
MULT I-TERMINAL 0-1 FLOW

by

Yossi Shiloach

STAN-CS-78-653

APRIL 1978

COMPUTER SCIENCE DEPARTMENT

| School of Humanities and Sciences

| STANFORD UNIVERSITY

a

Multi-Terminal O-1 Flow

Xx

Yossi Shiloach x

Computer Science Department
Stanford University

Stanford, California 94305

January, 197 8

Abstract. Given an undirected O-1 flow network with n vertices and

2

m edges,we present an O(n (mtn)) algorithm which generates all (5)
maximal flows between all the pairs of vertices. Since 0(n® (mn)) is

also the size of the output, this algorithm is optimal up to a constant

factor.

Keywords and phrases: Algorithm, multiterminal flow, O-1 integer flow.

*

x This research was supported by a Chaim Weizmann Postdoctoral
Fellowship and by National Science Foundation grant MCS 75-22870.

1

3

1. Introduction.

A 0-1 undirected flow network 1s essentially an undirected graph

G = (V, E) since all the edges have one unit capacity, and the flow

assumes only integer values, namely 0 or 1. CG is assumed to have

n vertices and m edges. The edges will be denoted as two element

sets such as {u,v} .

Given s,teV, an s -» 1 0-1 integer flow (s -t flow in short)

is a function f: VxV= {0,1} such that:

(a) fu, v) = 0 if {u,VI1£E .

(b) f(u,v) = 0 or 1 if {u,v}eE .

(c) If f(u,v) =1 , then f(v,u) = 0 .

(a) IN(f,v) = OUT(f,v) for all veV-{s,t} , where IN(f,v) = 2 f (uv
ueV

is the total amount of flow entering Vv and OUT(f,v) = 2 f(v,w
weV

. 1s the total amount of flow emanating from v .

The value of f denoted by |f| is OUT(f,s)- IN(f,s) + An s -» t flow

f is maximal if |f| ; |£'| for any other s ~+t flow f'.

The 0-1 integer flow problems are usually associated with finding a

maximal number of edge-disjoint or vertex-disjoint paths between two

vertices in a graph, Such an individual maximal flow problem can be

solved 1n on? (win) time, as shown in [ET].

In this paper we present an algorithm which generates the maximal

flows between all the pairs of vertices within O(n° (m+n) time which

seems to be optimal regarding the output size. Finding all (5) maximal
flow values can be done in on’? (min) time, if we use Gomory and Hu's

algorithm, (see [GH]).

|

ol

2. The Multiterminal Flow Algorithm (MULTEF).

MULTEF consists of two routines. The first routine computes a

cut-tree for G . A cut-tree T = (Vo Ep) is a weighted tree (i.e.,

a non-negative weight we) 1s associated with each ec E.) with the

following properties:

(a) Vi = V .

(b) For all s,tec¢V , the value of a maximal s -» t flow equals

min wie) |

ee Pr (ss t)

Pr(s;t) is the unique -path connecting s and t in T. (In the following

we will use Arp s,t) to denote the length of Pr(s,t) .) The existence of

such a cut-tree 1s proved in [GH]. They also provide an algorithm which

computes the tree by solving only n-1 individual max-flow problems.

The second routine is MIN(w,v,w) . Given a u - v flow ov and

a vow flow f_ MIN(u,v,w) computes a u —» w flow fo such that

gel = mills leh

The existence of a u - w flow having this value can be easily proved by

using the max-flow = min-cut theorem. MIN(u,v,w) will be described in

full in the next section.

MULTEER

1. Initialization. Compute the cut tree T = (Vr Erp) of G and n-1

maximal s — t flows for all s, t such that {s,t}¢ Ep

2. For d = 2ye0e3n-1 do

Use MIN to compute maximal s - t flows for all u,v such that

d.(s,t) =d .

End.

-

The validity of MULTEF can be easily derived from the properties. of

the cut-tree (using induction on d), The complexity of MULIEF is

om’/? (min)) + o(n® .complexity of MIN) . In Section 3 we will describe
2 :

a linear time algorithm for MIN which yields an O(n" (mtn)) time bound

for MULTEF.

3, MIN(u,v,w) .

Let w,v,weV . Given a u =» v flow Lg and a v -w flow Yr ’

MIN (u,v, w) provides a u — w flow f__ such that | . min(|f |, £1) :
Henceforth we assume that:

£1 = If. (3.1)

Both f_ and f are acyclic flows. (3.2)
uv VW

If (£0 > fl » we reduce £ by |f | - |f | units of flow

so that (3.1) holds. The second assumption 1s justified by a linear time

algorithm which eliminates cycles of flow and described in detail in Section 5.

The most straight-forward way to produce a u =» w flow out of bw

and f__ is to add them up. So let p.. _ fT, © fy, be defined by:

B(vow) _max(0, £(vi,vy) +E(vvy) ~ Ey(vv) mE(vv) (3.3)

It is easy to see that Po is non-negative and if P. (vy57,) > 0 then

Bo (Vor v7) 0 . Moreover, a satisfies the conservation rule, i.e.,

m(p, z) = OUT (PD, . » z) for all z e V-{u,w} . (Equation (3.1) implies the
conservation of flow at v too.) However, edges may become overflowed

as shown 1n Figure 1 where Bu (5) = 2 .

a

Ver ™ ™
0 ~

~N

N\

Se) :
fo

| uv

be fw €=o

Figurel

The basic idea to resolve that problem (speaking in terms of Figure 1)

1s to reduce - from x to v and reduce LS. from x to v by one

unit. The pseudoflow of Figure 1 turns out to be the flow of Figure 2.

\%

0

y O& —— Ou
/ X

/

/

/

Ow

Figure?

a

| The process of reducing fo from x to v propagates in the same

| direction as LI. itself and will be denoted as "reducing the flow forward."

or "redford" in short. Reducing Lor from x to v has the opposite

direction to that of - and is called "reducing backward" or "redback".

| Thus, in principle, we redford - and redback fr towards v .

Trying to implement the redford-redback idea, we might face a problem

] which 1s demonstrated in Figure 3. After reducing fv forward and Loe

| backward from Xq to v , we obtain the pseudo-flow of Figure 3-b. Now,

| we can no longer redford from Xx, We are going to resolve this difficulty
partially by using the acyclic orientation of r

p— Tm

lo — \ ed IG
Vv ~~ vO

~o \ N
| \ \) \

X 1 X 1

| \ : yg X \ 1 Fo xX
/ 2 / 2

| | /

4 we
Ow Ow

(a) (0)

Figures

—

Definition. Given a flow f in an undirected flow network G = (V,E),

G(f) is defined by:

G(f) = (V, E(f)) where E(f) = ((vy5v,) i £(vyyv,) > 0} .

Note that G(f) 1s a directed graph. Let E = {{xyihi d= 1y...5k}

denote the set of overflowed edges, 1i.e., f(x vs) =2 for1 = 1,...5kK .

The X; 's will be centers of the redford-redback process. The acyclity

of G(T) can be used to label its vertices such that £(x)= length of

a longest directed path from x to v in G(f,,) . This well-known

labelling 1s achieved by labelling all the terminals at a time, deleting

them and labelling the new terminals with the previous label + 1 . We

start with £(v) = 0 . This labelling has the property that if there is

a directed path (in G(f_)) from x; to X, then £(x;) > £(x;) . Thus,

if we start reducing forward from x, '8 with the highest label and then go

down to lower labels, we should not face the problem which 1s sketched in

Figure 3. Figure 4 shows what happens if we start to redford-redback

from x, which has a higher label than x; in G(T.) . Note that after

reducing forward and backward from Xo no redford-redback is needed at

Xq since {x57} 1s not overflowed anymore.

a

- ~~

| 7 _
— P— _~ \ va — ~

N ~N

\ \ \
| ~ 4 oc. V

1 « ~ U 1VT0 ge.ge
\ 1 5 \ Lop| Yo x 2 x,

__/ ~~!{
/ /

Vy Vy| Ow Ow

| (a) (0)

Figured

| . This 1s only a partial solution since the x. 's are not necessarily

| labelled in the same order in G(f_) Since we must redford and redback

from the same vertex (otherwise conservation 1s violated), we might face

the same problem in reducing backward. The problem occurs when a redback

| path enters a vertex x, from which a previous redback took place and now
i

no f flow enters x, , (see Figure 5).

- = =20==2,0 — — — — — om —3/ Initial state.
X. y. X. Vo
1 1 ‘ee, J J

- 2

Om — 20 — — — — — — -3= = —3d After a redford-redback
x) X. ,

1 Yi J iv at x,
i.

If another redford-redback takes place at Xe the

redback path will be stuck at Xo

Figured

The solution to this problem can be outlined as follows:

Step 1. We redford along theu -» v flow until no overflowed edges are

left.

We now have to rebalance the vertices in which the redford paths start.

Step 2. We redback starting from the unbalanced vertices. If we get

stuck we go to Step 3.

Step We modify the appropriate redford path by increasing the flow

along a certain prefix of it.

The algorithm is designed so that Step 3 does not yield to further

modifications of the redback paths.

9

a

Detailed Implementation.

Step 1. The redford paths, say PireeesPy , are a set of edge-disjoint

paths in G(f which cover all the overflowed edges. Each of the P's

begins at an overflowed edge and we may assume that Ps begins at (x55) ,

i=1.e05t . The Pp. 's can be easily constructed by using the acyclity of

G(f,) As soon as the Ps 's are produced, we redford the flow by one

unit along each of them.

In the same way we produce a set {Qs eeerQ] of edge-disjoint redback

paths in G(£,.) . Each of them starts in an overflowed edge and proceeds

"backward" towards v and their union contains E, The only difference

1s that we use the Q. 's to redback only 1f necessary as specified in the
implementation of Step 2. The edges at which the current redford paths start,

are stored in a stack which contains initially (27597) 000s (2057) :

Following Steps 2 and 3, one can easily verify that the stack always

contains only overflowed edges which are the first 1n their redford paths.

Step 2. Let (x57) be the first edge in the stack. We start to

redback at X: following two rules.
*/

Ry: If (2,575) S Q then the redback starts at the edge which follows-

(25555) on Qs , (see Figure 6).

Ry: If we start to redback at an edge which belongs to Qs , we continue

to redback along Q until we reach v or get stuck. If we get

stuck we go to Step 3. If we reach v , we delete (2,55) from the

stack. If the stack 1s not empty, we go back to Step 2, otherwise the

algorithm terminates.

LJ Recall that Q. proceeds backward.

10

Oy 0 J
~~

Xx, _-"— TT —Pe
Ay SANT — By Ry, redback

~~ / N

0” y ~ starts at (25%,) .
~~

Figure 6

Lemma 3.1. A redback trail can get stuck at a vertex z only if Hi

such that: z = x, , (2,593) is an overflowed edge, the first on its

redford path and (x55 ys) belong to this trail or a previous one.

Proof. Let us consider two cases.

Case 1. The trail starts at z (i.e., the trail consists of a single

vertex). Since redback trails start only at unbalanced vertices,

di such that z = x, and an overflowed edge (2,575) which 1s the first

in its redford path. (In fact, (x57) is the top edge in the stack.)

Thus (%;57;) belongs to a redback path, say OQ. g and the first edge

in our redback trail should have been that which follows (2:5) on 4)

(R,) , Since this edge has already been used in a previous redback trail

(otherwise we were not stuck), (x25 Y.) has also been used in the same

trail, (R,) }

Case 2. The trail did not start at z . The only reason that R, cannot

be used to continue the trail 1s that a previous trail started at z before.

This again means that @i such that z = x, and (x; Vs) is an overflowed

11

edge, first on its redford path. It also implies that our redback trail

| enters x; through AR »q UO

Both cases are illustrated in Figure 7.

] Case 1.

Second redback A redtord path
trail = {x] A CE

| “3 1, %
4 O= =D 4 ov wo ddd Om = 30= = 90==0y wav (em ae HY pa a

ve First redback trail —

Case 2.

| a

“5 x / Q
:

| First trail started at x, «| « Second redback trail «

Figure 7

Step 3. Assume that our redback trail got stuck at Xs and (555) 1s

the overflowed edge discussed in Lemma 3.1. Since we cannot redback

anymore, we shall balance Xs by increasing the u =» v flow forward

| ("inford") alongthe old redford path which starts at (x,,¥,) . The

idea 1s that since the flow on (x57) has been reduced before

(Lemma 3.1), we no longer have to include this edge in our redford program.

Thus, we inford along the redford path containing (255;) until we reach

12

v or encounter another overflowed edge (5575) in which no redback has

and in the latter, (x555 3) is inserted. If the stack 1s not empty we
go back to Step 2, otherwise, the algorithm terminates.

Remark. Since (x57) is the first edge on its redford path (Lemma 3%.1),

the net effect of the inford is to shorten the redford path to the minimum

necessary.

4, Validity, Complexity and a Detailed Example of MIN(u,v,w).

Validity.

We have to show that:

(1) MIN(u,v,w) terminates.

(2) The output, Iyy , of MIN(w,v,w) 1s a legal u -w flow and

- — fol (= 12D) .

(1) The termination 1s quite clear.

Step 1 obviously terminates. Step 2 terminates since reducing back

is done only on the Vv =» w flow and this flow 1s never increased. Step 3

is finite since the u -v flow along an edge can be increased at most

once.

(2) In order to show that f 1s a legal flow and has the right
uw

value, we will show that:

_ _ an
(A) oUT(f, sz) - IN(f_,z) = OUT(2) - IN(D,.,7 (3.1)

for all z # Vv .

13

C

(C) No edge 1s overflowed.

(A and B): Equation (3.4) is violated during the execution in two cases.

The first occurs when a redford path starts at an edge incident with z ,

say (z,v) « In this case (2,y) is in the stack and when it reaches

its top, z will be rebalanced by the redback routine. The second

case occurs when aredback trail gets stuck at z . In this case

the inford routine rebalances z .

as far as u and w are concerned, "balanced" means that (3.4) holds.

Since OUT (Dy, W) - (Pp, »V) = ES. , Equation (3.4) implies that

[Tel = 150 as required. Moreover, since every vertex # u, w

is balanced in Po Equation (3.4) implies that every vertexI!

£ u, wandv 1s balanced in f (The proof of Equation (3.4)

does not hold for v .) Equation (3 .l) implies that

OUT (P,_ > 1) - mg ou) = IN(P, > W) - OUT(P,,.»W)

and (3.4) then implies that

OUT (f, »u) - IN(E, >) = IN(E, >W) - OUT(f, >W) :

This combined with the fact that all the other vertices are

balanced -- implies the balance of v .

(C) We have taken care of all the overflowed edges at Step 1. We increase

the flow again only in Step 3. However, as explained there, this

increase does not overflow any edge again.

14

Complexity.

Producing - 1s obviously linear. An edge of G(f__) is treated

at most twice (steps 1 and3) and an edge of G(T.) 1s treated at most

once (step 2). Thus, MIN(w,v,w) is linear.

A Detailed Example.

In Figure 8 we illustrate the composition of a u - v flow f
uv

and a v - w flow LS Both are acyclic and have the same value, 3 .

°F
, a \Oc— — —

\\ SSJ \

~N | ~~ 3

\ 0 —- =Ols ~~ ~ ee ~
\ ~~ Sa

~~

~~ 8
hy ™~\
Sr

29

Figure ¢

The overflowed edges are (1,2) , (2,3) , (5,6) and (8,9) .

Let the redford paths be:

Py = (L,2,Vv) , Py = (2,3,v) , Px = (5,6,8,9,v) .

The redback paths are:

Qp = (352,1,V) ’ Qs = (6,5,4,v) ’ 4 = (9,8,7,v) .

The stack contains ((1,2) ,(2,3) , (5,6)) .

15

| Figure 9 illustrates the situation after redford has been completed.

0)

h Ts,

| \ AN ~
\ ~ ™~

~~ p) \

| Oo ~—0 —

~~ 85 7

Figur= 9

Redback trails should start, at 1 , 2 and 5 (one at each).

First redback trail = (1,v); stack = ((2,3),(5,0)) .

Second redback trail = (2,1) , got stuck at 1 .

| Figure 10 1llustrates the situation at this moment.

16

| | u

O .

0, o)
N\ .

\ AN oO __
N L ~~ 0

\ 0) O-A
ANY : ~~~ ~N— \\ © 6 2

Oo. . * 0 - ¢ - - 7 7
~~ /

Figure 10

Now inford takes place, starting at (1,2) |
&

Inford trail = (1,2,v) ; stack = ((5,6)) .

Third redback trail = (5,k4,v); stack = § .

The final u -» w flow is illustrated in Figure 11.

u

Oo

o lo

O—

in\ 0 o/
\ ~

p, Nw
\ 7 o=— 6 50

—e ==Ow —0 A
~~

oO _ so
&

Figure 11

17

5 ACYC(f) . (R. E. Tarjan)

] Given a u =» v flow £ , ACYC(f) produces an acyclic u =» v flow
f* of the same value. We -perform a depth-first-search on G(f) , starting

| from u . Each vertex z 1s labelled when we enter it and the label is

removed when we backtrack through it. The label consists of the name of

the (unique) vertex through which we entered z (the "father" of z).

We step forward until one of the two cases occur;

(a) We reach a terminal vertex © .

In this case we backtrack to the father of t removing t and its

incident edges from G(f) , (Since no cycle can pass through t).

Note that the first terminal vertex which we will encounter is v ,

however, whenv is removed, other terminal vertices might be created.

(b) We reach a labelled vertex z .

This means that we discovered a flow cycle C through z . We backtrack

. through C and remove its edges from G(f) , The labels of the

vertices of C-{z]} are removed and the search is continued from z .

G(f') consists of the vertices of G(f) and of the edges of G(f) which

were not removed during cycles elimination, (Case b). If G(f) is not

connected we delete first those edges which are not on the (weakly) connected

component which contains u and wv. The validity and linearity of ACYC(f)

can be easily proved.

References

[ET] S. Even and R. E. Tarjan, "Network flow and testing graph connectivity,”

sIAM J. on Computing 4, (1975), 507-518.

[GH] R. E. Gomory and T. C. Hu, "Multi-terminal network flows," SIAM J. of

Applied Math. 9, (1961), 551-570.

18

