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Abstract

The terms adaptation, learning, concept-formation, induction, seif-organization, and
self-repair have all been used in the context of learning system (LS) research. in this
article, three distinct approaches to machine learning and adaptation are considered: ({) the
udaptive control approach, (ii) the pattern recognition approach, and (iii) the artificial
intelligence approach.

Progress in each of these areas is summarized in the first part of the article. in the
next part a general model for learning systems is presented that allows characterization and
comparison of individual algorithms and programs in all of these areas. The model detalis the
functional components feit to be esasential for any learning system, independent of tha

techniques used for its ccnstruction, and the specific environment in which it operates.
Specific examples of learning systems are described in terms of the model.
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1 Introduction

Giving a machine the ability to lsarn, adapt, organize or repair itself are among the
oldest and mos: cmbitious goals of computer science. in the early days of computing, these
goals were central to tha naw discipline called cybernetics [Wiener, 1948], [Ashby, 1988).
Over the past two decades, progress toward these goals has come from a variety of fields--

notably computer science, psychology, adaptive control theory, pattern recognition, and
philosophy. Substantial progress has been made in developing techniques for machine
earning in hight restricted environments. Computer programs have been written that can

iearn to play good checkers [Samuel, 1083], (Samuel, 1867], learn to filter out the strong
heartbeat of a mother in order to pick out the weaker heartbeat of the fetus [Widrow,
1973). or learn to predict the mass spectra of cou.plex molecules [Buchannn, 1978). Each
of these programs, however, is tallored to its pariicular task, taking advaniage of particular
assumptions and characteristics associated with its domain. The seach for efficient,

powerful, and general methods for machine learning has come only a r-hort vray.

The terms adaptation, learning, concept-formation, induction, self-organization, and
self-repair have all been used in the context of learning system (LS) research. The
research has been conducted within many different scientific communities, however, and

thcse terms have come to have a variety of meanings. it is therefore often difficult to
recognize that problems that are described differently may in fact he identical. Learning
system models as well are often tuned to the requirements of a particular discipline and are
not suitable for application in related disciplines.

The term learning system is very broad, and often misleading. In the context of this
article, a learning system is considered to be any system that uses information obtained

during one Interaction with its environment to improve its performance during future
interactions. This rough characterization may include man/machine systems (seo [McCarthy,
1968]) in which humans take on active roles as required functional components. in some
systems there is continuous interaction with the environment, with feedback and subsequent
improvement. In other systems there is a sharp distinction between the interactions that

constitip training and subsequent performance or predictions with no further training.
Another way of differentiating between various learning systems is on the basis of what
kinds of alterations they perform.

Figure 1 shows several classes of systems that fit the above characterization and lists
the kinda of alterations that they perform. Data base systems are among the sarliest kinds
of systems that fit our definition. Such systems represent nformetion about their

environment by sets of aiterable assertions. In the late 1960's and ¢ sly 1960's, adaptive
control techniques were first used to bulid programs that alter parains:rs In equatr.ns which

model some aspect of the external world [Samuel, 1083), [Widrow, 1973). The
percepirons of the early 1060's [Minsky, 1972), [Rosenblatt, 1888] repec ent an attempt
to use adaptive control techniques to train recognition networks ty &'r.. ng weighting
parameters. More recently, concept formation (ad other) systems hav? > 13 written which
build and alter structural representations as their model of the extera: + vid. in short, an
important difference to be noted In L8s ls thelr internal reprssentauuns of the outer
environment: some are mathematical models, some are iInguistic assertions, and still others
are structures encoding symbolic relations.
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Figure 1. A Spectrum Of Learning Systems,

in this article, three distinct approaches to machine learning and adaptation are

considered: (i) the adaptive control approach, (if) the pattern recognition aproach, and (li)
artificial intelligence approach.

Progress in each of these areas is summarized in the first part of the article. in the
next part a general mods! for learning systems is presented that allows characterization and
comparison of individual sigorithme and programs In al of these areas. Specific examples of
learning systema are described in terms of the model.

2 Adaptive System Approach to Learning

in the control Nterature, learning is generally assumed to be synonyms with
adaptation. It is often viewed as sstimation or successive approximation of the unknown
parameters of a mathematical structure that has been chosen by the LS designer to
represent the system under rtudy [Donalson, 1968], [Fu, 1870]. Once this has beer; done,
control techniques known to be suitable for the particular chosen structure can be applied.
Thus the emphasis has been on parameter learning, and the achievemant of stable, reliable

performance [8kiansky, 1864). Problems are commonly formulated in stochastic terms, and
the use of statistical procedures to achieve optimal performance with respect 0 some

performance criterion such as mesn square error is standard [Witte nmark, 1078).

There are many overlapping and sometimes contradictory definitions of the terme

related to adaptive systems. The following set, formulated by Gioricso [Qloricse, 1078),
serves to Hustrate the main features. An adaptive system is defined as a system that
responds acceptably with respect to some performance criterion in the face of changes in
the environmentor its own internal structure. A learning system is an adaptive system that
responds acceptably within some time intarval following a change In its emironment, and a
soll=rapairing system 8 one that responds 800eptebly within some time iMervel following a
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change in ite internal structure. Finally, a self-organizing system is an adaptive or learning
system in which the initial state is unknown, random, or unimportant.

Adaptive control is an outgrowth of automatic control that has attracted significant
resea:ch effort since the mid-1060's (Asher, 1976]. These investigations have been
motivated by a desire for development of real-time control of incompletely known systems or
nlants. Limited plant specification is normally assumed to ental unknown, drifting parameters
in a prescribed mathematical description. Various methods of adaptive control have bean
impiemented for control of aerospace and industrial processes, as well as man-machine and
SOCIO CONOMIC systems.

Adaptive controllers have bessn coarsely divided into two large classes of active and

passive adaptivity [Tse, 1873). Active adaptive controllers are based on dual control
theory [Fel'dbaum, 18088]. In addition to the available real-time information, they utilize the
knowledge that future observaiions wil be made that will provide further possible
poartormance avaluation, and regulate their learning accordingly. Passive adaptive
controllers utilize the avaliable real-time measurements but ignore the availability of future

observations. This limitation results in much simpler adaptive algorithms. Thus passive
techniques have been much mors extensively investigated.

2.1 Passive Controllers

Passive adaptive controliers can be subdivided into two classes: indirect and direct,

denoting the orimary facu: of the adaptation mechanism sither on plant parameter
aetlermination or control parameter determination, respectively.

Indirect adaptive control, originally suggested In [Kaiman, 1988), arbitrarily
separates the control task into plant identification and control law calculation from the plant

parameter sstmates. This approach was designed to utlize the existing arsenal of control
techniques requiring exact specification of the plant. Acceptance of this method has led to
considerable interest in system identification [Astrom, 1871). Most parameter estimation
schemes, however, are inherently open loop and suffer consistency and identifiability
constraints when sncompassed by feedback. This imitation can be circumvented by the
injection ot a perturbation input [Saridis, 1978].

The alternative, which wvoids the necessity of proper plant Identification, is

direct adaptive control, in which the available control parameters themselves are adjusted
in order to improve the overall performance of the control system. Two broad techniques
exist for establishment of convergent control parameter adaptation schemes: search
methods and stability analysis. Seerch fechniques generally suffer iocel convergence,
whether based on gradient [Hasdort?t, 1876] or heuristic [Pu, 19070] methods.
Alternatively, adaptive control algorithms arising from stability analysis cen guarantee giobal
asymptoticstability es a by-product. The widest application of stabiity theory to adaptive
oontrol design hes utilized Liapunov's second method [Lindorft, 18073). The earliest
appiioaticnof Liepunov function syntheels for designing adaptive ope [Shackeloth, 1088)
utilized & model r.Jerencs approach.
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Model reference adaptive control techniques (ses example In appendix) implement
adjustment of reachable parameters in the overait controlled system so that its response to
some reference signal exactly matclies that of a predetermined mode! dus to the same
reference. Such a structural arrangement In generai requires the abdlity to adjust each
parameter independently In the overall controlled system. Assumption of this capability
hampers the current sophisticated schemes of adapting feedforward and ’‘eedback
parameters solely from plant input and output measurements [Landau, 1974a], [Monopoll,
1974] by occasionally necessitating an unbounded control effort. Control effort
boundedness is encouraged by abandoning exact output matching for input matching
[Johnson, 1878], which requires nonparametric, a posteriori determination of the optimal
Input.

No single adaptive control approach mentioned is without limitations in attempting to
provide adequate control of a plant known only to be desoribable within a general structural
class. The primary focus of adeptive control on parameter selection has led to provably
convergent single level schemes. The ongoing merger of heuristic, layerabile learning system
concepts (as described below) with these convergent parameter adjustment algorithms of
restricted applicability should improve the efficacy of adaptive control.

3S Pattern Recognition Approach 10 Learning

Pattern recognition techniques are primarily employed at the interface of intelligent
agents and the real world of physical measurements ard processes. The interface attempts
to provide some sensory capability to the agent, such as vision, touch, or some other non-

human sensory modality. In this context, a patlern may be an image, a spoken word, a radar
return from an aircraft, or whatever is appropriate to describe or classify a physical
environment that ls viewed through a particular set of sensors.

The problem of pattern recognition is often viewed as the development of a set of
rules that can be used to sssign observed patterns to particular known classes by
examination of a set of patterns of known class membership. There are, however, a varlety
of related problems that cen be discussed In the semo framework. These includa
pattern classification, in which the classificationrules are known, and the problem is simply
assigiment of patterns to classes, pattern formation, In which the classes themselves must
be defined, and petiern description, in which the problem is to form descriptions (which are
often symbolic in form) of the observed patterns rather than assign them to classes.

The major concerns in pattern recognition sre:

convergence: the learning system shouki eventually settie on a stable set of rules,
classes, or descriptions.

optimality: the cbjsctive is minimization of some cost functional, such as the average
risk assoolsted with classification. .

computations! complexity: the objective is minimization of the difficuRy of using an
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algorithm, measured In terms of comp tation time, memory requirements, or programming
complexity.

3.1 Pattern Recognition Subclasses

Pattern recognition is presently characterized by two major approaches: the statistical
dacision-theoretic or dlecriminent approach, whik'h employs a classification model, and the

inguistic (syntactic), or structural! approach, which employs a description model. The first
approach has been more extensively studied, and a modestly large body of theory has baer
constructed, wheress the second approach is relativety new, and many unsolved prcoiems
remain,

The declsion-theorstic approach commonly involves the exi.action of a set of

characteristic (typically low-level) measurements, or feafures, fom a set of patterns. Each
pattern is thus represented as a feature vector in a festurs specs, and the tesk of the

pattern recognition device is to partition the feature ace in such a way as to classify the
individual patterns. Features, then, are usually chrsen 80 that the distance (on some suitable

metric) between patterns in the feature spsze is maximized [Roche, 1874]. This approach
has been successful for applications such as communication of a known set of signal
waveforms corrupted by some form cf distortion, such as noise or multipath interferences.

However, it has been criticized because it is concerned onty with :tatistics' relationships
between features, and tends to ignore other structural relationships thet may characterize

patterns. [Kanal, 1074).

The linguistic, ¢* structural approach has been developed inn part to correct some of the
ditficulties seen in the decision-theoretic approach. With this paradigm, patterns sre viewed

as compositions of components, called subpattems, or pattern primitives, that are typically
higher-level objects than the features of the decision-theorstic model. Patterns are often
viewed as sentences in a language defined by a formal grammar (sometimes called a pattern
grammer). Segmentation of patterns into primitives and formation of structural descriptions
are thus the primary issues. This approach embodies en attempt to use other sources of

information as sids tO pattern recognition (e.g. In a speech understanding system [Reddy,
1973), [Erman, 1978), [Lesser, 1978], [Rowvmer, 1978), [Reddy, 1978), syntax,
semantics, and context act as powerful sources of information In addition tc tha rgcorded

information).

in that both parsmetric and structurel techniques are applied, pattern recognition
effects a bridge between the adaptive systems and ertificial intelligence approaches to
learning system design. We have recently begun to see a merger of the two approaches
(see, for example Stockman, [Stockmen, 1877]), that may result in ore powerful systems.
For a review of the current state of the art, see [Chen, 1877), [Paviidie, 1977), [Kanal,
1977] end (Proceedings, 1876).

The remainder of this section contains brief descriptions of major approaches to
pattern recognition. Specific techniques are grouped acoerding to thelr bias toward one of
the two primary models: the olessification medel snd the descripticn medel. Artificial
intelligence reseeron, dioowseed in the next se0tion, hee besh a major fastor iwelved In the
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movement away from complete adherence to the classification model! and towards exploration
of the description model.

3.1.7 Classification Model

in this model, patterns (feature vectors) are viewed as members of a class and the aim

Is to assign observed patterns to classes. The classification may ba either statistical,
wherein the patterns are thought to belong to one of a number of classes acoording to 8 set
of probabliity density functions, or fuzzy, wherein pa‘terns are thought tc have differing
degrees of membership in a number of classes [Zadeh, 1973).

Variations

Classifiers may be categorized in a number of ways, depending on the type of
classification rule, and the sampling procedure they smp.ay “unt, 1976].

Parallel classifiers base their classifications upon the complete set of features,

extracted simultaneously during a singles observation of a pattern. Sequential classifiers
assign a pattern to a class on the beuis of a segqueme of observations. After each
observation ia m*ds, eng Integrated with past observations, a decision is made as to whether

suflicient information has been gathered upon which to base a classification, or whether
another observation must be made, according tu 8 test ke the Wald Sequential Likelihood

Ratio Test (Wald, 1847].

Adaptive classifiers (see sxample in appendix) are distinguished by the fact that their
classification ries are themselves adjusted to improve performance as sxperience is gained
with patterns drawn from the various classes of interes: (a variety of procecures have been
developed to adjust the ruies--ses, for example [Widrow, 1000]). Non-adaptive
classifiers, on the other hand, use a fixed set of classification rules, and in the language of
this paper are not considered to be learning systems.

Saysaian Classliication

This type of classification is optimal in the probability of error sense. The strategy ls
minimization of he average risk of a classification and compiste knowledge of tha a prio:
and conditional probablity densities is assumed (where the a priori probability is the
probability that a pattern is drawn from a perticuler class, regardiess of its observed
characteristics, and the conditional probability is the probability that a pattern with the
observed characteristics oould have been drawn from a particular class). "he notionof riek

arises because oosts ars assumed to be a: sociated with different types of classification
errors. When equal cosis are assumed for ali types of error, the result is the maximum a
posterior! (MAP) classifier (wheres the a posteriori probability is the probability that a pattern
has been drawn from a partiovler clase, based on its abeserved characteristics).



& HPP-T77-30

Maximum Likelihood Classification

: Likelihood is the conditional probability that the observed characteristics of a pattern

indicate that it should be assigned to a particular class. No knowledge of a priori
probabilities is assumed, but the method does assume knowledge of the form of the density
functions (e.g., Gaussian).

Nonparametric Classificstion

This type of classification uczs not guarantee the best possible performance but
requires no knowledge of the underlying probability density functions that govern the
generation of patterns. Techniques used In non-parametric classification include the K
Nearest Neighbor Rule, which bypasses probabilities altogether, and assigns patterns to
classes basad on the proximity of their cbserved characteristics to those of neighboring
patterns of known class membership, and the Fisher Linear Discriminant, which is used to

transform the feature spaca into another (decision) space (typically of lower dimensionality),
in which parametric procedures can be employed [Duda, 973].

3.1.2 Description Mode!

With this modal, emphasis is placed on segmentation of the patterns into a set of

meaningful primitives, and on generation of structural descriptions (generally symbolic In
form) of the patterns. It is further assumed that a great daai of a priori knowledge of the
pattern types that are of interest is available.

The approach is useful In applications like scenes analysis [Duda, 1973], [McCarthy,
1974] where classification is clearly inappropriate. it also tends to be useful when the
patterns themselves are complex [Fu, 1877], as it emphasizes hierarchical decomposition of
patterns into their constituent components.

There are a variety of descriptive formalisms in which to express the structural

descriptions. These include pattern grammars [Fu, 1974], and relational graphs [Winston,
1978]. Pattern grammars embody an attempt to carrv over a large amount of theory from
the study of natural and programming languajas. A variety of pattern grammars have been
developed [Kanal, 1974], both d<.termiustic and stochastic in form. Relational graphs have
been used In pattern recognition sysiems developed by the artificial intelligence community
(see, for example, Winaton [Wincton, 1970]). Pattern primitives are taken as nodes in a
directed graph whose edges indicate the rolations between the primitives. Such graphs form
a convenient representation for patterns with a high degree of herarchical structure.

The text by Duda and Hart [Duda, 1978] is an excellent introduction to the methode
ueed in the structural approach.
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4 Artificial intelligence Approach to Learning

in the 1050's and early 1960's there was considerable discussion of isarning programs
In tha Artificial Intetigence (4!) literature (u.g., [Oettinger, 1962], [Frisdberg, 1888),
[Selfridge, 19889), [Newel, 1082], (Feigenbaum, 1983), (Minsky, 1063] and [Simon,
1968]). It was hoped at the time that a general learming p-ogram could be written to
accumulate and refine & large, detalied knowledge base about a domain [Minsky, 1072). The
knowledge base, then, could be used by evar-improving high performance programs that
reason in that domain. Samuel's programs that learn to play excellent checkers [Samuel
1983] were an early demonstration of success, but also demonstrated the amount of effort
necessary to achieve success. On the reasons ‘Any lsarning tasks have bsen central in Al,
Newell wrote [Newel, 1073):

Inductive tasks havs always ieen a prominent part of the Al
landscape. The reasons for this seem to be twofold. For one, we

have inherited a classic distinction between deduction and induction,

so that the search for intelligent action should clearly look to

induction. Second, American psychology has largely identified the
cantre! problem of conceptual behavior with the acquisition or
formation of concepts--which in practice has turned out to mean the
‘nduction of concepts from a set of presented exemplars.

This tendency, shaped strongly by Bruner, Gcodnow, and Austin's

Study of Thinking [Bruner, 1956], derives furcdamentally from the
emphasis on learning that has characterized American psychology
since the rise of behaviorism.

The motivation for writing these programs is diverse. Some are written as testable

psychological models of how human subjects perform 8 learning task (e.¢..[Simon, 1983] [Hunt,
1963], [Feigenbaum, 1963) and [Hunt, 1068]), others are written to demonstreie the
Jeasibility of ¢ method (e.g. [Soloway, 1978]), and still oiners are written with the express
purpose of aiding Auman problem solvers codify and expiein data (e.0., [Buchanan, 1974).
insofar as al the programs mentioned below perform well at their stated tasks, they all
Hustrate the emerging powsr of heuristic programming methods for improving the problem
solving power of computer programs.

All the Al learning programs written to date have strong lmitations on thelr generality,
Some sre epplicable to just one kind of problem, others work with severaltypes of probleme
within a larger cless defined by the representation of objects and relations in the domain.

Early A] resesrch was closely tied to pattern recognition and the adaptive systems
approach, (see, for example [Seifridge, 1983), (Uhr, 1983] and [Uhr, 1973]). Much work
has baen performed on learning sutomata [Milsson, 1588] (see alec [Narendra, 1874), end
neural networks that grow in response to stimull (Minsky, 1872]. AR of theese effortshave
aimed at defining simple machines thet learn to respond to their environments [Findier,
1900]. Newell [Newell, 1978] traces one ine of growth from stimuiue-reaponselearning in
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psychology to (i) pattern recognition and self-organizing systems, as well as to (it) concept
formation, induction and other A/ work. The two fields diverged in the 1960's, and are now

quite distinct. Whereas pattern recognition and control research emphasizes adjustment of
parameters, A/ research emphasizes construction of symbolic structures, based on
conceptual relations. For example, Feigenbaum's EPAM program [Feigenbaum, 1063] used a
discrimination net {i.e., a tree of tests and branches) to store the relations required to
recall nonsense syllables in a rote learning experiment (sev (Fikes, 1972], (Sussman,
1873), and [Winston, 1978] for further examples).

In A], it is commonly believed that a learning system should have sufficient internal

structure to develop a strong theory of its enviroment [Feigenbaum, 1971], [McCarthy,
1968] and [Minsky, 1972a]. Much emphasis has therefore been placed on building
knowledge-based or expert systems that not only have the capacity for high performance,

but can also explain their performance in symbolic terms [Davis, 1976].

Various levels of sophistication in learning systems are described by [Winston, 1976):
learning by being programmed, learning by being told, learning from a series of examples, and
finally learning by discovery. We see in this categorization a gradual shift in responsibility from
the designer/teacher to the learming system/student. At the highest level, the system is
able to find its own examples, and carry on autonomously; at the lowest level the system is

learning only In the sense that a programmer is explicitly programming it to do something.

The formalism of inductive inference has captured much attention also (e.g.
[Solemonof?, 1977), [Holland, 1062], [Hajek, 1978), [Meltzer, 1970], [Meitzer, 1873]
and [Plotkin, 1871]). The purpose of much of the work on abstract formalisms is to find
general principles of induction that can be mechanized. This was also a goal of Bacon and
Leibniz centuries ago.

Coneiderable work is still expended on the Leibnizian dream of an abstract tormalism for

scientific inference. Some of this work is done specifically with computer programs in mind.
Ruch of it, however, is done in abstraction. Programs based on these formalisms form

hypotheses from data without any special knowledge of the domain from which the data were
collected. The drawback of very general methods is that while they may produce some
interesting empirical generalizations, they are likely to produce many genereiizations that
experts in the domein would regard as trivial or meaningless. In short, they lack a working
model of the domain to guide judgments of plausibility. |

Some recent programs explicitly recognize the need tor preblm-specific constraints. The
Meta-DENDRALprogram [Buchanan, 1978] discovers general rules about the behavior of
chemical compounds In an analytic instrument known as ¢ mass spectrometer. The data are

noisy, they do not coms already classified, the space of possible explanations ls very large,
end there is no single correct answer. Nevertheless, the program finde regularities in theese
data and formulates general rules 10 explain them.

The AGVAL progrem [Lerson, 1078] actepts a set of descriptions of objects, and
produces rules that cen correctly classify thesy objects and others ike them. For example,
for descriptions of Easthound end Westbound relivoed cars containing oireles, trieng.es,
rectangles, «tc., the program is able 0 find the shapes and relations ameng shapes thet
discriminate the two traine.
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Still another program, named Thoth-pb (Vere, 1978], is able to learn rules for (1)

extending letter sequences, (ii) recognizing geometric analogies, (iii) relating before and after
situations, and (iv) relating sequences of situations. It uses background knowledge about
the domain to help it recognize important relations among features of objects that are not

cadified in the descriptions of the chjects themselves.

4.1 Game Playing

Much of the work with lsarning systems in A/ research has been done In the context of
games. Improvement of the game playing program is the ostensive goal, but the learning task
itaslf is often the reason for the work (ses, for example, [Newman, 18688]). The nature of
the learned information ranges from parameters governing the evaluation of moves (and
ultimately their selection) to symbolic rules expressing how to play well in different
situations.

Samuel's work Is best known in this fleld [Samuel, 1863), (Samuel, 1967]. in the
context of a checker-playing program, he has explored rote learning, parameter tuning, and
building signature tables, which are clusters of dependent features with weights that can
be used to evaluate moves (cf. [White, 1870]). (Griftith [Griftith, 1074] later compared
the methods used by Samuel with a simple heuristic procedure.) Waterman [Waterman,
1970] compared the performance of a poker-playing program after learning with a human
teacher and automated learning. The program represented its heuristics of good play ‘n a
table of conditional rules, or productions, that the learning system aitered in light of mistakes.

Waterman has generalized many of these ideas to other tasks (Waterman, 1978). Findler
[Findier, 1977] has also studied the game of poker. Pitrat's work on learning patterns in
chess [Pitrat, 1074] applies many heuristic sear ideas to learning useful combinations
from sxampies of given games. Programs have also been written to learn dominoes [Smith,
1873], Go-Moku [Elcock, 19687], and the res of Tic-Tac-Toe [Popplestone, 18807.
Banerji [Banerji, 1374] has studied learning processes for several classes of games and
puzzies from a more formal point of view. Koffman [Koffman, 1968] has also related gam
playing to pattern recognition.

4.2 Concept Formation

In concept formation tasks, a computer program (or human subject) is presented with
objects, or descriptions of objects, that exhibit a common concept. The program (or subject)
is expected to generalize from these instances well enough to classify new objects
accurately. Negative instances--objects which fall to exhibit the concept--are sometimes
presented to the program (and identified as negative instences) in addition to the exemplars
of the concept. When training includes negative instances learning is faster and more
accurate. Concept formation has long interested psychologists as a learning task. As with
other learning tasks, computer programs have been written to simulate the performance of
human subjects--and thus test a psychological model (Simon, 1983]. Or they have been
written to learn by mechaniome other than those humane use--and thus demonstrate some
modicum of Intelligence on the part of computers.
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Two frequently cited A! concept formation programs are those written by Evans
[Evans, 1968] and Winston [Winston, 1976]. cvans' program finds analogies among
geometric figures tc solve stendard intelligence test problems of the form Ais to B as C is to
[pick one of Dt, D2, DS, D4, D6). The concept here is a transfoi mation or rule which maps
figure A into B and also maps figure C into one of the anawer cholces.

For Winston's program the task Is to produce a correct description of a concept
exhibited in a set of line drawings of biock figures. An important feature is the introduction
of near misses, |.e., figures that faii to exhibit the concept because they differ with respect

to a small number of essential properties. The program learns the correct description of an
arch, for example, from descriptions of two posts and a lintel (exemplar) and of near misses
such as tees and posts with a fallen lintel.

Another recent program learns concepts, such as Hit and Out, for the game of baseball

from a set of descriptions of events over the span of a game [Soloway, 1978). Other
concept formation programs are described in [Simon, 1963], [Johnson, 1964], [Hunt,
1976], (Zagoruiko, 1976], [Langley, 1877], (Larson, 1978], (Buchanan, 1978], [Mitcheli,
1977], [Hayes-Roth, 1078], [Hayes-Roth, 1877), [Hedrick, 1978] and [Rychener,
1978).

4.3 Grammatical inference and Sequence Extrapolation

Grammatical inference and sequence extrapolation have often been taken as prototype
induction problems. The task is to find s rule (or set of rules) that can serve as the
generating principle for a training set of symbol strings. For exemple, the training instances
may be the following allowable sentences in hypothetical language: A, AB, ABB, ABBB. An
uninteresting set of rules i3 just the training instances themselves. Without some

generalization from the training instances, prediction of new sentences ia impossible The
following two rules, then, will serve to define the grammar of which these strings are correct
sentences:

iR1) A ('A' alone is 8 sentence)

(R2) A -> AB {"A' con bs replaced by 'AB’},

The sequence extrapolation task is similar: given a sequen~s of symbols (usually, but
not always numerals) such as 1,3,6,7.9, find a rule that allows correct prediction of the next
member of the ordared sequence. In this cese, the generatingprinciple is

(R3) nn" mowder = 2n-} :

| Both of these problems exhibit many characteristics of scientific hypothesis formation.
Reguiarities In the data must be found and charecterizod, differant generating principles
must be proposed and tested, and siternative hypotheses must be ranked, for example by
simplicity. Most programe [Bierman, 1972), [Perssen, 1008) sssume the initial deta are
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free of errors. Many of these programs explicitly search a space of hypotheses, (e.g.,
Cook's grammatical inference program [Cook, 1976]), but most recent wor: on grammatical
inference emphasizes more formal mathods [Blerman, 1872), [Gold, 1867] anu [Fu, 1078).

Inferring natural language [Siklossy, 1072), and simple compuier programs from
examples are other Induction tasks that have been studied using A/ techniques [Waterman,
1978), [Hardy, 1976], [Shaw, 1977], [Watsrman, 1878]. The training instances are often
input-output pairs and the task of the induction sysicm is ta tind the rule (procedure) that

~ will produce the specified output symbols for sach associated input. While the tasks are
similar to concept formation and grammatical inference, the languages are so much richer that
progress is slow.

8 A Model of Learning Systems

This section is concerned with a simple functional model that is useful for

characterizing, comparing, and designing learning systems. Many of the functional
components of an LS are essential to intelligent problem solving systems in general, as noted
by Simon and Lea [8imon, 1973]; that is, learning (induction, concept formation, etc.) is
problem solving of one kind, which means that A/ problem solving methods and
representations can be expected to apply to this task as well as to others.

8.1 Effects of the Environment

The environment from which training instances are drawn, and in which an LS operates,
may have a profound effect upon the LS design. LS environments can be divided into two

major categories: those that provide the correct response for each training instance
(supervised learning) and those that do not (unsupervised learning). Supervised learning
systems operate within a stimuius-response environment in which the desired LS output is
supplied with each training instance. Examples include Samuel's book move checkers

program [Samuel, 1963], [Samuel, 1907), and grammatical Inference programs [Hunt,
1978)

Unsupervised LSs operate within an snvironment of instances for which the correct

responses is not directly available. The version of Samuel's program that isarns by playing
checkers against an opponert falis into this category [Bamuasl, 1063] since moves are not
classified by opponents as, cay, excelent, good, poor or terrible. Learning systems
operating within this type of snvironment must themselves infer the correct response to
sach training instance by obasrvation of system performance for a aaries of instances. As a
result, assignment of credit or blame for overall performance to individual responses is
generally a problem for these systems [Minsky, 1963). Taypkin [Tsypkin, 1968] has
pointedout tha’ unsupervised learning is somewhat of an usion in the sense thata
teacher/design .r defines the standards that determine the quality of operation of the LS at
the outset, whether or not he is present during the actual operation o! the system.

Environments can De furthe! categorized as noise-fras or nolsy. Nelse~
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free environments, such as thet of Winston's structural description learning program
[Winston, 1978), provide instances paired with correct responses which the system
assumes to be perfectly reliable. Most A] systems assume noise-free environments. (One
exception is described in [Buchanan, 1978).) No/sy environments, on the other hand, do
not provide such perfect information, as is usually the case whan empirical data ere irivoived.

Pattern recognition and control aystems frequently operate within noisy environments

[Barrow, 1972], [Duda, 1873], [Donaison, 1968].

5.2 The Model = Overview

The proposed LS model is shown in Figure 2. The PERFORMANCE ELEMENT is
responsible for generating an output in response 10 each new stimulus. The
INSTANCE SELECTOR selects suitable training instances from the environment to present to
the performance elemant. The CRITIC analyzes the output of the performance element in

terms of some standard of performance. The LEARNING ELEMENT makes specific changes to
the system in response to the analysis of the critic. Communication among the functional
components is shown via a BLACKBOARD to ensure that each functional component has

access to all required system information, such as the emerging knowledge base. Finally, the
LS operates within the constraints of a WORLD MODEL which contains the general
assumptions and methods that define the domain of activity of the system.

The components of the mods! are conceptual entities that specify functions that must

be parformed to effect learning. Although the functional decomposition suggested by the
mode! is not necessarily reflected in the physical decomposition of many existing systems,
the model is useful for comparing systems and may aid in future learning system designs.

wor 1d
mode)
(wt)

per foraance learningelement oe lomon

(PE) (LE)

blackboard

{1}!

Figures 2. The Componants of a Learning System
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The following sections present detalied discussions of the LS model components shown

in Figure 2. in addition, the appendix contains detailed characterizations of representative
Al, pattern recognition, and control systems in terms of the model. The reader may find it
helpful to refer occasionally to the appendix while reading the following sections.

8.3 Performance Elament

The performance element uses the lsarmed information to perform the stated task. It
has been Included in the LS mode! because of the intimate relationship between what

information is to be learned and Aow this learned information is to be used.

Performance elements are usually tailored more to the requirements of the task domain

than to the architecture of the LS. in general, the performance element can be run in a
stand-alone mode without lsarning, independent of the rest of the LS. In any LS, however,
the ability to improve performance presupposes a method of communicating learned
information to the performance siement. Since its architecture must allow iearned information

ta affect its decisions, additional constraints are placed on the performance slement within
an LS. The performance element should be constructed so that information about its internal

machinations is readily available to the other system components. This information can be
used to make possible detalled criticism of performance, and intelligent selection of further
instances to be rx amined by the system.

The performance sloments of existing systems also vary in the ways they may be
aiterad by learning. For e: ample, systems whose operation is determined by a set of
production rules [Waterman, 1970], (Waterman, 1076] have the potential to exhibit richer
variations than systems whose operations are keyed only to the adjustment of parameter
values [Landau, 1274], [Michie, 1874). :

85.4 Instance Selector

The instance selector selects training instances from the environment that are to be

used by the LS. It is a functionel component not clearly isolated in earlier adaptive system
models.

in existing LSs, methods for instance selection vary mainly along the dimensions of
responsibility and sophistication. The responsibility for instance selection varies between
the extremes of completely external (passive) selection, and completely internal (sct/ve)
selection. (n psychological experiments on concept formation, instance selection ie closely
controlled by the experimenter and the subject ia completely passive in this ruspect.
instance selection in Samuel's book move checkers program [Samuel, 1063] is externally
controlled, wheress Popplestone's program [Popplerione, 1968), which learns the features
that characterize & winning positicn in tic-tac-toe, generates its own training instances. {it

* forme alternate hypotheses, and then generates instances to choose among them (relying
upon an external critic to evaluate these instances). (See elec [Simon, 1973].) In the
adaptive systems Wterature, Tse and Bar-Shaiom [Tse, 1976] ues a form of active instance
selection known as dual~oentrel. They adjust the input to a systom in such a way as to
simultansousty control its output and obtain informating about its internal structure.
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The degrees oi sophistication used for LS instance selection is also an important
consideration. In order to quelify as sophisticated, an instance selector must be sensitive to
the current abilities and deficiencies of the performence element and must construct or

select instances which are designed to improve performance. Winston [Winston, 1978) has
shown the advantages to be accruad through presenting carefully constructed examples and
near-missas of the concepts tot  cquired by an LS. in generai, careful instance selection

can improve the reliability and efiic.ency of an LS. It is important to note, however, that this

may not always be permitted by the environment in which the LS operates, as is generally
the case for adaptive control systems [Donalson, 1988].

6.85 Critic

The critic analyses the current abiities of the performance element. It may play thrae
roles: EVALUATION, LOCALIZATION, and RECOMMENDATION. The critic always operates as
an evaluator in that it embodies a standard by which to assess the behavior of the

parformance element. This is the role that has been emphasized in earlier adaptive system
models [Fu, 1970], [Glorioso, 1675], [Skiansky, 1864). Feedback from a critic at least as
evaluator ls essential for learning.

The critic may also localize errors and localize the reasons for poor localize the reasons
for poor performance. This type of behavior is essential for resolution of the credit

assignment problem described by Minsky [Minsky, 19683]. In its diagnostic role, the critic Is
exemplified by the bug classifier and summarizer in Sussman's HACKER [Sussman, 1973].

Finally the critic may recommend repairs by making specific recommendations fos

improvement or suggestions about future instances. in Waterman's poker player [Waterman,
1970], the critic in this role suggests the bet that should have been made by the
performance element for a particular training instance. The critic not only recognizes poor
play and isolates the production rules responsible for it, but suggests specific con ections so
the program will not play as poorly in similar future situations.

The dividing line between critic and learning element is not sharp, and it is certainly
possible to view therapy as a function of either the learning eiament or the critic. However,
in mapping existing LSs into this model, we have adopted the convention that the critic's
recommendations to the learning eloment sre at an abs‘ act level removed from the
implementation considerations such as data representation. This clearly separates the two

different functions of deciding what Rind of change is needed and deciding how to implement
that change.

In some LSs the functions of the critic have been left to humans. For example,
MYCHI/TEIRESIAS [Davis, 1976] uses a humen critic, for evaluation, localization, and
recommendation. The performance program applies rules (to cases selected by humans) and!
a human supplies oriticlem of results, localization of blame, and suggestions for attering the
rule base. Because the computer program assiats the user In thesa tasks, the learning can
be said to be semi-automated.
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8.6 Learning Element

The learning element is an interface between the critic and the performance slement,
responsible for translating the abstract recommendations of the critic into specific changes
in the ruias or parameters used by the performance element.

Representations for learned information exhibit great variety. They include, for example
production rules [Waterman, 1970], parameterized poiynomiais Samuel, 1963], executable
procedures [Sussman, 1973], signature tables [Bamuel, 1967], stored facts [Feigenbaum,
1963], and graphs or networks [Winston, 1878). The method of incorporating new learned
information is dependent upon the representation, and even among systems that use similar
representations, competing methods are found (contrast, for example, [Buchanan, 1978)
and {Waterman, 1970).

The extent to which the learned information is aitered in response to each training
instance {3 an important LS design consideration. In some systems, the learning element
incorporates exactly the information supplied by the critic [Winston, 18786]. Were the same
training instance to ocour later, the response of the performence element would be axactly
as the critic advizced for the first occurrence. This type of learning is well suited to
environments that provide perfect data and to systems with reliable critics. Under these

conditions the LS will converge rapidly to the desired behavior. If such a system were
provided with an incorrect classification by the environment or less than reliable advice by
the critic, however, it might commit itself to incorrect assumptions from which (t could not

recover. Systems that make less drastic changes to the learned knowledge on the basis of

a single training instance are less vuinerable to imperfect information, but consequently
require more training instances to converges to the desired behavior. Many statistical LSs fall
into this category [Nilsson, 1968]. Other systems consider several training Instances at a
time ir order to minimize the effect of occasional noisy instances (Buchanan, 1678].

8.7 8lackboard

The blackboard of this model is a global data base that also functions as a system
communications machanisw. It Is similar to the concept introduced in the HEARSAY systum
[Lesser, 1078). The blackboard holds two types of information: the information usually
associated with tha knowledge base In Al programs, and the temporary information used by
the LS comporents. The knowledge base often contains the set of rules, parameter vaiues,
symbolic structures, and 90 on, curently being used by the performance clement. Such
information can be ueed as an aid to sophisticated instanca selection if it is readily avaliable.

The temporary, system-oriented information includes, for example, the intersediate deoclelons
made by the performance element in selecting a particular responses. Detaled criticiem by
the oritic is dependent upon the availability of this information.

in many existing systems this information is not 80 clearly separated or defined. The
communication links between functionel components, especially, sre often programmed
directly. Because the same information ls required by many of the individual functionel
componentsof any LS, however, a blackboard le a more transperent communications
meochaniem.
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6.8 World Model

Whereas the bi- kpoard contains information that cen be aitered by the LS
components, the worl. model contains the fixed conceptual framework within which the

system operates [Churchman, 1970). The contents of the world model include definitions of
objects and relations in the task domain, the syntax and semantics of the information to be
learned, and the mc thoda 10 be used by tha LS. Among task domain definitions are, for
example, the rule; of a game and the representation of inputs and outputs for the
performance seloment. This part of the world model simply defines the task of the
performance element, and tha standard of performance (the evalustion function) to be
applied by the critic. Domain specific heuristics are also commonly added to the world model

of Al systems to guide inferences made by the LS (e.g., heuristics about the world of blocks
in Winston's program [Winston, 1976]). Definitions of the syntax and semantics of
intormation to be learned define the mode of communication between the learning and
performance siements.

The assumptions and constraints from which the world moda! |3 composed are of critical

importance in the design and characterization of LSs. Although many of these assumptions
are often hidden in the various functional components, the LS designer and user must both be
aware of each of them. We believe that, where possible, world model constraints shouid ba

made explicit in order to allow for thelr modification during the design process.

6.8 Multi-Layer Learning Systems

Although the worid model cannot be aitered by the LS that uses it, the designer can
alter its contents In order to improve LS performance. He oiten changes parameters and
procedures of the basic LS after observing and criticizing its behavior for some carefully
chosen training set. These alterations result in a new version of the LS, which is then tested
on some training set, end 0 on. The designer views the whole LS ss a system whose
performance needs improvement, and he selects instances, criticizes performance, and

makes changes accordingly. in other words, the designer's activities can be modeled by a
system whose components are just those of Figure 2. This leads us to the concept of

layered LSs, sach higher layer able to change the world model (vocabulary, assumptions,
etc.) of the next lower layer on the basis of criticizing its performance on a chosen set of
instances. Thus, adjustments can ba made to the world model of some leaming system LS
by another learning system, L82, thet has its own functions! components (oritic, world model,
etc.), as shownIn Figure 3. In turn, Rt is conceivable that a third system, L88, could adjust
the world mode! of LS2, and 00 On. The designer constitutes the final oritic, of course.

operating above the tep-level LS. Each lower layer constitutes the performance slement of
the next higher layer, and interlayer communication is effected thweugh the blackboerds of
the various layers. The use of a blackboard in the single layer LS sede! wes partly motivated
by its attractivenses In the multi-layer context.
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Figure 3. Layering of Learning Systems. (Components are labelled as in Figure 2).

This multi-layer architecture Inviives bidirectional information passing; that is, ths
effects of adjustments made in a laye! may propagate both to lower and higher level layers.
it Is a hierarchical architec.ure, in the general sense [8imon, 1089] and Includes as a
specitic case the bottom-to-top Wersrchical architecture used, for example, by Soloway
[Soloway, 1977].

One existing LS which may te viowed as a layered system is the version of Samuel's
prograin [Samuel, 1907] that learns a pofynomie! evaluation function for selecting checkers
moves (see the Appendix for details). The lower layer (LS1) in this system adjusts the
coefficients of a given set of game board features In order to improve performance of the
move selection program. The second leyer system (LS2) adjusts the set of board features
used In the evaluation function in order to improve the performence of L81. Since L811 le
contained in L82 as the performance sicment, all the assumptions necessary for its operation
aloo belong to the L82 world model. nn addition, the L82 world model contains assumptions
about the set of allowable game board featwes and the standerd for eveluating LS1
performance.



20 | HPP-77-390

A single layer LS, then, can never move outside its worid model to make radical
revisions to its way of viewing the task tc achieve a paradigm shift, as discussed by Kuhn

[Kuhn, 1970]. However, a shift in the conceptual framework of LS1 could be made by a
properly programmed LS2 [Buchanan, 1974). We believe that a layerad approach such as
that described above provides a useful system organization for learning at various leveis cf

abstraction in complex domains. Although there are examples of this kind of layering in the
literature [Samuel, 1963), [Uhr, 1963] and [Soloway, 1977]. no one has carried it as far
as the model suggests. In fact, single layer learning systems are just now becoming well
enough understood to consider developing more sophisticated systems.

8.10 implications of the Model

The LS model described here provides a common language for characterization and
comparison of different types of learning systems that operate in a variety of task domains.
The model is a useful conceptual guide for LS design, because it isolates the esassntial
functional components, and the information that must be available to theses components.

A number of desirabie features fcr future learning system designs are brought out by
this model. First, the design should be modular, with individual modules corresponding to the
functional components shown in the model. The knowledge used by the sysiem should be

made explicit and collected, as much as efficiency considerations permit, in a world model

component. Especially the parts of the LS that are to be adjustable must be explicitly
exposed. Intelligent criticism is important, as is active instance selection, although neither
hes been isolated as a se rarate object of study. Finally, a multi-layer architecture for

learning at different (svelis of abstraction is suggested by the model as a way of introducing
stil more intelligence into the whole learning system.
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Appendix A

Characterization of Existing Systems

in this appendix several existing LSs are characterized using the framework provided

by the model described in Section 5. The systems selected are representative of several
approaches to machine learning. Because the blackboard contains information in a state of
flux, its contents are not specified explicitly for the systems characterized below.

Model Reference Adaptive Control, [Landau, 1974]

Purpose: Construct a controller that preprocesses inputs to an existing system (called
the plant). The behavior of the combined controlier-plant system is to mimic the behavior of a
third system (called the reference model) on the training data.

Environment: The pliant to be controled, and the set of possible inputs (including
disturbances).

Performance Element: The controlier--a system whose output is used as input to the
plant. its behavior iz a function of the input signal, past 1/0 behavior of the plant, and a set
of adjustable parameters.

instance Selector: Accepts data sequence (as input ‘0 the controller) from the
environment.

Critic: Evaluation--appiies a measure of performance that is some function of the
arithmetic difference between the plant and reference model outputs. In some cases the

reference mode! is mathematically defined, and can therefore be considered part of the
critic. In other cases the reference model is an actual system, and Ils considered part of the
environment.

Learning Clement: Modifies the parameters of the performance element (controler),
depending on the performence measure supplied by the critic.

World Model: Control theory assumptions (time Invariance, linearity, etc.) and
techniques, and the standard of performance embodied In the oritic.
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Adaptive Pattern Classitier, [Kotord, 1908)

Purpose: Learn the parameters of a classifier that can classify a set of patterns in such
a way as to minimize a specified cost functional.

Environment: Patterns drawn from a pre-specified set of classes. Each pattern is
represented as a feature vector.

Performance Element: A linear pattern classifier that forms the inner product of a

pattern feature vector (that constitutes the input), and a weight vector (where the weights
constitute the adjustable parameters or the classifier). Based on the resultant scalar value,
the classifier assigns the pattern to a class.

instance Selector: Accepts instances from a human trainer. The classifier uses a set of

patterns of known class membership to tune the weights. Thereafter, the weights are heid
constant.

Critic: Evaluation--computes the differance between the output value of the classifier,
and the known acceptable output (the learning in this example is supervised).

Learning Element: Modifies the weights used by the classifier according to the LMS
algorithm [Widrow, 1960], based on the information received from the critic. This algoritha
attempts to adjust the set of weights 30 as to minimize the mean-square error between the
output of the classifier, and the desired output. |

World Model: Pattern recognition assumptions concerning the suitability of reprusenting
the patterns as feature vectors, the suitability of a statistical formulation of the

classification problem, the suitability of a linear pattern classifier. the sultabiiity of the
selected performance measure, and the specific adaptation nigorithm.

Checker Player, [8asavel, 1903], [Samuet, 1867)

Purpose: Learn to play good geme of checkers (here we disc.ss only the version of the

program that learns a Wneer polynomial evaluation fwnction by examination of moves
suggested by experts (beek moves).

Environment: Set of all legal game boards.
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LS1 (lower layer):

Purpose: Learn a good set of cosfficients for combining board featurss in a linear
polynomial evaluation function.

Performance Eiement: Uses the learned evaluation function to rank plausible moves for

a given board position.

instance Selector: Reads instances from a list of pre-defined game-
board/recommended-move pairs.

Critic: Evalustion--examines the ranking given to the book move by the performance
siement. Localization--suggests that the book moves should be ranked above all other moves. .

Learning Element: Adjusts weights of linear polynomial to make move selectior
correspond to the critic's recommendation.

World Model: Syntax of game board, form and features of linsar polynomial eval. ation
function, method for adjusting evaluation function, and rules of checkers.

182:

Purpose: improve the performance of LS1 by selection of a good set of board features.

Performance Eisment: LS1.

instance Selector: The entire set of possidie training instances is simply passed to LS?
(via the blackboard).

Critic: Evaluation--analyses the leaming ability of LS1 (i.e, the LS2 performance
slement) with the current set of evaluation function features. Localization--singiss out
features that are not useful. Recommendation--selects new features from a predefined Het
to replace useless features.

Learning Element: Redefines the current set of features as recommended by the critic.

World Model:The LS1 world modal, plus the set of features that may bs considered, and
the performance standard employed by the L82 critic.
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Poker Player, [Waterman, 1970]

Purpose: Learn a good strategy for making bets in draw poker.

Environment: Set of all lagal pike: game states.

Performance Element: Applies the learncd production rules to Jenerate actions in a

poker game, 6.\', bets.

instance Selector: Selects each game state derived by play against an opponant as a

training instance.

Critic: Two versions of the program use two different critics. in both cases the critic

performs the following functions: Evaluation--decides whether the poker bet made by the
Performance Element was acceptable. Localization--givas Important state variables for

deciding the correct bet. Recommendation--provides the bet which the Performance Element
should have made. In explicit learning the critic is an expert poker player , either human or
programmed. in implicit leaming, the eavawation and recommendation are deduced from the
next action of the opponent and a set of predefined axioms, while localization is read from a

predefined decision matrix.

Learning Element: Modities and adds production rules to the system. Mistakes are
corrected by adding a new rule in front of the rule responsible for the incorrect response.

World Modei: Rules of poker, features used to describe the game state, the language of
prociuc tion rules, heuristics for updating the rule base, the model of an opponent.

Meta-DENDRAL, [Buchanan, 1978)

Purpose: Lear to predict data points in the mass spectra of molecules.

Enviconment: Set of all knowr wolecule/data-point pairs.

Perform ance Element: Predicts peaks (data points) in mass-spectra of molecules using
learned production rules. Empiloys a mode! Of mass specirometry for transiating between
mass-spectralprocessas (predicted by the rules) and data points \n the spectrum.

instance Selector: Accepts a set of known molecule/spectrumpairs fromt © Yeer.

Critic: Evaluation--determinesthe suiteblity of the set of predictions generated by a
rule. Localization--atates whether the rule ls acoeptable, too specific, or t00 general.
Recommendation--recoRmendsadding or deleting features to the left-hand sides of rules.
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Learning Element: Conducts a heuristic search through the space of plausible rules
using a predefined rule generator. At each step in the search the potential rule's
performance is reviewed by the critic.

World Model: Representation of molecuies as graphs, production rule model of mass

spectrometry, vocabulary of rules used t~ reprisent lsarmed information; hauristics used by
the oritic in directing the rule sserch. -

Learning Structural Descriptions from Examples, [Winston, 1970], [Winston, 1078)

Purpose: Learn to identify blocks world structures (such as arches and towers).

Environment: Set of possible line drewing/structure-classification pairs.

Performance Element: Decides class ot structures to which the input structure belongs.
Uses a model of the structure class supplied by tha learning element.

Instance Selector: Accepts training instances supplied individually by the user,

Critic: Evaluation--comparss the classification made by the Performance Element

against the correct classification as supplied with each training instance. Localization--
generates a comparison description pointing out differences between the model and the
structure description.

Learning Element: Constructs a modei of the class of structures under consideration.
Examines the comparison description supplied by the critic, and modifies the model to

strengthen or weaken the correspondence bstween the model and the training instance.

World Model: Representation of acenes as ne drawings, method of translating line
drawings to graphical descriptions, grammer for drawings to graphical descriptions, grammar
for representing the learned information, domain-specific heuriatics for resoiving among
possible changes to sach structure class model.
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