TIME-SPACE TRADE-OFFS IN A PEBBLE GAME

by
w. J. Paul and R, E. Tarjan

STAN-CS-77-619
JULY 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

TIME-SPACE TRADE-OFFS IN A PEBBLE GAME

w. J. Paulf/ R. E. Tarjanﬁ/

Fakultdt flir Mathematik Computer Science Department
der UniversitBt Bielefeld Stanford University

D-4800 Bielefeld 1 Stanford, California 94305
Germany USA

Abstract

A certain pebble game on graphs has been studied in various contexts
as a model for the time and space requirements of computations [1,2,5,8].
In this note it is shown that there exists a family of directed acyclic

graphs Gn and constants ¢, ,cC such that

1 2 3

(1) Gn has n nodes and each node in Gn has indegree at most 2 .
(2) Each graph Gn can be pebbled with cl\/.r_l pebbles in n moves.

(3) Each graph G, can also be pebbled with 02\/?1 pebblces;.n 5 < cy

but every strategy which achieves this has at least 2 moves.

*
—/ Research partially supported by DAAD (German Academic Exchange Service)
Grant No. 130/L02/653/5.

XX . . . N ey
-——/ Rescarch partially supported by the National Scicnce Ioundation,
want, No. MCS (L=00870 and by the OrftYce off Naval Research,

Contraclt No. NOOOLH={0=(-0008

Let S(k,n) be the set of all directed acyclic graphs with n nodes
where each node has indegree at most k . On graphs Ge S(n,k) the
following one person game is considered. The game is played by putting

pebbles on the nodes of G according to the following rules:

(i) an input node (i.e., a node without a predecessor) can always be
pebbled;
(i1) if all immediate predecessors of a node ¢ have pebbles one

can put a pebble on c ;

(1i1) one can always remove a pebble from a node.

The goal of the game is to put a pebble on some output node (i.e.,
a node without a successor) of G in such a way that the total number
of pebbles which are simultaneously on the graph is minimized.

The game models the time and space requirements of computations in
the following sense. The nodes of G correspond to operations and the
pebbles correspond to storage locations. If a pebble is on a node this

means that the result of the operation to which the node corresponds is

stored in some storage location. Thus the rules have the following meaning:
(i) input data are always accessible;
(i1) if all operands of an operation are known and stored somewhere, the

operation can be carried out and the result be stored in a new
location;

(1ii) storage locations can always be freed.

By the rules a single node can be pebbled many times. This corresponds to

recomputation of intermediate results.

In particular the game has been used to model time and space of
Turing machines [1,2] as well as length and storage requirements for
straight line programs [8].

Known results about the pebble game include

A: Every graph G S(k,n) can be pebbled with ckn/log n pebbles where

the constant i depends only on k [2].

B: There is a constant c¢ and a family of graphs Gh € 8(2,n) such that
for infinitely many n , G.n cannot be pebbled with less than

cn/log n pebbles [4].

For more results see [1,3,4,7,8].

By putting pebbles on the nodes of a graph G in topological order
(i.e., if' there is an edge from node ¢ to node c', then c 1is pebbled
first) one can pebble each graph GeS(k,n) with n pebbles and n moves.
However the stragegy known to achieve O0(n/log n) pebbles on every graph
uses exponential time. Thus it is a natural question to ask if there are

graphs Gne S(k,n) such that every strategy which achieves a minimal

number of pebbles requires necessarily exponential time. This is indeed
the case.

Theorem, There exists a Lamily ol graphs GIL1 s(2yn) n=1%2 .. . arid
constants ¢, , ¢,, 05) Cn < oCq such that for infinitely many n

(1) G, can be pebbled with cf;n pebbles in n moves.

(2) G, can also be pebbled with CéﬁT pebbles.

(3) Every strategy which pebbles Gh using only CdJn pebbles has at

c Jn
least 2 moves.

Thus saving only a constant fraction of the pebbles forces the time required

to grow from linear to exponential.

I'roof of the theorem: As building blocks for the graphs Gn we need

certain special graphs. A directed bipartite graph is a graph whose nodes

can be partitioned into two disjoint sets N N such that all edges lcad

1" 72

from nodes in Nl to nodes in N A directed bipartite graph is an

2
n-i j -expander if |Nl| - |N2| =n |A| denotes the cardinality

of A) and for all subsets N' of N2 of size n/i the following holds:

|{c] C eN; and there is an edge from c to a node in N'}| > n/3

Lemma 1. For n large enough there exist n-8/2 -expanders where the

indegree of each node in N2 is exactly 16 .

lroo f. With c-very function f: {1, . . .,en} - {1, ..,n} we

associate a bipartite graph Gt' ¢ 8(c,®n) with n inputs and n outj rut ¢
in the following way: The inputs and outputs are numbered from 1 to n
and if f(j) = 1 then there is an edge from input i to output (j mod n)
Different functions may produce the same graph. A function f is bad

il there is a set I of n/2 inputs and a set 0 of n/8 outputs such
that all edges into 0 come from I . Otherwise the function f is
called good. Clearly if f is good Grf is an n-8/2 -expander with the
desired properties.

In order to prove the existence of a good function we prove that the
fracti on o [' had lfuncti on:; to al I such functi on:: tends with growing n to
zero [9,0].

- There are 2" functions f: {L;...,en} - {1,...,n} . There are
(“I/lp)(n78) ways to choose n/? inputs I and n/8 outputs 0
Mor cvery choice off 1 and 0 there arce (/:\)(.:n/?’;.“'((:n/?i functions

such that f 1is bad because in Gf all edges into 0 come from I

Hence there are at most (nr/12)(n;18).(n/2)Cn/8.n70n/8 bad functions.

Thus the fraction we want to estimate 1is

(n72) (nI/IB) . (n/2)cn/8 . n7°n/8/ncn

= (n;lg)(nI/18) /Ecn/8 = 0(1) for ¢ > 16 . L

Let Fr'1 be an n-8/2 -expander as in Lemma 1. Construct En from
Er'1 by replacing for every output node v the 16 incoming edges by a
complete binary tree with 10 leaves, identifying v with the root of'
the tree and the predecessors of v with the leaves. Obviously
NS s(2,16n) .

L H b h h i i f d i f : L d

et b, d e the graph consisting o copies o Eb Eb,...,Eb

X o .
where for 2 < i < d , the input nodes of Eb are identified with the
output nodes of Eé_l . Thus H 4¢ S(2, (153+1)p)
,d
The set of output nodes of Ekl) is called the i-th level. The input

nodes of Ei' form level 0 .
Lemma 2. Hb q can be pebbled with 2b+16 pebbles and (15d+1)b moves.
- >

Proof. We say level i is full if all nodes of level i have pebbles.

The strategy is to fill the levels one after another. Each level is a cut
set. Thus once a new level 1 has been filled all pebbles above level i
can be removed. Hence at most 2b pebbles have to be kept on two successive
levels. In the process of filling level i+l if level i1 is full, the

16 extra pebbles are used on the trees between the levels. Because all

trees are disjoint except for the leaves each node is pebbled exactly once. U

Lemma 5. M, can bc pebbled with hd+2 pebbles.
- b

Proof. The depth of a node v is the number of edges in the longest
path into v . In a graph Ge S(2,n) every node of depth t can be
pebbled with t+2 pebbles (this follows easily by induction on t).

Every node in has depth at most 4d .

By a

The crucial point is

Lemma 4. For all ie¢ {0,1,...,d} the following statement holds: If c
is any configuration of at most b/8 pebbles on Hb,d , N is any subset
of level i s.t. |N| = b/4, and M is any sequence of moves, which
starts in configuration C , never uses more than b/8 pebbles, and
during the execution of this sequence of moves each node in N has a

i
pebble at least once, then M has at least 2 moves.

Proof. By induction on i . For i = 0 there is nothing to prove.
Suppose the lemma is true for i-1 . In configuration C at most b/8
pebbles are on the graph. Thus for at least b/8 of the nodes v in N ,
no pebble is on v nor anywhere on the tree which joins v with level i-1
except possibly on the leaves. Let N' be a subset of these nodes of
size b/8 and let P be the set of nodes in level i-1 which are
connected to N' . By congtructi on of “b,d , \J’| > b/ . Becausc
none of the nodes in N' nor any node of their tree:: have pebbles except
for the leaves, during the execution of M each node in P must have a
pebble at some time (possibly right at the start).

Divide the strategy M into two parts M1 , M2 at the earliest mave
such that duri ng M, some b/4 nodes of I' have or have had pebbles

and the remaining b/lt or more nodes of P have never had a pebble.

O

For Ml the hypothesis of' the lemma applies; thus M; has at least Bj -
moves. Because Ml leaves at most Db/8 pebbles on the graph and Mp
alco nover uges more Lhan D/8 pebbles Lhe hypolhesic aloo applice Low
Henee M? has ol v cactl :“i—'l moves Loo and Lhe lemma ollows. (O
Choose b such that Ld+2 < b/8 , e.g. b = 32d+ 16 . Then any
strategy which pebbles any b/h output nodes of H'b,d using at most
Ld+2 pebbles has at least Ed moves. Thus for at least one of these
nodcs v pebbling v alone with hdi 0 pebbles must requi re
?,d/(b/l#) iQ(l-E)d moves since b = 0(d) . Now n = (15d+1)b is the number
of nodes of Hde . Hence d = O(ﬁ) and b = O('\/E) and the theorem
follows. U

The above construction also yields:

Corollary. There exicte a family ol' graph:; Gn «5(2,n) wvuch that lor
every ¢ > 0 the following holds: any strategy which pebbles Gn using

nl_e pebbles has more than polynomially many moves.

n1-1/1og log n 1/log log ny

Proof. Choose Gn = H'b,d with b = and d = O(n

An interesting open problem is: does there exist a family of graphs
G, € s(,n) , n =12,... such that pebbling the graphs G, with 0(n/log n)
pebbles requires more than polynomially many moves? As a first step toward
resolving this question, Pippenger [7] ha:: exhibited a family of graphc
which require a non-linear number of moves when pebbled with 0(n/log n)

poebblos,

(BT

References

S. A. Cook, "An observation on time-storage trade off," Proceedings

Fifth Annual ACM Symp. on Theory of Computing (1973), 29-33.

J. Hopcroft, W. Paul, and L. Valiant, "On time versus space and
related problems," Journal ACM, to appear.
M. $. Paterson and C. E. Hewitt, "Comparative schematology,"

Record ol'1 rojecet MAC Con [crence on Concurrent Systems and larallel

Computation (1970), 119-128.

w . raud, R Tarjan, and J. R. Celoni, "Opace bounds or a game on

graphs," Math. Systems Theory, to appear.

M. S. Pinsker, "On the complexity of a concentrator," 7th International

Teletraffic Congress, Stockholm (1973).

N. Pippenger, "Superconcentrators," Technical Report, IBM Thomas J,
Watson Research Center, Yorktown Heights, N. Y., (1976).

N. Pippenger, "A time-space trade off," Technical Report, IBM Thomas
J. Watson Research Center, Yorktown Heights, N. Y., (1977).

R. Sethi, "Complete register allocation problems," SIAM J. Comput. L
(1975), 226-248.

