MULTI-TERMINAL 0-1 FLOW

by

Yossi Shiloach

STAN-CS-78-653
ARIL 1978

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSITY

Multi-Terminal O-1 Flow

*
Yossi Shiloach —/

Computer Science Department
Stanford University
Stanford, California 94305

January, 197 8

Abstract. Given an undirected 0O-1 flow network with n vertices and

2
m edges, we present an O(n" (mtn)) algorithm which generates all (g)
maximal flows between all the pairs of vertices. Since o(ne(m+n)) is

also the size of the output, this algorithm is optimal up to a constant

factor.

Keywords and phrases: Algorithm, multiterminal flow,

0-1 integer flow.

—/ This research was supported by a Chaim Weizmann Postdoctoral
Fellowship and by National Science Foundation grant MCS 75-22870,

1. Introduction.

A 0-1 undirected flow network is essentially an undirected graph
G = (V,E) since all the edges have one unit capacity, and the flow
assumes only integer values, namely (0 or 1. C is assumed to have
n vertices and m edges. The edges will be denoted as two element
sets such as {u,v} .

Given s,teV , an s -1t 0-1 integer flow (s -t flow in short)

is a function f: VxV - {0,1} such that:

(a) £(w, v) = 0 if [, V}£E
(b) f(w,v) =0 or 1 if {u,vleE
(¢) If f(u,v) =1 , then f(v,u) =0

(@) 1IN(f,v) = OUT(f,v) for all veV-{s,t} , where IN(f,v) =2 f(yv
ueV

is the total amount of flow entering v gnd OUT(f,v) = 2 f(v,w
weV

is the total amount of flow emanating from v .

The value of f denoted by |f| is OUT(f,s) - IN(f,s) - An s - t flow

f is maximal if |f| |t* | for any other s -t flow f!

The O-1 integer flow problems are usually associated with finding a
maximal number of edge-disjoint or vertex-disjoint paths between two
vertices in a graph, Such an individual maximal flow problem can be
solved in O(nE/B(m+n)) time, as shown in [ET].

In this paper we present an algorithm which generates the maximal
flows between all the pairs of vertices within O(nEOM1U) time which
seems to be optimal regarding the output size. Finding all (2) maximal
flow values can be done in O(n5/3(m+n)) time, if we use Gomory and Hu's

algorithm, (see [GH]).

2. The Multiterminal Flow Algorithm (MULTEF).

MULTEF consists of two routines. The first routine computes a

cut-tree for G . A cut-tree T = (V is a weighted tree (i.e.,

T) ET)

a non-negative weight w(e) 1is associated with each ec¢ E with the

7))

following properties:

(b) For all s,tec¢V , the value of a maximal s - t flow equals
min w(e) |
ec PT(S, t)
PT(s,t) is the unique -path connecting s and t in T. (In the following
we will use dT s,t) to denote the length of PT(s,t) .) The existence of
such a cut-tree is proved in [GH]. They also provide an algorithm which
computes the tree by solving only n-1 individual max-flow problems.

The second routine is MIN(uw,v,w) . Given a u - v flow fuv and

a v-w flow fvw , MIN(u,v,w) computes a u - w flow fuw such that

|

).

= min(|f |, [f |

The existence of a u - w flow having this value can be easily proved by
using the max-flow = min-cut theorem. MIN(u,v,w) will be described in

full in the next section.

MULTEF:

of G and n-1

1. Initialization. Compute the cut tree T = (VT,ET)

maximal s - t flows for all s, t such that {s,t}ce Ep -
2. For d = 25.e.50n-1 lel
Use MIN to compute maximal s - t flows for all u, v such that

dT(s,t) =d

The validity of MULTEF can be easily derived from the properties. of
the cut-tree (using induction on d), The complexity of MULTEF is
O(r15/5 (mtn)) + O(n2 .complexity of MIN) . In Section 3 we will describe
a linear time algorithm for MIN which yields an O(ng(m*‘n)) time bound

for MULTEF.

3, MIN(wv,w) .
Let w,v,weV . Given a u - v flow fuv and a v - w flow fvw s

P

MIN (u,Vv,w) provides a u -» w flow f s Such that ‘fuw‘ . min(‘fuvt, |qu

Henceforth we assume that:

I l = Il (3.1)
Both f and f _ are acyclic flows. (3.2)
If [Tl > |f,l » we reduce £ by |f_ | - |f | units of flow

so that (3.1) holds. The second assumption is justified by a linear time
algorithm which eliminates cycles of flow and described in detail in Section 5.
The most straight-forward way to produce a u - w flow out of fuv

and f__ is to add them up. So let ¢uw _ Ty ® Iy, be defined by:
B (Vyovp) _ max(0, £ (vo,vy) + £ (vyyvy) - (voyvy) - £ (v vy)) L (3e3)

It is easy to see that fi ~ 1s non-negative and if Ps(V12V,) > O then
¢uw(V2’V1) . 0 . Moreover, ¢uw satisfies the conservation rule, i.e.,
m(p,p 2) = V(P »2) for all z ¢ V-{w,w} . (Equation (3.1) implies the
conservation of flow at v too.) However, edges may become overflowed

as shown in Figure 1 where f_(%y)= 2.

Figurel

The basic idea to resolve that problem (speaking in terms of Figure 1)
is to reduce fuv from x to v and reduce fvw from x to v by one

unit. The pseudoflow of Figure 1 turns out to be the flow of Figure 2.

Figure?2

The process of reducing ﬂw_ from x to v propagates in the same
direction as fuv itself and will be denoted as "reducing the flow forward."
or "redford" in short. Reducing fvw from x to v has the opposite
direction to that of fvw and is called "reducing backward" or "redback",
Thus, in principle, we redford fuv and redback fvw towards v

Trying to implement the redford-redback idea, we might face a problem
which is demonstrated in Figure 3., After reducing fuv forward and fvw
backward from Xy to v , we obtain the pseudo-flow of Figure 3-b. Now,

we can no longer redford from X, We are going to resolve this difficulty

partially by using the acyclic orientation of fM

(a) (b)

Figure3

Definition. Given a flow f in an undirected flow network G = (V,E) ,
G(f) 1is defined by:

G(f) = (v, E(f)) where E(f) = {(vl,ve):f(vl,vg) > 0} .

Note that G(f) is a directed graph. Let E = {{x;,¥;}: 1 1yeeesk}

denote the set of overflowed edges, i.e., 1yeeerk

¢uw(xi’ yi) = 2 for i

The X 's will be centers of the redford-redback process. The acyclity

of G(fuv) can be used to label its vertices such that £(x) = length of
a longest directed path from x to v in G(fuv) . This well-known
labelling is achieved by labelling all the terminals at a time, deleting
them and labelling the new terminals with the previous label + 1 . We
start with £(v) = 0 . This labelling has the property that if there is
a directed path (in G(fuv)) from X, to X,

J

if we start reducing forward from X 's with the highest label and then go

then Z(Xi) > }Z(XJ.) . Thus,

down to lower labels, we should not face the problem which is sketched in
Figure 3. Figure 4 shows what happens if we start to redford-redback

from X which has a higher label than Xy in G(fuv) . Note that after

reducing forward and backward from x no redford-redback is needed at

2 14

X since {xl,yl} is not overflowed anymore.

(a) (b)

Figure4

This is only a partial solution since the xi's are not necessarily
labelled in the same order in G(f_) Since we must redford and redback
ww
from the same vertex (otherwise conservation is violated), we might face
the same problem in reducing backward. The problem occurs when a redback
path enters a vertex x, from which a previous redback took place and now
i

no f__ flow enters x; , (see Figure 5).

—_—— DO = = D O — = — = - — - 30— — =30 Initial state.
X v, x V.o
i i " J Ju
- A
O— — 30— — — — — — -39 = = —--)O{ After a redford-redback
x . X L
1 Iy J yJ u at X,

If another redford-redback takes place at X.J , the

redback path will be stuck at X

Figureb

The solution to this problem can be outlined as follows:

Step 1. We redford along the u - v flow until no overflowed edges are

left.
We now have to rebalance the vertices in which the redford paths start.

Step 2. We redback starting from the unbalanced vertices. If we get
stuck we go to Step 3.
Btep We modify the appropriate redford path by increasing the flow

along a certain prefix of it.

The algorithm is designed so that Step 3 does not yield to further

modifications of the redback paths.

Detailed Implementation.

Step 1. The redford paths, say Pl,...,P , are a set of edge-disjoint
paths in G(fuv) which cover all the overflowed edges. Each of the P, 's
begins at an overflowed edge and we may assume that Pi begins at (Xi,yi) ,
1 =1.e0st . The Pi 's can be easily constructed by using the acyclity of
G(fuv) . As soon as the Pi's are produced, we redford the flow by one
unit along each of them.

In the same way we produce a set {Ql,..., QS} of edge-disjoint redback
paths in G(fvw) . Each of them starts in an overflowed edge and proceeds
"backward" towards v and their union contains £, The only difference
is that we use the Q:T 's to redback only if necessary as specified in the
implementation of Step 2. The edges at which the current redford paths start,
are stored in a stack which contains initially (Xl’yl)"“’(xt’yt) .
Following Steps 2 and 3, one can easily verify that the stack always

contains only overflowed edges which are the first in their redford paths.

Step 2. Let (Xi,yi) be the first edge in the stack. We start to

redback at X followang two rules.

*

Ry: If (Xi,yi) € Qj then the redback starts at the edge which followsJ
(xi,yi) on Qj , (see Figure 6).

R2: If we start to redback at an edge which belongs to Q_.J , we continue

to redback along Qj until we reach v or get stuck. If we get
stuck we go to Step 3. If we reach v , we delete (Xi,yi) from the
stack. If the stack is not empty, we go back to Step 2, otherwise the

algorithm terminates.

- _
JReca.ll that Qj proceeds backward.

10

— T T~ .
By R,, redback
- / tarts at (
. 0~ Y, starts a Z’Xi) .
Figure 6
Lemma 3.1. A redback trail can get stuck at a vertex z only if i

such that: z = X <Xi’yi) is an overflowed edge, the first on its

redford path and (Xi’ yi) belong to this trail or a previous one.

Proof. Let us consider two cases.
Case 1. The trail starts at z (i.e., the trail consists of a single
vertex) . Since redback trails start only at unbalanced vertices,

di such that z = X, and an overflowed edge (Xi,yi) which is the first
in its redford path. (In fact, (xi,yi) is the top edge in the stack.)
Thus (xi,yi) belongs to a redback path, say Q. g and the first edge
in our redback trail should have been that which follows (Xi,yi) on Qj ’

(R Since this edge has already been used in a previous redback trail

l) !
(otherwise we were not stuck), (Xi’ yi) has also been used in the same

trail, (RE) .

Case 2. The trail did not start at z . The only reason that RE cannot
be used to continue the trail is that a previous trail started at z before.

This again means that 71 such that z = X, and (Xi’ yi) is an overflowed

edge, first on its redford path. It also implies that our redback trail

enters x; through XF,)l . O

Both cases are illustrated in Figure 7.

Case 1.
Second redback é redford Pfth
trail = {x]} 4 ol
% o %
O_‘"’-)Qo@&n ddD O-—%F\——ah-—-{)y@@@ C\'——e(\@@n@
i
. w o & First redback trail -
Case 2.
e . DLt VG
% X / %
O.._’\7 |Q-—-)C——-)O—~—i:\y. . . . C-——¥ oo
i
First trail started at xi - |<— Second redbarck trail «

Figure 7

Step 3. Assume that our redback trail got stuck at X5 and.(Xi,yi) is
the overflowed edge discussed in Lemma 3.1. Since we cannot redback
anymore, we shall balance Xy by increasing the u - v flow forward
("inford") alongthe old redford path which starts at b%;yi) . The

idea is that since the flow on (xi,yi) has been reduced before

(Lemma 3.l), we no longer have to include this edge in our redford program.

Thus, we inford along the redford path containing (Xi’yi> until we reach

12

v or encounter another overflowed edge (ijyj) in which no redback has
taken place so far. In both cases, (xi,yi) is deleted from the stack
and in the latter, (xj,yj) is inserted. If the stack is not empty we

go back to Step 2, otherwise, the algorithm terminates.

Remark. Since (Xi,yi) is the first edge on its redford path (Lemma 3.1),

the net effect of the inford is to shorten the redford path to the minimum

necessary.

4, Validity, Complexity and a Detailed Example of MIN(u,v,w) .

Validity.

We have to show that:

(1) MIN(u,v,w) terminates.

(2) The output, fyy , of MIN(w,v,w) 1s a legal u -w flow and
Ifuwl = ‘fuv‘ (= ‘fv_wl)

(1) The termination is quite clear.

Step 1 obviously terminates. Step 2 terminates since reducing back
is done only on the V - w flow and this flow is never increased. Step 3
is finite since the u - Vv flow along an edge can be increased at most

once.

(2) In order to show that fu is a legal flow and has the right
W

value, we will show that:

(a) our(s_,z) - IN(£ _,z) = OUT(P2) - IN(B, » (3.1)

for all z #v .

13

(B) IN(fuw,v) = OUT(qu,v) .

(C) No edge is overflowed.

(A and B): Equation (3.4) is violated during the execution in two cases.
The first occurs when a redford path starts at an edge incident with z ,
say (z,y) « In this case (z, y) is in the stack and when it reaches
its top, z will be rebalanced by the redback routine. The second
case occurs when a redback trail gets stuck at z . In this case

the inford routine rebalances z

as far as u and w are concerned, "balanced" means that (3.4) holds.

Since OUT(;Duw,u) -]l\l(ﬁuw,v) = lfuvl , Equation (3.4) implies that
|qu| = ‘fuvl as required. Moreover, since every vertex £ u, w

is balanced in ¢uw Equation (3.4) implies that every vertex

14

74 u, wand v 1is balanced in f (The proof of Equation (3.4)

. .

does not hold for v .) Equation (3 .l) implies that
OUT(SZﬁuW,u) - IN(¢uw,u) = IN(Séuw:W) - OUT(Sbuw:W)
and (3.4) then implies that
OUT(fuw,u) - IN(fuw,u) = IN(fuw,w) - OUT(fuw,w)

This combined with the fact that all the other vertices are

balanced -- implies the balance of v

(C) We have taken care of all the overflowed edges at Step 1. We increase
the flow again only in Step 3. However, as explained there, this

increase does not overflow any edge again.

14

Comglexitz.

Producing ¢uw is obviously linear. An edge of G(fuv) is treated
at most twice (steps 1 and 3) and an edge of G(iﬂﬁ is treated at most

once (step 2). Thus, MIN(u,v,w) is linear.

A Detailed Example.

In Figure 8 we illustrate the composition of a u - v flow f
uv

and a v - w flow fvw . Both are acyclic and have the same value, 3 .

Figure &

The overflowed edges are (1,2) , (2,3) , (5,6) and (8,9) .
Let the redford paths be:

Pl = (lJEJV) ’ P2 = (2:5:V> ’ P3 = (5:6:8:9:V>
The redback paths are:

Ql= (5)2:1)\’) P QQ = (6;5:%\’) P) Q5 = (9:8J7:V)

The stack contains ((1,2) ,(2,3) ,(5,6)) .

15

Figure 9 illustrates the situation after redford has been completed.

0<
)
|
|
g

\ Tl
\\ 0— _
\ L \\53
\ o oY/~
\ ~ ~
\ T~ 56 Jow
6
N e
™0

Figur= 9

Redback trails should start, at 1 , 2 and 5 (one at each).
First redback trail = (1,v); stack = ((2,3),(5,6)) .
Second redback trail = (2,1) , got stuck at 1

Figure 10 illustrates the situation at this moment.

16

Figure 10

Now inford takes place, starting at (1,2)
Inford trail = (1,2,v); stack = ((5,6)) .

Third redback trail = (5,4,v) ; stack = @

The final u - w flow is illustrated in Figure 11.

~>
o _ _ o

Figure 11

17

5. ACYC(f) . (R. E. Tarjan)

Given a u - v flow £ , ACYC(f) produces an acyclic u - v flow
f' of the same value. We -perform a depth-first-search on G(f) , starting
from u . Each vertex z 1is labelled when we enter it and the label is
removed when we backtrack through it. The label consists of the name of
the (unique) vertex through which we entered z (the "father" of z).

We step forward until one of the two cases occur;

(a) We reach a terminal vertex t .
In this case we backtrack to the father of t removing t and its
incident edges from G(f) . (Since no cycle can pass through t).

Note that the first terminal vertex which we will encounter is v ,

however, when v is removed, other terminal vertices might be created.

(b) We reach a labelled vertex z
This means that we discovered a flow cycle C through z . We backtrack
through C and remove its edges from G(f) , The labels of the

vertices of C—{z} are removed and the search is continued from z

G(f') consists of the vertices of G(f) and of the edges of G(f) which
were not removed during cycles elimination, (Case b). If G(f) is not
connected we delete first those edges which are not on the (weakly) connected

component which contains u and wv. The validity and linearity of ACYC(f)

can be easily proved.

References

[eT] S. Even and R. E. Tarjan, "Network flow and testing graph connectivity,"
sIAM J. on Computing 4, (1975), 507-518.

[GH] R. E. Gomory and T. C. Hu, "Multi-terminal network flows," SIAM J. of
Applied Math. 9, (1961), 551-570.

18

