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Abstract.

The following graph addressing problem was studied by Graham and
Pollak in devising a routing scheme for Pierce's Loop Switching Network.
Let G be a graph with n vertices. It is desired to assign to each
vertex v, an address in {O,l,'*}l, such that the Hamming distance
between the addresses of any two vertices agrees with their distance
in G. Let N(G) be the minimum length { for which an assignment
is possible. It was shown by Graham and Pollak that N(G) < mGﬁkl),
where ms is the diameter of G . In the present paper, we shall prove
that N(G) < 1.09(1g mG)n+ 8nby an explicit construction. This shows

in particular that any graph has an addressing scheme of length

O(n log n)

- Keywords: addressing scheme, binary tree, graph, Hamming distance,

loop switching network.
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1. Introduction.

An interesting routing scheme to Pierce's wLoop Switching Network
[7] was proposed by Graham and Pollak([3,4] (see also [1]). In this
scheme, Pierce’s network is represented 'by\‘a graph where vertices stand
for the loops, and edges stand for the contacts between loops in the
network. The scheme calls for assigning a sequence of ternary symbols
to each vertex such that the distances between vertices in the graph
are faithfully represented. The cambinatorial problem is described
below; for a detailed discussion of the connection between Pierce's
network and this combinatorial problem, as well as further information
on the subject, see references [1,3,4,71.

Throughout our discussion, G = (V,E) will be a connected graph with
a set V of vertices, and a set E of undirected edges. A path of
length t in G from a vertex v to a vertex VJ. is a sequence of

vertices Vi sVy 5. . oV such that v, = V. , V v, , and
ko' 'y kg kg © 17 R

{vks l,vks}eE for s = 1,2,...5t . The distance dG(vi’vj) between

vertices v; and & is the minimum length t for which a path of

length t from v. to v, exists. The diameter of G , denoted by my >

1 J
is the largest distance between any two vertices in G . That is,
mg = max{dG(vi,vj) \vi,vj evy .

Let T be the ternary symbol set {0;1,*} . (The character " *"

is a "don't-care" symbol.) The Hamming distance H between elements in g

is defined by H(1,0) = H(0y1) = 1 , and H(a,b) = 0 for all other pairs
of a,b in £ . For two sequences @ = 8 85.4. & and B = blb2"‘bt

in zl , where £ > 0, their Hamming distance is given by

H(a,B) = 2> H(a,,b.)
4 1<i<y 1’71




An addressing scheme for a graph G = (V,E) with n vertices is

an assignment of a sequence c(vi) € zl to each vertex v such that
H(c(vi),c(vj)) = dG(vi,vj) for all v, , Ve in V . The positive
integer f is called the length of the addressing scheme, and the
sequence c(vi) the address of vertex vy It is desired to find
addressing schemes with small length. Let N(G) be the minimum ¢ for
which an addressing scheme of length £ exists for G . 1In [3], it was
proved that an addressing scheme always exists (i.e., N(G) < « ), and

furthermore, N(G) < m,(n-1) . We shall improve this bound by explicitly

G

constructing an addressing scheme. The main results are as follows:

(We shall use ) to denote the constant (%’— lg3 + 52- 1lg %)-1 ~ 1.09.)

Theorem 1. For a graph G with n vertices,

N(G) <Anlgn+ 2n

Theorem 2. For a graph G with n vertices,

N(c) < A n(lg mG) + 8n .

Note : lg means logarithm to the base 2.




2. Definitions and Preliminaries.

Let G = (V,E) be a (connected, undirected) graph. A path

in G is simple if all the vertices v for 0 < s <t

Voo oV 5. 0V
k9 kt kA

are distinct, except possibly for v, = vk.t . A graph G' = (V',E")
O ]

is called a subgraph of G if V' € V and E' € E . A subgraph
G' = (V',B') 1is said to be a tree in G if G' 1is connected and there
is no simple path of length > 0 in G' from any vertex veV' to itself.

A tr:

Yy

¢ G =(V', E') in G is a spanning tree for G if V' = V . For

any subset of vertices V' <V, the diameter of V' , written diamqj(‘\f') ’

is ma.x{dG(vi,vJ.) | VirVs eV'} . In particular, dia.mG(V) = m, - The
distance dG(vi, V') between a vertex VieV and a subset V' c V is

. Y . ; 1
defined as dG(vi,V ) = mln{dG(vi,vj) | vJ.eV }.

We shall maks use of binary trees in our design process. (See for
exam;le Knuth [5] for basic definitions regarding binary trees.) Let T

be a binary tree with n leaves. Assume the nodes of T are numbered
arbitrarily from 1 to 2n-1 . The node with number k will be denoted
by r, . We will also use the notation for a leaf numbered i ,
and @ for an internal node numbered j . For a node Ty let R (k)
be the subset of leaves in T which are descendants of re . The size
of R(k) is called the weight of Ty denoted by w(k) . For exaaple,
we have R(1l) = {r8,r6,r9} , R(2) ={r,}, and W(1) = 3, w(2) = 1 in

Figure 1. The external path length P(T) is defined by the following equation

P(T) = z w(k) . (1)

internal node rk

The quantity P(T) can alternatively be described as the sum of the
distances from the leaves to the root [5]. If T and :t"j are respectively

the leftson aad the rightson of r , we shall write i = leftson(k) ,

k



Figurel

j = rightson(k)); k = father(i) = father(j) ; and j = brother(i) ,
i = brother(j) . As a shorthand, we shall use k for father(k) and
k' for brother(k) . A binary tree T 1is said to be weight-balanced

if for each internal node rk ’

w(k) < w(leftson(k)) <

W

w(k)
(2)

w(k) < w(rightson (k)) < w(k)

VTSNV
W

The following result is from [6, Theorem 2].

Lemma 1 [Nievergelt and Wong]. If T is a weight-balanced binary tree
with n leaves, then the external path length of T satisfies

P(T) <A nlgn=~1.09n 1lg n

In a binary tree T , if a leaf Cil precedes another leafcjl

in post-order [5], we shall say that |i| is to the left of J (or
is to the right of D ), and write < D (or equivalently

> ). We further extend the relation so that




Lg < Ty if B < for all descendants of r, >
@ 3-1‘k if > for all descendants of 1 .

Clearly, for any leaf and node rk; either < L cj‘l >r

or is a descendant of ry i

holds. In Figure 1, we have @4, E<'®, and '>®.

and exactly one of the three relations



3. The Construction of a Length O(n 1g n) Addressing Scheme.

3.1 The Design Tree.

The key to obtaining an O(n lg n) scheme is by using a hierarchical
design. A design tree M is a pair (T,f) where T is a binary tree
with n leaves, and f is a one-to-one mapping from the leaves of T
to the vertices of G , For notational convenience, we shall number the
nodes of T in such a way that the leaves receive numbers 1 to n and
leaf al is associated with vertex v, under £ . The root of T will
be labeled with 2n-1 ; and the remaining internal nodes with ntl through
on-2 (their actual numbering will be unimportant for M ).

We now describe an addressing scheme Z (M) corresponding to a
given design tree M . Every address C(vi) in Z(M) will consist of
en-2 blocks of code, where the k-th block has length b (to be defined
later) and is conceptually associated with the node ry of T . (Note
that rk cannot be the root since k # 2n-1.) Thus we shall write,
for 1<i<n,

c(vi') = C41Cp+ec % oo where c,, l= b - (3)

By definition, the Hamming distance between two addresses c(vi) and
c(vj) is equal to the sum of the Hamming distances between corresponding

. blocks. That is,

2n-2
H(C(Vi),C(Vj)) = kEl H(cik,cjk) . (’4‘)

We shall design the code in such a way that in (4), only a few terms will
contribute to the sum, other terms being zero. For example, consider the

design tree M shown in Figure 2. We shall in fact have



1 | S -
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5 10) ¢&—
[7 11) €—
2 | ¢&— l 8 |
Figure 2. A design tree M with a marked path.
~ \ . 3 s
H(c (V5 )sel{vy)) = H(c5,10’ CQ,lO> + H'(CE,»'.L]."VCQ,]_J_) + H(CB,E’ Cp,p) (5
and H(CB,R’C?,}(> = 0 for k¢ {10,11,2} . The trick to achieve

H(c(vB),c(vg)} = dG(VB’VE) is as follows. Define S(k) = {f(rj) \ r e R(i) ]

i.e., S8(k) 1is the set of vertices associated with the leaf descendants
of Ty - We shall require that,
\
) H(CB,lO, ¢ 10 dG(VB,S(lO)) ,
H(CB,]_‘\)’ 02,10) \ H(C§ ll’ cg ll) dG(VB’S(ll>) 2

Hes 10905 10) + Hles 17065 17) ¢ Fleg prey o) =da(vg,8(2)) . (6)

We can view (6) in the following way. Starting at the lowest common

ancestor (lca) of and (i.e., the common ancestor ocfl3 and
farthest from the root), which is' er , we move down the path

to the leaf r, . Each node r encountered along the path,

Ti0 » T11° 2 K



excluding the lca, will add a block of code which creates enough Hamming
distance to bring the total up to d(vys(k)) . An equivalent form of

(6) is
Hes 1005 1) = dg(v8(K)) -5 (vs,8(k) (7)
for k = 10,11,2 , and k = father (k)

In general, we want to achieve the following. For < , let

node hO be the lowest common ancestor i and cjl’ and

ho’hl’ o "ht = J be the path from node hO to le , then
H(ci,k,cj,k) = d(vi’ S(k))-d(vi,S(k))
for k = hl’h2’ . "’ht , and k = father (k) ;
H(ci,k’cj,k) =0 for all other k . (8)

It is easy to verify that (8), if true for all < » will be
sufficient to guarantee that Z (M) = {c(vi) |1 <i<n), as given by (3),
is an addressing scheme, That is, dG(V-: Vj) = H(C(vi),c(vj)) for all

1

1,J . We now describe a construction of the e, 's that satisfy (8).

Z(M): The Addressing Scheme Induced by M .  For each k, 1 <k <2n-2,
let
te = mex  [d(v;,8(k)) - dg(vy,8(k)) 1. 9
k 1<i<n G 1 G i

. The block ¢;p sfor 1 < i < n , has length ¢, and is given by

000 = = = ... O if cil is a descendant of T
cik=ﬂ***,___ R if ai '>rk,
l 111 - 1¥%* ,,, * with 8 = dG(vi’S(k)) - dG(vi,S(l-:)) ,
N’ ,
5 if CiJ_l < rk .

(10)



Finally, form Z(M) = {C(Vi) |1 < i < n} according to (3). The length

of zZ(M) , denoted by Tt(M) , is

(M) = b b - (11)
1 5k§2n-2

To see that Z(M) is actually an addressing scheme, we need only
show that (8) is satisfied, For D < , we see from (10) that
H(cik’cjk) = 0 unless @ < r, and is a descendant of r, ;
in the latter case, H(cik’cjk) = dG(vi’S(k)) - dG(vi,S(lz)).But this

is exactly as required by (8), q.e.d.

3.2 Criteria for.a Good Design Tree.

Let us find out what sort of design tree M will generate a short
addressing scheme, Notice that for any 1< i <n, 1 <k <2n-2, we
have

dG(Vi’S(k)) 'dG(Vi}S(I_{)) < diamG(S(l-{)) . (12)

Inequality (12) is valid, since we can concatenate a path from vy to the
nearest point in s(k) , with a path of length at most diamG(S(l_:)) , to

reach a vertex in S(k) . This tells us that

1, < diamG(s(E)) ) (13)

k

M upper bound to (M) is therefore

M) < Z diamG(S(I::)) = 2 2 diamG(S(k)\, , (1)
1<k<2n-2 ntl <k<2n-1

every internal node being the father of two nodes. This upper bound will
in general be O(n2) s as the subset S(k) may have diameter O(n) for

many k. However, if we insist on two conditions

10



(i) no two points in S(k) are far apart compared to its size |S(k)| ,
specifically, diamG(S(k) ) < | s(k)|; and

(ii) the binary tree is weight-balanced,

then (14) would give

(M) < 2 2 |s(x) | = 2.P(T) < 2An 1g n (15)
mlsksavl

by Lemma 1.

To achieve conditions (i) and (ii), we use the following idea. Let
us think of M = (T,f) as a tree built topdown by successively breaking
V into smaller parts. From this viewpoint, the tree in Figure 2 is
obtained by first dividing (at node 15 ) {vl,vg,...,vg} into
{VB,VG,Vi} and {vh,vz,V7,v§,v8} ; each of the two resulting parts are
further divided into {V5} , {VG’Vl} at node 9 , and.fvh,vb} s {v7,Vé,V8}
at node 12, respectively. This process is repeated until we have only
the singleton sets {v;} .

We shall see that in building M in this fashion, it is possible to
keep the points in each part close together (condition (i)), and also make
the two parts more or less equal in size (condition (ii)) on each
decomposition, We shall describe such a method next, and then perform a

finer analysis improving the bound given by (15).

3.3 Constructing M from a Spanning Tree.

We shall construct a design tree M with the properties (i) and
(ii) given in Section 3,2, Choose any spanning tree with edge set A

for the graph G , Let us create a new vertex vy and a new edge {vo,vl}.



We now define a one-to-one mapping ¢ between the edge set of the
augmented spanning tree A' = ALJ{{VO,Vl}} and the vertex set V
(without v, ). The mapping ¢ 1s obtained by regarding (VLJ{VO},A')
as a rooted tree with root VO, and mapping each edge onto its "lower"

end point. We shall then number the edges e in A' so that

@(ei) =v; . An example of this process is shown in Figure 3.

v, Vs
Vo
V3
(2) ()
Figure 3. (a) A spanning tree on V = (Vl’vé’VB’vh’v5} , and

(b) the labelling of its edges after augmentation.

Our plan is to construct a binary tree Q by "suitably" splitting
the edge set A' 1into two disjoint subsets, and repeat the process until
only one edge remains in each subset. Figure k4(a) shows the binary
tree Q that may result from this process when applied to the spanning
tree in Figure 3(b). Although the tree Q so0 constructed is not a design

tree on the vertex set, we can easily obtain such a design tree M, from

Q

12



(a) lerepresseys 0]

{el,e5} h {eQ’QB’eh}

{eg’ eh}

e (o)

{eg} {eh}

(b)

s(8) = {vl’VS} e S(6) =

N\

{vq

(v} [2 L {v,}

Figure 4. (a) A binary tree Q , and

(b) its associated MQ .

15
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Q in a natural way via the mapping ¢ , We shall transform Q into

in the tree Q . The design

MQ simply by identifying e with Ve

tree MQ obtained from the Q in Figure 4(a) is shown in Figure L(b).
We can now complete our task in two steps, (1) describe the

topdown construction of a Q for which MQ would satisfy

conditions (i) and (ii), and (2) analyze the addressing scheme induced

by such an MQ .

(1) Constructing Q . A set of edges B in G is called a

iree set if B is the edge set of some tree in G . Two tree sets Bl

and B, 1is said to--form a decomposition of the tree set B if By 0B, = g

2
and BlUBﬁ = B . Note that, in such a decomposition, there is a unique
vertex v, that is incident to both B, and B, , For example, in
Figure 3(b), B = {eg, eu,eS} is a tree set. We can decompose B into

{ee} and {eh,es} with vy being the unique vertex v

A decomposition of B into Bl and B, is balanced if

2
1 .2 . . L .
3 B < Bi < 3 |B| for i = 1,2 . The following lemma is implicit
in [2].
Lemma 2 [Chung and Graham]. Any tree set B with |B| > 2 has a

balanced decomposition into two tree sets.

Let us now construct Q by breaking the augmented spanning tree A'
into parts successively, using a balanced decomposition at each step. For
example, the tree Q shown in Figure 4(a) can be obtained this way from
A' in Fiqure 3(b). Once Q is constructed, we transform it into a

design tree MQ for the vertex set as described previously. It remains

14



to analyze the address length obtained from this tree M_ . To avoid

Q

confusion, we use S(k) for the set of vertices associated with node

Ty in MQ , and use B(k) to denote the tree set at the corresponding

node in Q . Clearly, if S(k) = {V. »V. 5...,v. } , then
i?'i i
1 2 t

B(k) = {eil’ei 30 0= "Lf'jt?ﬂ

(2) Analysis. There are two simple properties of the design
tree MQ . Firstly, MQ is weight-balanced by construction, Secondly,
at any node r, of MQ ’ diamG(S(k)) < |s(x)| . This is true since

any two vertices in S(k) can be connected through at most |S(k)|

edges in the tree set B(k) . Thus, the two conditions (i) and (ii) in

Section 3.2 are satisfied, which implies T(M) <2xn lg n . A stronger

bound can be obtained, however, by using the following lemma.

Lemma 3. For each node Ty in MQ , and 1 <i<n,

a,(v;, 8(K)) - dG(vi,s(l':)) < 1+ |s(k')|, where k' = brother(k) . (16)

Proof. Let V:] be a vertex in S(k) closest to A i.e.,
dG(vi’vj) = dG(Vi:S(k)) . (1)

If vJ.eS(k) , then dG(vi,S(k)) = dG(vi,S(l-:)) , and (16) is true. So
- we can assume that Vj € S(k') .
Let v be the unique vertex that is incident to both an edge in

B(k') and an edge in B(k) . This implies that

4V < [BO)| = [sGx)| . (18)

Now, let {v,v,} be an edge in B(k) incident with v (see Figure 5).

15




B(k)

B(k')

|

|

I

I

Ovi
Figure 5

Then,
(v, 8N+ sk, (1)

I /A

dG(ViJ VS) S dG(vi,Vj) F dG(J,j’VS)

sk . (20)

A (v.,8(k)) +1+
w1

N

dy(vis vi) < d (v, v ) + 1

Therefore,

size

{Vs’ﬁﬂ «B(k) , either v, or Vi must be in S (k)

d:;(VL, .72 & o m_< ma}c{?}'—;‘(vl,\éfs))d}}(vl,vt)} . (21)

@yrauia (15) follows from (19), (20), and (21). L

Lemaa3 implies that,

max {dG(Vi,S(k)) - dG(Vi,S(I-{))} < 1+ lS(k' ) |

£k=

Merefore

16



() = )2 f < z (1 +|s(x") |)
1<k<2n-2 1<k<on-2
= fn-2+ z s . (27)
1<k<2n-2

Making use of the fact that M, is weight-balanced and Lemma 1, we

Q

obtain after simplification,
T(M) < Anlog n + 2n

This proves Theorem 1.

3.4 Proof of Theorem 2.

When m the diameter of G , is substantially smaller than n-1 ,

G’ 2

the addressing scheme we have constructed is better than the bound in

Theorem 1 indicates. The key observation is that I is always no greater

than m, , because £, < max dG(Vi’ S(k)) <m In the analysis of
i

G G

T(MQ) = Elk , we can thus use m, to bound ¢, , instead of 1+ |s(x")|
for some of the nodes r -
Let X be the set of nodes r, in M, such that |S(k)| < m

k Q G’
and |S(k)| > my - For each rkeX , let Jk = {rj | rj is a descendant

of 1y, T, 4r} . Let J In Figure 6, assume my = L,

the set X then consists of the nodes marked by arrows, and J is the
. set of shaded nodes. We shall use inequality I < 1+ |S(k')| for the

nodes 1, €J , and use {; S m, for the remaining nodes in deriving a

G
bound for T(MQ) .
The following facts will be used in the calculation.

Fact 1. Let g be the number of nodes not in J , then q < 1%9 I
—_— G

17
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7 7 Z. 7
P Z <
7 iz = |=
Figure 6. The set of shaded nodes is J
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Proof. | = T (2-]s®)]| -2) = 2( )2 |S(k)|)-2|x[ - 2n-2|x| .
X

€ X Ty €
. 1 - 1
Hence q = 2n-1- |J| = 2|X|] -1 . Since |8(x)| > 5 |s(k)| > 5 1
we have |¥§ < L Thus g < 2[X| < én a
> -]_- 0 - 1] R > mG .
3G
Fact 2.  Let r eX , then Z I8(3")| < als(®)| 1g |s(x)|
r.ed
J k
Proof. Z s =% lS(,j)l . Fact 2 then follows from the
I‘j € Jk r'j € Jy
fact that the subtree of MQ rooted at L is weight-balanced. [

We can now prove the desired bound as follows:

G
r ¢J red L) r eJ

T(MQ) = T 1t Z 5, < T m,+ Z (a+ |s(x")
x .

= qm+ ||+ T Z |s@n)|

rkeX rjeJk
<@ nren+n T [s(k)|1e S|
-m, " G =
G r e€X

k

where we have used Facts 1 and 2 in the last step.

Equation (24) leads to, by using |S(k)]| < m,

T(uy) < 8o+ Mle my) T |s(x) |
rk e X

8n+ 2(1lg mG)n .

This completes the proof of Theorem 2. a

19
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4.  Remarks.

In this paper we have given an algorithm which, for a graph with n
vertices, constructs an addressing scheme of length O(n log n) . The
algorithm can be implemented straightforwardly, and has a O(n5) running
time on a random access machine.

Some slight improvements on our bounds can be obtained by minor
modifications of the construction. For example, the 8n term in
Theorem 2 can be lowered to 4n , However, we have not found a construction
that is gquaranteed to give an address of length less than 0(n log n)

The very attractive conjecture N(G) < n-1 ©of Graham and Pollak [3,}4] thus

still remains an open problem.

Acknowledgements. I wish to thank Ronald L. Graham for introducing this

problem to me in a stimulating conversation on this subject.
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