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ABSTRACT

Shared abstract data types, such as queues and buffers, are useful
tools for building well-structured concurrent progranms. This paper presents
a nethod for specifying shared types in a way that sinplifies concurrent
program verification. The specifications describe the operations of the
shared type in ternms of their effect on variables of the process invoking
the operation. This mmkes it possible to verify the processes independently,
reducing the conplexity of the proof. The key to defining such specifications
s the concept of a private variable: a variable which is part of a shared
object but belongs to just one process. Shared types can be inplenented using
an extended form of mnonitors; proof rules are given for verifying that a
monitor correctly inplenments its specifications. Finally, it is shown how
concurrent prograns can be verified using the specifications of their shared
types. The specification and proof techniques are illustrated with a nunber
of exanples involving a shared bounded buffer.

INDEX TERMB:  Program verification, program proving, concurrency, parallel

programs, abstract data types, shared types, and operating
system design.






INTRODUCTION

An inportant development in structured programmng is the use of
data abstractions. An abstract data type defines a class of abstract
objects and the set of operations on those objects. Considerable effort
has been devoted to issues related to data abstraction: specification of
the abstract type ([Guttag 75], [Guttag et al 76], [Liskov and Zilles 75],
[Liskov and Berzins 76], [Parnas 72]), programm ng languages for ex-
pressing data abstractions (notable are CLU [Liskov 76) and Alphard
[Walf 76]), and proof nethods for data abstractions ([Hoare 72], [Neumann 75],
[Schorre, 751, [Shaw 761, [Spitzen 75], [Wilf 76]). In this paper these
issues are considered as they arise in concurrent programs, where data
abstractions are shared between parallel processes. The major focus will
be on axiomatic proof techniques, in the style suggested by Hoare [69].
Verificationof both the inplementation of an abstract data type and the

processes that use it will be considered.

The only feasible way to verify a conplex systemis to conpose the
system proof from independent proofs of its nodules. Abstract data
types facilitate this approach. One can first specify and verify the
type and its inplenentation, then use the specifications, rather than
the detailed inplenentation, in verifying higher-level nodules. It is
also possible to verify each process in a concurrent system independently,
provided that the processes access shared data in a disciplined manner
(as with nmonitors or critical regions). This is acconplished by proving
each process using only variables that can not be nodified by other
processes. This separation of processes greatly sinplifies the proof
(for comparision sce [Lamport 75] and [Owicki and Gries 76b], where

process proofs are not so conpletely separated).

To make such proofs possible, each operation of a shared type nust
be described in terms of its effect on variables of the process invoking
the operation. Section 2 shows how a new concept, private variables,
can be used to obtain such specifications; private variables are com
ponents of a shared object, but belong to just one process. Section 3
discusses the inplementation of shared data types by an extended form

of monitors, in which private and auxiliary variables are included for



the sake of proofs. Section 4 presents the rules for proving that a
monitor satisfies its specifications, and sections 5 and 6 discuss the

verification of concurrent processes that use shared data types

Throughout the paper the abstract type "bounded buffer" will be
used as an illustrative exanple. Itconsists of a buffer capable of

holding N elenents, andtwo operations:

append(a): wait until the buffer is not full, then
add a to the end of the buffer

remove(b): wait until the buffer is not enpty, then

remove its first value and return it in b
Mre precise specifications are given in the next section

Although the discussion of the bounded buffer here is primarily
intended to illustrate the specification and proof techniques, it 1is
also of interest in its own right. Buffers have many uses in concurrent
systems, and other concepts, such as queues and nessage-passing operations,
can be described in very simlar ternms. Thus the specification of the
bounded buffer should be applicable to the verification of a nunber of

concurrent systems.

SPECIFICATIONS

The specifications of an abstract data type form the interface
between the program nodule which inplenents the type and the nodules
which use it. Program verification consists of proving that the im
plenentation satisfies its specifications, and then enploying the spec-
ifications to verify the nodules that use the type. This separation
sinplifies verification; it also enhances nodularity, since the method
of inplenentation may be changed without affecting the correctness of the

program as long as the new inplenentation also satisfies the specifications.

The specifications for a shared data type are given in the form of
assertions that can be incorporated into the proofs of concurrent processes.
So that the proof of a process is independent of the actions of other

processes, it must contain only safe assertions, i.e. assertions whose



free variables can not be nodified by other processes. Thus the assertions
that describe the effect of an abstract operation must also be safe. This
is made possible by including private variables in the abstract type. A

private variable t of type T is declared by var t: private T, this neans

that there is one instance of t for each process that uses the shared
object. The instance of t belonging to process S can be changed only by
execution of an operation invoked by S.  Thus that instance of t may be
used safely in the proof of S. W will use array notation for private

variables; var t: private T is interpreted as var t: array process id of T,

and t[S] denotes the instance of t for process S. Indescribing the
effects of an operation, t[#] denotes the instance of t belonging to

the process that invokes the operation.

The table below gives the formmt for specifications of a shared data
type. Each clause gives the name of an assertion, with the free variables

it may contain indicated in parentheses
Specifications

typename(ﬁ): declaration of conponent variables
requires: Requires(p)
initially: Init(d)
invariant: I(U)
operations:
operation-nane (var X5 y)
entry: entry(x, y, z[#])
exit: exit(x, y, z[#])
where G = paraneters and conponent variables of the type
5: paraneters of the type (f) ga)
z = private variables (z ca)

2[#] = private variables of calling process

X = var parameters
y = value paraneters
Let us consider each clause in turn. First, the name and paraneters
of the abstract type are given, followed by its conponents. Requires is

a condition which must be satisfied when an instance of the type is
created; for exanple, for the bounded buffer Requires assures that the

buffer size is positive. Init(d) gives the initial value of a newly

3



created instance of the type. I(U), the invariant, is a consistency
assertion about the possible values that can be assumed by @ . Itis
true for the initial value, and is preserved by each operation, although

it may fail to hold temporarily during execution of an operation.

Each operation is defined by giving its name and the names and types
of its forml paraneters. Following Pascal, the formml parameter list
contains var parameters, which my be nodified by the operation, and
value paraneters, whose values are not changed. Two assertions describe
the effect of the operation. The entry assertion gives the conditions
required for correct performance; it is the programmer's responsibility
to insure that the entry condition is satisfied each time the operation
is invoked. The exit clause describes variable values upon conpletion
Note that entry and exit describe the operation in terms of private
variables and paraneters; they are safe assertions and may be used in

the proof of a process which invokes the operation.

Specifications for the abstract type bounded buffer are given
below, they are adapted from specifications proposed by Good and Anbler
[1975] for concurrent programs synchronized with nessage buffers. The
buffer stores values of type nessage, not defined here. The notation
<X13X2s o mEme Xn> denotes the sequence whose elements are Xis X2, ...,
Xy The enpty sequence is written <>, X @ Y is the concatenation of
the sequences X and Y. IfX is nonenpty, its first element is first(X)
and X=<first(X)> @ tail(X); simlarly, last(X) is the last elenent in
X, and X=head(X) @ <last(X)>.  The number of elements in X is length(X)*
If t is a private variable, €tP denotes the bag containing the

values of all instances of t.

Specifications for the Bounded Buffer
bb(N:integer)

becardf : sequence of nessage
coment length (buf) < N

instream  sequence of nessage
coment sequence of values appended to bb
outstreant sequence of mnessage

comnent sequence of values renmoved from bb



in: private sequence of mnessage

coment values appended by each process

out: private sequence of nessage

coment values renoved by each process
requires: N >0
initially: buf = instream = outstream = in = out = <>
invariant: length(buf) < N A
instream = outstream @ buf A
ismerge(instream, 4ind) A
ismerge(outstream éoutd)
operations:
append(a: nessage)
entry: in[#] =i' A out[#] = O
exit: in[#] = i' @ <a> A out[#] = o'
renove(var b:nessage)
entry: in[#] =1" A out[#] = o'
exit: in[#]=1"A3c(b=c A out[#] = 0'@ <c>)

The bounded buffer has a single parameter N, the buffer size;
because of the requires clause, N must be positive. The data for
a bounded buffer is a record consisting of sequences Buf (the actual
buffer), instrearn,outstream in, and out. Variables instream and
outstream record the global history of buffer operations by storing
the sequence of values appended to and renmoved from the buffer. The
private variable in[S] contains the sequence of values appended by
process S, while out[S] contains the values renpved by S. W will see
in section 3 that some of these variables are needed only for proofs,
and do not have to be included in an inplementation. Initially, all
sequences are enpty. The invariant states that only N items can be
in the buffer (length(buf) < N), that values appended to the buffer
either have been rempved or are still in the buffer (instream =
outstream @ buf), that the global input history is some merge of the
private input histories (ismerge(instream 4ind)}, and that the
global output history is a mnerge of the private output histories
(ismerge(outstream, €outd)).  The predicate ismerge(X,Y), where X is
a sequence and Y = @y;, Yo, ..., ynb is a bag of sequences, is defined by



ismerge(<>,Y) = true if y, = <>, 1 <i <n
ismerge(X' @ <x>, Y) = true if
yk = yk'@ <Xx> for some 1 < k<n

and smerge(X',d/1, ...y 'y . Y}
ismerge(X,Y) = false otherwise

The behavior of append andremove is defined by their entry and
exit assertions. For append, the value a is added to the private input
history of the invoking process, while the private output history remmins

unchanged.

Although append(a) must also change the value of buf and instream this
fact is not explicitly included in the exit clause (it is inplied by the exit
clause and the invariant, however). This is because the exit assertion
will be used in verifying the processes that invoke append, and in that
context only the effect on private and local variables is relevant. For
renmove, the exit condition states that sone (unknown) value is returned
in b and appended to the process's private output history. One can deduce
from the invariant that the value returned must be the first one in
buf, but buf, as a shared variable, can not appear in the exit condition
This is an accurate reflection of the fact that, from the viewpoint of
a process invoking remove, it is not generally possible to predict what

value will be returned.

Itis interesting to conpare the bounded buffer specification given
here to specifications suggested by Hoare [74]. Expressed in our
notation, Hoare's specification is
bb2(N): record buf sequence of nessage

requires: N >0

-initially: buf = <>
"invariant: length(buf) < N
operations:
append(a: nessage)
bntny: f = buf'
exit: buf = buf' @<a>
renove(var b:message)
bmrfy: = buf'
exit: b = first(buf')Abuf = tail(buf')



Hoare's specification is shorter than ours, and it conpletely describes
the effects of the bounded buffer operations. However, it is harder to
use in proofs of concurrent prograns because it does not provide any
private variables. For exanple, although the effect of bb2.append is
buf = buf' @ <X>, one cannot use -~
{truel bb2.append(x) {x = last(buf)}

in the proof of a process that invokes append. This is because other
processes can also append and remnove elenents from the buffer; in fact,
X may not even be in the buffer by the tinme append(x) returns control

to the invoking process.

A valid use of append is

{truel bb2.append(x) {x € buf or x has been removed by another process).
Our specifications give a convenient way of expressing this:

{true} bb.append(x) {x = last (in[#])}
and

(xe in[#] Abb.I) D (x € buf v 35(x € out[S])).

Howard [76] gives an informal specification of the bounded buffer.
He uses variables like instream and outstream and his specifications
include the invariant instream = outstream @ buf. But he has nothing

corresponding to the private variables in and out

IMPLEMENTATION

An attractive neans of inplenenting abstract data typesina
parallel programmng environnent is the mnonitor, as proposed by
Hoare [74] and Brinch Hansen [75]. A monitor is a collection of
data and procedures shared by several processes in a concurrent program
The monitor data can be accessed only by invoking nonitor procedures;
thus the monitor presents in a single place a shared data object and
all the code that has access to that object. Mnitors also facilitate
concurrent programmng by ensuring that only one process at a tine can
operate on the shared data and by providing operations for process

synchronization.

The general form of a nonitor type definition is given below



class classname: nonitor(paraneters)
fegilmration of nmnonitor data;
declaration of mnonitor procedures;
initialization of nonitor data

end

An instance of a nonitor is createdby the declaration monitor mname:
classnane(paraneters). The notation for a call to a nonitor procedure
i s mname,procedurename (var result paraneters; value paraneters),
To sinplify program verification the result paraneters must be distinct --

see Hoare [71] for a discussion of paraneters and program proofs.  The

value paranetersare not modified by the procedure.

A monitor which inplenents the bounded buffer type is defined
bel ow. Sonme features of mnonitors whichlare inportant for this exanple
(mutual exclusion, conditions, auxiliary variables, and private variables)
will be discussed further. A nore conplete description of nonitors is
given in Hoare [74]. Auxiliary and private variables were not in the
original definition of nonitors; they have been added here because of

their usefulness in verification.

class bb: monitor (N)
begin
BBvar: record mbuffer: array 0..N-1of nessage;
last: 0..N-1;
count: O . N
m_instream, m_outstream:

auxiliary sequence of mnessage;

Mm_in, mout:

private auxiliary sequence of nessage end

nonenpty, nonfull: condition;

procedure append(a:message);
begin if count = N then nonfull.wait;
last := last® 1; m_buffer[]ast] := a; count := count + I
m_instream := m instream @ <a>; m in := min @ <a>;
nonenpty. signal

end append;



procedure rernove(var b:nmessage);

begin if count = 0 then nonenpty.wait;
count := count-l; b := m_buffer[]astecount];
m outstream := m outstream @<b>; mout:= mout @ <b>;

nonfull.signal
end renove;
begin count := 0; last := 0; rginstream 1= <>y moutstream := <>
min := <>; mout := < en_d;
end bounded buffer
@ and © are conputed nodulo N

An instance of the nonitor is BB:bb

In order to allow a number of processes to share the nonitor data
in a reliable fashion, execution of nonitor procedures is mutually
exclusive; i.e. only one procedure call at a time is executed. If
a nunmber of calls occur, all but the first are delayed until the mnonitor
is finished with the first call. This prevents some of the obscure

tinme-dependent coding errors that can occur with shared data.

Synchronization anong concurrent processes is acconplished through
condition variables in nonitors. A condition is a queue for processes.
There are two operations on conditions: condition_name.wait and condition_
nane. signal. A process which executes condition-nane.wait is suspended
and placed at the end of the condition queue. Wien a process executes
condition_name.signal the first process waiting on the condition queue
is reactivated. Inorder to insure that only one process at a time may
execute a monitor procedure, the procedure executing the signal must be

suspended while the reactivated procedure uses the mnonitor.

The bounded buffer nonitor uses two conditions, nonempty and nonfull.
Ifthe append operation finds that there is no roomin the buffer, it
waits on condition nonfull. After a renove operation there must be room
in the buffer, so remove ends with nonfull.signal. Condition nonempty
is used in a simlar way by processes trying to remove an elenent from

the buffer.

The bounded buffer monitor il lustrates two added features of monitors:

private and auxiliary variables. Auxiliary variables are included as aids



for verification; they are not necessary for the correct inplementation
of the monitor and mmy be ignored by a compiler. The inportance of
such auxiliary variables for proofs of parallel programs is discussed

in Owicki [76].

In order to insure that the auxiliary variables are truly unnecessary
for a correct inplenentation, they mmy appear only in assignnent state-
nents X := e, where x is an auxiliary variable and e does not contain
any programmer-defined functions (which m ght have side effects). This
guarantees that the presence of auxiliary variables does not affect
the flow of program control or the values of non-auxiliary variables
Thus their presence or absence is invisible to a program which uses the

nmonitor.

The auxiliary variables m_instream and m outstream are history
variables in the sense of Howard [76]. 1In fact, m instream and m outstream
play the same role as the history variables A and R in Howard's verifica-

tion of a bounded buffer nonitor.

Private variables in a nonitor are used to inplenent abstract private

variables, and they have essentially the sane neaning. The declaration

t: private T creates one instance of the variable t for each process

that uses the monitor; t[S]is the instance belonging to process S. A

reference to t in a nonitor procedure is treated as a reference to t[S],

where S is the process which invoked the procedure. Thus it is syntacti-

cally inpossible for a procedure to nodify any private variables except
-those belonging to the process that invoked it. In this paper all private

variables are auxiliary variables. Non-auxiliary private variables

m ght be a useful extension of mnonitors, but their inplenentation is

not. discussed here.

In the bounded buffer nonitor, m_in and M_out are private variables
which inplenent the abstract private variables in and out. Private
abstract variables must be inplenmented by private nonitor variables,
so that it is inpossible for one process to modify the private abstract

variables of another.
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4. VERIFYING THE IMPLEMENTATI ON

The nethodology for proving that a nonitor correctly inplenents
its specifications is derived from Hoare's nethod for abstract data
objects in sequential programs [Hoare 72]; it is also closely related to
generator induction [Spitzen 75]. The mmin difference is that the proof
nust take into account the sharing of the nonitor anong concurrent
processes. One first defines the relation between the abstract object

(G and the nonitor variables M by giving a representation function rep

such that @ = Y‘ep(m). A nonitor invariant must also be defined; it 1is

called mom'torname.IM or sinply IM and it gives a consistency condition
on the nonitor variables M just as I does for the abstract variables d.
The verification of the nonitor consists of proving the follow ng

conditions: -
L. IM(m) D I(rep(m))
2. {Requires) mnonitor initialization {IM('m)AIn'it(Y‘ep(M))}

3. For each nonitor procedure p(var X3 y)
{pentry(x,y,rep(m)) A IM(m)}
body of procedure p
{p. exit (X,7,rep(m) A I,,(M)}

The proofs can be acconplished with the usual proof rules for
sequential statements and the following axioms for wait and signal.
Wth each condition variable bi associate an assertion Bi describing
the circunstances under which a process waiting on bi should be resuned.

Then the axioms for wait and signal are
{IMA P} bi.wa1t {IM AP A Bi}
(IMA P AB.} bi.signal (IMAP}

vwhere the free variables of P are private, local to the procedure,

parameters, or constants. This is an extension of Hoare's original rules
[Hoare74]. The assertion P was added to allow a proof to use the fact
that the values of private and local variables can not change during

wait or signal.



Inthe bounded buffer exanple, the relationship between the abstract
buffer bb and the nonitor data BBvar is given by

bb = (buf,instreamoutstreamin,out)
= rep(BBvar)
= (seq(m buffer,last,count) ,m instream,
m_outstream,m_in,m _out)

where seq(b,£,c) = <> if c=0
seq(b,£e1,c-1) @ <b[£]> if c>0

Inthis case, the function rep is alnmost an identity function,
because the abstract variables instream outstream in, and out are
directly inplenmented by the corresponding monitor variables. The
abstract sequence buf is inplenmented by the array m buffer and variables
last and count; function seq gives the value of the abstract buffer

determined by the monitor variables.
The monitor invariant for the bounded buffer monitor BB is

BB.IMi 0 < count < NAO < last < N1 a
m_instream = m_outstream @ seq(m_buffer, last, count)
A ismerge(m_instream, ém inp)
A ismerge(m outstream, ém outd)

The conditions to be verified are
. BB.IMD bb.I(rep(BBvar)) - obvious from the definition of rep
2. {bb.Requires} initialization {BB.IMAInit(rep(m))}

This expands to

{N > 0}
count := 0; last := 0;
m_instream := m_outstream := m_in := mout := 0;

{IM A seq(m buffer, last, count) = <> A

m instream = m outstream = M_in = mout = <>}

The proof is trivial.
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3. {m_in[#] =i A mout[#] =0 A Iy}
code for append(a)
{min[#] =i @ <a> A mout[#] = o'y Iy}
and
{Mm_in[#] = 1" A m out[#] =0'AIM}
code for remove(b)
{min[#] =i'" AJc(b=c Amout[#] = o' @ <c>) A Iy}

A proof outline for remove(b) is given below, append(a) is simlar.

Proof outline for BB.rempove
Wit assertion for nonfull: count < N
for nonenpty: count > 0
{IyAmin[#] =i Amout[#] =0'}.
begin
if count = Othen

{IMAm_in[#] =i' Amout[#] = 0'}

nonenpty. wait;

{IMAcount *0Amin[#] = i' A mout[#] = o'}
{IMAcount >0 Amin[#] = i' Amout[#] = 0"}
count := count - 13 b := m buffer[last © count];

m outstream := m outstream @ <b>; m out := m out @ <b>;
{IMAOS count < NA min[#] =1i" A
3c(b = ¢ Amout[#] = o' @ <c>)}
nonfull. signal
{IyAmin[#] =i AJe(b=c A mout[#] =o' @<c>}

end

{remove.exit A IM}
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Inaddition to proving that a nonitor satisfies its specifications,
one may wish to show that it has other properties (probably related to
performance). Howard [76] is an excellent source of techniques for

verifying such properties.
PROGRAM PROOFS

In this section we show how to verify concurrent prograns given the
specifications of shared data types. Concurrent execution is initiated

by a statement of the form
moni tor M tAy,...,Mp:Ap cobegin L, :S1 // ...//Ln:Sn coend.

The 51- are statenents to be executed concurrently, i.e. parallel
processes, and Li is the name of process Si. The only variables that
may appear in Si are those declared in Sf (its local variables) or con-
stants declared in a block containing the cobegin statenent. S]' also
has indirect access, through procedure calls, to nonitor variables.
Thus all variables are protected from the danger of overlapping opera-
tions in different processes: they are constants (no mnodifications),
local variables (accessible to only one process), or nonitor variables

(protected by the monitor mutual exclusion).

The specifications of type Aj are linked to nonitor Mjby the
- convention that M.assertionnane refers to the naned assertion in the
specifications of A'i’ with the nonitor nane M prefixing each shared
variable. Thus, given nonitor BB:bb, BB.Init is the assertion
BB.buf = BB.instream = BB.outstream = BB.in = BB.out = <>. Then the
rule of inference for verifying cobegin statements is

{Pi} Si {q51, (P'i Qi safe for Si, 1 <i <n)

{({\ t4j.lnit)3’({\Pi)} monitor..Hj:AJ... obegin..Li:Si..coend {(AMj.I)A(AQi)}
i i j i
Pyl ,P
(The notation __1__0___n neans that Q may be inferred if all Pi have

been proved.) Recall that safe assertions can have no free variables



which can be changed by other processes, soPi and Q‘i my only refer
constants and local and private variables of 51.. The effect of the
cobegin statenent on private and Jocal variables is obtained from

independent proofs of the individual processes. For shared objects,

to

the initial assertion can be assumed to hold at the beginning of concurrent

execution, and the invariant holds at the end.

Mnitor procedure calls in 51. are verified using the entry and
assertions and the usual rules for procedure calls, as described in
Hoare [1972]. The basic rule for a procedure call_in process Si is

xy # . oxy#
{M.p.entry - - L }M.p(ase) {M.p.exit - - }
i i

ael

where the actual var paraneters a nust be distinct from each other
) Xy #
and from the actual value paraneters €. Mp.entr 3a | fepresents
i
the result of substituting actual paraneters a, e for forml paranet
X, ¥y and the name of the calling process Li for the symbol # in
Mp.entry.

Hoare's rule of adaptation is also useful: it allows the entry

and exit assertions to be adapted to the environnment of the procedur

{P} M.p(a,e) {q}

exit

€rs

e call.

{3k (P A VE,E[Li](Q > R))} M.p(a,e) {R}

where k is a list of variables free in P and Q but not R, aor e,

and E[L_i] is a list of private variables of Mbelonging to Li'

For exanple, given

Al

i
o'}

{BB.'in[Li]=i' ABB.out[L.1] =0'} BB. append(x) {BB.in[Li]
BB.out[Li]

the rule of adaptation allows the inference of

or

{true} BB.append(x) {x = last(BB.in [Lﬁ]))}

{in[Lf] @ <x> = ivout[L_.]1= <>} BB.append(x) {in[

l:l_.‘] = 'ioA
out[L.] =

<>},
; }

15
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As an exanple of verifying a concurrent program consider the system

of processes illustrated below.

input] > > output]

1nputn > Sn > outputn

—
=1

Process Si reads an input stream 'inputi, of melenments and feeds them into
a bounded buffer BB. T‘i renoves melenents from the buffer (not necessarily
the melenents appended by S,i)attdprints them on outputi. One can prove

{in[Si] = out[Si] = <>} Si {in[Si] = inputi A out[Si] = <}

as outlined below. Let leading(j,X), where X = <X;5 X,, . . . . Xk> with
k > J, be the initial segment <Xy, Xps . . . . Xj> of X
Then

{BB.'in[Si] = <>ABB.0ut[S1.] = <>}
Si: begin
], X:1nteger;
for j :=1 until mdo
{BB.in[S;] = leading(j-1,input;) A BB.out[S;] = <>}
read xfrominput_i‘,
{BB.in[Si] @<x> = leading (j,inputi) A BB.out[Si] = <}
BB. append(x);
{BB.in[Si] = 1eading(j,inputi) A,BB.out[Si] = <}
od
{BB.in[Si] = Tleading(m,input;) A BB.out[Si] = <}
end
{BB.in[S;] = input, A BB.out[S.] = <}
Note that the assertions for BB.append are simlar to the exanples given

earlier.

A simlar proof shows

{BB.in[Ti] = BB. out [Ti] = <>}Ti {BB.in[Ti] =< A BB.out[Ti] =
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output; A 1ength(output1.) = m},

Now suppose these processes are initiated by the statenent

L: monitor BB:bb cobegin 51//-.-//Sn//T1//---//Tn coend.

The proof rule for cobegin gives
{BB.Init D 11,\ (BB.in[Si] = BB.out[Si] = BB.in[Ti] = BB.out[Ti] = <>
Aoutput; = <>A length(input.)=m)}
moni tor BB:bb cobegin 51//...//Tn coend

{BB.IT A (A BB.in[S].] = inputiABB.out[Ti] = output, A BB.in[Ti] = <>
i
ABB.out[Si] = <> A]ength(inputi) = 1ength(output1.) = m)}

The pre-condition can be sinplified to

A (outputi = <> A]ength(inputi) = m)
i
The post-condition can be rewitten, expanding BB. Lto

ismerge(instream,éinput.®) Aismerge(outstream goutput ;)
A 1eng'th(1'nstr‘eam) = n*m = length(outstream
Ainstream = outstream @ buffer.

This inplies that instream = outstream yielding
ismerge(instream,ﬁnputiP) A isnerge(instream Qoutputi?)
The final theoremis

{(outputi = <>A1ength(1‘nput1.) =m 1 <i <n)}
moni t or BB: bb cobegin 51//...//Tn coend
{values printed on @outputib = values read from ﬁnpUt.i@"}

A slight variation on this system has processes S and T, which use the
bounded buffer in the sane way as Si and Ti above, plus processes Rl...Rn
whose actions are irrelevant except that they do not use the buffer.

For these processes
{BB.in[S] = BB.out[S] = <>A length(input) = m}
S
{BB.in[S] = input ABB.out[S] = <>A length(input) = m}

and

{BB.in[T] = BB.out[T] = <> Aoutput = <>}

T

{BB.in[T] = <> ABB.out[T] = out put Alength(output) = m}
and

{BB.in[Rf] = BB.out[R ] = <>} R. {BB.in[RT.] = BB.out[R_.I] = <}
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Using the rule for cobegin statenents

{length(input) = m A out put = <>}

noni tor BB:bb cobegin S//T//RJ,//...//Rn coend

{BB.IABB.in[S] = input ABB.out[T] = output A

length(input) = length(output) = m ABB.out[S] = BB.in[T] = <>
A({.\(BB.'in[R_i] = BB.out[Ri] = <>))}

After expanding BB.I,thissinplifies to

{1ength(input) = m A out put = <>}
moni tor BB:bb cobegin S//T//R1//...//Rn coend
{input =output}

6. SPECIFICATIONS FOR SPECI AL SYSTEMS

Often a set of processes use a shared data object in a special way,
and a stricter set of specifications is appropriate. For exanple, if
PBB. append(a) is only called with positive valuesof a, then PBB.remove(b)
nust return a positive value in b; a stronger entry condition for append
inplies a stronger invariant and a stronger exit condition for renove. It
is always possible to deal with such systems by defining a new set of
specifications for the shared object and re-verifying the inplenentation as
described in section 4. Inmany cases, however, it is possible to derive
the stronger specifications from the general ones, without examning the

nonitor inplenentation,

Suppose, then, we have already verified that nonitor Msatisfies a
set of specifications, M.Init, M.I,and, for each procedure p, Mp.entry
and Mp.exit. Then Mnust also satisfy the stricter specifications, M.I',

M.p.entry', and M.p.exit', provided the following conditions hold:

. M.Init DM.T'
2. for each procedure p
a. {Mp.entry AI} p(X;y) {M.p.exit AI}
F {M.p.pre' A I'} p(x;y) {M.p.post' a I'}

where P }- Q neans Q can be proved using P as an assunption

b. p has no wait or signal operations between the first and

last nodification of variables in M.I'
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Condition 1 ensures that the stronger invariant M.I' holds initially.
Condition 2a states that each procedure satisfies the stronger entry-exit
conditions and preserves M.I'; the fact that it satisfies the original entry
and exit and preserves M.I may be used as a hypothesis. The invariant

M.I' must also hold at each wait and signal in M condition 2b ensures that
variables in M.I' have either their entry or exit values at a wait or signal,
and in either case M.I' holds by rules 1 and 2a. Mst monitor procedures

seem to follow the pattern described in 2b.

Consider, as an exanple, the specifications for a positive-value

bounded buffer PBB discussed earlier.

PBB.I' =PBB.IAYx(x€ instream D x > 0)
PBB. append.entry' = PBB. append.entry A a > 0
PBB. append.exit' = PBB. append. exit

PBB. remove.entry' =PBB.renove.entry
PBB. remove.exit' = PBB.renpve.exit Ab > 0

Since the monitor PBB satisfies the restrictions in 2b, the new specifications

can be verified by checking conditions 1 and 2a, which clearly hold.

As another exanple, consider a system in which a producer process adds
an increasing sequence of values to a buffer ABB, and no other process
executes append. In this system the sequence of'values removed by any process

must also be increasing. The specifications for ABB are

ABB.I' =ABB.IAVL(% # producer D in[2] = <>)

Aincreasing(in[producer])

ABB.append.entry' =ABB.append.entry A#= producer A(length(in[#]) = 0 Vv
a > last(in[#]))

. ABB.append.exit' =ABB.append.exit
ABB.remove.entry' =ABB.renove. entry
ABB.remove.exit' =ABB.remnpve.exit A increasing(out[#])

The entry assertion of ABB.append requires that the calling process 1is
the producer (# = producer), and that the value to be appended is greater
than the last value appended. This is enough to inply the strengthened
invariant. Note that ABB.I' D increasing(in[producer]) A

instream = in[producer] = outstream @ buffer A
ismerge(outstream, éoutd),
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which yields Yo(increasing(out[g])). Thus the stronger exit condition

for ABB.renpve can be derived from ABB.I',.

CONCLUSI ONS

There are two principles under]ying"the specification and proof methods
presented in this paper. The first is that shared data abstractions provide
a useful tool for building concurrent programs, and that their usefulness is
nmuch increased if they can be precisely specified. The second is that the
proof of any program module should depend on assertions that cannot be af-
fected by the concurrent actions of other nodules. An easy way to insure
that assertions have this property is to limt their use of variables
This not only reduces the conplexity of formml verification, but also proves
a helpful discipline for informal proofs. The techniques discussed here are
suitable for automated verification and for human use. People cannot be
expected to produce detailed formml proofs, so it is inportant that the nethods
can be used informmlly and still be (relatively) reliable. The use of
safe assertions elimnates most of the conplex interactions and the time-
dependent error caused by concurrency. Note the inportance of private
variables in this methodology, both in specification and nonitors. Wthout
private variables in the specifications it would be inpossible for safe
assertions to describe an abstract operation adequately. Private variables

in nonitors make it easy to verify that a monitor satisfies its specifications.

Any verification technique is worthwhile only if it is general and
powerful enough to handle a wide range of problens. The exanples in this
paper have shown that the proposed nethods are adequate for verifying prograns
vwhich use a bounded buffer in several different ways. The techniques have
also been used to prove programs which communicate via nessage-passing nonitors.
Wth slight extensions to handle dynamc resource allocation, it was possible
to verify several conplex (though small) systems, including Hoare's struc-
tured paging system [Hoare 73). Mre experience is necessary, especially
with larger systens, but it appears that these nethods will be sufficient

for many concurrent prograns.
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