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1. Introduction

The collocation method based on trigonometric interpolation 1s

called the Fourier (or pseudo-spactral) method. It has been used

extensively for the computation of approximate solutions of partial

differential equations with periodic solutions. A satisfactory

theoretical justification for equations with variable coefficients

has only existed for equations written in skew symmetric form (3, 6, 7].

Recent work of Majda, McDonough and Osher [8] treats hyperbolic systems

with C coefficients.

In this paper we develop a stability theory for linear hyperbolic

and parabolic partial differential equations with variable coefficients.

The generalization of these results to nonlinear equations follows 1f the

problem has a sufficiently smooth solution. We restrict our discussion

to problems in one space dimension. The extension to problems in more

space dimensions 1s 1mmediate. Error estimates can easily be derived

using our results following those in Kreiss and Oliger [7] and Fornberg

[3].
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2. Trigonometric Interpolation

nthis section we collect some known results on trigonometric

interpolation (see [ 4, 5, 7]). Let N be a natural number,

h = (on+1)7T, and define grid points x, = vh, v = 0,1,2,...,2N.
Consider a one-periodic function v(x), v(x) = v(x+l), whose values

Vy = vix,) are known at the gridpoints Xx,. We define a discrete

scalar product and norm by

2N >
(2.1) (u(x), v(x)), = ulx,) vx, )n ’ hal . (wu), .

V=0

The trigonometric polynomial w(x) of degree N which interpolates

vix) in the points x, i.e.

(2.2) wix,) = vx) Vv = 0,1,2,...,2N ;

1s uniquely given by

y 2TMiwx(2.3) w(x) = 2. a (0) e
w=-N

where

21
(2.4) aw) . (vix),e :

This follows from the orthonormality of the exponential function,

0 if 0 < |m-n| < 2N
21 21

(2.5) (e BX eo EL -
1 if m=n .
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The usefulness of trigonometric interpolation stems from the fact

that the smoothness properties of the function are preserved and that

the convergence 1s rapid for smooth functions. Let the L,-scalar

product and norm be defined by

To 2
(2.6) (u,v) = [ uvdx , hall . (wu)

We will need the following well known theorem.

Theorem 2.1. If Wyo W, interpolate Vy and Voi respectively, then

(2.7) (wy ow, Jy = (wy sw) = (v5, I and

2 2 3 2
(2.8) lw (x) = |v, IE = 2 la (w) |1 1 h

W—-N

It will be convenient to work with the following class of functions.

Definition 2.1. ©P(g,M) is the class of all functions v(x) which

can be developed in a Fourier series

pd A 2Tiwx(2.9) viz) = 2 ve
WD==-0

with

vo) a 0
(2.10) oA emo]?+ 11v(w) | <M .

W=—o

P(a;M) is contained in the Sobelev space Ho.
We now need the relationship between the Fourier coefficients v(®)

4



of a given function v(x) and the coefficients a(w) of its |

trigonometric interpolant w(x). This is contained in the following

well known result [ 4, 71.

Theorem 2.2. Let v be given by (2.9) and w given by (2.3) and

(2.4) then

co

(2.11) aw) = 2 vrjlwl)) , lof < Nn .
J=-

We can now investigate the rate of convergence of the interpolating

polynomial to a function v(x) ¢ Plo,M).

Theorem 2.3. Let v(x) ¢ P(q,M) with o> 1/2. Then

% 1/2 MC

(2.12) fre) ae) | cr — — 2, - E - =<(2mN)=% + (2m)<%3=1 (2-1) (om)©

(a a]

where cC-1+e J. —
j=1 (23-1)=% -

Proof. We write (2.9) as v(x) = vy (x) + vp (x) where

N 21x eywb) = 5 Tle vp) = Bf)R

w= -N ko] >N

Let wy (x) and we (x) be the trigonometric interpolants of vy (x)

and ve (x), respectively. They are given by

Yoo), omiex (W) OTimx
w(x) = 3 av (we , a Tw) = (v.(x),e )

J
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Yo ®) 2Tiwx (R) PT ixw lx) = 2 a (we , a w)= (v.(x),e |
R _ R h

w==N

The trigonometric interpolant of v(x) is

wix) . wy (x) . wy (x) :

wy (x) interpolates vy (x) in the 2N+1 points of (2.2)' and from
(2.3) we have

wy (x) v(x)

Therefore,

2 2 2

hv) w(x) [B= [lvGeGe) IF = IhGE + ThoGo)

since vp (x) 1s orthogonal to wr (x). By (2.10) we can write

Tw) = —L—
lomy © + 1

where

> 2
YF) F< .

W= co

Therefore,

wr > N pl > n | bmw/%+1 | (2m)

By Theorem 2.2
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N N os
D R) 2 n |

heGOI =X PCRS CI Tori (em+1)) |7
w= -N W= =  J==o

j#0

N @ ~ 2

W==N J==c0 or (a 3 (eN+1)) 9+ 1
j#0

N ® . ©
< LX 2. — Yo | Vlw+g(em+l)) |
w=-N | j= (|om(w+i(en+1))|¥+1)° 52

j#0 j#0

OIF ol ay
< —— (23-1) ca
(om)=% . j=1

and the theorem follows.

Remark. Observe that the contributions to the error by Vp and Wo

are of the same order if q > 1/2. Wp 1s often called the aliasing
error. Thus, we see that if v 1s at all smooth, then aliasing

plays no important role.

The following result follows immediately from the last theorem.

Corollary 2.1. Let v(x) ¢ Pla,M) with o > J + 1/2, J a natural

number. Then

J J MC

(2.13) |< vx) - -% w(x) < — :dx? dx? I (om) J

I
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3. Stability of Fourier Methods

Let v(x) be a one-periodic function whose values, vix,) are

known at the gridpoints X, = Vh, h = (on+1)L If we want to approxi-

mate av (x,,)/ax we can compute the trigonometric interpolant (2.3) of
v(x), differentiate it, and use its derivative

N 2X,
(3.1) dw(x. )/dx = 2. (omiw)a(®)e

V
W==N

as an approximation of av (x, )/ax. The computation of (3.1) in all

of the gridpoints Xs V= 0,1,2,...,2N can be done using two discrete

Fourier transforms (DFT) and 2N complex multiplications. Also, if

we know that v(x) e Pot, M) with o > 3/0, then Corollary 2.1 gives

us the error estimate

MC 1
(3.2) |dv/ dx - dw/dx|| < — =

(om)

Higher derivatives can be computed analogously.

The above process 1s linear so 1t can also be represented using

matrix notation. Let

v = (vx), v(x)! , y¥ = (aw(x. )/dax,...,dw(x. )/dx)’ 1)— ONE) ’ 0 SR 2N

denote the (2N+1) dimensional vector formed of the grid values of

v(x) and dw/dx , respectively. Then there is a (2N+1) X (2N+1)

If y 1s a vector then y' denotes its transpose and y" its

conjugate transpose. The same notation will be used for matrices.

8
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matrix such that

(3.3) y = Sv

Formulas for the elements of S have been computed by B. Fornberg

[ 2, 3]. He has also shown that S can be considered as the limit

of higher and higher order difference approximations.

The scalar product and norm of y and v are defined by (2.1),

i.e.,

2N o
(wv), = ulx, )vix Ih , lu . (wu),

We need several properties of the operator S. In [6] we

proved the following lemma.

Lemma 3.1. S is skew Hermitian, 18], = 2TN, the eigenvalues of S

are A, =2Tiw, and the corresponding eigenfunctions are

ey = (1,500 2Tdelh, y © = 0,+1,...,+¥N .

We next consider the approximation of b (x) du/dx where Db (x)

1s a smooth one-periodic function. The operator b(x) d/dx is essentially

skew Hermitean because we can write

(3.4) b(x) du/dx = Qu + Ru

where



H

1 1
Qu = 5 (bdu/dx + d(bu)/ax) , Ru = - 5 db/dx u .

Q is skew Hermitian and R is bounded. There are many problems where

R=0. For example, we can write udu/dx in the form

1 2

udu/dx = > (udu/dx + du Jax) .

Now consider the partial differential equation

u, = b (x )ou/dx = Qu + Ru , u, = du/ot ’

then

(ww), = (wu) + (uu) = (wa) + (Qu) + (wR) + (Ru,u) = -(w,udb/ax)

and we have an energy estimate. If we approximate the above problem by

dv
-  1l/~ ~ 1 ~

7 = 508 + 8b)v - Sb vw

where

) db (x_)
*

px) 0 oii0 = O vei 0
db (x, )

0 bx) 0... 0 N : J SR :
b - ° Fr J J JJ J J J. J J J J 1a) ? b, ~ dx 3

0 .......0 P (x,y) : Cl db (x)
_ | EE dx

Then we obtain the same energy estimate because

~ ~ ~¥

(bs + sb) = - (Bs + sb)

10
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1s skew Hermitian and therefore

d _
(Vv) = = (v,B v7),

The above procedure can be generalized considerably. Consider the

parabolic system

_ +Bu + Cu u = du/dx(3.5) Uy (Au y 2 J

where u denotes a vector function with n components, A, B, and C

are n X n matrices, A and B are Hermitian, A is positive definite, and

C and OB/Ox are uniformly bounded. We can rewrite this system in the form

(3.6) wu = (Au)+ (Bu + (Bu)+ Cu
t XX 2 x X 1" 7

where

C, =C-% 0B/0x1 2 |

We then obtain the energy estimate

(uu), = -2(u_,A u) + 2 Real (u,Cyu)

which depends solely on the property that d/d0x is skew Hermitian.

Thus, we obtain a corresponding estimate 1f we replace d/0x by S

and approximate (3.6) by

(3.7) 5x = 5 ASv + = (3 S + SB )v + Cy¥

11
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The estimate 1s

d 2 ~ ~%

st lvlly < (vw, (cy + cv)

where we extend our earlier definitions of the discrete norm and inner pro-

duct in the obvious way. Here v 1s the vector with vector components

v(x) and A, B, Cys and § are block diagonal matrices with blocks

A(x. ), B(x ), c,(x.), and S, respectively.
V 1% 1 Ty

The system of ordinary differential equations (3.7) can be solved

using an appropriate difference method for ordinary differential

equations. However, the approximation (2.7) requires about twice as

much work as the simpler approximation

dv =... ~e ~

(3.8) 5 = SASv + BSv+ Cv

of (3.5). Since numerical experience has shown that approximations

of the form (3.8) can be unstable, 1t 1s desirable to find ways of

stabilizing them which are cheaper to use than reverting to (3.7). We

can achieve this by adding appropriate dissipative or projective

operators. We will now develop this approach in detail.

It 1s easier to do this 1f we work within the space Ty of

trigonometric polynomials

N .
A 2T1WX

(3.9) p(x) = 2 pe
= =}

A vector function v(x) or a matrix function B(x) will belong to

To if all their components do. There 1s a one-to-one correspondence

between a polynomial (3.9)and its values

12



v = (vx Veena)” ,

Thus, there 1s a linear operator P such that

Pv = v(x) , i.e., vix,) = vy , v. = 0,1,2,...,2N.

If v(x)€ TN then

(3.10) PSv = dv/dx .

Let B(x), v(x) e Ty Then we define w(x) = B(x)*v(x) to be the
convolution

no. 2TiVX(3.11) wx) = Bx)xvx) = 2 wwe
V=-N

with

tN ”~ ~ A
2, Bu) (v{v-4) + v(v-2N-1-4)) for Vv > 0

u=-N

(3.12) wiv)=

N ~ ~ Fal
), Bu) (v(v-y) + v(v+eN+1-y) ) for v << 0 .

u=-N

where we have used the convention that v@) = Bl) = 0 if || > N.

B(x)v(x) is a trigonometric polynomial of order 2N. By theorem 2.2

its interpolant is given by B(x)*v(x). Therefore,

(3.13) w(x) = P(Bv) = B(x)*v(x) .

13



| nN

Lemma 3.2. Let B(x) ¢ In be a matrix and v,w € Ty be vector functions.
Then

[(w,Bxv)| < max B(x) | |W] |v].
0<x<1

and, 1f B 1s Hermitian,

(w,Bxv) . (Bxw,v) .

Proof. By theorem 2.1 and (3.13)

(w,Bxv) = (w,B¥v), = (w,Bv)
If B 1s Hermitian, then

(v, BV), = (B,¥)y = (Bxw,v), = (Bxw,v) .
Also,

| (u,v), | < IB] lull livll, = mex [BC ) [lr IHW]
— oh= ERE yy cn

— V sum

and the lemma 1s proved.

We can now write equation (3.8) as an evolution equation in Ty

via the isomorphiam P.

(3.14) Vv, _ (A*v, ) + BAY + Co*V

where Ay By Cy and v are the trigonometric polynomials 1n Ty

which interpolate the discrete values Alx,,), B(x, ), clx,), vix,),

respectively. The term Wo o=BXv can be written as

W = B*v,, = Qv + Rv

14



where

1

Qu = = (Byxv + (By*v) ,
(3.15)

Rv = L(B wv - (B *v) )
2 N x N ‘x°

It follows from lemma 3.2 that the operator Q 1s skew Hermitian.

Straightforward application of (3.12) gives us

N 2T1X
Rv = Riv + Rv, Rv = J. Tr, Te , J =1,2,

w= =N

where

N . .

J. By (uw) (vle-y) + v(W-2N-1-,)) for “> 0
u=-N

(3.16) r 0) = mi
+N

2 By W) (Fo-p) + v(@+2N+1-y)) for Ww< 0
u=-N

N A

I) By (nw) v (@-2N-1-) for ®@>0
u=-N

(3.17) r. (w) = mi(en+1)
2

tN .
LB (uv(wam+l-y) for w<oO

p=-N
I

By (3.12)

(5.18) Riv= - = dB_/dx* v1 > Ay

Therefore, by lemma 3.2, the operator Ry is bounded if B € P(o,M) with

a > 5/2, certainly if B is twice continuously differentiable (see [1]).

| In general we can not expect that (v,R,v) 1s bounded independent

of N. For example, if B(x) = I(1 +3 sin omx) then

15
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A _ A a i A _
B(0) = 1, (1) = -B(-1) = - 1, Bylw) = 0 if w| £ 0,1

and

PL) =f ew)e(w) , r(w) = fp ew)vn) , £,@) = 0if fof £

Therefore, . - Parseval'’s ...... cu.

(v,B.v) = z (oN+1) Real{T(W)v(-N)} .

Now assume that there are constants My and B > 1, independent of N, such
that

. M

(3.19) |B, (1) <— 8 for #0 .2m|

Then we obtain

N N R
vv) € mew)(| 2 Fl) 2 8(u)v(-an-1-y)|

@=0 u=-N

(3.20) _

-1 R N 3
+ x view) ¥ By (uv (@reme1-,) |)

W==-N u=-N

where v(t) = 0 for |T| > N. By (3.19)

N N R
| 2 ve) ZB (WVe-en-1-u)] <
W=0 u==N

No N
Ta LL RO] [een] <_ P —u=-N |2miP w=0

uO

-1 1 N R R
My 2. 5 Zo v@)] |v(e~eN-1-p)| <u==N omy | W=N+,+1

16
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M. -1 N | k

Ly LN (F@ + Bean)"
u=-N om, |P W=N+,+1

M -1 N N .

St y —2— 2 (FF + [vw]®) <
u==N om, |P W=N+, +1

N
Xo. pe N 1
= 4 (vid) Lo —B
- WD=-=N 1=N-|o]+1 (omy)

WFO

There is a constant 5 such that

N

1 5
Lo ma See,p=N-lof+r (em)? (N= fw|+1)

K = (1/27)°(B/(p-1)) will do. Furthermore, the same estimate holds for
the second sum on the right side of (3.20). We obtain

N . 5
(3.21) rv) [mx © 2 rg lv@)]T

w= -N

where

+

Y, = RHA if ow #0, T, = 0 .(N-|w]+1)

Consider the system (3.14%). We have, Using (3.15) and (3.18),

(v,v), = 2 Real {(v, (Axv ) J + (v,Qv) + (v,Rv) + (v,Cypev) }
(3.22)

1

= 2(v ,A*v) + 2 Real (v,(cy - 5 dBy/0x) ¥ v) + 2 Real (v,Ryv) .

17
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A 1s positive definite by assumption, 1.e., there 1s a constant

oc > 0 such that A > gl. Therefore,

(va xv.) = (v.,Av.), > oll |FAN pe xX’ x'h = X

By Parseval's relation and (3.21)

- + 2 Real (v,R,v)<2 (v_,A*v ) ae =
(3.23)

n 2 2 2 2
2 © (-o(2mo)"+ MK yy)[v(o)|“<2allv]|", a= max (-o(2mw)™ Ky).
w==N 0< | wo] <N

Since ¢ > 0, and if B > 2, then og is bounded independent of N, and

(3.22) and lemma 3.2 give us the energy estimate

1 2

(v,v), < 2 Real (v,(Cy - 5 OB/ox) * v) + 201 |v ||

1 2

< 2lmx Joy = Fony/oxl , lf

If B > 3 then a simple calculatim gives us

2
+

(N-fo]+1)

— Ny

Therefore, 1f 2m > MK (N Lin Y then & in (3.23) is nonpositive and we
obtain the following theorem from (3.22).

-1 2

Theorem 3.1. If Bg > 3 and 2To > (MK, (N +N ~), then the solutions of
(3.14) satisfy the estimate

18
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1

(3.24) (v,v), < 2 Real (v, (Cy - 3 dB, /0x) *v)

This 1s entirely satisfactory since it 1s essentially the same as the

corresponding estimate for the differential equation. Furthermore, N can

- =D oo

always be chosen large enough so that 2no> MK (N Ly N “), at least in principle.
For hyperbolic equations, A "O, the situation 1s not as good.

In this case we have to control the smoothness of v. Experience has

shown that higher frequency modes can grow if this 1s not done.

Let m > 1 be a natural number,

N :

v= 2 7 () 2 THX
W=-N

and define Vy Vs, by

(3.25 ) Vv, _ LEM, oy —v-v,
ol < wy

where Ny = (1 = 1/m)N. The smoothing operator H = H(j,m,D) mapplng

Tn into TN 1s defined by

LIN 2T1WX(3.26) w=Hv = 2 we
D==N

where

~ 1

vie) if lof < (1-2)

) . L ) Df,|
ww) = { vw) if Jol > (1-2)N and |v(o)] <7 33(err|w])

liv, Il % w

—1 vie) otherwise .
(erlo| )? |F(@) |

19
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j is a natural number and D is a constant. Thus, only the higher

frequencies are modified, 1.e.,

We want to show that H 1s a very mild form of smoothing.

Lemma 3.3. Let ¥ > 0 be a constant and j a natural number. Consider

the class of functions with

: Co
(3.27) lo?u/ox? F< ¥*[ful® .

If

-1 2

(3.28) (orn ®2)%0 > 2 ¥° and D >V2' y

then

Ha =u .

Proof. Let u « Ty and write it in the form

u= u, + u. Where a (w) =0 for ol > Ly
2 2 1 m

(3.27) implies

_ 2] 2 J Je 2 2
(m= orm) “fu,[IF < lo%uy/0x” IF < v2 (hy IF + Ju, IP).

By (3.28)

20
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ay 12 < ThugIP

Therefore, for ©® Ff 0,

~ -2] 2 2 -2] 2

ae)|? < Yo (enlo)) ll” < 2v (eno1) fu, |

and the lemma follows.

Instead of (3.14) we now consider the approximation

Ov = H + Co, % V(3.29) 3% By * Hv, N ,

To see that (3.29) has a unique solution we need.

Lemma 3.4. H 1s a Lipschitz continuous operator from Ty into TN.

Proof. Let A 1) TN and ney = yt 2 i = 1,2. Note that
A 1 A( 1 al 1 (1) .
#3 (w)] < (| and arg (3) (p) = arg v-~ (0), i = 1,2, both
follow from the definition of H. Consider the quantities

5 (0) - 22) wy]. We consider three cases. Let

~ JA A y/

Jy = fw] |ol < NW, 4 )(w) = al Nw), 4 = 1,2)
~ yj La) y/

Jp = fw] lo] < N, al )() # i (0), £ =1,2}

Js = {ol lo] £N, 0 fdUJ,)

From the definition of H it follows that w € J; if lo] < N, = N( 1-1/m).
A A 2 ~(1 A 2

If w € Jr s then 5 (2) (w) - al Nw) | = 15 Nw) - ol )(w) |. If
w € Jos then

(1) 0,01. 202) (0) | - (1) oe) | g(o) vi?) 2]aw) = [WH (0)-w (0) | = Ko)vy ll = w TS(w) = FA Ew) RR a CS)

21
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where K(w) = D/(2r|w|). We assume, without loss of generality,

that vit) > v2). Using the triangle inequality we obtain

A(1) (1)
Ae) < [K() IM) Lartel | go) 2) 2)

~(1) (2)

(vi?) Leh - x(w) PZ) 1
Ee) FEB)

We can bound the first term of our last expression by

Ke) Ivy) = 2] < ko) = 2) < x) = 2)

since the two complex numbers have equal arguments. We can bound the

second term by 1 () - #2) utilizing the triangle inequality
io i6

and the fact that the distance between two points re 1 and re 2
1s a non-decreasing function of ry if r,> Tp. Finally, we obtain

(3.30) aw) < Ko) - + [58)(w) - $B) (w)]

1f we dye Let we J and assume without loss of generality that

w) 5) ana #8) = iw). 15 [3®w)] 5 k() Hl,
then

3 A(2) ~(2)

do) < M0) - Kw) pork ew) V2) Fan = 5)
$V) 2 32) (1), #2) (2), +2)

< V0) =v (0)] + [R(w) Ivy Ea - K(o)|v; =| TE

22
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AL ~(2 1 2

< 190)- #80)+ rio) | ID) = EB)|

(1 AL2 1 2

If 1942) (0) < k()[Hl then it easily follows that
A A 2

d(w) < ESOS — 5 )(0)]. Thus, if w € Jz d(w) satisfies the
inequality (3.30). Now we estimate

N
1 2)n2 2pw BNR pa?)

W==N

< z 0) - #3)
wed

1

1 2 A(1 ~(2 2

EAC OE RAG ELA OI
WEJ Jz

22

< (2 + E(w (wm) H) a )|

which yields the desired result.

From Lemma 3.4 it follows that the operator on the right hand side

of (3.29) is Lipschitz continuous and it then follows that (3.29),

with initial data, has a unique solution. v(t). We will now derive

estimates for the norm of this solution.

We have

2

0, tv = 2 Real (vv) = 2 Real (v,By * Hv, + Cp * v) .

The term (v, Cy ¥ Vv) 1s easily bounded as before using Lemma 3.2 if

Cc € P(a,M) with @ > 1/2, or is continuously differentiable.

25
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We write

(Vv, By * Hv, ) = (vs By * (vy),) + (vy By * (vy) - fv, )

splitting v = vy tv, and utilizing the fact that H does not

alter the first Ny Fourier components of the vector it operates on.

We then further split , = x (vy), in terms of Q and R = R, + R,
as before to obtain

2 Real (v, By * Hv,) = 2 Real {(v,Rvy) + (v,Ryvy) + (v,By * ((vy)y - HV)

where we have used the fact the Q 1s skew-hermitian. Recall that

1

Ryvy = - 5 dBy/dx % vy which is bounded as before if B € P(Q,M)

with @ > 3/2. We have

(3.31) © Iv? = 2 Real (v,C. * v - Lg /dx * v,) + 2 Real (v,R,v,) +

2 Real (v, By * (vy), - Hv, )

the first term 1s bounded and converges to the proper estimate for the

differential equation. We will now construct bounds for the last two

terms. We assume that By satisfies (3.19) and obtain, corresponding

to (3.20) ,

N N R

[(v,Rovy)| < m(2W+1)(| © ¥(w) © By(w)vy(w-2N-1-p)21 1
w=0 u==N

(3.32)

“+ IVI R

+ | vw) T By(u)vy(eren+l-p)|) .
w==N m==N
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Utilizing (3.19) we obtain

> Ww) T A (u)7 (w-2N-1-p)] <w=0 u=-N WE |<

N W=2N=1+N, 8
mo ZT ve) oz Fem] TTY(wmeN-1-n)| <

w=1 L==N -

m 8 N . w=2N=-1+N R
M (mF) TZ Ive) |v(e-an-1-p)] <

w=1 u=-N -

m |B 1/2 vo.
M EH) 2 ve) <

w=1

m fp

wy (2) Nv, [lv

and the second term on the right hand side of (3.32) also satisfies the

same estimate. We obtain

2

|(vsRyvy| < 2m (20740) (5 Pr, [fv]
(3.33)

~1 -

< (3/(2n)" MPP,|||v)

We only have the term (v, By * (vy), - Hv) left to estimate. We
have, via lemma 3.2, that

(3:3) (oy * (0), = me) < mae [yl), = 9)

From the definition of H we have
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Ivy), - wll < et ——
(on) w=N, +1 BE

(3.35)

< ——2—— whl
(2m)? (3-1)

if J > 2.

We can now collect our estimates (3.31), (3.33), (3.34) and (3.35)

to obtain

Theorem 3.2. Let j = 8 > 2, then the solutions of (3.29) satisfy

the estimate

3, v3 < 2 Real (v,Cy * V o-= dB, /dx * vy) +
(3.36)

[(6/(2m)” yn + ( hp/(2n)?TH(3-1)(Eg) Tw ma 5,1 v]l°.

If J =B > 2, then the estimate (3.35) converges to the corresponding

estimate for the differential equation as N » » .

If the coefficients are smooth the estimate (3.35) is quite

satisfactory for sufficiently large N. We have been able to obtain

this estimate by introducing the smoothing operator H and by requiring

that the coefficients C and B be smooth. A similar estimate can

be obtained, with much less effort, 1f we were to alter the definition

of H such that w(w) = 0 if |o| > Ny, or ww) = ¥(w)/((enl lof, 1)+1)

if lw] > Ny where [e], denotes the positive part of g. These are

both linear operators. However, the resulting methods are less accurate.

Convergence estimates can be constructed utilizing the estimates

of theorems 3.1 and 3.2 following those of Kreiss and Oliger [7] and
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Fornberg [3] and the approximation results of Bube [1].
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