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ABSTRACT

Shared abstract data types, such as queues and buffers, are useful

tools for building well-structured concurrent programs. This paper presents

a method for specifying shared types in a way that sinplifies concurrent

program verification. The specifications describe the operations of the

) shared type in terms of their effect on variables of the process 1nvoking

the operation. This mmkes it possible to verify the processes independently,

reducing the conplexity of the proof. The key to defining such specifications

is the concept of a private variable: a variable which is part of a shared

object but belongs to just one process. Shared types can be inplenented using

an extended formof nonitors; proof rules are given for verifying that a

noni tor correctly implements its specifications. Finally, it is shown how

concurrent programs can be verified using the specifications of their shared

types. The specification and proof techniques are illustrated with a number

: of examples involving a shared bounded buffer.

INDEX TERMS: ~~ Program verification, program proving, concurrency, parallel
prograns, abstract data types, shared types, and operating
system desi gn.





1. INTRODUCTION

An inportant development in structured programmng 1s the use of

data abstractions. An abstract data type defines a class of abstract

objects and the set of operations on those objects. Considerable effort

has been devoted to issues related to data abstraction: specification of

the abstract type ([Guttag 75], [Guttag et al 76], [Liskov and Zilles 75],

[Liskov and Berzins 76], [Parnas 72]), programmng languages for ex-

pressing data abstractions (notable are CLU [Liskov 76) and Alphard

[Walf 76]), and proof nethods for data abstractions ([Hoare 72], [Neumann 75],

[Schorre, 75], [Shaw 76], [Spitzen 75], [Walf 761). In this paper these
issues are considered as they arise in concurrent programs, where data

abstractions are shared between parallel processes. The major focus wll

be on axiomatic proof techniques, in the style suggested by Hoare [69].

Verificationof both the inplenentation of an abstract data type and the

processes that use it will be considered.

The only feasible way to verify a conplex systemis to conpose the

system proof from independent proofs of its modules. Abstract data

types facilitate this approach. One can first specify and verify the

type and its inplementation, then use the specifications, rather than

the detailed inplenentation, in verifying higher-level nodules. [t 1s

also possible to verify each process in a concurrent system independently,

provided that the processes access shared data in a disciplined manner

(as with nonitors or critical regions). This 1s accomplished by proving

- each process using only variables that can not be nodified by other

processes. This separation of processes greatly sinplifies the proof

(for comparision see [Lamport 75] and [Owicki and Gries 76b], where

process proofs are not so conpletely separated).

To make such proofs possible, each operation of a shared type must |

be described in terms of its effect on variables of the process 1nvoking

the operation. Section 2 shows how a new concept, private variables,

) can be used to obtain such specifications; private variables are com

ponents of a shared object, but belong to just one process. Section 3

discusses the inplementation of shared data types by an extended form

of monitors, 1n which private and auxiliary variables are included for



the sake of proofs. Section 4 presents the rules for proving that a

monitor satisfies 1ts specifications, and sections 5 and 6 discuss the

verification of concurrent processes that use shared data types.

Throughout the paper the abstract type "bounded buffer" will be

used as an illustrative example. Itconsists of a buffer capable of

holding Nelements, andtwo operations:

append(a): wait until the buffer is not full, then

add a to the end of the buffer

renove(b): wait until the buffer is not empty, then

remove its first value and return it in b

Mre precise specifications are given in the next section.

Al though the discussion of the bounded buffer here 1s primarily

intended to illustrate the specification and proof techniques, 1t is

also of interest in its own right. Buffers have many uses in concurrent

systems, and other concepts, such as queues and message-passing operations,

can be described in very simlar terms. Thus the specification of the

bounded buffer should be applicable to the verification of a number of

concurrent systens.

2. SPECIFICATIONS

The specifications of an abstract data type form the interface

bet ween the program module which inplements the type and the modules

. which use it. Program verification consists of proving that the im

plementation satisfies its specifications, and then employing the spec-

ifications to verify the modules that use the type. This separation

simplifies verification; it also enhances nodularity, since the nethod

of 1nmplenentation may be changed without affecting the correctness of the

program as long as the new inplenentation also satisfies the specifications.

The specifications for a shared data type are given in the form of

assertions that can be incorporated into the proofs of concurrent processes.

So that the proof of a process is independent of the actions of other

processes, 1t must contain only safe assertions, 1.e. assertions whose
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free variables can not be modified by other processes. Thus the assertions

that describe the effect of an abstract operation must also be safe. This

is made possible by including private variables 1n the abstract type. A

private variable t of type T is declared by vart: private T, this neans

that there 1s one instance of t for each process that uses the shared

object. The instance of t belonging to process S can be changed only by

execution of an operation invoked by S. Thus that instance of t may be

used safely in the proof of S. W wll use array notation for private

variables; var t: private T is interpreted as vart: array process 1d of T,

and t[S] denotes the instance of t for process S. Indescribing the

effects of an operation, t[#] denotes the instance of t belonging to

the process that invokes the operation,

The table below gives the format for specifications of a shared data

type. Each clause gives the name of an assertion, with the free variables

it may contain indicated in parentheses.

Specifications

typename(p): declaration of component variables

requires: Requires(p)

initially: Init(d)

invariant: I(U)

operations:

operation-nane (var X; Y)

entry: entry(x, y, z[#])

exit: exit(x, y, z[#])

where G = paraneters and component variables of the type

PD = paraneters of the type (Pp cad)
z = private variables (z cd)

z[#] = private variables of calling process

X = var paraneters

y = value paraneters

Let us consider each clause 1n turn. First, the name and paraneters

of the abstract type are given, followed by its components. Requires is

a condition which must be satisfied when an instance of the type is

created; for example, for the bounded buffer Requires assures that the

buffer size is positive. Init(d) gives the initial value of a newly
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created instance of the type. I(U), the invariant, is a consistency

assertion about the possible values that can be assumed by a . Itis

true for the initial value, and 1s preserved by each operation, although

it may fail to hold temporarily during execution of an operation.

Each operation is defined by giving its name and the names and types

of its formal parameters. Following Pascal, the formal paraneter list

contains varparameters, which may be modified by the operation, and

value parameters, whose values are not changed. Two assertions describe

the effect of the operation. The entry assertion gives the conditions

required for correct performance; it is the programmer's responsibility

to insure that the entry condition 1s satisfied each time the operation

is invoked. The exit clause describes variable values upon conpletion.

Note that entry and exit describe the operation in terms of private

variables and parameters; they are safe assertions and may be used in

the proof of a process which invokes the operation.

Specifications for the abstract type bounded buffer are given

below, they are adapted from specifications proposed by Good and Anbler

. [1975] for concurrent prograns synchronized with message buffers. The

buffer stores values of type message, not defined here. The notation

<X13X23 o mie Xn” denotes the sequence whose elenents are Xi, X25 ...,

Xn The enpty sequence is written<>, X @ Y is the concatenation of
the sequences X and Y IfX is nonenpty, its first element is first(X)

and X=<first(X)> 0@ tail(X); simlarly, last(X) is the last element in

X, and X=head(X) 0 <last(X)>. The number of elements in X is length(X)*

- If t is a private variable, été denotes the bag containing the

values of all instances of t.

Specifications for the Bounded Buffer

bb(N: 1nteger)

becordf sequence of message

comment length (buf) < N

instream sequence of nessage

comment sequence of values appended to bb

outstream sequence of nessage

comment sequence of values removed from bb



in; private sequence of nessage

comment values appended by each process

out: private sequence of nessage

comment values removed by each process

requires: N > 0 |

initially: buf = instream = outstream= in = out = <>

invariant: length(buf)< NA

instream = outstream@ buf a

ismerge(instream, ind) A

ismerge(outstream éoutd)

operations:

append(a: message)

entry: in[#] =1' A out[#] = 0!

_ exit: in[#] = i' @ <a> A out[#] = o'

renove(var b:nessage)

entry: in[#] =1" A out[#] = o'

| exit: in[#]=1"A3c(b=c A out[#] = 0'@ <c>)

The bounded buffer has a single parameter N, the buffer size;

because of the requires clause, N must be positive. The data for

a bounded buffer is a record consisting of sequences buf (the actual
buffer), instrearn,outstream in, and out. Variables instream and

outstream record the global history of buffer operations by storing

the sequence of values appended to and removed from the buffer. The

private variable in[S] contains the sequence of values appended by

process S, while out[S] contains the values removed by S. W& will see

in section 3 that some of these variables are needed only for proofs,

and do not have to be included in an i1nplenentation. Initially, all

sequences are enpty. The invariant states that only N items can be

in the buffer (length(buf)< N), that values appended to the buffer

either have been removed or are still in the buffer (instream=

outstream@ buf), that the global input history is some merge of the

private input histories (isnerge(instream 4ind))}, and that the

gl obal output history 1s a merge of the private output histories

(ismerge (outstream, doutd)). The predicate ismerge(X,Y), where X is

a sequence and Y = Qy;, Vo, .... yp is a bag of sequences, 1s defined by
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ismerge(<>,Y) = true if y; = <>, 1 <i <n
ismerge(X' @ <x>, Y) = true if

Yi = Y @ <x for some 1 < k<n
and ismerge(X',d1, y's .... ¥¥

ismerge(X,Y) = false otherwise )

The behavior of append andrenove is defined by their entry and

exit assertions. For append, the value a is added to the private input

history of the invoking process, while the private output history remains

unchanged.

Al though append(a) must also change the value of buf and instream this

fact 1s not explicitly included in the exit clause (it 1s implied by the exit

clause and the invariant, however). This 1s because the exit assertion

will be used in verifying the processes that invoke append, and in that

context only the effect on private and local variables is relevant. For

remove, the exit condition states that some (unknown) value 1s returned

in b and appended to the process's private output history. One can deduce

from the invariant that the value returned must be the first one in

buf, but buf, as a shared variable, can not appear in the exit condition.

This 1s an accurate reflection of the fact that, from the viewpoint of

a process invoking remove, it is not generally possible to predict what

value will be returned.

Itis interesting to conpare the bounded buffer specification given

here to specifications suggested by Hoare [74]. Expressed in our

notation, Hoare's specification is

bb2(N): record buf sequence of message

requires: N > 0

-initially: buf = <>

‘invariant: length(buf) < N

operations:

append(a: message)

bntuny: f = buf"

exit: buf = buf' 0<a>

renove( var b:message)

bnarfy: = buf’

exit: b = first(buf') Abuf = tail(buf')
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Hoare's specification is shorter than ours, and it conpletely describes

the effects of the bounded buffer operations. However, it 1s harder to

use in proofs of concurrent programs because 1t does not provide any

private variables. For exanple, although the effect of bb2.append is

buf = buf' @ <X>, one cannot use

{true} bb2.append(x) {x = last(buf)}

in the proof of a process that invokes append. This is because other

processes can also append and renove elements from the buffer; 1n fact,

Xx may not even be in the buffer by the tine append(x) returns control

to the invoking process.

A valid use of append is

{true} bb2.append(x) {x € buf or x has been rempved by another process).

Our specifications give a convenient way of expressing this:

{true} bb.append(x) {x = 1ast (in[#])}
and

(xe in[#] Abb.I) D (x € buf v I5(xe out[S])).

Howard [76] gives an informal specification of the bounded buffer.

He uses variables like instream and outstream and his specifications

include the invariant instream = outstream@ buf. But he has nothing

corresponding to the private variables 1n and out.

3. IMPLEMENTATION

An attractive neans of inplenenting abstract data types ina

- parallel programmng environment 1s the monitor, as proposed by

Hoare [74] and Brinch Hansen [75].A nonitor is a collection of

data and procedures shared by several processes in a concurrent program

The monitor data can be accessed only by invoking nonitor procedures;

thus the monitor presents in a single place a shared data object and

all the code that has access to that object. Mnitors also facilitate

concurrent programmng by ensuring that only one process at a time can

operate on the shared data and by providing operations for process

synchronization.

The general formof a monitor type definition is given below.
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class classnane: nonitor(paranmeters)

degilmration of nonitor data;

declaration of nonitor procedures;

initialization of nonitor data

end

An instance ofa nonitor is createdby the declaration monitor mname:

classname(paraneters). The notation for a call to a nonitor procedure

is mname,procedurename (var result parameters; value parameters),

To simplify program verification the result parameters must be distinct --

see Hoare [71] for a discussion of paraneters and program proofs. The

value paranmetersare not nodified by the procedure.

A monitor which inplements the bounded buffer type is defined

below. Some features of nonitors which are inportant for this exanple

(mutual exclusion, conditions, auxiliary variables, and private variables)

will be discussed further. A nore conplete description of nonitors 1s

given in Hoare [74]. Auxiliary and private variables were not in the

original definition of nonitors; they have been added here because of

. their usefulness in verification.

class bb: monitor (N)

begin

BBvar: record mbuffer: array 0..N-1 of nessage;

last: 0..N-13

count: O..N;

minstream, moutstream:

auxiliary sequence of nessage;

Min, mout:

private auxiliary sequence of nessage end

nonenpty, nonfull: condition;

procedure append(a:message);

begin1f count = N then nonfull. wait;

last := last® 1; m buffer[last] := a; count := count + I;

minstream := m instream @ <a>; min := min 8 <a>;

nonenpty. signal

end append;
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procedure rernove(var b:message);

begin 1f count = 0 then nonenpty. wait;

count := count-1; b := mbuffer[lastecount];

moutstream := m outstream @<b>; mout:= mout © <b>;

nonfull.signal )

end renove;

begin count := 0; last := 0; m instream r= <>3 moutstream:= <>;

min := <>; m out := <> end;

end bounded buffer

@ and © are computed modulo N

An instance of the monitor is BB:bb

In order to allowa number of processes to share the nonitor data

in a reliable fashion, execution of monitor procedures 1s mutually

exclusive; i.e. only one procedure call at a time is executed. If

a nunber of calls occur, all but the first are delayed until the nonitor

is finished with the first call. This prevents some of the obscure

time-dependent coding errors that can occur with shared data.

Synchronization anong concurrent processes is acconplished through

condition variables in monitors. A condition is a queue for processes.

There are two operations on conditions: condition name.wait and condition_

nane. signal. A process which executes condition-nanme.wait 1s suspended

and placed at the end of the condition queue. Wien a process executes

condition name.signal the first process waiting on the condition queue

is reactivated. Inorder to insure that only one process at a tine may

execute a nonitor procedure, the procedure executing the signal nust be

suspended while the reactivated procedure uses the nonitor.

The bounded buffer monitor uses two conditions, nonempty and nonfull.

Ifthe append operation finds that there is no roomin the buffer, it

waits on condition nonfull. After a renove operation there must be room

in the buffer, so remove ends with nonfull.signal. Condition nonempty

1s used in a simlar way by processes trying to remove an element from

the buffer.

The bounded buffer monitor il lustrates two added features of monitors:

private and auxiliary variables. Auxiliary variables are included as aids
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for verification; they are not necessary for the correct inplenentation

of the monitor and may be 1gnored by a compiler. The inportance of

such auxiliary variables for proofs of parallel programs 1s discussed

in Owicki [76].

In order to insure that the auxiliary variables are truly unnecessary

for a correct inplenentation, they may appear only in assignment state-

nents X := e, where Xx 1s an auxiliary variable and e does not contain

any programner-defined functions (which mght have side effects). This

guarantees that the presence of auxiliary variables does not affect

the flow of program control or the values of non-auxiliary variables.

Thus their presence or absence is invisible to a program which uses the

monit or.

The auxiliary variables minstream and m outstreamare history

variables in the sense of Howard [76]. In fact, m instream and moutstream
play the same role as the history variables Aand R in Howard's verifica-

tion of a bounded buffer monitor.

Private variables in a monitor are used to implement abstract private

variables, and they have essentially the sane neaning. The declaration

t: private T creates one instance of the variable t for each process

that uses the nonitor; t[S] is the instance belonging to process S. A

reference to t 1n a monitor procedure is treated as a reference to t[S],

where S 1s the process which invoked the procedure. Thus it is syntacti-

cally impossible for a procedure to modify any private variables except

-those belonging to the process that invoked it. In this paper all private

variables are auxiliary variables. Non-auxiliary private variables

m ght be a useful extension of monitors, but their inplenentation is

not. discussed here.

In the bounded buffer nonitor, Mmin and Mm_out are private variables

which inplenent the abstract private variables in and out. Private

abstract variables must be inplemented by private nonitor variables,

so that it 1s impossible for one process to nodify the private abstract

variables of another.
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4. VERIFYING THE I MPLEMENTATI ON

The nethodology for proving that a monitor correctly i1nplenents

its specifications is derived from Hoare's method for abstract data

objects in sequential programs [Hoare 72]; it is also closely related to

generator induction [Spitzen 75]. The mmin difference is that the proof

must take into account the sharing of the nonitor among concurrent

processes. One first defines the relation between the abstract object

| @ and the nonitor variables M by giving a representation function rep

such that G@ = rep(M). Anonitor invariant nust also be defined; it is

called monitorname. I. or sinply IM and 1t gives a consistency condition
on the monitor variables M just as I does for the abstract variables dO.

The verification of the monitor consists of proving the followng

conditions:-

l, I, (M) D> I{rep(Mm))

2. {Requires) nonitor initialization {I,(m) A Init(rep(M))}

J. For each nonitor procedure p(var Xs Y)

{pentry(x,y,rep(m)) A I,(M)}
body of procedure p

{p. exit (X,y,rep(M)) A I,(M)}

The proofs can be accomplished with the usual proof rules for

sequential statements and the following axioms for wait and signal.

Wth each condition variable bi associate an assertion Bi describing

the circumstances under which a process waiting on bi should be resuned.

Then the axioms for wait and signal are

{IMA P} b, .wait {Iy APA B.}

{IMAP A B.} bi.signal (IMA P}

where the free variables of P are private, local to the procedure,

parameters, or constants. This is an extension of Hoare's original rules

[Hoare74]. The assertion P was added to allow a proof to use the fact

that the values of private and local variables can not change during

wait or signal.
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Inthe bounded buffer exanple, the relationship between the abstract

buffer bb and the nonitor data BBvar is given by

bb = (buf,instreamoutstreamin, out)

= rep(BBvar) :

= (seq(m buffer,last,count),m instream,

moutstream,m in,m out)

where seq(b,2,c) = <> if ¢=0

= seq(b,£01,c-1) @ <b[L]> if c>0

Inthis case, the function rep is almost an identity function,

because the abstract variables instream outstream 1n, and out are

directly inplenented by the corresponding nonitor variables. The

abstract sequence buf is inplemented by the array mbuffer and variables

last and count; function seq gives the value of the abstract buffer

determ ned by the nonitor variables.

The monitor invariant for the bounded buffer monitor BB is

BB. I: 0 < count < NAO < last < N-1 a
m_ instream = m_outstream @ seq(m buffer, last, count)

A ismerge(m instream, éminp)

A ismerge(m outstream, émoutd)

The conditions to be verified are

I. BB.Iy > bb.I(rep(BBvar)) - obvious from the definition of rep

2.  {bb.Requires} initialization {BB.IyAInit(rep(m))}

This expands to

{N > 0}

count := 0; last := 0;

minstream := moutstream :=m in := mout := 0;

{y A seq(m buffer, last, count) = <> A
minstream = moutstream = M_in = mout = <>}

The proof is trivial. |
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3. {min[#] =i" A mout[#] = 0 A Ty}
code for append(a) ”

{min[#] =i" @ <a> A mout[#] = o0' yp Ty}
and

{Mm in[#] = 1" A m out[#] =0' ply)
code for remove(b)

min[#] =i" AJc(b =c Amout[#] = o 0 <c>) A I)
A proof outline for remove(b) is given below, append(a) 1s simlar.

Proof outline for BB.remove

Wit assertion for nonfull: count < N

for nonenpty: count > 0

{IyAmin[#] =i" Amout[#] =0'}.

1f count = Othen

{Iy Am_in[#] =i' Amout[#] = 0'}
nonenpty.wait ;

{IyAcount > 0Amin[#] = i' A mout[#] = 0'}
{I A count >0 Am in[#] = i’ Amout[#] = 0'}
count := count =- 13 b := m buffer[last © count|;

moutstream := m outstream @ <b>; mout := mout @ <b>;

{IyA0< count < NA min[#] =i" A
3c(b = c Am out[#] =o © <c>)}

nonfull. signal

{IyAmin[#] =i’ AJc(b =c A mout[#] =o 8 <c>}
end

{remove.exit A Iy}

13



Inaddition to proving that a nonitor satisfies its specifications,

one may wish to show that it has other properties (probably related to

performance). Howard [76] is an excellent source of techniques for

verifying such properties.

5. PROGRAM PROOFS

In this section we show how to verify concurrent programs given the

specifications of shared data types. Concurrent execution is initiated

by a statement of the form

monitor M, tA ,...,Mp:Ap cobegin L, :S, // ApS, coend.

The S; are statements to be executed concurrently, i.e. parallel
processes, and Li is the name of process Si. The only variables that

may appear in Si are those declared in Sq (its local variables) or con-

. stants declared in a block containing the cobegin statenent. Sj al so
has indirect access, through procedure calls, to monitor variables.

Thus all variables are protected from the danger of overlapping opera-

tions in different processes: they are constants (no modifications),

local variables (accessible to only one process), or nonitor variables

(protected by the nonitor mutual exclusion).

The specifications of type Aj are linked to nonitor Mjby the
- convention that M.assertionnane refers to the naned assertion in the

specifications of As, with the nonitor name M prefixing each shared
variable. Thus, given monitor BB:bb, BB.Init is the assertion

BB.buf = BB.instream= BB.outstream= BB.in = BB.out = <>. Then the

rule of inference for verifying cobegin statenents 1s

{Pi} Sj {Qj}, (Pj ,Q4 safe for Si, 1 <i <n)

(A My. Init) (AP. )} monitor. .M,:A,..cobegin..L.:S;..coend (AM. T)A(AQ, )}] 1 j i

. . PyseeesP
(The notation —q means that Q may be inferred if all Pi have
been proved.) Recall that safe assertions can have no free variables
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which can be changed by other processes, oP and Q. may only refer to
constants and local and private variables of S;. The effect of the
cobegin statenent on private and local variables is obtained from

independent proofs of the individual processes. For shared objects,

the initial assertion can be assumed to hold at the beginning of concurrent

execution, and the invariant holds at the end.

Mdni tor procedure calls in 5; are verified using the entry and exit
assertions and the usual rules for procedure calls, as described in

Hoare [1972]. The basic rule for a procedure call in process Si is
Xy # _ oxy #

{M.p.entry = < L }M-plase) {M.p.exit - - L.}
where the actual var paraneters a nust be distinct from each other

Xy #

and from the actual value paraneters €. Mp.entry Ta L represents

the result of substituting actual paraneters a,e for forml paraneters

X, ¥y and the name of the calling process Li for the symbol # in

Mp.entry.

Hoare's rule of adaptation is also useful: it allows the entry

and exit assertions to be adapted to the environment of the procedure call.

{P} M.p(a,e) {Q}

{3k(P A ¥a,z[L.1(Q > R))} M.p(a,e) {R}
where k is a list of variables free in P and Q but not R, a or e,

and Z[L,] is a list of private variables of Mbelonging to L..
. For exanple, given

{BB.in[L.] =i" ABB. out [L. ] =0'} BB. append(x) {BB.in[L,] = 1' B<x> A
BB.out[L. ] =0'}

the rule of adaptation allows the inference of

{true} BB.append(x) {x = last(BB.in [LD]
or

tin[L, ] @ <x> = fo Aout[L.] = <>} BB. append(x) {infL. ] = 10A
out [L;] = <>].
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As an exanple of verifying a concurrent program consider the system

of processes illustrated bel ow

input, > -> output,

BB ¢

snout, SN output
Process S; reads an input stream input. , of melenments and feeds them into
a bounded buffer BB. [F removes m elements fromthe buffer (not necessarily

the melenents appended by S;)attd prints t hem on output. One can prove

{in[s;] = out[s, ] = <>} Si {in[s,] = input; A out[S, ] = <>}

as outlined bel ow Let leading(j,X), where X = <Xp, X,, . . . . X> with

k > J, be the initial segment <Xj, Xp» . . . . o> of X
. Then

Sy begin
j,X:integer;

for j :=1 until mdo

{BB.in[S,] = leading(j-1,input.) A BB.out[S, ] = <>}
read xfrom input,
{BB.in[S, ] B<x> = leading (3,input,) A BB.out[S, ] = <>}
BB. append(x);

{BB.1in[S. ] = leading(j,input;) A BB.out[S, ] = <>}
od

{BB.in[S.] = leading (m, input.) A BB.out[S, ] = <>}
end

{BB.1in[S. ] = input, A BB. out[S,] = <>}
Note that the assertions for BB.append are simlar to the exanples given

earlier.

A simlar proof shows

{BB.in[T,] — BB. out [T.] = <>}, {BB.in[T,] = <> A BB.out[T,] =
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output; A length (output) — m},

Now suppose these processes are initiated by the statement

L: moni tor BB: bb cobegin Soff. IS HITT SIT coend.

| The proof rule for cobegin gives

{BB.Init DO 4 (BB.in[S, ] = BB.out[S, ] = BB.in[T, ] = BB.out[T. ] = <>
A output, = <A length (input, )=m)}

nonit or BB: bb cobegin So/1.. TTT coend

{BB.I A (A BB. in[S, ] = input, A BB.out[T, ] = output, A BB. in[T. ] = <>

A BB.out[S. ] = <> A Tength(input,) = length (output) = m)}

The pre-condition can be sinplified to

A (output, = <> Alength(input.) = m

The post-condition can be rewritten, expanding BB. Ito

ismerge (instream, $input.) Aismerge(outstream output?)
A length(instream) = n*m = length(outstream
Ainstream = outstream@ buffer.

This inplies that instream = outstream yielding

ismerge(instream,finput;®) A isnmerge(instream output. ¥)
The final theoremis

{(output, = <>ATlength(input.) =m 1 <i <n)}
noni tor BB: bb cobegin Si//... TIT, coend
{values printed on doutput. d = values read from €input.&}

A slight variation on this system has processes S and T, which use the

i bounded buffer in the same way as ¥ and Ti above, plus processes Ry- Ry
whose actions are irrelevant except that they do not use the buffer.

For these processes

{BB.in[S] = BB.out[S] = <>A length(input) = m}

S

{BB.in[S] = input ABB.out[S] = <>A length(input) = m}
and

[{BB.in[T] = BB.out[T] = <> Aoutput = <>}

T

{BB.in[T] = <> ABB.out[T] = output Alength(output) = m}
and

{BB.in[R, ] = BB.out[R] = <>} R. {BB.in[R.] = BB. out[R. ] = <>}
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Using the rule for cobegin statements

{Tength(input) = m A output = <>}

noni tor BB: bb cobegin SIIT//R/]...T/R coend
{BB.IABB.in[S] = input ABB.out[T] = output A

length(input) = length(output) = m ABB.out[S] = BB.in[T] = <>

A(A(BB.in[R.] = BB. out[R. ] = <>))}
:

After expanding BB.I,thissinplifies to

{1ength(input) = m A output = <>}

noni tor BB: bb cobegin S/IITIIRT..IIR coend
{input =output}

6. SPECIFICATIONS FOR SPECI AL SYSTEMS

Often a set of processes use a shared data object in a special way,

and a stricter set of specifications 1s appropriate. For exanple, if

PBB. append(a) is only called with positive valuesof a, then PBB.remove(b)

mist return a positive value in b; a stronger entry condition for append

implies a stronger invariant and a stronger exit condition for remove. It

is always possible to deal with such systems by defining a new set of

specifications for the shared object and re-verifying the inplenmentation as

described in section 4. Inmany cases, however, it is possible to derive

the stronger specifications from the general ones, wthout examning the

noni tor 1nplenentation,

] Suppose, then, we have already verified that nonitor Msatisfies a

set of specifications, M.nit, M\.I,and,for each procedure p, Mp.entry

and Mp.exit. Then Mnust also satisfy the stricter specifications, M.I',

M.p.entry', and M.p.exit', provided the following conditions hold:

I. M.Init OMT’

2. for each procedure p

a. {Mp.entry ATI} p(x;y) {M.p.exitAI}

F {M.p.pre' A I'} p(x;y) {M.p.post’' a I'}

where P | Q neans Q can be proved using P as an assunption

b. p has no wait or signal operations between the first and

last modification of variables in M,I'
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Condition 1 ensures that the stronger invariant M.I' holds initially.

: Condition 2a states that each procedure satisfies the stronger entry-exit

conditions and preserves M.I'y the fact that it satisfies the original entry

and exit and preserves M.I may be used as a hypothesis. The invariant

M.I' must also hold at each wait and signal in M condition 2b ensures that

variables in M.I' have either their entry or exit values at a wait or signal,

and in either case M.I' holds by rules 1 and 2a. Mst monitor procedures

seem to follow the pattern described in 2b.

Consider, as an example, the specifications for a positive-value

bounded buffer PBB discussed earlier.

PBB.I' =PBB.IAYx(xe€ instream D> x > 0)

PBB. append.entry' = PBB. append.entry A a > 0

PBB. append.exit' = PBB. append. exit

PBB. remove.entry' =PBB.remove. entry
PBB. remove.exit' = PBB.remnove.exit Ab > 0

Since the monitor PBB satisfies the restrictions in 2b, the new specifications

can be verified by checking conditions 1 and 2a, which clearly hold.

As another example, consider a systemin which a producer process adds

an increasing sequence of values to a buffer ABB, and no other process

executes append. In this system the sequence of' values removed by any process

must also be increasing. The specifications for ABB are

ABB.I' =ABB.IAVY2(2 # producer DO in[e] = <>)

Aincreasing(in[producer])

ABB.append.entry' =ABB. append.entry A#= producer A(length(in[#]) = 0 V

a > last(in[#]))

. ABB. append.exit' =ABB. append. exit

ABB. remove.entry' =ABB. renove. entry

ABB. remove.exit' =ABB.renove.exit A increasing(out[#])

The entry assertion of ABB. append requires that the calling process is

the producer (# = producer), and that the value to be appended is greater

than the last value appended. This is enough to imply the strengthened

invariant. Note that ABB.I' OD increasing(in[producer]) A

instream = in[producer] = outstream@ buffer A

ismerge(outstream, éoutd),
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which yields Ya(increasing(out[g])). Thus the stronger exit condition

for ABB.renmpve can be derived from ABB.I'.

7. CONCLUSIONS

There are two principles underlyingthe specification and proof methods

presented in this paper. The first is that shared data abstractions provide

a useful tool for building concurrent programs, and that their usefulness is

much increased if they can be precisely specified. The second is that the

proof of any program nodule should depend on assertions that cannot be af-

fected by the concurrent actions of other modules. An easy way to insure

that assertions have this property is to limt their use of variables.

This not only reduces the complexity of formal verification, but also proves

a helpful discipline for informal proofs. The techniques discussed here are

suitable for automated verification and for human use. People cannot be

expected to produce detailed formal proofs, so it is inportant that the methods

can be used informally and still be (relatively) reliable. The use of

safe assertions elim nates most of the conplex interactions and the time-

dependent error caused by concurrency. Note the importance of private

variables in this methodology, both in specification and monitors. Wthout

private variables in the specifications it would be impossible for safe

assertions to describe an abstract operation adequately. Private variables

in monitors make it easy to verify that a monitor satisfies its specifications.

Any verification technique is worthwhile only 1f 1t 1s general and

_ powerful enough to handle a wide range of problens. The exanples in this

paper have shown that the proposed nethods are adequate for verifying prograns

which use a bounded buffer in several different ways. The techniques have

also been used to prove programs which communicate via message-passing nonitors.

With slight extensions to handle dynamc resource allocation, it was possible

to verify several conplex (though small) systens, including Hoare's struc-

tured paging system [Hoare 73). Mre experience is necessary, especially

with larger systens, but 1t appears that these methods will be sufficient

for many concurrent prograns.
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