
Stanford Artificial Intelligence Laboratory Januaryl978
Memo AIM-307

Computer Science Department
Report No. STAN-CS-77-640

STRUCTURED PROGRAMMING WITH RECURSION

by

Zohar Manna Richard Waldinger

Artificial Intelligence Lab Artifioial Intelligence Center
Stanford University SRI International
Stanford, CA. Menlo Park, CA.

Research sponsored by

National Science Foundation

Office of Naval Research

Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT

| Stanford University

Stanford Artificial Intelligence Laboratory January 1978
Memo AIM-307

Computer Science Department
Report No. STAN-CS-77-640

STRUCTURED PROGRAMMING WITH RECURSION

by

Zohar Manna Richard Waldinger

Artificial Intelligence Lab Artificial Intelligence Center
Stanford University SRI International
Stanford, CA. Menlo Park, CA.

T his research was supported in part by the National Science Foundation under Grants DCR72-
03737 A01 and MCS76-83655, by the Office ofNaval Research under Contracts NOOQ14-76-C-
0687and NO0O14-75-C-0816, by the Advanced Research Projects Agency of the Department of

Defense under Contract MDA903-76-C-0208, and by a grant from the United States-Israel
- Binational Science Foundation (BS F).

T he views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing.the official policies, either expressed or implied, ofStanford
University, SRI International, or any agency of the V. S. Government.

1

There is a tendency in presentations of structured programming to avoid the use of

recursion as a repetitive construct, and to favor instead the while statement, the

guarded command, or other iterative loop constructs. For instance, in his recent book, "A

Discipline of Programming” [2], Dijkstra bars recursion from his exemplary programming

language; although he does not absolutely forbid recursion to the qualified practitioner,

he warns that "| regard general recursion as an order of magnitude more complicated

than just repetition,” and declares that "! don’t like to crack an egg with a

sledgehammer, no matter how effective the sledgehammer is for doing so."

The method by which an iterative loop is to be constructed is clearly dictated: We

are first to find an invariant assertion, a relation between the variables of the program,

and a rermination function, an expression involving the program's variables whose value is

a nonnegative integer. The loop body is then constructed so as to reduce the value of

the termination function while maintaining the truth of the invariant assertion upon each

execution of the loop body. In this way, the correctness and termination of the resulting

program are guaranteed by the nature of the construction process. The decision when

to introduce a loop, and the choice of an appropriate invariant assertion and termination

function, are not determined by the method; generally they are left to the Intuition of the

programmer.

For example, in constructing a program to compute the exponential function z =x) of

two integers x and » (where x is positive and ¥ is nonnegative), Dijkstra recommends

that we introduce new variables xx and yy, and take the invariant assertion to be

o 2exx)) mx)

and the termination function to be yy Itself, The invariant assertion is established

initially by taking xx, 99, and z to be x, y, and 1, respectively; the task of the loop body

is to maintain this invariant assertion while reducing the termination function #%yto 0.

Employing familiar properties of the exponential function, he derives the program ®

(xxyy 2) (xy)
while yy =» 0
do (yy z) « (yy-1 z. xx) .

This program is transformed subsequently to a more efficient version.

*Actually, Dijkstra obtains the invariant in two stages: he first introduces a new variable 4 and

attempts to maintain the invariant A+z= %J; he then replaces A by the term xx). His final
programis expressed in terms of the guarded command construct.

2

In discussing how such invariant assertions and termination functions are to be

discovered, Dijkstra appeals to his “inventive powers” and uses phrases such as "my

experience suggests . .." and "the trick is that." Of course, the exponential is a

familiar program, and these choices may-appear natural or even inevitable. But if we had

never seen the program before, how would we know to select z-xx)Y= x) as the

invariant assertion while reducing the termination function %y to 0? Why not maintain

2+%x)Y= x) while reducing xx to 0, or maintain 2) =x) while reducing yy tol, or even

maintain z(¥7) ox while reducing xx to | or yy to 0?

In general, at each stage in the derivation there are innumerable conditions and

functions that could be adopted as the invariant assertion and termination function of a

loop; only a few of these choices lead to the successful completion of a derivation.

With so many plausible candidates to choose from, a correct selection requires an act of

precognitive insight.

The answer, of course, is that we must defer the introduction of a loop until it Is

forced upon us by the structure of the program’s derivation. For this purpose, we have

found recursion to be far more useful than any of the iterative constructs; a recursive

call can be introduced when a recurrence is observed in the derivation. Applying this

approach, we avoid the premature selection of an invariant assertion and termination

function.

For example, let us again consider the construction of an exponential program

exp(x 9), intended to achieve the goal of computing the expression x). Employing the
same properties of the exponential function that Dijkstra applied in his derivation, we

reduce our goal to the subgoal of computing the constant 1 in the case that y is 0, and

to the subgoal of computing the expression xox) 1 In the case that ¥ Is positive. We
observe that the subexpression x)= is an instance of the top-level goal expression J;

at this point, we decide to introduce a recursive call exp(x 3-1) to compute this
subexpression. This call cannot lead to a nonterminating computation, because the

second argument %-1 of the recursive call is a nonnegative Integer less then the second

input ¥. The final program obtained is thus

exp(x y) <= if y = 0
then |

else x-exp(x 9-1).

This program, like its Iterative counterpart, is guaranteed to be correct by virtue of the

way It was constructed, and can be transformed into a more efficient version In a

subsequent optimization phase. This optimized version can be recursive or iterative.

3

In general, a recursive call is formed when a subgoal in the program’s derivation is

found to be an instance of a higher-level goal; the decision to introduce the recursive

call, its form, and the choice of the termination function are all dictated by the structure

of the derivation; the choice of the invariant assertion is avoided altogether.

Another example: In constructing a program to find the index of the maximum element

of an array, we want to assign a value to a global variable i such that

ali]= all(al0 : n)) and

O<sisn,

where n is a nonnegative Integer and al0: n] is an array segment of n+ 1 numbers a[0],

all), ...,aln). In other words, we need to achieve that ali] is greater than or equal to

every element In the array segment and that { Is between 0 and n.

In approaching this problem, Dijkstra [2] produces the invariant assertion R

ali) 2 all(al0: §)) and
0sisj and
jsn,

explaining: "A standard way of generalizing a relation is the replacement of a constant

by a variable -- possibly with a restricted range,” and adding that "the condition j <n

has been added in order to do justice to the finite domain" of the array segment al0 : nl.

As to the termination function, he continues: "Again, my experience suggests to choose

a monotonically decreasing function . . . n-j.... In order to ensure thls monotonic

decrease , , ., | propose to subject § to an increase by 1. ..." By application of the

propertles of the natural numbers and the concept of the “weakest precondition,"

Dijkstra develops the program

(i §) « (00)
while J =n
do it ali]2 aly)

then j « j+1
else (i j) «{f f+1).

In our approach, we want to construct a program maxi(a n) whose goal is again to

assign a value to i such that

**Again we take certain liberties with Dijkstra’s notation.

4

ali) 2 all(al0:n)) and
Osizsn.

In the case that n is 0, this condition is satisfied by taking f to be 0; in the other case,

the condition alil2 all(al0 :n)) decomposes into the conjunction of two subgoal

conditions,

alil2all(al0 :n- 1) and alil2 aln].

(Other decompositions are possible; the final program derived depends on which

decomposition is chosen), The first of these subgoals is an instance of the condition alt]

2 all(al0 : nl), which is part of the top-level goal; we therefore attempt to achieve it with

a recursive call maxi(e n-/). Termination Is ensured because the second argument n-l

of the recursive call is less than the second input n. The second subgoal alil2alnlis

achieved without introducing any recursive calls. The final program obtained is

maxi(a n) <= if n= 0

then f« 0
else maxi(a n- 1)

~ if ali] <aln] then fen. X

Note that our use of recursion as a repetitive construct in this program has not

precluded the use of assignment statements or even global variables.

The recursion-formation technique illustrated by these simple examples Is a basic

principle of our approach to systematic program derivation. This approach, presented in

detail in [6], was designed for automatic program-constructlon systems; therefore, even

when applied by the human programmer, It cannot rely on any leaps of Intuition. The

recursion-formation approach does not always make the act of programming easy, but it

does avoid the extraordinary feats of Ingenuity characteristic of the Invariant-assertion

approach,

Not everyone concerned with programming methodology has been completely

enamored of the invariant assertion as a means for program construction. For example,

In [6], Knuth compares two iterative programs for a moderately complex task: one was

developed by inventing an Invariant assertion while the second was derived by first

constructing a simple recursive program for the same task, and then transforming it. He

| observes that "the recursive program is trivially correct, and the transformations require

only routine verification; by contrast, a mental leap is needed to invent [the invariant

assertion].”

Some of the proponents of the “Structured Programming School” admit the use of

recursion when it is especially called for; e.g., Wirth [7] advises that recursion is

“primarily appropriate when the problem to be solved, or the function to be computed, or

the data structure to be processed, are already defined In recursive terms." Some

researchers, such as Gries [3] and Hehner [4], have praised the simplicity and clarity of

recursive programs, while others, such as Burstall and Darlington [1], have found
recursive programs to be easier to transform and manipulate.

Our point here is different: recursive programs are not only simpler to understand and

manipulate, but also are easier to construct, in that their formation does not require the

premature invention of an invariant assertion. For all these reasons, recursion seems to

be an ideal vehicle for systematic program construction. It is surprising that some of the

advocates of structured programming have not adopted it with more enthusiasm: in their

fidelity to iteration, they have been driven to resort to more dubious means.

REFERENCES

1. But-stall, R. M. and J. Darlington, A transformation system for developing recursive

programs, JACM, Vol. 24, No. 1 (Jan. 1877), pp. 44-67.

2. Dijkstra, E. W., A discipline of programming, Prentice-Hall, Englewcod Cliffs, NJ,
1976.

3. Gries, D., Recursion as a programming tool, Technical Report, Department of Computer

Science, Cornell University, Ithaca, NY, 1076.

4. Mehner, E.C. R., do considered odtA contribution to the programming calculus,

Technical Report, Computer Systems Research Group, University of Toronto, Toronto,

Canada, March 1077.

8. Knuth, D.E., Structured programming with go to statements, Computing Surveys, Vol. 6,
No. 4 (Dec. 1974), pp. 261-301.

6. Manna, Z. and R. Waldinger, Synthesis: dreams => programs. Technical Report,

Artificial Intelligence Lab., Stanford University, Stanford, CA and Artificial

Intelligence Center, SRI International, Menlo Park, CA, Nov. 1977.

7. Wirth, N., Algorithms + data structures = p:ograms, Prentice-Hell, Englewood Cliffs, NJ,
1976.

