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Abstract.

The following graph addressing problem was studied by Graham and

Pollak in devising a routing scheme for Pierce's Loop Switching Network.

Let G be a graph with n vertices. It is desired to assign to each

vertex v. an address in (0,1, ¥}* , such that the Hamming distance
between the addresses of any two vertices agrees with their distance

in G. Let N(G) be the minimum length { for which an assignment

1s possible. It was shown by Graham and Pollak that N(G) < me (n-1) /

. where m. 1s the diameter of G . In the present paper, we shall prove

that N(G) < 1.09(1g mG)n+ 8nby an explicit construction. This shows

in particular that any graph has an addressing scheme of length

O(n log n) .

- Keywords: addressing scheme, binary tree, graph, Hamming distance,

loop switching network.
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1. Introduction.

An interesting routing scheme to Pierce's Loop Switching Network

[7] was proposed by Graham and Pollak [3,4] (see also [1]). In this

scheme, Pierce’s network 1s represented by a graph where vertices stand

for the loops, and edges stand for the contacts between loops 1n the

network. The scheme calls for assigning a sequence of ternary symbols

to each vertex such that the distances between vertices in the graph

are faithfully represented. The combinatorial problem is described

below; for a detailed discussion of the connection between Pierce's

network and this combinatorial problem, as well as further information

on the subject, see references [1,3,4,T].

Throughout our discussion, G = (V,E) will be a connected graph with

a set V of vertices, and a set E of undirected edges. A path of

length t in G from a vertex \A to a vertex vy is a sequence of

vertices Vi Vi? EN such that Vk = Vs» Vk, ] Vio and

Vic Ve YEE for s = 1,2,...5t . The distance a,(vssv5) between
vertices Vs and V3 is the minimum length t for which a path of

length t from Vs to A exists. The diameter of G , denoted by my »

is the largest distance between any two vertices in G . That 1s,

my =. max{d(v;,V,) | viv eV} .
Let © be the ternary symbol set {0;1,*%} . (The character " *"

is a "don't-care" symbol.) The Hamming distance H between elements in §

is defined by H(1,0) = H(0,1) = 1 , and H(a,b) = 0 for all other pairs

of a,b in §£ . For two sequences «& = Bq 85000 8, and B = by; by... b,

in 5! , where f > 0, their Hamming distance 1s given by

H(a,B) = LT Bate .
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An addressing scheme for a graph G = (V,E) with n vertices is

an assignment of a sequence e(v,) € st to each vertex Vv. such that

H(e(vy)re(vy)) = dy (v3, v5) for all v,, v. in V . The positive
integer { 1s called the length of the addressing scheme, and the

sequence e (vy) the address of vertex Vso It 1s desired to find

addressing schemes with small length. Let N(G) be the minimum ¢ for

which an addressing scheme of length tf exists for G . In [3], it was

proved that an addressing scheme always exists (i.e., ©N(G) < « ), and

furthermore, N(G) < m(n-1) . We shall improve this bound by explicitly

constructing an addressing scheme. The main results are as follows:

~, 1 2 3 \-1

(We shall use } to denote the constant 3 1g3 + 5 lg 5 ~ 1.09.)

Theorem 1. For a graph G with n vertices,

N(G) <Anlgn+2n .

Theorem 2. For a graph G with n vertices,

n(c) <M n(lg my) + 8n.

. Note : 1g means logarithm to the base 2.
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2. Definitions and Preliminaries.

Let G = (V,E) be a (connected, undirected) graph. A path

Vie Ves LV in G is simpleif all the vertices Vie for 0 <s < t
oO 1 t

are distinct, except possibly for k | = vk. . A graph G' = (V',E")
is called a subgraph of G if V' € V and E' © E . A subgraph

G' = (V',E') is said to be a tree in G if G' is connected and there

is no simple path of length > 0 in G' from any vertex veV' to itselZ.

A trze G' = (V', E') in G is a spanning tree for G if V' = V . For

ally subset of vertices V' CV , the diameter of V' , written diam {V') ,

is max{d, (vy, vy) | Vis Vs eV'} . In particular, dian,(V) =m, . The

distance a (vs V') between a vertex v.eV and a subset V' c V is

defined as do (vi, V') = min{d, (vs, vy) viev'].
We shall makes use of binary trees in our design process. (See for

exam;le Knuth [5] for basic definitions regarding binary trees.) Let T

be a binary tree with n leaves. Assume the nodes of T are numbered

arbitrarily from 1 to 2n-l1l . The node with number k will be denoted

by re We will also use the notation for a leaf numbered 1 ,

and ¢ for an internal node numbered j . For a node Ty , let R(k)
be the subset of leaves in T which are descendants of LT The size

of R(k) 1s called the weight of Ty denoted by w(k) . For exaaple,

we have R(1) = {rgrg rg} , R(2) = {r;} , and w(1) = 3, w(2) = 1 in
rigure 1. The external path length P(T) is defined by the following equation

P(T) = 2 wk) | (1)

internal node ry

The quantity P(T) can alternatively be described as the sum of the

distances from the leaves to the root [5]. If rs and rs are respectively

the leftson and the rightson of r, r We shall write i = leftson(k) ,
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8] (1

6 9

Figurel

Jj = rightson(k)); k = father(i) = father(j) ; and j = brother(i) ,

i = brother(j) . As a shorthand, we shall use k for father (k) and

k' for brother(k) . A binary tree T 1s said to be weilght-balanced

1f for each internal node Ty

1 2

3 w(k) < w(leftson(k)) < 5 wk),
(2)

1 2

3 w(k) < w(rightson(k)) < 3 wk) .

The following result is from [6, Theorem 2].

Lemma 1 [Nievergelt and Wong]. If T 1s a weight-balanced binary tree

with n leaves, then the external path length of T satisfies

P(IT) <Anlgna~1.09nlg n .

In a binary tree T , if a leaf 1 precedes another leaf J1

in post-order [5], we shall say that 1s to the left of J (or

1s to the right of J ), and write < J (or equivalently
> Je We further extend the relation so that



[1] < ry if [1] < for all descendants of Ty

B 3-1, 1f > for all descendants of ry

Clearly, for any leat and node LS either < Tye a > 1,

or 1s a descendant of ry i and exactly one of the three relations

holds. In Figure 1, we have [6] < ’ [6] < Oo , and > OQ, .
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3 TheConstruction of a Length O(n lg n) Addressing Scheme.

3.1 The Design Tree.

The key to obtaining an O(n 1g n) scheme 1s by using a hierarchical

design. A design tree M is a pair (T,f) where T is a binary tree

with n leaves, and f 1s a one-to-one mapping from the leaves of T

to the vertices of G , For notational convenience, we shall number the

nodes of T in such a way that the leaves receive numbers 1 to n and

leaf v! 1s assoclated with vertex v, under £ . The root of T will

be labeled with 2n-1 ; and the remaining internal nodes with ntl through

2n-2 (their actual numbering will be unimportant for M ).

We now describe an addressing scheme 7Z(M) corresponding to a

given design tree M . Every address e¢(v;) in Z(M) will consist of

en-2 blocks of code, where the k-th block has length by (to be defined

) later) and 1s conceptually associated with the node Ty of T . (Note
. that rk cannot be the root since k # 2n-1.) Thus we shall write,

for 1 <i <n,

(vi) = C47CipeeeCy opp  WHETE Cy |= 4 G)

By definition, the Hamming distance between two addresses e(v;) and

c(v;) 1s equal to the sum of the Hamming distances between corresponding
. blocks. That 1s,

2n=-2

H(c(v;),e(vy)) = 2 H(Cs yr C yc) . (4)
k=1

We shall design the code in such a way that in (4), only a few terms will

contribute to the sum, other terms being zero. For example, consider the

design tree M shown in Figure 2. We shall in fact have

1
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le [8]

Figure 2. A design tree M with a marked path.

H{c (vg), civ, )) = Hes 107 C,10) les 117%, 11) +H(eg Cs pn) (5)

and Hcg 1505 = 0 for k¢ {10,11,2} . The trick to achieve

H{c(vg),e(vy)) _ di, (v3,7,) is as follows. Define S(k) = (f(r) | r, e R{i)3
i.e., S(k) 1s the set of vertices associated with the leaf descendants

of ry - We shall require that,

\

J Hes 12S 10) a,(v5,5(10)) ,

Hcg 100¢5,10) + Hes 37005 17) + Hleg nen 0) =d, (vy58(2)). (6)

We can view (6) in the following way. Starting at the lowest common

ancestor (lca) of and (1.e., the common ancestor of,3 and

farthest from the root), which 1is' Ten , we move down the path

Tio ’ Tq7 to the leaf Ty - Each node ry encountered along the path,

8
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excluding the lca, will add a block of code which creates enough Hamming

distance to bring the total up to A (v5, 8(k)) . An equivalent form of

(6) is

_ - k

for k = 10,11,2 , and k = father (k) .

In general, we want to achieve the following. For < ; let

node hy be the lowest common ancestor 1 and 17 and

hy By» Co By = J be the path from node hy to oh , Then

for k = h,,h,, coh , and k = father(k) ;

Hc; x5, x) = 0 for all other k . (8)

It is easy to verify that (8), if true for all < » will be

sufficient to guarantee that Z(M) = {e(v;) |1 <1 <n), as given by (3),

is an addressing scheme, That 1s, do (Vs) vs) = He (v;)se(vy)) for all

i,j . We now describe a construction of the Cp 'S that satisfy (8).

7(M): The Addressing Scheme Induced by M . For each k, 1 < k <2n-e ,

let

t, = max [d.(v,,8(k))-d.(v,,S(k))]. (9)
k 1<i<n G' 1 G1

. The block cj »for 1 < i <n , has length f, and is given by

[foo — = = «0. 0 if a1 1s a descendant of Lo ,
—_ x 1 N

Chop = § FF --- vou 1f 5 > Ty

111- 1*** ,,, * with d = a, (vy,8(k)) - a. (v,,S(k)) ’
if il<r1 : 0)

8 cL k (10)
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Finally, form Z(M) = {e(v,) |1L <i <n} according to (3). The length

of Z(M) , denoted by t(M) , is

1<k<2n-2

To see that Z(M) is actually an addressing scheme, we need only

show that (8) is satisfied, For Hu < , we see from (10) that

H(eiys Csx) = 0 unless i] < ry and 1s a descendant of ry

in the latter case, Heyy Cx) = dn (vs58(k)) - dn (vy,8(k)). But this
is exactly as required by (8), q.e.d.

3.2 Criteria for.a Good Design Tree.

Let us find out what sort of design tree M will generate a short

addressing scheme, Notice that for any 1 <i <n, 1 <k <<2n-2, we

have

Inequality (12) is valid, since we can concatenate a path from A to the

nearest point in S(k) , with a path of length at most diam, (8 (k)) , to
reach a vertex in S(k) . This tells us that

. x 1fy < diam, (8 (k)) ] (13)

Mn upper bound to T(M) is therefore

(M) <0 diam (8(k)) = 2 2 diam, (8 (k)) , (1h)
1<k<2n-2 ntl<k<2n-1

every internal node being the father of two nodes. This upper bound will

in general be 0(n°) s» as the subset S(k) may have diameter O(n) for

many k. However, 1f we insist on two conditions

10



(i) no two points in S(k) are far apart compared to its size |5(k) | ,

specifically, diam. (S(k) ) < | 8(k) |; and

(11) the binary tree 1s weight-balanced,

then (14) would give

T(M) < 2 2 |s(k) | = 2.P(T) < 2An 1g n (15)
ntl <k<2n-1

by Lemma 1.

To achieve conditions (1) and (11), we use the following idea. Let

us think of M = (T,f) as a tree built topdown by successively breaking

V into smaller parts. From this viewpoint, the tree in Figure 2 1is

obtained by first dividing (at node 15) {vsvsseesvg] into

{v5 vg vy } and {Vly V35 V5 Vs Vg} ; each of the two resulting parts are

further divided into {v5} , {Vgpv,} at node 9 , and {vy vs} ’ {Vos Vs vg]
at node 12, respectively. This process is repeated until we have only

the singleton sets {v,} .

We shall see that 1n building M in this fashion, it 1s possible to

keep the points in each part close together (condition (1)), and also make

the two parts more or less equal in size (condition (i11)) on each

decomposition, We shall describe such a method next, and then perform a

finer analysis improving the bound given by (15).

5.3 Constructing M from a Spanning Tree.

We shall construct a design tree M with the properties (1) and

(11) given in Section 3.2, Choose any spanning tree with edge set A

for the graph G , Let us create a new vertex Vy and a new edge {Vor vy 3 .

11



We now define a one-to-one mapping ¢ between the edge set of the

augmented spanning treeA' = AU {vp vyl] and the vertex set V

(without Vv, )e The mapping¢ is obtained by regarding (VU {v },A")

as a rooted tree with root vo and mapping each edge onto its "lower"

end point. We shall then number the edges es in A' so that

le.) = v; . An example of this process is shown in Figure 3.

Yo

V, Vs .
1 A

1

V1 €5 ep €5
v, Va yy ® Vs

"3

Vz h
5

(a) (b)

Figure J. (a) A spanning tree on V = (V15 Vs V5 Vy Vo | , and

(b) the labelling of its edges after augmentation.

Our plan 1s to construct a binary tree Q by "suitably" splitting

the edge set A' into two disjoint subsets, and repeat the process until

only one edge remains in each subset. Figure k(a) shows the binary

tree Q that may result from this process when applied to the spanning

tree in Figure 3(b). Although the tree Q sO constructed is not a design

tree on the vertex set, we can easily obtain such a design tree Ma from

12



(a) ( {ey €5» €3 ©), &; J

{ey es) CY {ey esse)

a B {eps €)] 5 B tes}

(e;] (es)
e,3| 7] ey)

(b) (9) S(9) = {Vy Vos V5 Vy» Vs }

y s(8) = {vy vs) (8) (6) 5(6) = {Vor vz5V), }

0
vy} (vs) (v,

vo} [2] (v,)

Figure kL. (2) A binary tree Q , and

(b) its associated Mo .

15



Q in a natural way via the mapping ¢ , We shall transform Q into

My simply by identifying es with Vy in the tree Q . The design

tree My obtained from the Q in Figure 4(a) is shown in Figure L4(Db).
We can now complete our task 1n two steps, (1) describe the

topdown construction of a Q for which My would satisfy
conditions (i) and (ii), and (2) analyze the addressing scheme induced

by such an M
yt Q .

(1) Constructing Q . A set of edges B in G 1s called a

lree set if B is the edge set of some tree in G . Iwo tree sets By

and B, is sald to--form a decomposition of the tree set B if By; NB, = 0

and B, U B- = B . Note that, in such a decomposition, there is a unique

vertex v_ that is incident to both B; and B, , For example, 1in

Figure 3(b), B = {e, €),’ es } 1s a tree set. We can decompose B into

{es} and {eyr es} with vy being the unique vertex veo

A decomposition of B into By and B, 1s balanced if
1 _ 2 . CL CL

z Br < Bs < 3 |B] for 1 = 1,2 . The following lemma 1s implicit
in [2].

Lemma 2 [Chung and Graham]. Any tree set B with |B| > 2 has a

balanced decomposition into two tree sets.

Let us now construct Q by breaking the augmented spanning tree A'

into parts successively, using a balanced decomposition at each step. For

example, the tree Q shown in Figure 4(a) can be obtained this way from

A' in Figure 3(b). Once Q 1s constructed, we transform it into a

design tree Ma for the vertex set as described previously. It remains

14
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to analyze the address length obtained from this tree My . To avoid

confusion, we use S(k) for the set of vertices associated with node

rs in My , and use B(k) to denote the tree set at the corresponding

node in Q . Clearly, if S(k) = {V. »V. 5...,V. } , then
i771 i
1 "2 t

1 to Tt

(2) Analysis. There are two simple properties of the design

tree My . Firstly, My is weight-balanced by construction, Secondly,

at any node r, of My , diam, (8 (k)) < |8(k) | . This is true since
any two vertices in S(k) can be connected through at most |s(k) |

edges in the tree set B(k) . Thus, the two conditions (i) and (ii) in

Section 3.2 are satisfied, which implies T(M) <2)\n lg n . A stronger

bound can be obtained, however, by using the following lemma.

Lemma 3. For each node ry in My , and 1 <i <n,

a, (vy s(k)) - a, (vy s(k)) < 1+ |8(k')| , where k'= brother(k) . (16)

Proof. Let Vy be a vertex in S(k) closest to A , l.e.,

If vs eS(k) , then a, (v;58(k)) = 4. (vy, 8(k)) , and (16) is true. So
we can assume that vy ¢ S(k') .

Let Vy be the unique vertex that 1s incident to both an edge in

B(k') and an edge in B(k) . This implies that

ad; (veov) < [BR] = [sk] (18)

Now, let {v,v,} be an edge in B(k) incident with v_ (see Figure 3).

15
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B(k)

B(k')

|
| |

o Vi

Figure 5

Then,

de (vy) vy) < (vi v5) - 1g(755vg) < do (vy, 8(k)) + |s(k")| (19)

a, (vy, v,) < (vv) + 1 < a,(v.,5(k)) +1+ [sk yo. (20)ur oF 'T FD wr

SLaze {7 74} «B(k) , either v. or v, must be in S(k) . Therefore,

d,(v,, BB & © << mex {d, (v,, vod (ve) ] . (21)

myrauia (15) follows from (19), (20), and (21). O

Lemna? implies that,

I = max {dg(v;,8(k)) - d4,(v,,8(k))} < 1+ s(x) | .
‘Therefore

16



T(My) = 2. fh < 2 (1 + |s(x") |)
1<k<2n-2 1<k<2n-2

= 2n-2+ pD Is(k)| (22)
1<k<2n-2

Making use of the fact that Mo 1s welght-balanced and Lemma 1, we

obtain after simplification,

T(M) < Anlog n+ 2n .

This proves Theorem 1.

3.4 Proof of Theorem 2.

When m, , the diameter of G , is substantially smaller than n-1 ,

the addressing scheme we have constructed 1s better than the bound in

Theorem 1 indicates. The key observation is that ly 1s always no greater

than m, because f, < max d,(v,,8(k)) < m, In the analysis of
i

T (Mg) - Lh, , we can thus use m, to bound [, , instead of 1+ |S(k')|
for some of the nodes ry

Let X be the set of nodes r_ in My such that [8(k)| < my 5

and |s(k) | > me . For each r.eX , let Jy = ir; | Ts 1s a descendant

. of es Ty # r,} . Let J = U Jie . In Figure 6, assume m, = b,
r. eX
k

the set X then consists of the nodes marked by arrows, and J 1s the

. set of shaded nodes. We shall use inequalityf, < 1+ |S(k')| for the

nodes ry, €J , and use f, < m, for the remaining nodes in deriving a

bound for T(Mp) .
The following facts will be used in the calculation.

Fact 1. Let g be the number of nodes not in J , then gq < = |
G

17
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A gq % aja)

Figure 6. The set of shaded nodes is J .
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Proof. | = XZ (2-]s(x)| -2) = 2 2 s(x) }-2|X] = en-2|x]| .
Ip € X re eX

1 = 1 :

Hence gq = 2n-1- |J| = 2|X] -1 . Since |s(k)]| > 3 |s(k)| > 5 Te for reX ,

we have |§ < aa . Thus, qa < 2[X] < tn . Od

Fact 2. Let reX , then 2 |8(3) | < A S(k)| 1g |S(k)|
r. ed
J k

Proof. 2 s(n) = % 15(3)| . Fact 2 then follows from the
z 5 € Jy rs € Jy

fact that the subtree of My rooted at ry is weight-balanced. 0

We can now prove the desired bound as follows:

™)= 2 5+ 2X 4, < 2 m+ 2 (1+ [s(k) |)
rd Freq FTr ts Or egk k k k :

= qmy+ [J+ XT Z |s(in]
r eX rs edy

én
<a Egtanta 2 [s(k)| lg [s(k)| (2k)

G I, € X

where we have used Facts 1 and 2 in the last step.

: Equation (24) leads to, by using |S(k)| < m,

t(M,) < 8n+ A(lg my) Z |s(k)|
QU ~ r, €X

k

= 8n+ (lg m.)n .

This completes the proof of Theorem 2. Od

19
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4. Remarks.

In this paper we have given an algorithm which, for a graph with n

vertices, constructs an addressing scheme of length O(n log n) . The

algorithm can be implemented straightforwardly, and has a 0°) running
time on a random access machine.

Some slight improvements on our bounds can be obtained by minor

| modifications of the construction. For example, the 8n term in

Theorem 2 can be lowered to bn , However, we have not found a construction

that is guaranteed to give an address of length less than 0(n log n) .

The very attractive conjecture N(G) < n-1 Of Graham and Pollak [3,4] thus

still remains an open problem.

Acknowledgements. I wish to thank Ronald L. Graham for introducing this

problem to me in a stimulating conversation on this subject.
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