring tree (BC tree) for a graph

G in 4, . It is a rooted tree with height n-1 . Each node is

colored with one of the colors CireeerCy - A node colored Cy at

depth d (distance d below the root) corresponds to an assignment of

color c, to vertex (41) of G. By looking at a node and its
ancestors we see that a node at depth d corresponds to a coloring of

the first (a+l) vertices of G . To construct the BC tree for G

we first construct a single node (the root) and color it c,. Now |

suppose that K 1s a leaf in the tree so far constructed and that KX

is at depth dA <n-2 . Then KX correspondsto a proper coloring C

of the first (d*l) verticesof G. Let iy be 1 plus the maximum

index of a color used in the coloring C ; and let FRALEY (where
J>0 snd 1, >... >i ) be the colors used in the coloring C and
such that vertex (d+2) 1s not adjacentto any vertex of the color.

¥e let the node Kk have (J*1) sons colored RL RELLY in order
from left to right.
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We have now defined the BC tree for G . It is not hard to see

that il.ere is a 1-1 correspondence between the nodes of the BC tree

for G at depth d and the proper partitions of the subgraph of G

induced by the firet (d+rl) vertices (see Example 6.1 below). Hence

the number of nodes in the BC tree for G is between C(G) and nC(G) ,

and so Theorem L,3 gives asymptotic results about the size of BC trees,

If keN theBC tree for G prunedat k is simplythe root of

the BC tree for G if k = 1 and otherwise it 1s the unique maximal

+ rooted subtree of the BC tree for CG such that each internal node is

colored with one of the first (k-1) colors. The pruned BC tree for G

is the BC tree for G pruned at x(G) .

Example 6.1. Take G as the cycle with 5 vertices, numbered as

indicated.

204
3 bu

In (a) belowwe showthe part of the BC tree for GC exploredby the BC

algoritim. In (b) we show the came ‘ree structure and indicate at each

node the corresponding partial coloring of G . The letters a,...,J

indicate the order in which the nodes are first visited by the BC algoritim,

y|



(a)

depth 0 J

1 » (G2

2 35) Ok @)©

x CG) 5)
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(b)

1
1

depth O 10% a
zl

| (&
J

5 f [J]

2 a

3

4 ¢

L
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The backtrack coloring algorithm (BC algorithm) for determining

the chromatic number y(G) of a graph G conducts a depth-first search

of the BC tree for G , keeping to the right. Once we have found a

path from the root to a leaf using at most the first k colors we know

that x(G) <k and s0 we need not explore the descendants »f any node

labelled with a color not in the first k-1 . Thus we 'prune’ the BC

tree. The BC algorithm must of course explore all the nodes of the

pruned BC tree for G .

In order to relate the BC algorithm to the Zykov branch-and-bound

algorithms considered earlier we first give a description of an

implementation of a Zykov algorithm.

let G be a graphin & for some n in N . We shall define

the marked Zykov tree (MZ tree) for G . It is a certain Zykov tree

for G in which at each node certain vertices are 'marked'. At each

node H the marked vertices form an initial segment of the entire

sequence of vertices -- we assume that the sets in each partition of

{l1,eceyn] are ordered so that we have an increasing sequence of least

integers -- and the marked vertices induce a complete subgraph of H.

The MZ treeof G is definedas follows. The root is of course G,

end we mark vertex 1 . Suppose that H is a leaf of the tree so far

constructed, If the first ummarked vertex in H is adjacent to each

marked vertex then mark this vertex. Continue doing this until either

every vertex of H is marked, in which case H is completeand is a

leaf of the ME tree of G ; or the first umarked vertex is not adjacent

in H to some marked vertex. In this case we branchon the first

unmarked vertex and the first marked vertex not adjacentto it. Marked

hh



vertices stay marked in the sons of H and the new contracted vertex

in the rightson is also marked.

The marked Zykov algorithm (MZ algoritim) explores part of the MZ

tree using depth-first search keeping right, and prunes the tree using

the fact that the marked vertices at a node point out a complete subgraph.

The MZ algorithm must of course explore every node in the pruned Zykov

tree corresponding to the MZ tree. It is quite similar to the algorithm

in [5].

Example 6.2. As in Example 6.1 take G as the cycle with 5 vertices,

numbered as indicated.

1

ol
3 bk

Then the part of the MZ tree for CG exploredby the MZ algorithm is shown

below. The marked vertices are filled in, and in eddition we have labelled

the first marked vertex with ¢, , the second with Cy and the third

vith Cx .
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It should be apparent that the BC and MZ algoritlms are really

di fferent forms of the same algorithm. Suppose that CG is a graph

in 4, . Then it is not hard to prove that there is a correspondence

between the nodes of the BC tree B for G and the nodes of the M2

tree Z for G such that

(a) each node in B corresponds to one or two nodes in 2 ;

(b) each node in Z corresponds to between 1 and n nodes in B ;

(¢) pruning occurs at corresponding nodes,

The lettering in Examples 6.1 and 6.2 indicates such a correspondence.

Let B and Zz be the parts of the trees B and Z explored by the

BC and M2 algorithms respectively. Then by the above

* * *

28)> |z| ama ajz|> 8°] .

It follows by Corollary 5.6 that for almost all graphs on n vertices

n(log n)Y/2
the BC algorithm requires time at least c¢ for some constant

2 >1., The next result yields an upper bound for the time requiredby

the BC or MZ algorithm.

Theorem 6.1. Let ¢ > 0. Then for almost all graphs in 4 the

nusber of nodes of theBC tree exploredby the BC algoritim is at most
1

(z+¢)n
n . If Conjecture 5.3 is true then for almost all graphs G,

1

(gte)n
in J, the prunedBC tree for a hasat most n nodes.

Proof. Let k bea functionfrom N to4 . For each graph G

in a let (6) be the BC tree for G prunedat kk, For 1i,J
in NN let f(i,]) be the expected number of proper partitions into J

sets of graphs in & Then
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n ) 4

El |8*(c_)|) < T ZT r(4,3) . (6.1)

From the proof of Theorem 3.35 we have

1l,.2
17/3 -1)

71,3) <3 Z
ands0 if 1 <n and J < k we certainlyhave

1 1%/2x -3®
£(1,J) <n q “Tq . (¢.2)

Now let

k(n) = | (1+¢)n/log n]

for n in NN. Ten for ie¢MN, i<n

1 JL/ex co P72
and so by (6.1) and (6.2)

x m2 n°/2k -z®
E(IB(G)|)<n dq

 &
) §

PIAS 8 Ad ))n
) |

(x +en

Prov |B*(G, )| <n 2 ] 1 a8 n=-e , (6.3)

Now the BC algorithm initially explores the ‘rightmost’ peth in the BC

tree, and so initially it acts like the sequemtial coloring algorithm.

Hance by Thecrem8 in (8), for almost all graphs in 4 the BC algoritim

exploresat most n nodes of the BC tree which are not in the BC tree

prunedat k . The first pert of Theorem 6.1 now follows fram (6.3).

We nov prove the second pert of the theorem. Ist

X(n) = L(1*)3 n/log mn]

.)



for n in AN « Then for ie, i<n
Bk

2 (1+e)n
nl ot 72K < RE

and so by (6.1) and (6.2)

(F(1+e)+o(1))n
El|B*(G,)|] <n 3 ‘

Hence as above

K (F+e)n
Prob{|B(G )| <n }] =1 as n-w , (6.4)

Denote the pruned BC tree for a graph G by B(G) . If x(G) <k

then |B(6)| < |B%(G)| - Thus

n (g+e)n (+e)n
{18°(6,)| <n } 2 {|8(g)]<n Inix(g,) <x} . (6.5)

Now suppose that Conjecture 5.3 holds, so that

Prob{y (G,) <k}-1l as Nn = , (6.6)

Then the second part of Theorem 6.1 follows from (6.4), (6.5) and (6.6). 0O

Corollary 6.2. let ¢ > 0. Then for almost all graphs G, in &

the number of nodes of the marked Zykov tree for G, explored by the
(3+e)n

markedZ kov algoritimis at most n 2° o If Conjecture5.5 holds

“hen for aimost all graphs Q, in & the pruned marked Zykov tree
re

for G, has at most at ¥ che nodes.
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7. Lengths of Proofs.

Most of our results so far may be phrased in terms of the lengths

of certain kinds of proof which determine chromatic numbers or which

establish lower bounds for chromatic numbers. We then obtain results

concerning chromatic numbers which are similar in spirit to recent results

of V. Chvatal [4] concerning stability numbers. Indeed this paper vas

{initially motivated by discussions with Chvatal concerning his results.

If k is an integer at least as great as x(G) then there is a

short proof that x(G) < k =- namely we may exhibit a coloring of G

using at moet k colors. In general such a proof is hard to find but

it must of course exist. However, if k is at most y(G) then it

is not clear if there is necessarily a short proof of this fact.

The following two rules may be used to determine or bound chromatic

numbers (see Section 2 and (2.1) in particular).

(R1) x(6) = min{x(G, ), x(Gey)] -

(Re) If G 4s complete then y(G) equals the number of vertices of G.

Given a set 8 of rules like (Rl) and (R2) let us call a proof that uses

only these rules an S-proof, and each application of a rule in 3 a step.

Clearly there is a close correspondence between an {(Rl), (R2)}-proof

determining x(G) and a Zykov tree for G.

Prom Theorem 4.1 we obtain |

Corollary 7.1. If G is a graph in 4 then every {(R1), (R2)}-proof

vhich determines 4(G) without redundant steps has exactly 2C(G)-1 steps.

Thus by Theorem L.3 we know quite a lot about the lengths of

{(R1), (R2) }-proofs which determine chromatic numbers. Consider now a
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third rule, which can be used to establish a lower bcund for chromatic

numberc (see (2.2)).

(3) x(6) >w(G) .

Allowing the use also of the rule (R3) corresponds to pruning our Zykov

trees. From Theorem 5.5 we obtain

Corollary 7.2. If a 1s a given constant factor with 0 <a <1 then

for almost all graphs G, in & every {(R1), (R3)}-proof which establishes

a lower bound for x(G) exact to within the factor a is such that the

logaritim of the number of steps is asymptotically at least :

a n( 510g n)1/2 . ]

Now set p= q=1/2 and Q@ = 1 in Corollary7.2 (as we did in

Theorem 5.5).

Corollary 7.3. Conezider the property for graphs G, in & that in

every {(Rl, (R3)]-proof establishing the correct lower bound for x(G,)

the number of steps is at least

n(log, a)/2
(1.1%) .

The proportion of graphs in X, with this propertytends to 1 as n ~e,

From Corollary 6.2 we obtain

Corollary 7.k. Let ¢> 0. Then for almost all graphs G in 4

the marked Zykov algorithm yields end {(Rl), (R2), (R3)}-proof determining
(Stem

x(G) with at moe*. n e steps. If Conjecture 5.3 holds thea for
almostall graphs G in & the marked Zykov algorithm (eventually)
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yields an {(Rl), (RR), (R3)}-proof determining x(G) with at most
( Tren

n steps.

Consider now a fourth rule which can be used to bound chromatic

numbers.

(RU) If G has a subgraph H then y(G) > x(H) .

The set of rules {(Rl),(R2),(Rk)] seems to the author to be as natural

as the set {(Rl),(R3)} for establishing lower bounds for chromatic numbers.

The following proposition shows that the two sets of rules are in a sense

equivalent. The proof is straightforward and is omitted.

Proposition 7.5. For any {(Rl), (R3)}-proof that x(G) > k there is an

{(R1), (R2), (Rk) }-proof with at most twice as many steps; and for any

((R1), (R2),(Rk) }-proof that x(G) > k there is an {(R1), (K3)}-proof

with no more steps.

At first sight it might seem to be of advantage to allow also rules

like the rule (R5) below, which is closely related to the rule (Rl).

(8) x(6) > max{x(ar,),x(ag,)}-1 .

One would of course not have to know both x(G5,) and x (a5) in order
to use the rule (K5). However, it is not hard to prove for example the

following proposition,

Proposition 7.6. Tor any {(Rl),..., (F5)}-proof that x(G) > k there

is an {(R1), (R3)}-proof with no more steps.

Another rule which might de considered is the following.
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(R6) If some vertex v in G 1s adjacent to each other vertex then

x(G) = x(G-v)+1 (where G-v has the obvious meaning).

However, again we may see without difficulty that including this rule

would not lead to shorter proofs.

Yet another possible rule which might be thought helpful is the

‘principle of separation into pieces’, as described in [2] Ckipter 15.

This rule shows how to break our problem into smaller independent

subproblems if the graph has a separating set which induces a camplete

subgraph. It may on occasi.n help to organize proofs but once again we

may easily check that it does not shoiten them.

Finally let us note that all the above discussion falls down if we

are allowed to recognize isomorphic graphs with different vertex sets.

It would be interesting to know what can be said in this case.
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8. Minimal Colorings.

Many authors have investigated algorithms A for (properly) coloring

graphs G which are fairly fast but which use a number A(G) of colors

possibly greater than y(G) . (See for example [9], [12], (33], (1k].)

Following D. S. Jomson [9] we let A(G) be the ratio of A(G) to x(G) ,

and let A(n) be the maximm value of A(G) over all graghs G on n

vertices, Clearly 1 < A(n) <n and the smaller AG) or A(n) is the
better. In [9] it is shown that for several of the most common algorithms

A the function A(n) is of order n . For the best of the known (fast)

algorithms the function A(n) is still of order n/logn .

It is suggested in [9] that the usual behavior of A(G) for graphs

G, on n vertices may be very different from the behavior found for A(n) .
We shall see that this is indeed the case,

Consider first the sequential coloring algorithm SA or A (see

[8], [9] and Section 3 of this paper). Johnson shows without difficulty

that A (2) is of order n , and suggests that, however, the expected

value of A (6) may be bounded by a constant independent of n . It
follows easily from results in a paper [8] by G. Grimmett and the present

author that for any « > 0 we have A (G,) <2+¢ for almostall graphs

G, in 4 : also it is easy to prove that the expected value of A (G)
is at most 2+; for n sufficiently large (see the proof of Theorem 8.2

below).

We now look st the usual behavior of A(G,) for other coloring
algorithms A. A proper coloringof a graph G is minimalif for each

pair of colors used some vertex of one color is adjacentto some vertex

of the other color; that is, if no color can be replaced by some other

already used color; that is, if the corresponding proper partition @Q
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of G is such that the contracted graph Gq is complete. A coloring
algorithm is minimal if it always yields minimal colorings. All the usunl

coloring algorithms are minimal, and in any case from an arbitrary prover

coloring one may easily produce a minimal coloring. Thus it seems

reasonable to restrict our attention to minimal coloring algorithms,

For every graph G let M(G) be the maximm value of A(G) over

all minimal coloring algorithms A . An alternative definition of M(G)

is then that it is the largest integer t for which there exists a proper

partition Q of G into t sets such that the contracted graph Gq
is complete. For every graph G we let M(G) be the ratio of M(G)

to y(G) » Thus M(G) is a measure of how badly it is possible to

color G .

It scems that for any fast coloring algorithm A yet proposed there

2xist graphs on which A performs very badly ([(3]). However, for most

graphs every minimal coloring algorithm performs not too badly: we shall

prove below that M(G,) is in probability only of order (log n)1/2 .

Lesma 8.1. let ¢ > 0. Then for almostall graphs G, in &

(1-¢)n (2 log n)~1/2 < M(G,) < (1+¢)n (log n)~3/2 . (8.1)
Further for n sufficiently large the expected value of M(G,) lies
in the above range.

Proof. The left hand inequality in (8.1) follows immediately from Lesma 3.6.

Let m be an integer at least (1t¢)n (log a)" 1/2 « By Lemma 3.2

the probability that a given partition Q of {1,...,n] into m sets

yields a complete graph Gq is at most

@. om?) (2)
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Hence the probability Po that there exists such a partition Q

(proper or not) is at most

n

n?(1 - J(o/m)? 2 ) .
But now

1 m (n/m)°og i, <nlogn-(,)logegq < -n

if n is sufficiently large. Hence for n sufficiently large

-1/2 n
Prob{M(G_) > (1+¢)n (log n) } <ngq . (8.2)

The right hand inequality in (8.1) follows from (8.2), and so we have

completed the proof of (8.1).

The second part of the lemma, concerning expected values, follows

from the left hand inequality in (8.1) and fram (8.2). O

Recall that N(G) is the ratio of M(G) to x(G) .

Theorem 8.2. let ¢ > 0. Then for almost all graphs G, in &

(272- ¢)(108 0)2 < Wa) < (2ve)(r08 M2 (8.3)

Further for n sufficiently large the expected value of M(G,) lies in
the above range.

Proof. We know from [8] (s=e also [6] Chapter 11) that for almost all

sis GQ, in 4

1/2 n/log n < x(G,) < (+c) n/logn . (8.4)

Bow (8.3) follows from (8.4) and Lessa 8.1.

The left hand inequalityfor the expected value of Ma) follows
from the left hand inequality in (8.3). Por the right hand inequality

note first that
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EIM(G)] < ( 1/2 n/log n)™ EIM(G,)]

+n Prob{x(G_) < 1/2 n/log n} . (8.5)

But from the proof of Lemma 5.2

n Prob{x(G) < 1/2 nflogn} -0 as n-= , (8.6)

and by Lemma 8.1 for n sufficiently large

EIM(G,)] < (1+ ¢/3)n(log 0) 2 (8.7)
Hence by (8.5), (8.6) and (8.7)

E[M(G)] < (2+¢)(log n)}/2
for n sufficiently large. This completes the pruof of this ihe final

theorem. (J
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Some (uestionc.

The main recult hac been that Zykov algorithms for determining the

chromatic number of a graph in probability take time at least

nog 0)? (for some constant ¢ > 1 )
on graphs on n vertices. This result raises at least three questions

thiat merit attention.

Firstly, the best upper bound here for tne time taken is very much

greater than the lower bound. Is the lower bound of the right order of

magnitude’,

Secondly, all the results here are based on the random graph model

which has constant edge-probability p , and in certain circumstances

the model which has constant average degree say might be more appropriate

(see for example [©] Chapter 1€). Are there corresponding results for

this case?

Thirdly, it follows from the discussion in Section 7 that various

'improvements' in the Zykov algorithms do not in fact lead to a decrease

ir the time taken, But what happens if say we allow en isomorphism

search?
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