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Abstract

Certain algorithms concerning coloring graphs involve the partial
exploration of Zykov trees. We investigate the size of such trees, and
prove that a certain class of branch-and-bound algorithms for determining
the chromatic number of a graph requires in probability a number of steps
which grows faster than exponentially with the number of vertices of the
graph.
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1. Introduction,

Graph coloring problems arise in many practical situations, for
example in various timetabling and scheduling rroblems (see for example
(13), [14]). It would be very useful to be able to determine quickly
the chramatic number of a graph. However, it is well known that this
problem is NP-camplete, and thus we do not expect to find good algorithms
for the problem ([1], [10])). There has l;een proposed a class of branch-
and-bound alguritims, which we call here Zykov algorithms (see {5])). We
branch on whether or not two non-adjacent vertices have the same color
and bound by using the fact that the chromatic number of a graph is at
least the size of sny complete subgraph. 2Zykov algorithms always explore
at least a 'pruned Zykov tree'., We shall prove in Section 5 below that
for almost all graphs G!1 on n vertices every pruned Zykov tree has
at least

cn(].o¢ n)l/2

nodes, for some constant c > 1 . It follows that any Zykov algorithm
requives in probability more than exponential time.

E. L. Lavler [11] has recently noted that a simple algorithm
involving the maximal stable sets of & graph requires only exponential
time. This algorithm is then faster than the Zykov algorithms,

In the next section we give some preliminary definitions, includiag
those of Zykov trees and Zykov algorithms, and in the following sectiom
we present some preliminary lemmas. After that, in Section b we investigate
the size of Zykov trees, The standard algorithm for determining the
chromatic polynomial of a graph involves the exploration of a Zykov tree
(see for example [2) Chapter 15). 1In Bection 5 we investigate the size



of pruned Zykov trees and deduce that Zykov algorithms are slow. Wc also
give a numerical example.

In Section © we investigate a backtrack ccloring algorithm. We show
that it is essentially the same us a certain Zykov algorithm, and obtain
an upper bound for the time it requires. Then in Section 7 we give an
interpretation of our earlier results in terms of the lengths of certain
proofs concerning the chromatic number. The results in this section are
similar in spirit to some recent results of V. Chvatal (k] concerning
stability numbars of graphs; and indeed the research reported in this
paper was initially motivated by discussions vith Chvatal cancerning
his results. PMPinally in Section 8 we consider ‘minimal’ coloring
algorithms, which may use more colors than necessary, and investigate
the ratio of the number of colors used to the chromat!c number. This
last section is not closely related in content to the rest of the paper,

but the results there follow easily from lemmas used earlier.



% treliminary Definitions.

A proper coloring of a graph. G (without loopz or ;arallel edge:
iz a coloring of the vertices of G so that no two adjucent vertice:
receive the same color. The color sets in such a coloring form a projer
partition of G . The chromatic number x(G) is the leart integer &
such that there is a proper coloring of G using &k colnts. A gragh {:
complete if ev.ery two vertices are adjacent, and the cligue number elG)
is the greatest number of vertices in a complete subgra;h of 3,

let n be s positive integer. We let 4 ~snote the cet of all
graph: with vertex set {l,...,n} . Throughout the japer  will be a
constant with O<p<1l and q will be l-p . A probability distribution
13 induced on the set 4‘ of gzraphs by the statement that each edge occurr
independently with proocability p . If k <is a positive integer and
0% <1 abinamial random variable with paremeter: k and x is the
sum of Kk independent {0,1) -random variabies X),...,X, such that
Prob[x’_ =l}sx for i s l,,009k . Thus the number of edges in a graph
in & 15 « binomial random varisble with parameters ('2‘) and p .

Ve consider also the set & of all graphs vith vertices the sets
of a partition of {l,...,n} . If k 1s an integer we shall often confuse
k and {k] . ?hus for exsmple we may say that .%gq: . The use of
sets to ladel vertices is simply a notational convenience.,

We shall sometimes make statements involving such phrases as ‘for
almost all graphs in " ‘e For exsmple Lemma 5.2 delovw states that

for almost all graphs Gn in ‘n
x(Gn) >1/2n/logn .
This simply means that

Prob{cejn: x(Gn)gl/2n/lo(n} -1 as n-~e,



We now move an towe~ds our definitions of Zykov trees and Jykov
algorithms. Supyose that z and y are nan-adjacent vertices in a
graph H in ;;. Pollowing (5] we define the roduced graphs M
and H-Q . The former il'n is obtained frem H Dby simply adding an
edge ‘oining x and y ; and the latter H;' is obtained from H by
replacing the vertices x and y by a single now vertex x Uy
adjacest to each vertex to which x or y was adjecent., We say that
H'v nd H"q are obtained ‘rom H ty an 'edge-addition' and a
‘rertex-contraction’ respectively. In sny proper coloring of H either
x and y have different colors or they have the same calor. Thus we

have the well mowm result (see [15)) that

x(H) = un[x(ll;v) .;(u;),)] . (z.1)

Suppose that we have a graph H in A& which is itself a leaf in
s binary tree. Then branching st H involves choosing non-edjecent
vertices x and y in H and giving E the leftson ll:'“ ani the
rightsan H;'. Of course we camnot bramch at H if H 1s camplete.
Nowlet C be s greph in & . If we start vith the single node G,
the root of our binary tree, and bramch repeatedly we obtain a partisl
Zykov tree for G . By (2.1) we know that x(G) is the minimm value
of x(L) over all leaves L of amy partial Zykov tree for G .
A Zyhov tree for G is a partial Zykov tree in which each leai is a
complete graph. We give below en example of a ZyRov tree for a graph
in g, - (See also [2] Chagter 15, [5].)



Example.

We have now described the 'branching' process to be used in our
hranch-and-bound algorithms. The 'bounding' process depends on the

obvicus result that for any graph G
x/6) > »(6) . (2.2)

A Zykov algoritia is a branch-and-bound algorithm for determining
the chromstic number of a graph, using branch and bound processes as
described above. Suck an algorithm has a subroutine for determining
for each graph E & lower bound w'(H) for w(H) (for example by
finding a complete subgraph of H ). Also it mainteins a current best

upper bound for the chromatic number, which iz always at most the number



of vertices in any graph encountered. It operates on a graph G as
follows. It begins to (construct and) explore a partial Zykov tree
for G, starting witr the root G . Suppose that at some stage we
ha'/e explored a partial Zykov tree T Jor G and we have an upper
bound b for yx(G) . The algoritlm chooses a leaf L of T with
w'{L) <b if there is such a lea’, them tranches at L and updates
the upper bound: if there i: no such leaf L the algorithm returns
x(G) = b and stops. A purticular erample of a Zykov algorithm is
investigated in [5], and another one in Section 6 below.

It is een, to see that a Zykov algorithm always returns the correct
valur: for thc chromatic number and then stops. Purther if say it conducts
a depth-first search of the partial Zykov tree the storage requirement
need only be say o(nb) . The problem iz that Zykov algorithms are very
slow, even if we suppose that the subroutine can always determine w(H)
exsctly and without cost, and that we can alwe s start with the upper bound
at the actual value of the chromatic number. (Both these suppositions are
of course rather unlikely, since we would be solving NP-complete problems
(1l.)

Given a Zykuv tree Z for a graph C the corresponding prumed
Zykov tree consists cimply of the root G if (G) = x(G) and otherwise
is the unique maximal rooted subtres of Z containing as internal nodes
precisely the nodes H of Z with w(H) <x(G) . My Zykov algoritim
must explore at least some proved Zykov tree for G . We shall prove
that pruned Zykov trees are usually very large and thus that Zykow
algoritims are usually very slow.



Finally let us establish some notztion. We let f§ denote the set
of positive integers and & the set of non-negative integers. For any
real nmber x we let [x]1 denote the least integer not less than x
and | xj denote the greatesc integer not more than x . Recall ithat
q is a constent with O < q <1 (except that in part of Section 3 we
allow q to vary). All logarithms are to the base 1/q unless otherwvise

indicated.,



3. Preliminary Results.

In this section we present some necessary preliminary lemmas, which
may be of interest in their own right. Lessma 3.1 is well known and is
used only in the proof of Lemma 3.2, which is the most used result in
this section. The remaining results, Lemmas 3.3 to 3.6 concern the
'bomd;d sequential coloring algoritim', and are needed here only for
the 'converse' results in Sections 4 and 5 and for Sectionm 8.

Let mneN and let Q= (Sl""’sn) be a family of pairwise
disjoint subsets of {1,...,n} . We say that Q 1is proper for a graph
G in ‘n if no two adjacent vertices of G are in the same set Si
in Q. For each graph G in % we define a 'contracted’ graph GQ
as follows: the graph G

Q
the vertices si and SJ if and only if there iz an edge in G between

has vertices Sl"“’sn and an edge between

some vertex in the set 3i and some ve:tex in the set § 3" Clearly GQ
may be formed from G by a sequence of vertex-contractions if and only
if Q is proper for G .

Now let myne N and let Q be a partition of {1,...,n} into m
sets. It seems reasonable to think that we are likely to have more edges
in Gq the more equal in size are the sets in Q . We prove belov that
this is true.

Yor any randcn variable X we let Px denote its a‘stribution
function, that is

Fy(t) = Probix = t]

for each real number t . Given two random varisbles X and Y we

write X <Y in distribution if !‘x(t) > r,(t) for each real number ¢t .



Lewma 3.1. Suppose that X, Y, Z are random variables, that X <Y
in distribution, and that both the pairs X, Z and Y, Z are independent,

Then X+Z < Y+Z in distribution.

Proof. For any real number ¢t ,

Pyog(t) = j‘rx(t-u)drz(u)

> [P (t-u)ar,(u) = P,(¢t) . O

Let myneN and suppose that m is fixed. For each real number gq
with 0<q<1l, let N(q) be a binomial random variable with parameters
(;) and (1-q) , and for each partitiom Q of (1,...,n} let N(n,Qq)
be the number of edges in the contracted graph GQ for graphs G in Jn

with edge-probability (1-q) .

Lemma 3.2. For each partition Q of {l,...,n] into m sets we have

2
Nn,Qq) < n(q(“/‘) )  4n distribution. (3.1)

Proof. We may of course assume thal m > 2 , We shall prove first

that for each partition Q of {l,...,n} intoc m sets we have

¢ [o/m1° _
n,Qaq) < Nq )  in aistribution. (3.2)

let Q= (sl,...,sn) be a partition of {1,...,n} into m sets;

let s, = |8 for is1l,.,.,0 ; and suppose that s.+1 < s,-1 ., Let
i i 1" -

2
ves, and let Q' be the partition obtained from Q by switching v
from 8, to 81. In this part of the proof of the lemma both n and
q will be fixed. Denote N(n,Qq) mnd K(n,Q',3) by N, md Ny,
respectively. 1In order to prove (3.2) it is sufficient to prove that

Wy < 8 1in distribution. (3.3)



Consider first the case == 2 , vhen IIQ and lq, may take only
the values O and 1 . Clearly
5.8 (s,+1)(s -1)
Prob[lq-l}-l-qlzsl-q 17"a - Prob{N, = 1} ,

and (3.3) follows.

Suppose now that m >3 ., Let R and R’ be the partitions Q
and Q' respectively with the last set deleted. By induction we may
assume that N, < N, in distribution /in an obvious notation). Let
D and D' be random variables giving the degree of the 'last’' vertex
in GQ amd GQ' respectively. Then 'R and lR' are independent of

D and D', and N -IIR+D and N_, = K_.+D' . Hence by Lemma 3.1 in

Q QI nl
order toc prove (3.3) and so (3.2) it is sufficient to prove that

D < D'  in distribution. (3.4)

PD!' 1 - 1' o.o,.’l let ‘1 - l 1f 81

vertices in GQ and let ‘1 s 0 otherwise. Define random variables Xi

from Q in a similar manner, Then the random variables ly...n&_l

and 8‘ are adjacent as

are independent and sum to D ; the random variables x.i,...,&'_l are
independent and sum to D' ; and xi-Xi for i s 35,0981 . Hence
by Lemma 3.1 in order to prove (3.4) (and so (3.3) and so (3.2)) it is
sufficient to prove that
X +X, < X1+X;  in distribution. (3.5)
Note first that X +X, end X{+X) may take only the values
0,1,2 . Now

Prod(X+X, > 1) = 1 -q('ln"’).' = Prob{X; +X3 > 1} .



Prob{X,+X, > 2] = Prob{X; = 1]}Prob(X; = 1]

5.8
- (@-at™a-q®M
) l-qlll. i ;23- . q(slﬂz)a. ’

and similarly

Prob[Xi+lé 22} = Prob[Xi = l}mtlé = 1}

(s,+1)s (s,-1)s
e Q-q ' Ma-a M

( -
\sl+1)s- (52 l)l- (sl+s2)s-
= 1l-q -9 *q .

L
Novlet teq  , sothat 0<t<l. Then

Prob{X; +X} > 2} - Prob{X, +X, > 2}

s s (s,+1) (s,-1)
-tl*t",-t 1 -t 2

- (J-t)(t'l-t 27
and this last expression is non-negative, since 8y < lg-l . But this
completes the proof of (3.5) amd so of (3.2). We now use (3.2) to
prove (3.1).

Given a set 8 of positive integers and a positive integer k let
kS be the set of positive integers 1 such that [1/k1 isin 8.
Given a partition Q= (31,32,...,&) of {1,2,...,n) for same integer n
let kQ Dbe the partitiom (kﬁrk&r...,lﬁ.) of {1,2y¢..,km} . Por
cxample if Q is the partition ({1,2),{3)) of {L,2,3) then 2Q 1is
the pertitian ({1,2,3,4},(5,6)) of (%,2,....6} .



Let neN , let Q be a partition of {1,2,...,n} into @ sets
and let q be a real number with 0< q< 1. Let '.n,l-q denote the
set 4 wvith edge-probabilities 1l-q . Then N(n,Qq) is the sum of
(3) independent (0,1} random variables X;3 Q<i<yzm) such
that

P’rob{xi‘1 =1} = Prob{G e*x,l-q: some vertex in S, is adjacent to some
vertex in SJ]

s, ||s
AL

2
1/x
<&

Let k be a positive integer. Then N(im, kQ, ) 1is the sum of (; )

independent {0,1] random variables Yi.‘! (1 <1 <j<m) such that

PI'Ob[YiJ -1} = Prob{G ed

o same vertex in ksi is adjacent
1/
h‘l,l-q

k
to some vertex in kSJ]

k kS
YA AN

S 118
GALA

Hence for each positive integer k,

2

W(n,Qq) = K(km, kq, q in distribution. (3.6)

By (3.2) and (3.6) for eacb k¢ N we have that in distribution

2
¥(n,Qq) = N, kq, /%)
2
likn
(;5[7] )
Mgq

But :’3[%]2 -.(-‘.1)2 85 k-e, md so clearly (3.1) holds. This

<

completes the proof of lLemma 3.2. O



We define an algorithm related to the sequential algoritim (8A) for
coloring graphs (see (8], (9], (13]) and which we call the bounded
se tial ithm (BSA). We shall look at graphs G in J for
same n in N . Suppose that we have a positive integer s . The
BSA (bounded at s ) acts an each graph G in the same way as the SA,
except that we allow each color set to contain at most s elements.

Thus the BSA (bounded at s) colors vertex 1 with color 1 and then
colors the remaining vertices in increasing order, coloring vertex i
with color j if J is the least positive integer such that vertex i
is not adjacent to any vertex already colored J and such that there
are at rost (s-1) vertices already colored Jj .

Suppose now that we have also a positive integer t ., For each
graph G in & we shall be interested in the family Q(G) (= q',t(c))
consisting of the first t color sets constructed by the BSA (bounded
at s); and more interested in the contracted graph G' = GQ(G) . We
say that a family Q(G) as sbove is full if each of the t sets contains

the full s elements.

t
1—252. Let ¥ be a binomial random variable with parometers (2)
and q' . Then for each non-negative integer Xk

Prob{G) misses at most k edges} > Prob{N < k}Prob{Q(Ch) is a1} .

Proof. Let @ (= R(n,s,t)) be the collection of all the families

Q(G) for graphs G in & - Thus @ is the collection of all families

(31,...,&") of t disjoint subsets of {1,...,n} each of size at most 3
and such that for each index 1 in {1,...,t] =nd each vertex v in a

set with index greaster then 1, if |31|<- or v<u for same vertex

u in B1 them v > u' for some vertex u' in 81.

L,



let Q= (Sl,...,St) be a family in R . Let X be the set of

graphs G in J“ such that no two vertices adjacent in G lie in the
same set 8 » and let Y be the set of graphs G in Jl such that
for each index i in {1,...,t] and each vertex v in a set with index
greater than 1 , if |31| <s or v<u for some vertex u in 8,
then v 1is adjacent in G to some vertex u' in s1 with v>u' ,
Then

{Ged: QG) = Q) = XNY
Now clearly in distribution we have

|E(GQ)| < |E(GQ)| given GeY ,
and conditioning on X does not affect the distribution of the number

of edges in G Thus in distribution

Q"
|E(GQ)| < [E(GQ)|  siven Q@) =Q . (3.7)
But now for each ke Z ,
Prob{G' misses at most k edges)
= Prob{|E(¢")| 2 (5) -x)

- Qxa Prob{|2(6Q)| > (7) -% | Q(G) = Q}Prob{Q(G) = Q)
€

> I prob{|E(cQ)| > (7) -k}Prob{a(6) = Q) (by (3.7))
QeRr

2 QE. Prob{( 5 ) - |E(Gy)| < k}Prob{q(c) = q)
€
Q full

= Prob(N < k}Prob{Q(G) rull} . a

1h



Lemma 3,4, For any positive integers n,a,t with st <n

Proo{Q(G ) mot full} < n(L- o> 1yn/e-tHl

Proof. For each graph G in J and for 1= 1,...,t let Si(G)

denote the i-th set in Q(G) . Then
t
{Q(G,) not full} = 1U1“81(G“)| <s} .

Now for each k<n in AN and each graph Gn in "n let uk(Gn)
denote the number of vertices of Gn amongst tnc Mrat k which the SA

colors with the first color (see [8]). Then

t
Prob{Q(G ) not full} < 12"1 Prob{ |8,(G )| < s}

< 1%‘,1 Prob{an_(i_l)s(Gn) < 8}

< 1%1 s(1-* /2 (1) (gee [8])
< lt(l_qs-l)n/a-(t-l)

< n(l_qs-l)n/s-t+l . =

Lema 3,5. Let ¢ >0 and let s and t be functions from N
to N such that s(n) < (1-¢)logn and s(n)t(n) < (1-¢)n for each
n in N . Then
Prob{Q(G,) full} =1 s n -« . (3.8)

1/2

If further s(n) > (2 log n) for each n in N ther

Prob{G, complete} - 1 a8 n o, (3.9)



Proof. By Lemma 3.4
log Prob{Q(G,) not full) < logn - en/logn « log e n”(*"%)
- o a8 N —-ox ,

and so (3.8) holds. Now suppose that s(n) > (2 log n)l/2 for each n

in N . If N is as defined in Lesma 3.3 then
0 > log Prcli. = 0]

2
= (5) log(1-q%)

n2 2
>Togn log(l - 1/n%)

v

- 0 a8 N = o

Hence

ProbfN =0} =1 as n-= , (3.10)

Now (3.9) follows from (3.8), (3.10) and Lesma 3.3, O

lesma 5.,6. Let ¢ >0 . Then for almost all graphs G in .% there
is a proper partition R of G into at least (ll-g)n('g‘].ogn)':l‘/2

sets such that the contracted graph Gﬂ is complete.

Proof. Let s(n) = [(2 log n)1/21 and t(n) @« ((1-¢)n(2 Llog n)'l/21
for each n in N . Then by Lemms 3.5
Prob{Q] complete} — 1 @ nN-w , (3.11)

Now with each graph G in "n we shall associate a proper partitiom
R(G) related to the proper family Q(G) , and the comtracted grsgh

* '

G'GB(G) rdudtothccmtrmmcncq(o). Consider a
pwhcm%.memtmvmicuofcmmmmin
Q(G) are Vlg ..."J in mm order. Por i s 1,.-0,1 in tum

16



add the vertex v, to the first possible set in Q(G) (that is, to the
first set in Q(G) such that vy is not adjacent to any vertex in the

set) and if we cannot add v, to any already present set in Q(G) then

i
we add to Q(G) a new singleton set {vi] . In this way we construct a
proper partition R(G) of G with st least t sets. Let G be the
contracted graph GR(G) - Then clearly the number of edges missing in

(;'t is at most the number of edges missing in G' . Hence in particular

we have by (3,11) that

Prob{G; complete}] - 1 as n-= ., (J

Lemmas 3.5 and 3,6 are in convenient forms for the present purposes:

they clearly are not in their strongest forms.

17



L.  Zykov Trees.

In this section we investigate the sizes of Zykov trees. We have
three main reasons for doing this, Pirstly the sizes of Zykov trees are
of interect in their own right, for example if we wish to determine the
chromatic polynomial of a graph ([2], Chapter 15); secondly scome knowledge
of the sizes of Zykov trees helps us to interpret results on the sizes of
pruned Zykov trees; and thirdly same of the arguments which we use here
are similar to those we use for proved Zykov trees in the next section,

There are two theorems in this section. The first shows in particular
that every Zykov tree for a given graph has the same size, that is the
same number of nodes. Given a graph G let us denote by C(G) the
number of proper partitions of G (that is, the number of colorings
of G with 'color indifference'),

Theorem 4,1, Every Zykov tree T for a graph G has 2C(G)-1 nodes.

Proof. It is not hard to check that the vertex sets of the leaves of

T are in 1l-1 correspondence with the proper partitions of G. 0O

The next theorem gives asymptotic results which by Theorem k,1 above
may be stated in terms e¢ither of the size of Zykov trees for a gragh G
or of the number C(G) of proper partitions of G . We choose to state
them in terms of the latter. It is convenient to separate out part of
the proof as a lemma.

Forevery n in N ad 2,7 in Z let T (f,r) De the set
of graphs G in Jn such that in every Zykov tree for G if we start
at the root G we can always make f(n) left turns and r(n) right
turns without reaching a leaf. If a graph G 1s in 'l'n(l,r)



then certainly every Zykov tree for G has at least ( l:r) nodes. We

wish to chocse the functions ! end r so that Prodb 'rn(l,r) -1

a8 n -e and (';r) is as large as possible.

Lesma 4.2, There exist functions ¢ and r from R} to f such
that

Prob rn(:,r) -1 @ n-w (L.1)

log( }7) > n(10gn - 3(% 10g 2)?/)

for n sufficiently large (.2)

For example we may take { and r so that

1) o o2 +0(2)) (208 0)2 (k.3)
and
r(n) = Ln(l-(-;- 108 )3 . (b.%)

Proof. Lat f emd r be functions from N to N , such that
l(n)s(;) ad r(n) <n-l , which we shall choose below. Por each n
in N 1let m(n) s n-r(n) , let x(n) = n/m =nd 1lst k(n).(;).

We shall choose r 80 that x(n) =« as n ~-e bdut x(n)-o((l.o.n)llz).
let @, dencte the set of partiticas of (1,2,...,n} into st least =

non-empty sets. Then the complement i.(l,r) of T (t,r) in & satisfies

fn(l,r) = U {Ged: Qproper for G and G, misses at most ! edges}

QeR, q
C U {Ges: G, misses at nost ¢ edges) . (A.5)
chh{“' Q™

£

Let N be a binamial rendom varisble with parsmeters k and q . Theam
by Lessa 3.2 for exch partition Q in ®, we have
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Prob{G €k : GQ misses at most ! edges} < Prob{N < 1} . (L.6)
Now clearly ®, coutains at most n” partitions and so by (4.5) and (4.6)
Prob ¥ (1,r) < o" Prov{N < 1) . (%.7)
We shall use (L.7)to ensure that Prob T (f,7) =0 as n e, and 50
clearly we must take ! < E[N] (at least for large n ). We let
((n) ~ % En] = %kq’z ~n2to) (4.8)
Now

! 2 2
Prov{W s 1} = T (i rta-q= )t

< <n+1)(’,‘)q’2'(1-q"2)"" (8.9)

(for n sufficiently large that #(n) < E[N] ).

Bow by (4.7), (b.8) amd (h.9)

log Prob ¥ (1,1)

<nlogn* ll.ogl-!lo.!'llocc-xal-(l-l)ln.cq‘?*o(lqn)

enlogn+ f(log k-(- log 2+ log k - x°) + log & - x° - 2 log e + o(1))

«nlogn - f(log e - log 2 + o(1))

- cw % n-e
Bemce (A.1) holds. It remains to chooee r . HNow

log( ;") 2 (a-m)(20g ¢ - 1og n)

« a0-x")(log s - 2 1og x - & + 0(1))

1

> n(logn - x logn - 12 + x(1+0(1))) . (s.10)



let y(n) = (% log n)l/5 and mn(n) = [n/yl . Now x =n/m and so

y > x >n(n/y+1)

log n/x + 2° < (log n)/y + (log n)/n + ¥
- 5y2+o(l) .
Hence by (4.10)

(T

*T) > n(log n - 3(} 108 0)?3 + (2713 +0(1)) (208 0)1/7)

log

v

n(log n - 3(3 1og n)?/?)

v

for n sufficiently large. Thus we have proved (L.l). From the above
we may easily check (4.3) and (k.4). This campletes the proof of

Lemma 4.2. (O

Theorem L.3. (1) For every graph G, in &
log €(G,) < log C(f) = n(log n-log log n-1log e+o(1)) ,

where § is the graph on n vertices with no edges.

(2) The expected value E[C ] of C(G) for graphs G 1in J satisfies
log E[,] = n(log n- (2 15 0)*/2 - 1 1og 1og n+0(1))

(3) TYor almost all graphs G, in &

n(Log n-s(% 106 0)*/%) < 108 c(q,) < n(logn-(2 log n)'/2)

Proof. (1) The first part follows easily from the observation that (g )

is simply the numbor of partitions of {1,...,n} .
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(2) We first show that

1/2

log E(C_) > n(log n - (2 log n)Y/? - %log log n+0(1)) . (4.12)

let d be a function from Ry to N such that d(n) == as n ==
but say 4(n) « O(n/log n) . We shall choose d below. Let R, be the
set of partitions of (1,...,n} into k= | n/d] sets each of size 4
and (possibly) the (n-kd) singleton set ({kd+l},.,..,{n} . Then the

number of partitions in Ry, equals

kd)! n-4)?
e(@)F > @/a)(a)e

and the probability that a partition in R, is proper equals

(d)k ina
2 2
q > q .

Hence the logarithm of the expected number of proper partitions in R, is

at least

(a-a) log(n-d) - (n/4) og(n/a) - (n/a)(4 log 4) - 3 nd+0(n)
= n(log n - log n/d - Jogd-%d* o)) . (%.12)
Now let
£(x) = logn/x + log x + ¥ x

for x>0 . Tha rn(:) achieves a unique minimm for % >0 at

x= (2206 0+1)2 - 1  and this minimm equals

(2 1og n)/2 + 5 log logn + O(1) . (%.13)



2| for ne N and find that the right hand

We set d(n) = | (2 logn)
side in (L.12) equals

1/2

n(lsg n - (2 log n) - % log log n + O(1)) .,

Hence certainly (L.11) holds.

We now show that
1/2 1
log Elcn] < n(log n - (2 log n) -5 1loglogn + O(1)) . (b.1k)

The inequalities (L.11) and (L.1k) of course prove the second part of
the theorem,

Let k = k(n) be an integer i such that the expected number of
proper partitions into i non-empty sets is a maximm, Then clearly
E[C,] 18 at most n times the expected mmber of proper partitions
into k non-empty sets. Let d = d(n) s n/k . (Thus d(n) is not
necessarily an integer,)

Let Q= (sl’""sk) be a partition of {1,...,n} and let
s = |81| for {=1,,00k ., Then as in [8) we see that the probability
that Q is proper equals

& qé ACEA qé (7 &5-n) 5 qé /e -n)

i=l
Also the number of partitions of {1,...,n} into k non-wmpty sets is at
most k/ki . Hence

1.2
k -
Bte. 5n§q§(n/ n) ,



2
log E[C_) gnlogk-klogk-% % + o(n)

nlogn-nlo'd-glogn-%nd+o(n)

a(l0g 1 - £,(4) + 0(1))
But by (4.13)

£,(8) > (2 1og 0)/% + § 1og 20g n + 0(1)
md 50 ve have proved (k.14).

(3) The left hand inequality in part (3) follows immediately from

Lesma 4.2 and the discussion preceding it. Now clearly

log E[C_] > n(log n - (2 log n)'/2) + 1og Prob{log C(G,) > n(log n - (2 Log n)*/?)}
and so by part (2)
log Prob{log C(G)) > n(log n - (2 1og n)*/2)y
< n(- % log log n + 0(1))

- oW a N -~

This proves the right hand inequality in part (3), and thus campletes the
proof of the theorem. O

There is a fairly large difference between the left end right hand
sides in the third part of Theorem 4.3 above. The second pert suggests that
the right hand inequality in the third part may be quite good. It thus
seems quite possidle that the left hand inequality is rather weak., Recall
that the left hand ineguality follows from Lemma bh.2, Proposition h.L below
shows that Lemms 4.2 is in a sense best possible. Proposition k. b
corresponds to Proposition 5.7 in the next section. We 4o not prove
Proposition k.M here: it mar be proved along the lines of the proof of
Proposition 5.7, using the results in Section 3.
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Proposition 4.k, Let ¢ and r be functions from N to N such

that

108( “iT) > nflog n-(3+0(1))(§ log a)/%} . (1.15)

Prob‘rn(l,r) -0 a8 N~ =

Note that (L.15) above means that for any function f such that

£(n) = n{log n-(3+0(1))(} log n)*/?)
we have

log( l:r) > f(n) for n sufficiently large.



5. Pruned Zykov Trees.

In this section we investigat : the size of pruned Z)kov trees, We
do not manage to find out ax much about pruned Zykov trees as we found
out about (vapruned) Zykov trees in thLe las'. section, but we are able to
prove a greater than exponential lower txmd. This result shows that
Zykov algorithms for determining the chromatic number of a graph ususlly
require more than exponential time,

We have seen that every Zykov tree for a given graph has the same
size. Thus certainly if we have to construct & Zykov tree thare is no
point in spending time choosing a 'best’ way of branching. The ;ituation
is quite different when we look at pruned Zykov trees. Two pruned

Zykov trees for a given graph may have different sizee.

Example. Two pruned Zykov trees for ® .




For every graph G let r(G) be the ratio of the greatest size
to the smallest size for pruned Zykov trees for G ; and for each n
in N let r(n) be the maximm value of r(G) over all graphs G
on n vertices. Thus r(n) is a measure of the possible variation
in sizes of pruned Zykov trees for graphs on n vertices.
For each graph G on at most four vertices we have x(G) = w(G)
and so every pruned Zykov tree for G has exactly one node, Thus
r(l)sr(2) sr(3) = r(t) =1 .
The example above shows that r(5) > 1 , and by adding isolated vertices
t0 a graph it is easy to see that r(n) (strictly) increases from n = 5
onwards. Thus
r(n) > 1 for n>L4 ,

In fact r(n) grows drematically with n .

5 (1+0(1))
Propositiocn 5.1. r(n)>n .

We prove Proposition 5.1 by constructing for each integer n > 7
a graph H!': on n vertices such that

3 (1+o(1))
r(l'&") 2 QC(ﬂ. )-1 s n L] (5-1)
L2}

Here c(ﬁk) is the number of partitions of a set of k distinct elements
(see Theorem 4.3),

First for each integer k >5 let H, be tke pentagm Cs; rlus (x-5)
vertices adjacent to each other vertex. Thms H, is a 'wheel with (k-5)
axles': see the example below for H, . Tt is easy to check that o(B,) = k-3
and x(nk)-k.e ; and that every pruned Zykov tree for H, has exactly three
nodes, Now for each integer n > 7 1let H; be the graph ﬂl,e.'+1
together with |n/2)-1 isolated vertices. 2
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Example. H, 1is H., plus L isolated vertices.

By branching within the large component of H;l we see that the

smallest size of a prunea Zykov tree for H;: is 3. Now
Ln/2j-1 < Mn/21-1 = x(H) .

Hence by branching first amongst the Ln/2 J=1 disoclated vertices in Ht'x
we see that the greatest gize of a pruned Zykov tree for l"1 is at least

the size of an unpruned Zykov tree for the graph § consisting

Le/2)-1
of |n/2]-1 1isolated vertices. But by Theorem 4.3 every Zykov tree
for this graph has QC(”LH/ZJ _1)-1 nodes. We have now proved (5.1)

and so completed the proof of Proposition 5.1. 0O

Note that if the isolated vertices are listed first then the marked
Zykov algorithm will explore at least the large prmmed Zykov tree for H;‘ »
and so the backtrack coloring algorithm will also do badly (=ee Section 6).

We nowv move an towards our main results. We need first a lamma
concerning the chramatic number of a random graph, which is taken
essentially from (8]. Recall that all logaritims are to the base 1/q
unless otherwise indicated. A set of vertices in a graph G 1is stable

if no two are adjacent, and the stability number a(G) is the greatest

number of vertices in a stable set.



Lemma 5.2. For almost all graphs G, in "n

1
x(G,) > 3n/logn .
Proof, If X(Gn) < é n/log n  then certainly the stability number
a(cn) of G satisfies
a(Gn) > n,'x(Gn) >21logn .

But if we zet s(n) = 2 log n] then
a, (2)
Prob{cx(Gn)zsls(s)q -0 @8 N~ o,
Hence Prob{y(G ) < % n/lognl -0 as n~=. Q0O

The following conjecture appears essentially in [8].

Conjecture 5.3. If ¢ >0 ther for almost all graphs Gn in "n

x(6) < (F+em/logn .

We necd one more lemms in order to prove our main results. Suppose

thet we have a positive constant @ and functions ( and r from N

to & . Por each n in &N et 1’:(1,:-) be the set of graphs G

in ‘.n such that in every Zykov tree for G whenever we start at the
root G and make 2(n) 1left turns and r(n) right turns we do not
encounter any node H with eo(H) > x(G) . (Compare with the definition
of 'rn(r,r) preceding Lesaa 4.2 1n Section A.) If G 1s a graph in
1’:(1,:-) then certainly every Zykov tree for G has at least ( l;r)

nodes H with o(H) <a x(G) . Thus setting Q@ = 1 we see that if §

+r

is in r}‘(z,r) then every pruned Zykov tree for G has at least ( r )

nodes., We wish to choose the functions 4 and r so that
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Frob ‘l‘;(l,r) ~1l a8 n—-= and ( l:r) is as large as possible,

Lewma 5.4, Let a be a positive constant. Then there exist functioms

t and r frm N to Z such that

Prob 1‘:(1,2') -1 as n -e (5.2)
and
108( 2T) ~ a n(-21,—.’ 10g n)Y/2 (5.3)

For example we may take

t(n) = |.n5/3(10¢ n)"J (5.k)
r(n) = |n(12 1log n)-l/z_j . (5.5)

Lesma 5.1 above of course corresponds to Lesma L.2 for (unpruned)
Zykov trees, and we saw in Section 4 that Lemma L.2 is in a sense best
possible. At the end of this section we shall prove that Lemma 5.5 is

also in a sense best possible.

Proof. Let £ and r be functions from N to N , which we shall
choose later. Let b(n) e L%n(log n)'lJ » let B be the set of
graphs G in & such that ¥(G) > b(n) , and let B,(2,r) be the set
ormcinanmhﬂutinmrymtmrorcumve
start at the root and make {(n) left turns and r(n) right tums we

do not encounter any node H with ¢(H) >a b(n) . Thea
B B (Lr) g Ta(tr) . (5.6)

B lemma 5.2 Prob(B)) =1 as n-e. Hence if Prob B (f,r) ~1 as
D~ then so does Probr:(l,r). Thus we vish to choose ¢ and r s0
that Probln(l,r)-l a8 B ~o and (l:r) is as large as possible.
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We nov look at the complement ﬁn(l,r) of B(Lr) in & .
Lec @ be the collection of all families Q= (Sl’”" Sb) of b disjoint
subsets of {1,...,n} with union containing r+b elements. For each

femily Q in R 1let T, be the get of graphs G in "n such that the

Q
contracted graph GQ misses at most I edges., Now if G is a graph
in ﬁl‘(l,r) then some graph obtainei from G by performing at most r
vertex-cortractions contains a subgraph on b vertices missing at most

! edges; and so GeT, for family Q (proper for G ) in R . Hence

Q
B(6r) U (T Q) . G.7)
Next we find an upper bound for Prob('rq) o It is convenient to let
nn(:) and x-%ﬁ.ve:hnlchoosersothat %x(n) - = as
n -e, Let N be a binmial random variable with parsmeters m and qx2 .

By Lesma 3.2 for each Q in R,

Prob(T,) < Prob{N <1} . (5.8)

Now clearly @ contains at most n° femilies Q . Hence by (5.7)

and (5.8)

Prob  (t,r) < o Prob{N <1} . (5.9)

Ve shall use (5.9) to ensure that Prob § (4,r) =0 a8 n -« , and
30 of course we need ¢(n) < E[N] (st least for large n ).
We set

t(n) [% BIIIJ - la‘l; -q'2_| . (5.10)
: 2 2
mo(s<t) = I (H*Hrra-&Ht

4 2
s () (e M- (5-11)
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Note that the right hand side above depends only on x (and n ). We
have

log Prob{N < t}
2
llogm-llog!+lloge-xal-(m-l)logeqx + 0(log n)

A

t(log m - (lccg%-L logm—x2)+lose-x2-2105e+o(l))

= f(log 2 - log e + o(1)) . (5.12)
Now suppose that r(n) = |an(log n)'1/2_| for some constant ) with
0< A< %a say. Then x(n) ~ (2a/a)(log n)l/2 and
log t(n) = (2 - WP/ + o(1)) logn . (5.13)

But now by (5.9), (5.12) and (5.13)

Prob ﬁn(l,r) -0 a8 n -~ o ,

We next look at the value of ( l;r) and choose a value for A .

Now

log( ") = rflog f - log r + O(1)}

-1/2

= )n(log n) {e logn-(hxa/a’?)(log n) -log n +0(log log n)?

= (A - W/ + o(1)) n(log n)/2 .

The maximm value of 1-&;5/3 for A > 0 is attained at A-12'1/2a<%a.

Thus we give ) this value, and find that

log( i) = 324 o1)) an(10g 0)1/2 (5.1k)

as required, The value we have chosen for r is as in (5.5)., Clearly
we may decrease the value of ( from that in (5.10) if we do not thus
falsify (5.1%). Thus we may set ! as in (5.4). This completes the
proof of Lemma 5.4, U

32



From Lemma 5.1 and the discussion preceding it we may now deduce

immediately our main results.

Theorem 5.5. If a 1is a positive constant then for almost all graphs G,
in Jn s every Zykov tree for Gn is such that the logarithm of the number
of nodes H with o(H) <« X(Gn) is asymptotically at least

a n( -;7105 11)'1/2 .

The most interesting special case of Theorem 5.5 above is vhen

P=qgq=1/2 and a=1,

Corollary 5.6. Consider the property for graphs Gn an n vertices

that every pruned Zykov tree for Gn has size at least

1/2
(]..J.lt)n(lc’82 ») .

The proportion of graphs on n vertices with this property tends to 1

a8 n -~ e ,

Corollary 5.6 shows that any Zykov algorithm as defined in Sectiom 2
'almost always' requires more than exponential time. Thus certainly
there exists a sequence (01,02,...,%,...) such that G, 1is a greph
on n vertices and the time taken by any Zykov algoritlm on Gn grows
faster than exponentially with n . HNo camstruction iz known for such
a segquence,

N. R. Garey and D. S. Johnston [7) have shown that the problem of
determining the chromatic number of a graph to within a factor less
than 2 1s NP-complete. By analagy one might have expected some effect
in Theorem 5.5 at Q = 1/2 say, but none is apparent (see also
Corollary 7.2 below).
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The above discussion :s asymptotic in nature, but we may be
interested in applying a Zykov algorithm to graphs which are fairly
large but definitely finite, say to graphs with 500 vertices. Arguments
similar to those above but simpler show that we are already in trouble.
We shall see below that for more than 3/h of the graphs on 500 vertices
every pruned Zyrov tree has more than 101'2 nodes.

Set pw q=1/2 30 that probabilities correspond to proportions.
We shall be talking about graphs in *}w o Note first that, as in the

proof of Lemma 5.2, we have

Prod{y (G) < 39}

IN

Prob{a(G) > 1k)
(B
(e ?

IA

< 0.2 . (5.15)

Por positive integers ¢ and m let S(#,m) be the set of graphs
G in %w which have a subgraph an m vertices missing at most ¢

edges. Denote (;) by k and suppose that 'S%k- Ther

k

Prob 8(1,m) < (520)2" z (:)
{ak-t

500 -k, ky k-stl
< n 2 (l) [ *
It 13 easy to check using the above that for example
Prob 8(53,28) < .a4 . (5.16)

Iet A be the set of graphs G in %m such that x(0)259 amd G

Prob A > 0.75 . (5.17)
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Now let G be a graph in A and let T be a pruned Zykov tree
for G. Then in T if we start at the root and make 53 left turns
and 11 right turns we can never reach a leaf; for if H is a leaf
of T then H has a complete subgraph on 39 vertices and at least
39-11 = 28 of them must be original vertices of G . Hence the
number of leaves of T is more than

(1) > 5x0t

and so the number of nodes in T is more than 1012 . Hence by (5.17)
for more than 3/b of the graphs G in X, every pruned Zykov tree
for G huas more than 1012 nodes.

The basic result in this section is of course Lemma 5.4 from which
Theo=em 5.5 and Corollary 5.6 follow immediately. We remarked earlier
that Lemma 5.4 corresyonds to Lemma 4.2 and we noted in Section L that
Lemna L.2 is in a sense best possible. We now investigate how good
Lesma 5.4 is. Proposition 5.7 below shows that in a (weaker) sense
Lemma 5.4 is also best possible. This suggests that our lower bound
for the size of a smallest pruned Zykov tree for a graph may not be tor.
bad. However, our only upper bound for the size of a smallest pruned
Zykov tree for a grsph is very much larger (see Corollary 6.2 in the

next section).

Proposition 2.7 Iet a be a positive constant. If f and r are

tunctions from N to RN such that

1og( #7) > (2+0(1)) an( Friog n)*/2 (5.18)

Prob To(4,r) -0 a8 n e . (5.19)
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Further if the Conjecture 5.3 holds and if

t+r
r

1/2

log( ) > (l+0(1))an(%los n) (5.20)

then again (5.19) holds.

Proof. Pcreach n in N let =(n) be a real number such that say
1<%(n) <3 . Suppose that ! and r are functions from M to N
such that

1/2

log ) > (8 +0(1))an(%1os n) . (5.21)

1og( l;r
For each n in N let d(n) »: (3/2) n/logn , let D, be the set of
graphs G, in 4 such that ‘(Gn) < d(n) , and let Dn(l,r) be the
set of graphs Gn in "'n such that in every Zykov tree for Gn whenever
we start at the root and make f(n) left turns and r(n) right tums

we do not encounter any nod: H with e(H) >a d(n) . Then
(470D, € D (4T) . (5.22)

We shall prove tha:t

Once we have done this we are nearly finished,
Note first that we may assume that f(n) < (2) and r(n) <n-1.
Also if ¢ <r for same n in N then
() < () ¢ 2™
and so by (5.21) we have log(t+r) = log £ + O(1) .
Now

2

(l;r) < (”_r)r snr

and so by (5.21) again

-1/2

r(n) > (cl+o(1)) n (log n) for some constant ¢, >0 . (5.2%)

We next show that we may assume that
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r(n) < (c2+o(1)) n (log n)'l'l2 for some constamt ¢, >0 . (5.25)

Foreach n in N 1let g(n) = [(2 log n)1/21 and t(n) = Tad(n)l.

Then by Lemma 3.5

Prob{Gy complete} - 1 as n-e

But we may obtain the graph Gr'x from the graph Gn by performing at

most (s(n)-1)t(n) vertex-contractions, and so

nn(o, st) C {G;1 not camplete} .

Now by (5.26) and (5.27)

ProbDn(O,st)-O a8 N -~® .,

1t follows that we may assume that (5.25) holds.

We now show that for n sufficiently large we have

1) > n2 q(F/8 -1)°

Let

x(n) = r(n)(1og n)*/2/n

so that by (5.24) and (5.25) we have log x = 0(1) . HNote that

rjad = 2xjoe (log 0)/? .

Now if (5.28) is false then for infinitely many values of n we have

t(n) < neq(r/c“l -1)2

and so

log( "iT) = r(log ¢ - log r + O(1))

< x n(log n)'1/2(2 logn - ra/azdz + 2rfad - log n

+ § 1og 1og n + 0(1))
- (x - b3/dPa? + o(1)) n (log n)Y/2

< (8 + o(1)) an( %los n)*/2
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(see the proof of Lemma 5.4). But this contradicts (5.21) and so (5.28)
must hold,

Now for each n in N 1let s(n) = [r(n)/ad(n)1-1 and
t(n) = fad(n)l. By (5.25) and Lewma 3.5

Prob{Q(G ) full} ~1 & n=-e . (5.29)
Also
(s(n)-1)t(n) < (r/ad -1)(ad+1)
<r
for n sufficiently large tha% ctetl2 >r . Hence as in the derivation
of (5.27) we have that for n sufficiently large

Dn("r) c [Gt'l misses more than ( edges]} . (5.30)

For each n in N let N be a binomial random variable with parameters
2
t
(2) and q° . Then by Lesma 3.3

Prov{G; misses more than ! edges}
< 1 -Prob(N < ¢} Prob{Q(G) fa1} . (5.31)

But f(n) ~® as n -« and by (5.28) #(n)/E[N] ~e as n-e,
Hence

ProbfN <2} -1 as n-ao . (5.32)

But now (5.23) follows by (5.29), (5.30), (5.51) snd (5.32).

Suppose that =(n) = 2+¢(n) for n in N , vhere ¢(n) >0
and ¢(n) =0 as n - e sufficiently slowly that by Thecrem 8 in [8)
we have

Prod D ~1 a8 noe . (5.33)
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Theu (5.19) follows fram (5.21), (5.22) and (5.33) and so we have
proved that if (5.18) is true then so is (5.19). Now suppose that the
Conjecture 5.3 is true and that A(n) = L+¢(n) for n in N , where
¢(n) >0 and ¢(n) ~0 as n - e sufficiently slowly that (5.33)
holds. Theu as above it follows that if the Conjecture 5.3 and (5.20)

are true then so is (5.1¢). This completes the proof of Propositiom 5.7.
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6. Backtrack Coloring.

In this section we investigate the 'backtrack' coloring algorithm
(BC algorittm) for determining the chromatic number of a graph. This
algorithm was pointed out to the author by R. Tarjan. Given a graph G
it explores part of the 'backtrack coloring tree’' (BC tree) for G,
which is an implicit emmeration of the proper partitions of G . We
shall see that the BC algorithm is essentially the same as a certain
Zykov algorithm, the 'marked’ Zykov algoritiv.. Also we shall give an
upper bound for the number of nodes of the BC tree explored by the BC
algoritm. It will follow that it is worth pruning BC and Zykov trees,

We first describe the backtrack coloring tree (BC tree) for a graph
G in ‘n . It is a rooted tree with height n-1 . Each node is
colored with one of the colors CyreeesCp o A node colored 4 at
depth d (distance d below the root) corresponds to an assigmment of
color ¢, to vertex (d+l) of G . By looking at a node and its
ancestors we see that a node at depth d corresponds to a coloring of
the rirst (a+l) vertices of G . To construct the BC tree for G
we first comstruct a single node (the root) and color it c, . KNow
suppose that K is a leaf in the tree so far constructed and that K
is at depth d <n-2 . Then K corresponds to a proper coloring C
of the first (d+*l) verticesof G . let i, be 1 plus the maximm

index of a color used in the coloring C ; and let ¢, ,...,¢; (where
1 J

320 sd 1, > ... >iJ ) be the colors used in the coloring C and
such that vertex (&+2) 1is not adjacent to any vertex of the colar.

We let the node K have (J+1) sons colored cio,cil,".’cij in order
from left to right.



We have now defined the BC tree for G . It is not hard to see
that v.ere is a 1-1 correspondence between the nodes of the BC tree
for G at depth d and the proper partitions of the subgraph of G
induced by the first (d+l) vertices (see Example 6.1 below). Hence
the number of nodes in the BC tree for G is between C(G) and nC(G) ,
and so Theorem L,3 gives asymptotic results about the size of BC trees,

If ke N the BC tree for G pruned at k is simply the root of
the BC tree for G if k =1 and otherwise it 15 the unique maximal
rooted subtree of the BC tree for G such that each internal node is
colored with one of the first (k-1) colors. The pruned BC tree for G

is the BC tree for G pruned at x(G) .

Example 6,1. Take G as the cycle with 5 vertices, numbered as

indicated,

In (a) below we shuw the part of the BC tree for G explored by the BC
algoritm. In (b) we show the came ‘ree structure and jndicate at each
node the corresponding partial coloring of G . The letters a,..¢)J

indicate the order in which the nodes are first visited by the BC algoritim.
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The backtrack coloring algorithm (BC algorithm) for determining

the chromatic number X(G) of a graph G canducts a depth-first search
of the BC tree for G , keeping to the right. Once we have found a
path from the root to a leaf using at most the first k colors we know
that y(G) <k and 30 we need not explore the descendants ->f any node
labelled with a color not in the first k-1 . Thus we 'prune’ the BC
tree. The BC algorithm must of course explore all the nodes of the
pruned BC tree for G .

In order to relate the BC algorithm to the Zykov branch-and-bound
algorithas considered earlier we first give a description of an
implewentation of a Zykov algorithm.

Let G be a graph in & for some n in N . We shall define

the marked Zykov tree (MZ tree) for G . It is a certain Zykov tree

for G in which at each node certain vertices are "marked'. At each
node H the marked vertices form an initial segment of the entire
sequence of vertices -- we assume that the sets in each partition of
{1)¢¢syn] are ordered so that we have an increasing sequence of least
integers -- and the marked vertices induce a complete subgraph of H.
The MZ tree of G is defined as follows. The root is of course G,
and we mark vertex 1 . Suppose that H is a leaf of the tree so far
constructed, If the first unmarked vertex in H 1is adjacent to each
marked vertex then mark this vertex. Continue doing this umtil either
every vertex of H is marked, in which case H is complete and is a
leaf of the ME tree of G ; or the first unmarked vertex is not adjacent
in H to scme marked vertex. In this case we branch an the first
umarked vertex and the first marked vertex not adjacent to it. Marked



vertices stay marked in the sons of H and the new contracted vertex
in the rightson is also marked.

The marked Zykov algorithm (MZ algoritim) explores part of the MZ
tree using depth-first search keeping right, and prunes the tree using
the fact that the marked vertices at a node point out a complete subgraph.
The MZ algorithm must of course explore every node in the pruned Zykov
tree corresponding to the MZ tree. It is quite similar to the algoritim

in [5].

Exsmple 6.2. As in Example 6.1 take G as the cycle with 5 vertices,

numbered as indicated.

Then the part of the MZ tree for G explored by the MZ algoritim is shown
below, The marked vertices are filled in, and in eddition we have labelled
the first marked vertex with ¢ » the second with S and the third

vith c5.

S






It should be apparent that the BC and MZ algoritlms are really
di fferent forms of the same algorithm. Suppose that G is a graph
in & . Then it is not hard to prove that there is a correspondence
between the nodes of the BC tree B for G and the nodes of the M2

tree Z for G such that

(a) each node in B corresponds to one or two nodes in Z ;
(b) each node in Z corresponds to between 1 and n nodes in B ;

(c) pruning occurs at corresponding nodes.

The lettering in Examples 6.1 and 6.2 indicates such a correspondence.
Let B and Z be the parts of the trees B and 2z explored by the

BC and M2 algorithms respectively. Then by the above
28} > |2"|  ma alz’| > B .

It follows by Cerollary 5.6 that for almost all graphe on n vertices

1/2
n(log n) for some canstant

the BC algoritlm requires time at least ¢
2 >1 . The next result yields an upper bound for the time required by

the BC or MZ algorithm,

Theorem 6.1. Let ¢ >0 . Then for almost all graphs in 4, the

number of rodes of the BC tree explored by the BC algoritim is at most

1
(+¢)m
n§ . ImeJectures.Bintmtmroral.ostdlmcn

in ‘n the pruned BC tree for Gn has at most n(%".)!l nodes.
Proof. Let k bes function frem N to & . For each gragh G
in & 1et B°(G) be the BC tree for G pruned st k. For 1,

in N et r(i,3J) be the expected mmber of proper partitions into J
sets of graphs in & . Then



n k
B ) < T I (L) - (6.1)
1wl juml

From the proof of Theorem 3.3 we have

1 ’.2/.1 -1)
£(1,9) < 3 q5(

and s0 if i <n and J <k we certainly have

1
-En

2 1
1 /2 . (6.2)

£(1,3) <na
Now let
k(n) = [(1+¢)n/log n ]

for n in NN . T™enfor ie¢N, i<n

2 2
KL PRI /2x
and so by (6.1) and (6.2)

1
2 -=
e(|25(q )] < o™ P /% g 2 :

1
< n(g + %*0(1))11

(%ﬂ)n

Prov{ |B"(q,)] < » }] ~1 & n=e . (6.3)

Now the BC algorithm initially explores the ‘rightmost' peth in the BC
tree, and so initially it acts like the sequemntial coloring algoritim.
Bance by Thecrem 8 in (8), for almost all graphs in 4, the BC algoritim
explores st most n nodes of the BC tree which are not in the BC tree
Jruned at k . The first pert of Theorem 6.1 now follows fram (6.3).
We nov prove the second pert of the theorem. Ilst
X(n) = L(1*e) $n/logn)



for n in N. Then for 1cN, i1<n

1
2 (+e)n
ol o /ek nli'

and 8o by (6.1) and (6.2)

(% (1+¢)+0(1))
BRG] <n B

Hence as above

Kk (%")n
Prob{|B7(G )| <n ] =1 a n-e , (6.4)

Denote the pruned BC tree for a graph G by B‘(G) . If %(G) <k
then |B'(6)| < |B(G)| . Thus

(+e) I

. (p+en
()l <n © )2 (BG) < b InkG) <X . (6.5)

Now suppose that Canjecture 5.5 holds, so that

Then the second part of Theorem 6.1 follows from (6.4), (6.5) and (6.6). 0O

Corollary 6.2. Iet ¢ >0 . Then for almost all graphs G, in &

the number of nodes of the marked Zykov tree for G, explored by the
(2+ehm

marked Zy/kov algoritim is at most n§ +« If Conjecture 5.3 holds

then for aimost all graphs Gn in "n the pruned marked Zykov tree

(%"‘c)ﬂ
for Gn has at most n nodes.
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7. Lengths of Proofs.

Most of our results so far may be phrased in terms of the lengths
of certain kinds of proof which determine chroamatic numbers or which
establish lower bounds for chromatic numbers. We then obtain results
concerning chromatic mumbers which are similar in spirit to recent results
of V. Chvatal [4] concerning stability numbers. Indeed this paper wvas
initially motivated by discussions with Chvatal concerning his results.

If k is an integer at least as great as x(G) then there is a
short proof that x(G) < k =-- namely we may exhibit a coloring of G
using at moet k colors. In general such a proof is hard to find but
it must of course exist. However, if k 1is at most x(G) then it
is not clear if there is necessarily a short proof of this fact.

The following two rules may be used to determine or bound chromatic

numbers (see Section 2 and (2.1) in particular).

(R1)  x(6) = min{x(G),), x(G3y)] -

(Re) If G 4is complete then x(G) equals the number of vertices of G .
Given a set S of rules like (Rl) and (R2) let us call a proof that uses
only these rules an S-proof, and each application of a rule in S a step,
Clearly there is a close correspondence between an {(R1), (R2)}-proof

determining x(G) and a Zykov tree for G .

Prom Theorem k.1 we obtain

Corollary 7.1. If G is a graph in & then every {(R1), (R2) }-proof
vhich determines 4(G) without redundant steps has exactly 2c(G)-1 steps.

Thus by Theorem 4.3 we know quite a lot about the lengths of
{(R1), (R2) }-procfs which determine chromatic numbers. Consider now a

50



third rule, which can be used to establish a lower bcund for chromatic
numbere (see (2.2)).

() x(0) >w(G) .

Allowing the use also of the rule (R3) corresponds to pruning our Zykov

trees., From Theorem 5.5 we obtain

Corollary 7.2. If a 1s a given constant factor with 0 <a <1 then
for almost all graphs G, in & every {(R1), (R3)}-proof which establishes
a lower bound for x(G ) exact to within the factor a is such that the

logarithm of the number of steps is asymptotically at least

a n( 517-103 n)]'/2 .

Now set p=q=1/2 and @ =1 in Corollary 7.2 (as we did in

Theorem 5.5).

Corollary 7.3. Conegider the property for graphs Gn in J'n that in
every {(Rl, (R3)}-proof establishing the correct lower bound for x(Gn)
the nuwber of steps is at least

1/2
1
(1.mn( XA

The proportion of graphs in % with this property tends to 1 as n~e,

From Corollary 6.2 we obtain

Corollary 7.k, Let ¢ >0 . Then for almost all graphs G in &

the marked Zykov algoritim yields mnd {(R), (R2), (R5)}-proof determining
(Zeem

x(G,) with at moet. n 2 " steps. 1If Conjecture 5.3 holds then for

almost all graphs G, 1in & the marked Zykov algoritim (evemtually)
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yields an {(Rl), (R2), (R3)}-proof determining x(Gn) with at most

( ]]f*c)n
n steps,

Consider now a fourth rule which can be used to bound chromatic
numbers.
(Rs) If G has a subgraph H then y(G) > x(H) .

The set of rules {(Rl),(R2),(Ri)] seems to the author to be as natural
as the set {(Rl),(R3)] for establishing lower bounds for chromatic mmbers,
The following proposition shows that the two sets of rules are in a sense

equivalent. The proof is straightforward and is omitted.

Proposition 7.5. For any {(RL), (R3)}-proof that x(G) > k there is an

{(R1), (R2), (Rk) }-proof with at most twice as many steps; and for any

{(m1), (R2), (Rk)}-proof that x(G) >k there is an {(Rl), (K3)}-proof
with no more steps.

At first sight it might seem to be of advantage to allow also rules

like the rule (E5) below, which is closely related to the rule (Rl).

(&) x(6) > max{x(Gy,),x(az)}-1 .

Gne would of course not have to know both x(u;y) and x(a"n) in order
to use the rule (B5). However, it is not hard to prove for example the
following proposition,

Proposition 7.6. Tor sny {(Rl),...,(F5)}-proof that x(G) > k there
is an {(R1), (R3)}-proof with no more steps.

Another rule which might de considered is the following.
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(R6) If some vertex v in G 1s adjacent to each other vertex then

x(G) = x(G-v)+1 (where G-v has the obvious meaning).

However, again we may see without difficulty that including this rule
would not lead to shorter proofs.

Yet another possible rule which might be thought helpful is the
‘principle of separation into pieces’', as described in [2] Ctipter 15.
This rule shows how to break our problem into smaller independent
subproblems if the graph has a separating set which induces a camplete
subgraph. It may on occasi.n help to organize proofs but once again we
may easily check that it does not shoiten them.

Finally let us note that all the above discussion falls down if we
are allowed to recognize isamorphic graphs with different vertex sets,

It would be interesting to know what can be said in this case.
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8. Mnimal Colorings.

Many authors have investigated algorithms A for (properly) coloring
graphs G which are fairly fast but which use a number A(G) of colors
possibly greater than y(G) . (See for example 9], (12], (23], (1k].)
Following D. S. Jommson [9] we let A(G) be the ratio of A(G) to x(G) ,
- and let i(n) be the maximm value of Z(G) over all graghs G on n
vertices, Clearly 1 _<_2\(n) < n and the smaller .A(G) or Aln) is the
better. In [9] it is shown that for several of the most common algorithms
A the functiomn Z(n) is of order n , For the best of the known (fast)
algorithms the function A(n) 1is still of order n/logn .

It 1s suggested in [9] that the usual behavior of A(G,) for graphs
G, On n vertices may be very different from the behavior found for A(n) .
We shall see that this is indeed the case,

Consider first the sequential coloring algorithm SA or A (see
(8], [9]) and Section 3 of this paper). Johnson shows without difficulty
that Zl(n) is of order n , and suggests that, however, the expected
value of il(cn) may be bounded by a constant independent of n . It
follows easily from results in a paper [8] by G. Grimmett and the present
suthor that for any & >0 we have A (G)) < 2+¢ for almost all graphs
G, in 4 : also it is easy to prove that the expected value of 7‘1(%)
is at most 2+¢g for n sufficiently large (see the proof of Theorem 8.2
below).

Ve now look st the usual behavior of A(G,) for other coloring
algoritms A . A proper coloring of a graph G is minimal if for each
peair of colors used some vertex of ome color is adjacent to same vertex
of the other color; that is, if no color can be replaced by some other

already used color; that is, if the corresponding proper partition Q
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of G 1is such that the contracted graph G, 1s camplete. A coloring

Q
algorithm is minimal if it always yields minimal colorings. All the usunl
coloring algorithms are minimal, and in any case from an arbitrary projer
coloring one may easily produce a minimal coloring, Thus it seems
reasonable to restrict our attention to minimal coloring algorithms.

For every graph G 1let M(G) be the maximm value of A(G) over
all minimal coloring algorithms A . An alternative definition of M(G)
is then that it 1s the largest integer t for which there exists a proper
partition Q of G into t sets such that the contracted graph GQ
is complete, For every graph G we let M(G) be the ratio of M(G)
to x(G) . Thus M(G) 1is a measure of how badly it is possible to
color G .

It seems that for any fast coloring algorithm A yet proposed there
2xist graphs on which A performs very badly ([3]). However, for most
graphs every minimal coloring algorithm performs not too badly: we shall

prove below that M(G ) 1is in probsbility only of order (log n)/2

Lexma 8.1. Let ¢ > 0. Then for almost all graphs G, in 2

-1/2 < M(G,) < (1+¢)n(log )y M2, (8.1)

(1-¢) n (2 log n)
Further for n sufficiently large the expected value of M(G,) 1lies

in the above range.

Proof. The left hand inequality in (8.1) follows immediately from Lesma 3.6.
Let m be an integer at least (1+¢)n (log n)-1/2 o By Lemma 3.2
the probability that a given partition Q of {1,...,n] into m sets

yields a camplete graph GQ is at most

n
(l-q(n/')a)(a)
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Hence the probability !?'m that there exists such a partitiom Q

(proper or not) is at most

n
nn(l - q(n/ll)a)( 2 )

But now
1 n (n/-)2
ogP‘Snlogn-(e)logeq < -n

if n 1is sufficiently large. Hence for n sufficiently large

-1/2

Prob{M(G,) > (1+¢)n (log n)"7/“} < n q" . (8.2)

The right hand inequality in (8.1) follows from (8.2), and so we have
campleted the proof of (8.1).

The second part of the lemma, concerning expected values, follows
from the left hand inequality in (8.1) and from (8.2). O

Recall that M(G) is the ratio of M(G) to x(G) .

Theorem 8.2, let ¢ > 0., Then for almost all graphs Gn in &
(22 )(108 )2 < M(G) < (2+e)(Logm)¥2 . (8.3)

Further for n sufficiently large the expected value of fI(Gn) lies in
the above range.

Proof. Ve Imow from (8] (sse also [6) Chapter 11) that for almost all
graphs G, in &
1/2 n/log n < x(a,) < (1*¢) n/logn . (8.%)
Now (8.3) follows from (8.4) and Lesma 8.1,
The left hand inequality for the expected value of ii(on) follows
from the left hand inequality in (8.3). For the right hand inequality

note first that
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EIM(6,)] < (/2 n/log n)™ EM(G))]
+ n Prob{x(G,) < 1/2 nflogn} . (8.5)

But from the proof of Lemma 5.2

n Prob{x(G ) < 1/2 nflogn} -0 as n-= , (8.6)
and by Lemma 8.1 for n sufficiently large

EIM(G,)] < (1+ ¢/3)n(l08 )2 . (8.7)
Hence by (8.5), (8.6) and (8.7)

EIM(G)] < (2+¢)(log n)!/2

for n sufficiently large. This completes the prucof of ihis che final

theorem, O

57



Some uestionc.

The main recult hacs been that Zykov algorithms for determining the

chramatic number of a graph in probability take time at least

n(log n)l/?
c (for some constant ¢ >1 )

on graphs on n vertices. This result raises at least three questions
that merit attention.

Firstly, the best upper bound here for tne time taken 1s very much
greater than the lower bound. Is the lower bound of the right order of
magnitude’

Secondly, all the results here are based on the random graph model
which has constant edge-probability p , and in certain circumstances
the model which has constant average degree say might be more appropriate
(see for example [&] Chapter 16), Are there corresponding results for
this case?

Thirdly, it follows trom the discussion in Section 7 that various
'improvements' in the Zykov algorithms do not in fact lead to a decrease

ir the time taken., But what happens if say we allow en isomorphism

search?
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