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Abstract

A certain pebble game on graphs has been studied in various contexts

as a model for the time and space requirements of computations [1,2,3,8].

In this note it 1s shown that there exists a family of directed acyclic

graphs G, and constants C1 5 Cs » Cx such that

(1) G, has n nodes and each node in G, has indegree at most 2 .

(2) Each graph G, can be pebbled with cn pebbles in n moves.

(3) Each graph G can also be pebbled with c An pebbles cy < Cy ,
n cls

but every strategy which achieves this has at least ©2 moves.
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Let S(k,n) be the set of all directed acyclic graphs with n nodes

where each node has indegree at most k . On graphs Ge S(n,k) the

following one person game is considered. The game 1s played by putting

pebbles on the nodes of GG according to the following rules:

(i) an input node (i.e., a node without a predecessor) can always be

pebbled;

(11) if all immediate predecessors of a node <¢ have pebbles one

can put a pebble on c ;

(111) one can always remove a pebble from a node.

The goal of the game is to put a pebble on some output node (i.e.,

a node without a successor) of G in such a way that the total number

of pebbles which are simultaneously on the graph is minimized.

The game models the time and space requirements of computations in

the following sense. The nodes of G correspond to operations and the

pebbles correspond to storage locations. If a pebble is on a node this

means that the result of the operation to which the node corresponds is

stored in some storage location. Thus the rules have the following meaning:

(1) input data are always accessible;

(11) if all operands of an operation are known and stored somewhere, the

operation can be carried out and the result be stored in a new

location;

(111) storage locations can always be freed.

By the rules a single node can be pebbled many times. This corresponds to

recomputation of intermediate results.



In particular the game has been used to model time and spaceof

Turing machines [1,2] as well as length and storage requirements for

straight line programs [8].

Known results about the pebble game include

A: Every graphGe S (k,n) can be pebbled with c,n/log n pebbles where

the constant c¢, depends only on k [2].

B: There 1s a constant c¢ and a family of graphs Ge 8(2n) such that

for infinitely many n , G, cannot be pebbled with less than

cn/log n pebbles [U4].

For more results see [1,3,4,7,8].

By putting pebbles on the nodes of a graph G in topological order

(i.e., 1f' there is an edge Irom node ¢ to node c¢' , thenc 1s pebbled

first) one can pebble each graph Gc S(k,n) with n pebbles andn moves.

However the stragegy known to achieve O(n/log n) pebbles on every graph

uses exponential time. Thus 1t 1s a natural question to ask if there are

graphs Gy, € S(k,n) such that every strategy which achieves a minimal

number of pebbles requires necessarily exponential time. This 1s indeed

the case.

Theorem, There exists a family ol’ graphs G, co(eyn), n=1~".. . arid

constants ¢, , ¢,, Cs y Ch < Cg such that for infinitely many n

(1) Gy, can be pebbled with c fm pebbles in n moves.
(2) G, can also be pebbled with NE pebbles.

(3) Every strategy which pebbles Gy, using only c/n pebbles has at
c/n

least 2 moves.

Thus saving only a constant fraction of the pebbles forces the time required

to grow from linear to exponential.
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I'root of the theorem: As building blocks for the graphs G, we need

certain special graphs. A directed bipartite graph 1s a graph whose nodes

can be partitioned into two disjoint sets Ny / N, such that all edges lcad

from nodes in Ny to nodes in No, . A directed bipartite graph 1s an

n-i j -expander if IN | _ |, | — n ( |A] denotes the cardinality

of A) and for all subsets N' of N, of size n/i the following holds:

| {c | C ¢N, and there is an edge from c¢c to a node in N'}| > n/3

Lemma 1. For n large enough there exist n-8/2 -expanders where the

indegree of each node in No is exactly 16 .

1 roo f, With c-very function £:{l, . . .,en} -{1, ..,n} we

associate a bipartite graph Gy ¢ 8(c,2n) with n inputs and n out rut ¢

in the following way: The inputs and outputs are numbered from 1 to n

and if f(j) = 1 then there is an edge from input i to output (Jj mod n) .

Different functions may produce the same graph. A function fT is bad

il’ there is a set I of n/2 inputs and a set 0 of n/8 outputs such

that all edges into 0 come from I . Otherwise the function f is

called good. Clearly 1f ff is good Gp is an n—-8/2 —-expander with the

desired properties.

In order to prove the existence of a good function we prove that the

fracti on o [' had functi on:; to al I such functi on:: tends with growing n to

zero [H,0].

” There are n° functions f: {L,...,en} —» {1,...,n} . There are

(1): (a) ways to choose n/o inputs T and n/8 outputs 0 .
For covery choice off 1 and 0 there arc (1 Joy en/,ren/8 functions fF

such that f 1s bad because in Ge all edges into 0 come from I .
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Hence there are at most 0 ( y ). (nf) aTen/8 bad functions.n/eo n/8
Thus the fraction we want to estimate 1s

n n en/8  Ten/8, cn

n n cn/8 ~
- = 1 DI( n/e )( 8) /2 0(1) for ¢ > 16

Let ENS be an n-8/2 -expander as in Lemma 1. Construct BE from

B! by replacing for every output node v the 16 incoming edges by a

complete binary tree with 10 leaves, 1dentifying v withthe root of’

the tree and the predecessors of v with the leaves. Obviously

kc 5(2,10n) .

H b h h f d f E : L dLet b,d e the graph consisting o coples © bt Breer By
1

where for 2 < 1 < d , the input nodes of By are identified with the

output nodes of BT Thus He S(2, (15a+1)b),d

The set of output nodes of E 1s called the i-th level. The input
1

nodes of Ey form level 0 .

Lemma 2. Hy q can be pebbled with 2b+16 pebbles and (15d+1)b moves.- 2

Proof. We say level 1 1s full 1f all nodes of level 1 have pebbles.

The strategy is to fill the levels one after another. Each level is a cut

set. Thus once a new level 1 has been filled all pebbles above level 1

can be removed. Hence at most 2b pebbles have to be kept on two successive

levels. In the process of filling level i+l if level 1 is full, the

16 extra pebbles are used on the trees between the levels. Because all

trees are disjoint except for the leaves each node is pebbled exactly once. LI



Lemma %. Hy a can bc pebbled with hdr? pebbles.

Proof. The depth of a node v is the number of edges in the longest

path into v . In a graph Ge S(2,n) every node of depth t can be

pebbled with 1t+2 pebbles (this follows easily by induction on t ).

Every node in Hy a has depth at most Ld . J
The crucial point 1s

Lemma 4. For all ic¢€ f0,1,...,d} the following statement holds: If c

is any configuration of at most b/8 pebbles on Hy a N is any subset

of leveli s.t. IN| = b/L » and M 1s any sequence of moves, which

starts in configuration C , never uses more than b/8 pebbles, and

during the execution of this sequence of moves each node in N has a

pebble at least once, then M has at least ot moves.

Proof. By induction on 1 . For1 = 0 there is nothing to prove.

Suppose the lemma is true for i-1 . In configuration C at most b/8

pebbles areon the graph. Thus for at least b/8 of the nodes v in N ,

no pebble is on v nor anywhere on the tree which joins Vv with level 1-1

except possibly on the leaves. Let N' be a subset of these nodes of

size b/8 and let P be the set of nodes in level i-1 which are

connected to N' . By constructlon of I, d , |r| > b/e . Because
none of the nodes in N' nor any node of their tree:: have pebbles except

for the leaves, during the execution of M each node in P must have a

pebble at some time (possibly right at the start).

Divide the strategy M into two parts M1 , M, at the earliest mave

such that durd ng MM; wsome b/4 nodes of I' have or have had pebbles

ald the remaining b/h or more nodes of FP have never had a pebble.
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For My the hypothesis of' the lemma applies; thus My has at least = -
moves. Because My leaves at most b/8 pebbles on the graph and M,

aloo never uses more than D/f pebbles Lhe hypolhesic aloo applies bow

Heneoe M, has al, 0 cacl A moves Loo and the Lemna Pollows.
Choose b such that hd+2 < b/8 , e.g. b = 324+ 16 . Then any

strategy which pebbles any b/h output nodes of By, a using at most
ha+2 pebbles has at least od moves. Thus for at least one of these

nodes v pebbling v alone with hdi © pebbles must requi re

2% (0/1) . p(1-e)d moves since b = 0(d) . Now n = (15d+1)b is the number

of nodes of Hy gq . Hence d = o(/n) and b = on) and the theorem
follows. U

The above construction also yields:

Corollary. There existe a lamily ol" graph:; G,  5(2,n) such that fox

every ¢ > 0 the following holds: any strategy which pebbles G, using

nl pebbles has more than polynomially many moves.

Proof. Choose G, = Hy a with b = ni-1/1cg tog n and 4d = o(nt/109 log 1 0h

An interesting open problem is: does there exist a family of graphs

Ge s(2,n) , n =1,2,... such that pebbling the graphs G, with 0(n/log n)

pebbles requires more than polynomially many moves? As a first step toward

resolving this question, I'ippenger [7] ha:: exhibited a family of graphso

which require a non-linear number of moves when pebbled with 0 (n/Log 1)

pebble,
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