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1. Introduction

The collocation method based on trigonometric interpolation is
called the Fourier (or pseudo-spactral) method. It has been used
extensively for the computation of approximate solutions of partial
differential equations with periodic solutions. A satisfactory
theoretical justification for equations with variable coefficients
has only existed for equations written in skew symmetric form [3, 6, 7].
Recent work of Majda, McDonough and Osher [8] treats hyperbolic systems
with €° coefficients.

In this paper we develop a stability theory for linear hyperbolic
and parabolic partial differential equations with variable coefficients.
The generalization of these results to nonlinear equations follows if the
problem has a sufficiently smooth solution. We restrict our discussion
to problems in one space dimension. The extension to problems in more
space dimensions is immediate. Error estimates can easily be derived

using our results following those in Kreiss and Oliger [7] and Fornberg

[3].



2. Trigonometric Interpolation

nthis section we collect some known results on trigonometric

interpolation (see [ 4, 5,’H). Let N be a natural number,

)t X, = Vh, Vv = 0,1,2,...,2N.

and define grid points ¥

v(x), v(x) = v(x+1), whose values

h = (2N+1

)

Consider a one-periodic function

X, We define a discrete

vy = V(XV) are known at the gridpoints

scalar product and norm by

2N o
= 2 u(xv) V(Xv)h P “uHh . (u,u)h

(2.1) (u(x),v(x))h
V=0

The trigonometric polynomial w(x) of degree N which interpolates

vix) 1in the points X, i.e.,

w(xv) = vix, ) Vo= 0,1,2,...,2N 3

(2.2) v

is uniquely given by

(2.5) w(x) = Z a(w)eE‘ﬂ‘i(DX
w=-N

where

(2.1) a(@) . (vx), )

This follows from the orthonormality of the exponential function,

0 if 0 < |mn|< 2N

(eE‘Ninx
h

, e

(2.5)

1 if m=n



The usefulness of trigonometric interpolation stems from the fact
that the smoothness properties of the function are preserved and that
the convergence is rapid for smooth functions. Let the L. -scalar

2
product and norm be defined by

1 2
(2.6) (w,v) =] wvax, [ulf . (wu)

We will need the following well known theorem.

Theorem 2.1. If Wy oW, interpolate vy and Vo respectively, then

(2.7) (Wl’we)h.= (wl,wg) =(Vl,Vé )h and
(2.8) hey GIP = vy @IE = 5 la () |2
1 W-N

It will be convenient to work with the following class of functions.

Definition 2.1. P(g,M) is the class of all functions v(x) which

can be developed in a Fourier series

o

(2.9) v(x) = 2 v(w)elTax
==

with

(2.10) 3 I[ lomo]® + 115(w) |? < .

W= =

P(a,M) is contained in the Sobelev space Hg-

We now need the relationship between the Fourier coefficients GQ@



of a given function wv(x) and the coefficients a(®w) of its

trigonometric interpolant w(x). This is contained in the following

well known result [ 4, 71.

Theorem 2.2. Let v be given by (2.9) and w given by (2.3) and

(2.4) then

(2.11) alw) = § viwrjenel)) , lof < N

J=-o

We can now investigate the rate of convergence of the interpolating

polynomial to a function v(x) e P(g,M).

Theorem 2.3. TLet v(x) ¢ P(q,M) with o> 1/2. Then

@ 1/2 MC
(e.12) IIvix)-wle) < —1 A - _ o
(em)°% + (emn)=%3=1 (2j-1) i

=]
where C§=l+2 > —12

j=1 (23-1)"% -
Proof. We write (2.9) as v(x) = vN(x) + vR(x) where

N oA ;
) = 5 e ;) = T ()P
w= -N >N

Let WN(X) and WR(x) be the trigonometric interpolants of VN(X)

and VR(X), respectively. They are given by

(w)
a
N

N .
WN(X) =(D:Z (ﬂ))egmm, a(N)(a)) = (v (x),egﬁm)



The trigonometric interpolant of v(x) is
wix) oo (x) o owp(x)

WN(X) interpolates VN(X) in the 2N+l points of

(2.3) we have

wN(x) ; vN(x)

Therefore,

v () () [P = [ G- o) [ = Il G) 1P

(2.2

Ty

)'  and from

) |F

since VR(X) is orthogonal to WR(x). By (2.10) we can write

o) = —
'2110{(1+l
where
+o
T ? <P
W= w0
Therefore,
e lF= T F@PfF- 5§ — Fe2<
& @ > N bl > v ; bmw/%+1 [

By Theorem 2.2



N ®
hege = £ 2™ @ B - 51T S em)) [P
w= -N w=-N  J=-
j#0
) g E F(w+g (on+1)) |2
w=- | j==o lom(owj (e+1)) |O{+l|
j#0
N @ 1 @ .
< X )y 5 L |Fergena)) |7
w=-N | j==o (lom(@+jEn+1))|*+1)" jr=
j#o ifo
oM it . 1\ -20
< ——— ¥ (2i-1)
T (em)?% . jm1

and the theorem follows.

Remark. Observe that the contributions to the error by Vg and Ve
are of the same order if o > l/E.WR is often called the aliasing
error. Thus, we see that if v is at all smooth, then aliasing

plays no important role.

The following result follows immediately from the last theorem.

Corollary 2.1. Let v(x) e Pla,M) with o > § + 1/2, § a natural

number. Then

MC .
a-J

(2.13) W —
dx dx? T ()9




3. Stability of Fourier Methods

Let v(x) be a one-periodic function whose values, V(Xv) are

known at the gridpoints x, = Vh, h = (2N+l)_l. If we want to approxi-

Y
mate dv(xv)/dx we can compute the trigonometric interpolant (2.3) of
v(x), differentiate it, and use its derivative
N Ewiwxv

(3.1) dw(xv)/dx = 2 (omiw)a()e

w=-N
as an approximation of dv(xv)/dx. The computation of (3.1)in all
of the gridpoints X,oV= 0,1,2,...,2N can be done using two discrete
Fourier transforms (DFT) and 2N complex multiplications. Also, if

we know that v(x) ¢ P(aw,M) with o > 3/2, then Corollary 2.1 gives

us the error estimate

o]

(3.2) |av/ dx - aw/ax|| <
e T (om)L .

Higher derivatives can be computed analogously.
The above process is linear so it can also be represented using

matrix notation. Let

1)

v = (v(xo),...,v(x2 ),y ==(dw(xo)/dx,...,dw(xEN)/dx)’

N

denote the (2N+1) dimensional vector formed of the grid values of

v(x) and dw/dx, respectively. Then there is a (2N+1) X (oN+1)

1 . . :
)If y is a vector then y' denotes its transpose and y* its

conjugate transpose. The same notation will be used for matrices.



matrix such that

(3.3) y = Sv

Formulas for the elements of S have been computed by B. Fornberg
[ 2, 3]. He has also shown that S can be considered as the limit
of higher and higher order difference approximations.

The scalar product and norm of y and v are defined by (2.1),

i.e.,
2N
(g,z)h = ) u(xv)v(xv5h ;o lE (u,u)h
We need several properties of the operator S. In [6] we

proved the following lemma.

Lemma 3.1. S is skew Hermitian, Iﬁ“h = 27N, the eigenvalues of S

are A, = 2Tiw, and the corresponding eigenfunctions are

2Tiwh 2miaeh ) ,

§w=(l’e ,...,e ’ (D=O,il,uoo,tN

We next consider the approximation of b (x) du/dx where b (x)

is a smooth one-periodic function. The operator b(x) d/dx is essentially

skew Hermitean because we can write
(3.4) b(x) du/dx = Qu + Ru

where



Qu = %(bdu/dx + d(bu)/ax) , Ru = - -21- db/dx u

Q is skew Hermitian and R is bounded. There are many problems where

R =0. For example, we can write udu/dx in the form
1 2
udu/dx = g(udu/dx + du-/dx)

Now consider the partial differential equation

u =D (x)ou/ox = Qu + Ru , u_ = du/dt

then

= (u,u

(w,0) .

£ >+(uvu)= (w,0u) + (Qu,u) + (w,Ru) + (Ru,u) = -(u,udv/ax) .

and we have an energy estimate. If we approximate the above problem by

- X
where
i db(xo)
*
b(xo) 0 v 0 = 0 .. 0
ab (x, )
0 b(xl) 0 0 3 0 1 0 0
B' = EHS DD DD DA EIEIETD DD D DD D E D D , bx - dX a o
0 .......x0 b(ng) . - db(xQN) |
| e dx

Then we obtain the same energy estimate because

(Bs + sB) = - (Bs + sB)"

10



is skew Hermitian and therefore

Jl(v,v)h = -(z,ﬁgz)

dt h

The above procedure can be generalized considerably. Consider the

parabolic system

. _ (Aw ) + Bu + Cu,u = du/dx

(3.5) u, (Xx By L

where u denotes a vector function with n components, A, B, and C

are n X n matrices, A and B are Hermitian, A is positive definite, and

C and BB/BX are uniformly bounded. We can rewrite this system in the form

+ i(B w +®Bu_ )+ Cu,
2 X X

(3.6) u, = (Ag 1

where

1
C, = C -7 0B/

We then obtain the energy estimate

(w,u), = -E(uX,A ux) + 2 Real (u,Clu)

t

which depends solely on the property that d/ox is skew Hermitian.
Thus, we obtain a corresponding estimate if we replace d/ox by S

and approximate (3.6) by

d..-V_ ~ l~~ ~
(3.7) a—E=SASE+§(BS+SB)X+CV



The estimate is

d 2 ~ ~%

T vl < (v (cy + vy
where we extend our earlier definitions of the discrete norm and inner pro-
duct in the obvious way. Here v 1is the vector with vector components
V(Xv) and E, E; ai, and § are block diagonal matrices with blocks
A(Xv)’ B(Xv)’ Cl(xv)’ and S, respectively.

The system of ordinary differential equations (3.7) can be solved

using an appropriate difference method for ordinary differential

equations. However, the approximation (3.7) requires about twice as

much work as the simpler approximation

dv —— ~— ~
(3.8) T = SASy + BSv + CK

of (3.5). Since numerical experience has shown that approximations
of the form (3.8) can be unstable, it is desirable to find ways of
stabilizing them which are cheaper to use than reverting to (3.7).We
can achieve this by adding appropriate dissipative or projective
operators. We will now develop this approach in detail.

It is easier to do this if we work within the space TN of

trigonometric polynomials

o]
)
[
M=
>
B
®
J
2

(3.9)
W= =N

A vector function v(x) or a matrix function B(x) will belong to

T if all their components do. There is a one-to-one correspondence

N

between a polynomial (3.9)and its values

12



v = (V(Xo)”"’v(XEN)),

Thus, there is a linear operator P such that

Pv = vix) , i.e., vix.) =v. , v = 0,1,2,...,2N.

If v(x) ¢ TN then

(3.10) PSy = dv/dx .

Let B(x), v(x) € T_. Then we define w(x) = B(x)*v(x) to be the

N
convolution
y ~ 2mivx
(3.11) wx) = Bx)svx) = 2 wlve
=-N
with
+N ~ A )
2 B(u)(v(v-u) + V(V-EN-l-u)) for vV >0
n=-N
(3.12) wlv) = <
N la) A ~
2 B(y) (W(v-y) + v(v+an+l-y)) for v < 0
=N
where we have used the convention that Q@ﬂ = ﬁ@ﬂ =0 if Mﬂ > N.

B(x)v(x) is a trigonometric polynomial of order 2N. By theorem 2.2

its interpolant is given by B(x)*v(x). Therefore,

(3.13) wix) = P(Bv) = B(x)*v(x)

13



Lemma 3.2. Let B(x) e TN be a matrix and v,w € TN be vector functions.

Then

[(w,Bev)| < max  [B(x) | . [wll |Iv]l .
0 <x< 1

and, i1f B is Hermitian,
(wyBxv) . (Brw,v)

Proof. By theorem 2.1 and (3.13)

(W,B*V) = (W,B*v)l1 = (EQ?¥).

If B is Hermitian, then

Also,

| (2, Bv)y | < 1Bl vy, = o |3(x, ) [ 1 vl

and the lemma is proved.

We can now write equation (3.8) as an evolution equation in TN

via the isomorphiam P.

(3.14) Ve - (AN*VX)X t B 4+ Cprv

where AN’BN’CN and v are the trigonometric polynomials 1n TN
which interpolate the discrete values A(xv), B(xv), C(xv), v(xv),

respectively. The term w =]%ﬁvx can be written as

= X% =
w BN vx Qv + Rv

14



where

-

(B

Qv = N

*V_* (BN*V)X) ,
(3.15)

-+
Rv = 2(BN*VX - kBN*v)X).

It follows from lemma 3.2 that the operator Q is skew Hermitian.

Straightforward application of (3.12) gives us

N .
Z f‘ e 21X

Rv = Rlv + Rgv ;, R.v = 3 W , J =1,2,
W= =N
where /
N . .
2 HBN(U) (v (w-4) 4—'V@D—2N—l—u)) for w> 0
u=-N
(3.16) 1 () = -mﬁ
N
L By (W) (Fw-p) + v(erewi-y)) for @< o0
u=-N

u=-N N B
(3.17) r_(w) = mi(eN+1)
2 N
2 ﬁN(u)%(w+2N+1-u) for ®<O
[,_1=-N
I
By (3.12)
. 1
(3.18) RV =-5 dBN/dx * v

Therefore, by lemma 3.2, the operator R, is bounded if B ¢ P(o,M) with

@ > 3/2, certainly if B is twice continuously differentiable (see [1]).

In general we can not expect that (v,Rgv) is bounded independent

of N. For example, if B(x) = I(1 + % sin 2mx) then

15



fa(o>=1,]§<1>=-"<-l>=-§-z,ﬁ(w):omlwl;éo,l

N N N N
and
£, () = E () (-w) , 7 (-N) = g (ev1)v(w) , £,@) = 0 if |of £ n .

Therefore, . - Parseval'’s ...-.. 0.

(v,R,v) = T (20+1) Real{¥(M)¥(-)} .

Now assume that there are constants Ml and B > 1, independent of N, such

that
M
(3.19) 18, ()] < for 40
N M — 277_“"5 o IJ-
Then we obtain
)| < rew (| T 50 T 4 )|

JR < m(en+l ® ®-2N-1-

v 2V ™ ) v . BN )
(3.20)

N
+ | MR Z By (v (a1 |)

(J):N :-

where v(1) = 0 for |t| > N. By (3.19)

| Y ) Z B (W (@-2N-1-p) | <
wW=0 p,—-N
1 y ~ ~
My 2 v@)| |3 -2n-1-0) | <
u=-N |om, P a0
u#0
-1 L N .
My 2 . L v | v(w=2N-1-p) | <

p==N |2‘rT'u|B W=N+_,+1

16



M, -1 N o ~
oo Y (5@ ]? v [Fe-en-1-0) % <
u=-N lemy|® wmneurl

-1

m|pz

N
L Y (@B [Fw)]®) <
u=-N '2'”1),‘6 W=N++1

N
M g [~ V12 S 1
= 4 INACYE| L ) B
< w=-N u=N-|o|+1 (om.)
O£0

There 1s a constant Kl such that

o,
w=l- o]+ (em)P T (M- |w|+1)P™t

K = (l/2n)B(B/(B-l)) will do. Furthermore, the same estimate holds for

the second sum on the right side of (3.20). We obtain

iy
(3.21) | (v,Rv) | < MK wEN v v ®

where

_ _ (ew+)m if 0”40,%20

(- foo]+2 )L

w

Consider the system (3.14). We have, Using (3.15) and (3.18),

(v,v), = 2 Real {(v,(a v ) ) + (v,qv) + (v,Rv) + (V:CN*V)}

t
(3.22)

= -2(v,,A*v ) + 2 Real (v,(Cp - % bBN/bx) * v) + 2 Real (V,R,v) .



A is positive definite by assumption, i.e., there is a constant

o > 0 such that A > ¢I. Therefore,

~ 2
(vx,AN*vx) = (E,AY_’i)h > cHVXH
By Parseval's relation and (3.21)

-2 (VX,A.N*VX) + 2 Real (V’REV) <

(3.23)

> % (-cr(?rrw)2+M1K1y v(w)|P<2alv|®, o= max (-o(2mw)* MKy )
==I w - ’ O<l(Dl SN M:LK:L w’

Since ¢ > 0, and if B > 2, then a is bounded independent of N, and

(3.22) and lemma 3.2 give us the energy estimate

(v,v), < 2 Real (v, (Cy - % dB/ox) * V) + 2 v

1
< 2(1;1{ax 'CN - —E-DBN/CX| + oz)HVHE-

If B > 3 then a simple calculation gives us

2
(- |oo[+1)

- -2
Therefore, if 2mo > MZLKl(N 1+N Y then o in (3.23) is nonpositive and we

obtain the following theorem from (3.22).

Theorem 3.1. If B > 3 and 2m >_(M1K1(N-1+N-2), then the solutions of

(3.14) satisfy the estimate

18



(3.24) (v,v), < 2 Real (v,(C, - % bBN/bx) *v)

t N

This is entirely satisfactory since it is essentially the same as the

corresponding estimate for the differential equation. Furthermore, N can

always be chosen large enough so that 2mI>NHBi(N_l+ N-QL at least in principle.
For hyperbolic equations, A "0, the situation is not as good.

In this case we have to control the smoothness of v. Experience has

shown that higher frequency modes can grow if this is not done.

Let m > 1 be a natural number,

and define ERZ by

(3.25 ) vy L v(w)efTex Vy SV -V,
bl <y
where Nl = (1 - l/m)N. The smoothing operator H = H(j,m,D) mapping
TN into TN is defined by
. 2miwx
(3.26) w=H = . wwe
Ww=-N
where
v) i Jo| < (@ - %)N
~ ~ l ~ D”vl”
ww) ={ v) if |o] > (1-5)1\7 and |v(®)| < T 3
(er|ol)

D“Vl” \/}((J.))

E— otherwise
(2F1w| )J |v(®) ’

19



j is a natural number and D is a constant. Thus, only the higher

frequencies are modified, i.e.,

B, = v, vl <

We want to show that H is a very mild form of smoothing.

Lemma 3.3. Let ¥ > 0 be a constant and j @ natural number.

the class of functions with

(3.27) lo9u/oxd | < Y lllf .
If
(3.28) (2111\1(13%1-))23 > 2 ¥ and D >yV2' y
then
Hu =u

Proof. Let u € TN and write it in the form

+ u, where ﬁlﬁb) =0 for hﬂ > m-l N
m
(3.27) implies

2j 2 J j 2 2
(mo1 2m) 2l | < flo%wy/ox 1P < P (hoy [ + Jfu [P

By (3.28)

20

Consider



by 1P < Ity 17

Therefore, for ® f' 0,
PN =23 2 -2 2
812 < v (enle)) ™l < 2v*(en o 1) b, |

and the lemma follows.
Instead of (3.1&) we now consider the approximation

(3.29) E%T-BN*HVX+CN*V,

To see that (3.29) has a unique solution we need.

Lemma 3.4. H is a Lipschitz continuous operator from T,, into TN.

N
(1) (1) (1)

Proof. Let v "€ TN and W = Hv 77, 1 = 1,2. Note that
~ i .

|A(1 (w)] < lV( )(UJ | and arg w( )(w) = arg V( )(U)); i= 1,2, both

follow from the definition of H. Consider the quantities

l‘;(l)(w) - ﬁ(g)(m)l. We consider three cases. Let

oy
Il

L = follol <1, i) = iHo), 4

1,2}

o = llol <1, i) # $H(0), 4

an
I

1,2}

I = {w] || SN,w;leUJQ}
From the definition of H it follows that w € Jl if ‘m‘ < Nl = N( l-l/m).

rfwe g, then W) - 4P)0) | = [H @) - #P)w) | 1e

w € J2, then

d(w) = W (l)(tb #(2) ()| = K ‘D)”V(l)“ _(_)_u o) v (Q)H |v (‘D)i]

21



where K(w) = D/(Qﬂiwl)J- We assume, without loss of generality,

1 2
that lh{ )“ > ”V§ )”- Using the triangle inequality we obtain

Ao) < [ 7—,L— - k(@) P W%L‘%[

()2 _(T)L'L o)y | Ly 172w ( )(w) |
o)

We can bound the first term of our last expression by

K@) |42 - 2N < k@)l - 2] < xo)r ) - (2]

since the two complex numbers have equal arguments. e can bound the

Al '\2
second term by IV( )(w) - V( )(w)l utilizing the triangle inequality
and the fact that the distance between two points r 6191 d ei62
1 and 1,

is a non-decreasing function of r if ry > T,. Finally, we obtain

(3.30) a(w) < ko)) - v 4 158wy - By

if w € Jd,. Let w € J, and assume without loss of generality that

A(l)(ﬂ)) £ W( )(w) and v(g) ﬁ(g)(w). If IG(Q)(m)|:> K(w)“v§l)”,

then
$(2) ~(2)

iw) < [FH o) - K@) |+ (k@) D) Lo - 7))
e )

A1)y - 2(2) (1) _#2) (2), 3(2)
< vV (w) -7 (w)] + + [K(oo) [l - K(w) w27l
) Kb ey

22



#) - 9@+ xo) ) - B

AN

< {0 - o) + ko)) - o))

If I\';(e)(a)) | SK(w)IIvg_l)H, then it easily follows that
a Al 2
dw) < Iv(l)(m) - v( )(w)l. Thus, if w € J5’ d(w) satisfies the

inequality (3.30). Now we estimate

N
W -w RN oy 6P(w)

w==N

< 3 ) - #®)w))?
weJ 1

vz (K @+ B ) - 5B ) [

w€J2UJ5

< (2 + th(Nl)(N-Nl))“v(l) - V(2)||2

which yields the desired result.

From Lemma 3.4 it follows that the operator on the right hand side
of (3.29) is Lipschitz continuous and it then follows that (3.29),
with initial data, has a unique solution. v(t). We will now derive
estimates for the norm of this solution.

We have

at”‘f.U2 = 2 Real (V,Vt) = 2 Real (v,BN * BV, + Cp * v)

The term (V’CN % v) 1s easily bounded as before using Lemma 5.2 if

C € P(q,M) with @ > 1/2, or is continuously differentiable.

2>



We write

(v,By * Br,) = (v, * (v;),) + (v, By * ((v;), - Ev)

splitting v = vy + Vs and utilizing the fact that H does not
alter the first Nl Fourier components of the vector it operates on.

We then further split % (v

l)x in terms of Q and R = Rl +R2

av

as before to obtain

2 Real (v, By * Hvx) = 2 Real {(V,Rlvl) + (V’Revl) + (V,BN * ((Vl)x - Hvx)}

where we have used the fact the Q is skew-hermitian. Recall that

R = - -32: dBN/dx * vy which is bounded as before if B € P(0,M)

11
with & > 3/2. We have

(3.31) 5t Ilv“2 = 2 Real (v,CN * v - % dBN/dx * vl) + 2 Real (V,Rgvl) +

2 Real (v, By * ((Vl)x - HVX)

the first term is bounded and converges to the proper estimate for the
differential equation. We will now construct bounds for the last two
terms. We assume that BN satisfies (5.19) and obtain, corresponding

to (3.20) ,

N N
[(v,Rovy )| < m(a+)(| T #(e0) T ﬁN(u)\Arl(w%N-l-u)l

w=0 u==N
(3.32)
:-L A qu A A
+ | 2 v(w) T By(p)vy(eraN+l-p)|) .
.- =-N
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Utilizing (3.19) we obtain

N A N A
|z o) = B (w)¥(0-2n-1-p)] <

w=0 u=-N
N w=2N=1+N, -B
N T |v(e)] T Tlem] T (e-an-1-) | <
=1 p==N -
m \B N R w=-2N-1+N .
M (m) T |vw)] T Ivl(w-QN-l-u)l <
w=1 u=-N -

N
M =D P T 18] <
w=1

M (5 vy vl

and the second term on the right hand side of (3.32) also satisfies the

same estimate. We obtain

| (vsByvy )| < 2ty (200 ) (5P, [l
(3.33)
< (3/(2n > M nx P2 vl

We only have the term (V,BN * ((Vl)X - Hvx) left to estimate. We

have, via lemma 3.2, that

(3.35)  1(v,By * ((vy), - B )| < max (5] IvllCCvy ), - Bo)l
X

From the definition of H we have
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Dl(v,) I W
Iv), - vl < 2= p
(om)? W=, +1 o] ¢
(3.35)
2D 2-3
< = N, Wl
(2r)d™(5-1) *
if §> 2

We can now collect our estimates (3.31), (3.33), (3.34) and (3.35)

to obtain

Theorem 3.2. Let j =8 > 2, then the solutions of (3.29) satisfy

the estimate

2 1
atllvll < 2 Real (v,0p ¥ v - 5 diBN/dx *vy) +

(3.36)
2

[(6/(2m)” i 4+ ( up/(2r)? (31020 max |8 | 1iv]
X

If 3 =8 > 2, then the estimate (3.35) converges to the corresponding
estimate for the differential equation as N - « .

If the coefficients are smooth the estimate (3.35) is quite
satisfactory for sufficiently large N. We have been able to obtain
this estimate by introducing the smoothing operator H and by requiring
that the coefficients C and B be smooth. A similar estimate can
be obtained, with much less effort, if we were to alter the definition
of H such that {3(&) =0 if |w] > N, or w(w) = G(w)/((?n[lwl-NlL)J+l)
If Iw] > Nl where [g]+ denotes the positive part of g. These are
both linear operators. However, the resulting methods are less accurate.

Convergence estimates can be constructed utilizing the estimates

of theorems 3.1 and 3.2 following those of Kreiss and Oliger [7]| and
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Fornberg [3] and the approximation results of Bube [1].
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