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1 Introduation

Giving & machine the ability to lsarn, adapt, organize or repair itself are among the
oidest and mos: cmbitious goals of computer science. in the sarly days of computing, these
goals were central to tha new discipline called cybermatics [Wisner, 1948), [Ashby, 1988).
QOver the past two decades, progress toward these goals has come from a variety of fields--
notably computer science, psychology, adaptive control theory, pattern recognition, and
philosophy. Substantial progress has been made in developing techniques for machine
iearning in hightv restricted environments. Computer programs have been written that can
isarn to play good checkers [Samuel, 1983], [Samuel, 1867], learn to filter out the strong
heartbeat of a mother in order to pick out the weaker heartbeat of the fetus [Widrow,
1978). or learn to predict the mass spectra of cowplex molecules [Buchannn, 1678]). Each
of these programs, however, is taliored to its pariicular task, taking advaniage of particular
assumptions and charecteristics associated with its domain. The sea'ch for efficient,
powarful, and general methods for machine learning has come only a rhort viay.

The terms adaptation, iearning, concept-formation, induction, self-organization, and
self-repair have all been used in the context of learning system (LS) research. The
tesearch has been conducted within many different scientific communities, however, and
thcse terms have come to have a variaty of meanings. it is therefore often difficult to
recognize that problems that are described differently may in fact be identical. Learning
system models as well are oftan tuned to the requirements of a particular discipiine and are
not suitable for application in related disciplines.

The term learning system s very broad, and often misieading. in the context of this
article, a learning system is considered to be any system that uses information obtained
during one Interaction with its environment to improve its performance during future
interactions. This rough characterization may include man/machine systems (seo [McCarthy,
1968]) in which humans take on active roles as required functional components. in some
systems there is continuous interaction with the snvironment, with feedback and subsequent
improvement. In other systems there is a sharp distinction between the interactions that
constiti,p training and subsequent performance or predictions with no further training.
Another way of differentiating between various learning systems is on the basis of what
kinds of alterations they perform.

Figure 1 shows several classes of systems that fit the above characterization and lists
the kinds of aiterations that they perform. Data base systems are among the earlisst kincds
of systems that fit our definition. Such systems represent informetion about thelr
environment by sets of siterable assertions. in the late 1950's and ¢ s-ly 1960's, adaptive
control techniques were first used to bulld programs that alter params::rs In equatrns which
model some aspect of the external world [Samuel, 1083), [Widrov, 1973). The
percepirons of the early 1060's [Minsky, 1972), [Rosenblatt, 1888] repecent an attempt
to use adaptive control techniques to train recognition networks ty e/~ ng weighting
parameters. More recently, ooncept formation (ad athar) systems hav * 1 ¢ written which
bulid and alter structural representations as their model of the exterma: - (d. in short, an
important difference to be noted in L8s is thelr internal reprssentav.uns of the outer
environment: some are mathematical models, some -are inguistic assertions, and still others
are structurss encoding symbolic relations.
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Data Base Adaptive Concept
Management Control Formation
Systems Systems Systems
alter alter alter
assertions parameters structures

Figure 1. A Spectrum Of Learning S§ystams,

In this article, three distinct epproaches to machine learning and adeptation are
considerad: (i) the adaptive control approach, (i) the pattem recognition avproach, and (i)
artificial inteliigence approach.

Progress In each of thess areas is summarized in the first part of the article. in the
next part a general model for learning systems is presented that aliows characterization and
comparison of individual eigorithme and programs In all of these areas. Specific examples of
learning systems are described in terms of the model.

2 Adaptive System Approach to Learning

In the control Nterature, learning is generally assumed to be synonymaus with
adaptation. it is often viewed as eatimation or successive approximation of the unknown
parameters of a mathematical structwe that has been chosen by the LS designer to
represent the system under rtudy [Donalson, 1068], [Fu, 1870]. Once this has beer: done,
control techniques known to be sultable for the particular chosen structure can be applied.
Thus the emphasis has baen on parameter iearning, and the achievemant of stable, rellable
performance [8kiansky, 1064). Problems sre commonly formulated in stochastic terms, and
the use of statistical procedures to echieve optimal performance with respect %0 some
performance criterion such as mean square aTTor ie standerd [Wittenmark, 1078).

There are many overiapping and sometimes contradictory definitions of the terme
related to adaptive systems. The following set, formulated by Gicricso (@lericse, 1076),
serves to Wustrate the main features. An adaplive system i defined as a system that
responds scceptably with respect to some Jerformence criterion in the fece of changes in
the envivonment or its own internal structure. A /earning system s an adaptive systam that
responds acceptably within some time intarval following a change In its emvironment, and a
solf-rapairing systom is one that reaponds acceptably within some time Mervel following a
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change in its internal structure. Finally, & se/f-organizing system is an adaptive or lesrning
system in which the initial state is unknown, random, or unimportant.

Adaptive control is an outgrowth of automatic control that has attracted significant
resea:ch effort since the mid-105G's [Asher, 1976]. Thess investigations have been
motivated by a desire for developmunt of reai-time control of incompistely known systsms or
plands. Limited plant specification is normally assumed to entall unknown, deifting parameters
in a prescribed mathematical description. Various methods of sdaptive control have bean
impiemented for control of aerospace and industrial processes, as well as man-machine and
S0CIN8CONOMIC Systems.

Adaptive controllers have besn coarsely divided into two large classes of active and
passive adaptivity [Tse, 1873). Active adaptive coniroliers are based on dual control
theory [Fel'dbaum, 1908]. In addition to the avallable real-time information, they utilize the
knowiedge that future obasrvations wil be made that wi! provide further possible
pertormance avaluation, and regulate their iearning asccordingly. Passive sdaptive
controllers utiize the availlable reai-time messuwrements but ignore the availabilty of future
observations. This limitation resuits in much simpier adaptive algorithms. Thus passive
techniques have been much more extensively investipated.

2.1 Passive Controllers

Passive adaptive controllers can be subdivided into two classes: indirect and direct,
denoting the orimary facu: of the adaptation mechanism sither on pliant parameter
determination or control parameter determination, respactively.

indirect adaptive control, originally suggested in [Kaiman, 18868), arbitrarily
separates the control task into plant identification and control law calculation from the plant
parameter sstmates. This approach was designed to utlize the existing arsenal of control
techniques requiring exact specification of the plant. Acceptance of this meihod has led to
considerable intersst in system identification [Astrom, 19T71]. Most parameter estimation
schemes, however, are Inherently open loop and suffer consistency and identifiabliity
oonstraints when sncompassed by fesdback. This fimitation can be circumvented by the
injection of a perturbation input [Saridie, 1978).

The alternative, which wvoids the necessity of proper plant identification, s
direct adaptive control, in which the avallable control parameters themseives are adjusted
In order to improve the overall performance of the control system. Two broad techniques
exist for establiehment of convergent control parameter adeptation schemes: search
methods and stabliity anelysie. Seerch techniques generally suffer l0ce! convergence,
whether basod on gradient [Hasdortt, 1076] or heuristic [Fu, 19T0] methods.
Alternativuly, adeptive control algorithme arising from stabiiity analysis can guarantee giobal
asymptotic stabliity as a by-product. The widest application of stabiiity theory to adaptive
oontrol design hes wilized Liapunov's second method [Lindorf?, 1873). The eariest
applicaticn of Liapunov function syntheels for designing adaptive ope [Shackeloth, 1968)
utilized & model r._Jerence approach.
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Model reference adaptive control techniques (ses example in appendix) impiement
adjustment of reachable parameters in the overall controlled system a0 that its response to
some reference signal axactly matclies that of a predetermined mode! due to the same
reference. Such g structural arrangement In gsnerai requires the abliity to adjust each
parameter independently in the overall controlled system. Assumption of this capabiity
hampers tha current sophisticated schemes of adapting feedforward and ‘eedback
paramaeters solely from plant input and output measurements [Landau, 1974a), [Monopoll,
1974] by occasionally necessitating an unbounded ocontrol effort. Control effort
boundedness is encouraged by asbendoning exact output matching for input matching
[Johnson, 1878], which requires nonparametric, & posteriori determination of the optimal
input.

No single adsptive control approach mentioned is without limitations in attempting to
provide adeqiiate control of a plant known only to be desoribable within a general structural
class. The primary focus of adsptive control on parameter selection has led to provably
convergent single level schemes. The ongoing merger of hauristic, layerable learning system
concepts (as described below) with these convergent parameter adjustment aigorithms of
restricted applicabiity should improve the efficacy of adaptive control.

S Pattern Recognition Approach to Learning

Pattern racognition techniques are primarily employed at the interface of intelligent
agents and the real world of physical measurements ard processaes. Tha interface attempts
to provide some sensory capabllity to the agent, such as vision, touch, or some other non-
human sensory modality. In this context, a pattern may be an image, a spoken word, a radar
raturn from an alrcraft, or whatever s appropriate to describe or classify a physical
environment that ls viewed through a particular get of sensors.

The problem of pettern recognition s often viewed as the development of o set of
rules that can be used to sssign observed patterns to particular known classes by
sxamination of a set of patterns of known class membarship. There are, however, a variety
of related problems that cen be discussed in the semo framework. These inciuda
pattern classification, in which the classification ruies are known, and the problem is simply
assignment of patterns to classes, patiern formation, in which the classes themseives must
be defined, and petiern description, in which the problem is to form descriptions (which are
often symbolic in form) of the observed patterns rather than assign them to classes.

The Majof coNcems in pattem recognition are:

convergence: the learning systom shouki eventually settie on a stable set of rules,
classes, or desoriptions.

wm:mwmbmumdmmimmwum.vmu
MMMWMM

computationsl complexity: the chjective s minimizstion of the difficuty of using an
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algorithm, measured In terms of comp tation time, memory requirements, or programming
complexity.

3.1 Pattern Recognition Subclasses

Pattern recognition is presently characterized by two major apporoaches: the statistical
dacision-theoretic or discriminant approach, whi:h employs a classification model, and the
inguistic (syntactic), or structurs! approach, which umploys a description model. The first
approach has been more sxtensively studied, and a modestly large body of theory has baen
constructed, whereas the second approach is relativety new, and many unaolved prcoiems
remain,

The dechsion-theoretic approach commonly invoives the exiaction of a set of
characteristic (typically low-level) measurements, or features, fzom a set of patterns. Each
pattemn is thus represented 8s a feature vector in a festurs spece, and the tesk of the
pattern recognition device is to partition the feature =zace in such a way as to classify the
Individual patterns. Featuras, then, are usually chosen 80 that the distanc.e (on some suitable
metric) between patterns in the featwe spsze is maximized [Roche, 1674]. This approach
has been successful for applications such as communication of a known set of signal
waveforms corrupted by some form o!f distortion, such as noise or multipath interferencs.
However, it has been criticized because it is concernad onty with tatistica! relationships
between features, and tends to ignore other structural refationships tnet may characterize
patterns. [Kanal, 1074).

The linguistic, ¢* structural approach has been developed in part to corfect some of the
ditficuities seen in the decision-theoretic approach. With this paradigm, patterns sre viewed
as compositions of components, called subpattemns, or pattern primitives, that ars typically
higher-level objects than the features of the decision-theorstic model. Patterns are often
viewed as sentences in a language defined by a formal grammar (sometimes calied a pattern
grammer). Ssgmentation of patterns into primitives and formatiols of structural descriptions
are thus the primary issues. This approach embodies an attempt to use other sources of
information ss sids to pattern recognition (e.9., In a spesch understending system [Reddy,
19073}, [Erman, 1978), [Lesser, 1978}, [Rowvmer, 1978). [Reddy, 1976). syntax,
semantics, and context act as powerful sources of information In addition t¢ the recorded
information).

In that both paremeatric and structwral techniques are aepplied, pattern reoognition
effects e bridge bstween the adeptive systems snd artificlal inteligence approaches to
learning system design. w.mmmhmowdﬂnm.pmm
(s@e, for exampie Stockman, [Stockmen, 1077]), that mey result in ore powerful sys
For a review of the current state of the art, see [Chen, 1877], [Paviidie, 1!77].[&.0.!
1977] end [Proceedings, 1876].

The remeainder of this section containg brief descriptiom of major approaches to
pattern revognition. Specific techniques are grouped acoording to thelr bias towerd one of
the two primery modeis: the olsesi/fication medel end the desaripticn medel. Artificlal
imelligence reseeron, disouseed in the next se0tion, hae besk a major fadtor iwelved In the
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movement away from complete adherence to the classification model and towarde exploration
of the description model.

$.1.1 Ciassification Model

In this model, patterns (festure vectors) are viewed as members of a class and the aim
Is to assign observed patterns to classes. The classification may ba either stet/stical,
whersin the patterns are thought to belong t5 one of a number of classes acoording to & set
of probabliity density functions, or fuzzy, wheren pa‘terns are thought to have differing
degrees of membership in a number of classes [Zadeh, 1973).

Variations

Classifiers mey be categorized in a number of ways, depending on the type of
classification rule, and the sempling procaedure they empay [Hunt, 1976].

Parallel classifiers base their classifications ujon the compiete set of features,
extracted simuitanecusly during a singls cbssrvation of s pattern. Sequential/ classifiers
assign a peattarn to & ciass on the bsuis of & sequemnce of observations. After sach
observation iz m*ds, and Integrated with past observations, a decision is made as to whether
sufiicient information has been gathered upon which to bese a classification, or whether
another observation must be made, according tu s test #ke the Waid Sequential Likelihood
Ratio Test {Wald, 184T].

Adaptive classifiers (see sxample In appendix) are distinguished by the fact that their
classification risies are themssives adjusied to improve performance as sxperience is gained
with patterns drawn from the various classes of interesi (a variety of procecures have been
developad to adjust the rules--ses, for exampie [Widrow, 1000)). Non-adaptive
classifiers, on the other hand, use a fixed set of classification rules, and in the language of
this paper are not considered to be learning systems.

Baysalsn Classiiication

This type of classification is optimel in the probability of error sense. The strategy ls
minimization of the average risk of a classification and compiste knowiedge of tha a prioi
and conditional probabiity deneities i assumed (where the a priorl probebliity is the
probabliity that a pattemn is drawn from a perticular class, regardiess of its observed
characteristics, and the conditional probebiiity is the probabliity that a pattern with the
observed characteristics could have been drawn from a particular class). 7he notion of risk
atises because oocsts ars assumed to be e:sociated with different types of clascification
errors. When equal cosis are assumed ‘or all types of error, the result is the maximum a
posterior) (MAP) classifier (whers the a posteriori probabliity is the probability that a pattern
has been drawn from a partiovier class, besec on its obeerved characteristics).
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Maximum Likelihood Classification

Likelhood is the conditional probability that the observed characteristics of a pattern
indicate that it shouvid be assigned to a particular class. No knowledge of a priori
probabilities is assumed, but the method does assume knowisdge of the form of the density
functions (e.g., Gaussian).

Nonparemetric Classificetion

This type of classification 228 not guarantee the best possible performance but
requires no knowledge of the underlying probabliity density functions that govern the
generation of patterns. Techniques used in non-parametric classification includes the K
Neearcst Neighbor Rule, which bypasses prohabiiities altogether, and assigns patterns to
classes basad on the proximity of their cbserved characteristics to those of neighboring
patterns of known class membership, and the Fisher Linear Discriminant, which is used to
transform the feature spaca into another (decision) space (typically of lower dimensionality),
in which parametric procedures can be employed [Duda, *973].

3.1.2 Description Mode!

With this modal, emphasis is placed on segmentation of the patterns into a set of
meaningful primitives, and on generation of structural descriptions (generalty symbolic in
form) of the patterns. It is further assumed that a great daai of a priori knowiedge of the
pattern types that are of interest is available.

The approach is useful In applications like scene analysis [Duda, 1973), [McCarthy,
1974] where classification is clearly inappropriate. It also tends to be useful when the
patterns themseives ars complex [Fu, 1877], as it emphasizes hierarchical decomposition of
patterns into thelr constituent components.

There are a variety of descriptive formalisms in which to express the structural
descriptions. These include pattern grammars [Fu, 1974], and relational graphs [Winston,
1978]. Pattern grammars embody an attemp! to cerrv over a large amcumt of theory from
the study of natural and programming languagas. A varisty of pattern grammars have been
deveioped [Kanal, 1974], both d-.termicisiic and stochastic in form. Relational graphs have
been used in pattern recognition sysiems deveiopad by the artificial intelligence community
(sew, for example, Winston [Winston, 197C]). Pattern primitives are taken as nodes in &
directed graph whose edges indicate the rolations between the primitives. Such graphs form
a convenient representation for pattems with & high degree of hMerarchical structure.

The text by Duda and Hart [Duda, 1978] is an excellent introeduction to the methode
used in the struotural approach.
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4 Artificial intelligence Approach to Learning

in the 1960's and sarly 1960's there was considerable diacussion of isarning programs
in the Artificial Intetigence (4!) Wteratwre (s.9., [Oettinger, 1962], [Friedberg, 1868],
[(selfridge, 1989], [Newel, 1902], [Feigenboum, 1983], [Minsky, 1963] and [Simon,
1968]). It was hoped at the time that a general leaming p-ogram could be writien to
acoumuiate and refine & large, detalied knowiedge base about a domain [Minsky, 1972). The
knowledge base, then, could be used by evar-improving high performance programs that
teason In that domain. Samuel's programs that learn to play excellent checkers [S8amuel,
1983] were an sariy demonstration of success, but also demonstrated the amount of effort
necescary 10 achieve success. On the reasons ‘wiy lsarning tasks have besan central in A/,
Neweil wrote [NewelH, 1973):

inductive tasks have always ieen a promiaent part of the A/
landsceape. The ressons for thia seem to be twofold. For one, we
have inherited a classic distinction betwsen deduction and induction,
80 that the search for inteligent eaction should clearly look to
induction. Second, American psychology has largely identified the
ceantrel problem of conceptual behavior with the ecqulaition or
formation of concepts--which in practice has turned out to mean the
‘nduction of concepts from a set of presented exsmplars.

This tendency, shaped strongly by Bruner, Gcodnow, and Austin's
Study of Thinking [Bruner, 1866], derives furcamentally from the
emphasis on learning that has characterized American psychology
since the rise of behaviorism.

The motivation for writing these programs is diverse. Some are written as testable
psychologicel models of how human subjects perform & learning task (e.¢..[Simon, 1083] [Hunt,
1963], [Feigenbaum, 1963] and [Hunt, 1866]), others are writtor to demonstreie the
Jeasidility of & method (e.g., [Holeway, 1078]), and atiil viners are written with the exprass
purpose of aiding Auman prolem solvers codify and expiain data (e.g., [Buchanan, 197é)).
insofar as aN the programs mentioned below perform wel at their stated tasks, they all
Hustrate ihe emerging powsr of heuristic programming methods for improving the probiem
solving powur of computer programs.

Al the Al leaming programs written to date have strong imitations on thelr generality,
Some are applicable to just one kind of problem, others work with several types of problems
within a larger cless defined by the reprassntation of objects and relations in the domain.

Early Al resesrch was closely tied to pattern recognition and the adaptive systeme
approach, (see, for axampie [Seitridge, 1983), [Unr, 1083] and [Uhr, 1873]). Much work
has been performed on leaming automata [Milsson, 1588] (see aleo [Narendra, 1874)), and
neure! networks that grow in response to stimull [ineky, 18072]. AR of theee sfforts have
aimed at defining simple machines thet learn to respond to thelr environments [Findier,
18600]). Newsll [Newell, 1978] traces one ine of growth from stimukss-response isarming n
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psychology to (i) pattern recognition and self-organizing systems, as well as to (ii) concept
formation, induction and other A4/ work. The two fields diverged in the 1960's, and are now
qQuite distinct. Whereas pattern recognition snd control research emphasizes adjustment of
parameters, A/ research emphasizes construction of symbolic structures, based on
conceptual relations. For exampie, Feigenbaum's EPAM program [Feigenbaum, 1963] used a
discrimination net {l.e., a tree of tests and branches) to store the relations required to
recall nonsense sylables in a rote learning experiment (ses [Fikes, 1072], [Sussman,
1873), and [Winston, 1976] for further examples).

In 4], it is commonly believed that a learning system should have sufficient internal
structure to develop a strong theory of its envirooment [Feigenbaum, 1971], [McCarthy,
1968] and [Minsky, 1972a). Much emphasis has therefore been placed on building
knowiedge-based or expert systems that not only have the capacity for high performance,
but can also explain thelr performance in symbolic terms [Davis, 1976].

Various levels of sophistication in learning systems are described by [Winston, 1976):
learning by being programmed, learning by being told, learning from a series of examples, and
finally lesrning by discovery. We see in this categorization a gradual shift in responsibility from
the designer/teacher to the leaming system/student. At the highest ievel, the system is
able to find its own examples, and carry on autonomously; at the lowest level the system is
lsarning only In the sense that a programmer is explicitly programming it to do something.

The formalism of inductive inference has ceaptured much attention also (e.g.,
[Solcmonott, 1977], [Holland, 1962]), [Hajek, 1978), [Meitzer, 1970], [Meitzer, 1073]
and [Plotkin, 1871]). The purpose of much of the work on abstract formalisms is to find
general principies of induction that can be mechanized. This was also a goal of Bacon and
Leibniz centuries ago.

Conelderable work is st expended on the Leibnizian dream of an abstract formailism for
scientific inference. Some of this work is done specifically with computer programs in mind.
Much of it, however, is done in abstraction. Programs besed on these formalisms form
hypotheses from data without any special knowiedge of the domain from which the data were
collected. The drawback of very general methods is that while they may produce some
interesting smpirical generalizations, they are likely to produce many generslizations that
experts in the domein would regard as trivial or meaningless. In short, they lack a working
model of the domeain to guide judgments of plausibllity.

Some recent progrems explicitly recognize the need for prodlmm-specific consiraints. The
Meta-DENDRAL program [Buchanan, 1978) discovers general rules about the behavior of
chemical compounds In an analytic instrument known as & mass spactrometer. The data are

uuunm“mmumm

The AGVAL progrem [Larson, 1078) actepts a set of desoriptions of ob
mmmtmmmmmmmmmmruw.
for desoriptione 3¢ Easthound end Westbound relvoed
rectangles, eto., the program is shie o find the shapes
diacriminate the two traine.

i
i



Learning Systems 1"

Still another program, named Thoth=-pb [Vere, 1978], is able to learn rutes for (1)
extending letter sequences, (ii) recognizing geometric analogles, (iii) relating before and afier
situations, and (iv) relating sequences of situations. It uses background knowiedge about
the domain to help it recognize important relations among features of objacts that are not
cadified in the descriptions of the objects themselves,

4.1 Game Playing

Much ot the work with learning systems in A/ research has been done in the context of
games. Improvement of the game playing program is the ostensive goal, but the learning task
itaelf is often the reason for the work (ses, for example, [Newman, 1268]). The nature of
the learned information ranges from parameters governing the avaluation of moves (and
ultimately their selection) to symbolic ruies expressing how to play well in different
situations.

Samuel's work I8 best known in this fleld [Samuel, 1863), [Samusi, 1067]. in the
context of a checker-playing program, he has explored rote learning, perameter tuning, and
bullding signature tables, which are clusters of dependent features with weights that can
be used to evaluate moves (ct. [White, 1970]). (Griftith [Gritfith, 1974] later compared
the methods used by Samuel with a simple heuristic procedure.) Waterman [Waterman,
1970] compared the performance of a poker-playing progrem after learning with a human
teacher and automated leaming. The program represented its heuristics of good play ‘n a
table of conditional rules, or productions, that the lsarning system aitered in light of mistakes.
Waterman has generalized many of these ideas to other tasks (Waterman, 1978]. Findler
[Findier, 1977] has also studied the game of poker. Pitrat's work on learning patterns in
chess [Pitrat, 1074] applies many heuristic ssar~n ideas to learning useful combinations
trom exampies of given games. Programs have also been written to learn dominoes [8mith,
1873], Go-Moku [Elcock, 1967], and the ruies of Tic-Tac-Toe [Popplestone, 10807,
Banerji [Banerji, 1974] has studisd learning processes for several classes of games and
puzzies from a more formal point of view. Koftman [Koftman, 1668] has also related gam:
playing to pattern recognition.

4.2 Concept Formation

In concept formation tasks, a computer program (or human subject) is presented with
objecta, or descriptions of objects, that exhibit a common concept. The program (or subject)
is expescted to generalize from these instances well enough to classify new objects
accurately. Negative instances--objects which faill to exhibit the concept--are sometimes
presented to the program (and identified as negative instences) in addition to the axemplars
of the concept. When training Includes negative instances learning is faster and more
accurate. Concept formation has long interested psychoiogists as a learning task. As with
other lsarning tesks, computer programs have been written to simulate the performance of
human subjects--and thus test a psychologioal model [Simon, 1963]. Or they have been
written to learn by mechanieme other than those humane use--and thus demonetrate some
modicum of intelligence on the part of computers.
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Two frequently cited A4/ concept formation programs are those written by Evans
[Evans, 1988] and Winston [Winston, 1976). c£vans' program finds analogies among
geometric figures tc solve stendard intelligence test problems of the form Ais toB as C is to
{pick one of D1, D2, DS, D4, DE). The concept here i3 a tranafoimation or rule which maps
tigure A into B and also maps figure C into one of the anawer cholces.

For Winston's program the task iIs to produce a correct descriptionn of a concept
exhibited in a set of line drawings of block figures. An important feature is the introduction
of near misses, |.e., figures that faii to exhibit the concept because they differ with respect
to a small number of essential properties. The program learns the correct description of an
arch, for example, from descriptions of two posts and a lintel (exempiar) and of near misses
such as tees and posts with a falien lintel.

Another recent program iearns concepts, such as Hit and Out, for the game of baseball
from a set of descriptions of events over the span of a game [Soloway, 1978]. Other
concept formation programs are described in [Simon, 1963], [Johnson, 1964], [Hunt,
1976], (Zagoruiko, 1976]. [Langley, 1877], [Larson, 1978], [Buchanan, 1978}, [Mitchell,
1977], [Hayes-Roth, 1978], [Hayes-Roth, 1877], [Hedrick, 1978] and [Rychener,
1978).

4.3 Grammatical inference and Sequence Extrapolation

Grammatical inference and sequence extrapolation have often bsen taken as prototype
induction problems. The tesk is to tind ¢ rule (or set of rules) that can serve as the
generating principle for a training set of symbol strings. For example, tha training instances
may be the following allowable sentences in & hypothetical language: A, AB, ABB, ABBB. An
uninteresting aet of rules I8 just the training Instances themseives. Without some
genaeralization from the training instances, prediction of new sentences ia impossible The
following two rules, then, will serve to define the grammar of which these strings are correct
sentences:

{R1) A (A’ slone is 8 sentence)

(R2) A->AB {"A' con be replaced by "AB’],

The sequance extrapoiation task is simiiar: given a sequen-a of symbols (usually, but
not always numerals) such as 1,3,5,7,0, find a rule that allows oorrect prediction of the next
member of the ordared sequence. In this cese, the generating principie is

(R3) ™ mewder = 2n-1

Both of thess problems sxhibit many cheracteristics of scientific hypothesis formation.
Reguiarities in the data must be found and cheracterizod, dNferant generating principles
must be proposed and tested, and siternative hypothesss must be renked, for example by
simplicity. Most programe [Bierman, 1072), [Peresen, 1988) cssume the initial data are
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free of errors. Many of these programs explicitly search a space ot hypotheses, (e.g.,
Cook's grammatical Inference program [Cook, 1976]), but most recent woric on grammatical
inference emphasizes more formal mathods [Blerman, 1872], [Gold, 1967]) and [Fu, 1878).

Inferring natural language [Siklossy, 1972], and simple compuier programs from
examples are other Induction tasks that have been studied using 4/ techniques [Waterman,
1978]), [Hardy, 1976], [Shaw, 1977], [Watsrman, 1R78). The training instances are often
input-output pairs and the tagk of the induction sysicm is *a find the rule (procedure) that
will produce the specified output symbols for sach associated input. While the tesks are
similar to concept formation and grammatical infersnce, the languages are so much richer that
progress is siow.

8 A Model of Learning S8ystems

This section is concerned with a simple functional model that is useful for
characterizing, comparing, and designing learning systems. Many of the functional
components of an LS are sssential to inteligent problem solving systems in general, as noted
by Simon and Lea [8imon, 1973]; that is, learning (induction, concept formation, etc.) is
probiem solving of one kind, which meeans that A/ problem solving methods and
representations can be expscted to apply to this task as well as to others.

8.1 Effects of the Environment

The environment from which training instances are drawn, and in which an LS operates,
may have a profound sffect upon the LS design. LS environments can be divided into two
major categories: those that provide the correct response for each tralning instance
(supervised learning) and those that do not (unsupervised learning). Supervised lsarning
systems operate within a stimulus-response environment in which the desired LS output is
supplied with each training instance. Examples include Samuel's book move checkers
program [Samuel, 1963}, [Samuel, 1907), and grammatical Intgrence programs [Hunt,
1978}

Unsupervised LSs operate within an snvironment of instances for which the correct
response is not directly avaliable. The version of Samuei's program that lsarns by playing
checkers against an opponer t falis into this category [Samual, 1063] since moves are not
classified by opponents as, cay, excelent, good, poor ¢r terrible. Learning systems
operating within this type of snvironment must themselves infer the correct response to
sach training instance by observation of system performance for a aeries of instances. As a
result, assignment of credit or blame for overali performance to individual responses is
generally a problem for these systems [Minsky, 1963). Taypkin [Tsypkin, 1968] has
pointed out tha' unsupervised learning is somewhat of an usion in the sense that a
teacher/design .r defines the standards that determine the quality of operation of the LS at
the outset, whether or not he ie present during the actual opsration ¢! the system.

Environments can bDe further categorized as noise-fras or nolsy. Nelse=~
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free environments, such as thet of Winston's structural description learning program
[Winston, 1978), provide instances paired with correct responses which the system
assumes to be perfectly reliable. Most A/ systems assume noise-free environments. {One
exception is described in [Buchanan, 1978).) Noisy environments, on the other hand, do
not provide such perfect information, as is usually the case when empirical data ere irivoived.
Pattern recognition and control aystems frequently operate within noisy environments
[Barrow, 1972], [Duda, 1873], [Donalson, 1968].

5.2 The Model ~ Overview

The proposed LS model is shown in Figure 2. The PERFOAMANCE ELEMENT is
responsible for generating an output in response 10 each new stimulus. The
INSTANCE SELECTOR selects suitable training instances from the environment to present to
the performance elemant. The CRITIC analyzes the output of the performance element in
terms of some standard of performance. The LEARNING ELEMENT meakes specific changes to
the system in response to the analysis of the critic. Communication among the functional
components is shown via a BLACKBOARD to ensure that each functional component has
access to all required system information, such as the emerging knowledge base. Finally, the
LS operates within the conatraints of a WORLD MODEL which containg the general
assumptions and methods that define the domain of activity of the system.

The components of the mods! are conceptual entities that specify functions that must
be parformed to effect learning. Although the functional decomposition suggested by the
model is not necessarily reflected in the physicel decomposition of many existing systems,
the model is useful for comparing systems and may aid in future learning system deasigns.
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Figure 2. The Components of a Learning System
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The following sections present detalied discussions of the LS model components shown
in Figure 2. In addition, the appendix contains detelled characterizations of representative
Al, pattern racognition, and control systems in terms of the model. The reader may find it
helpful to rafer occasionally to the appendix while reading the following sections.

8.3 Performance Elament

The performance slement uses the lsarned information to perform the stated task. it
has been ncluded in the LS mode! because of the intimate relationship between whiat
information is to be learned and Aow this learned information Is to be used.

Performance elements are usually tallored more to the requirements of the task domain
than to the architecture of the LS. in general, the performance element can be run in a
stand-alone mode without learning, independent of the rest of the LS. In any LS, howevar,
the ability to improve performance presupposes & method of communicating learned
information to the performance slement. Since its architecture must allow isarned information
to affect its decisions, additional constraints are placed on the performance sigment within
an LS. The performance element should be constructed so that information about its internal
machinations is readily avatiable to the other system components. This information can be
used to make possible detallad criticiam of performance, and intelligent selection of further
instances to be rxamined by the system.

The performance slements of existing systems also vary in the ways they may be
siterad by leaming. For e ample, systems whose operation s determined by & set of
production rules [Waterman, 1970), [Waterman, 1976] have the potential to exhibit richer
variations than systems whosse operations are koyod only to the adjustment of parameter
values [Landau, 1974]), [Michie, 1074).

5.4 Instance Selector

The instance selector seiscts training instances from the environment that are to be
used by the LS. It is a functionel component not ciearly isolated in earlier adaptive system
models.

in existing LSs, methods for instance selection very mainly slong the dimensions of
responsibiiity and sophistication. The responsibi/ity for instance selection varies between
the extremes oi compietely external (passive) selection, and completely internal (active)
selection. (n psychological experiments on concept formation, instance selection ie closely
controlied by the experimenter and the subjact is compietely passive in this rcspect.
instance selection in Samuel's book move checkers program [Samuel, 1083] is extermally
controlled, wheress Popplestons's program [Popplerione, 1068), which lsarmms the featurss
that characterize a winning positicn in tic-tac-tos, generates its own training instancaes. (it
forme afternate hypotheses, and then penerates instances to choose among them (relying
upon an extemal critic to evalvate thess Instences). (See aleo [Simeon, 1973].) In the
adeptive systems Rterature, Tse and Bar-Shaiom [Tee, 19768] ues & form of active instanoce
selection known as dwal~oswtrel. They adjust the input to a systom in such a way as to
simultansously control its output and cbtain informatinn sbout its intercal structure.
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The degres o! sophistication used for LS instance selection is alsc an important
consideration. In order to quelify as sophisticated, an instance selector must be sensitive to
the current abiiities and deficlencles of the performance element and must construct or
select instances which are designed to improve performance. Winston [Winston, 1978] has
shown the advantages to be accruad through presenting carefully constructed examples and
near-misses of the concepts to t cquired by an LS. In generai, careful instance selection
can improve the rellability and efiic.ency of an LS. It is important to note, however, that this
may not always be permitted by the enviconment in which the LS oparates, as is generally
the case for adaptive control systems [Donalson, 1008).

5.8 Critic

Yhe critic analyses the current abilities of the performance element. It may play three
roles: EVALUATION, LOCALIZATION, and RECOMMENDATION. The critic always operates as
an evaluator in that it embodies & standard by which to assess the behavior of the
parformance element. This is the role that has been emphasized in earlier adaptive system
models [Fu, 1970], [Glorloso, 1875), [Skiansky, 1864]). Feedback from a critic at least as
evaluator is essential for learning.

The critic may also localize errors and localize the reasons for poor localize the reasons
for poor performance. This type of behavior is essential for resolution of the credit
assignment problem described by Minsky [Minsky, 1863]. In its diagnostic role, the critic Is
exemplified by the bug classifier and summarizer in Sussman's HACKER [Sussman, 1973).

Finally the critic may recommend repairs by making specific recommendations fos
improvement or suggestions about future instances. in Waterman's poker player [Waterman,
1970], the critic in this role suggests the bet that should have bsen made by the
performance slement for a particular training instance. The critic not only recognizes poor
play and isolates the production rules responsibie for it, but suggeats specific conections 8o
the program will not play as poorly in similar future situations.

Tha dividing line batween critic and learning element is not sharp, and it is certainly
possible to view therapy as a function of either the leaming eiament or the critic. However,
in mapping existing LSs into this model, we have adopted the convention that the critic's
recommendations to the learming eloment are at an abs‘:act level removed from the
impiementation considerations such as data representation. This clearly separates the two
different functions of deciding what Rind of change is needed and deciding how to implemens
that change.

_ In some L8s the functions of the critic have been left to humans. For example,
MYCHI/TERESIAS [Davis, 13976] uses a humen critic, for evaluation, localization, and
recommendation. The performance program apphies rules (to cases selected by humans) antt
a human supplies oriticlem of resuits, localization of blame, and suggestions for
rule base. Because the computer program assiats the user In
be sald to be semi-automated.

j
:
g
|
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8.6 Learning Element

The learning element is an interface between the critic and the performance slement,
responsible for translating the abatract recommendations of the critic into specific changes
in the ruies or parameters used by the performance element.

Representations for lsarned information exhibit great variety. They inciude, for example
production rules [Waterman, 1970], parameterized poiynomiais [Samuel, 1963], executable
procsdures [Sussman, 1073], signature tables [Samuel, 1987], stored facts [Feigenbaum,
1963), and graphs or networks [Winston, 1978]. The method of incorporating new learnad
information is dependent upon the representation, and even among systems that use similar
representations, competing metheds are found (contrast, for example, [Buchanan, 1978]
and {Waterman, 1970 ).

The extent to which the learned information is aitered in response to each training
instance ia an important .S desigh consideration, In some systems, the learning slement
incorporates exactly the information aupplied by the critic [Winston, 1875]). Were the same
training instance to ocour later, the response of the performence element would be axactly
as the critic adviced for the first occurrence. This type of learning is well suited to
environments that provide perfect data and to systems with reliable critics. Under these
conditions the LS will converge rapidly to the desired behavior. If such a system were
provided with an incorrect classification by the environment or less than relisble advice by
the critic, however, it might commit itself to incorrect assumptions from which it could not
recover. Systems that make less drastic changes to the learned knowiedge on the basis of
a single tralning instance are less vuinerable to imperfect information, but consequentiy
require mors training inatances to convergs to the desired behavior. Many statistical LSs fall
into this category [Nilsson, 1965). Other systems consider several training Instances at a
time i order to minimize the effect of occasionsl noisy inatances [Buchanan, 1978).

8.7 B8lackboard

The blackboard of this model is a global data base that also functions as a system
communications machanism. it is similar to the concept introduced in the HEARSAY systum
[Lesser, 1978). The blackboard holds two types of information: the informetion usually
associated with tha knowiedge dase in Al programs, and the temporary information used by
the LS comporents. The knowiedge base often contains the set of rules, parameter values,
symboiic structures, and 50 on, curtently being used by the performance eslement. Such
information can be uesd as an aid to sophisticated instanca selection If it is readily avallable.
The temporary, system-orientad information inciudes, for example, the intersediats decisions
made by the performance element in selecting a particular responss. Detilled criticiem by
the oritic is dependent upon the avaliability of this Information.

In many existing systems this information is not 30 clearly separated or defined. The
communication links between functionel components, especially, are often programmed
directiy. Because the sams information ls required by many of the individual functione!
components of any LS, however, a blackboard is & more transperent communications
mechaniem

o
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6.8 World Model

Whereas the b/-rkooard contains information that can be aitered by the LS
components, the wori. model contains the tixed conceptual framework within which the
system operates [Churchman, 1970). The contents of the world model inciude definitions of
objects and relations in the task domain, the syntax and semantics of the information to be
learned, and the mithods 10 be used by the LS. Among task domain definitions are, for
example, the rule; of a game and the representation of inputs and outputs for the
performance element. This part of the world model simply defines the task of the
performance element, and tha standard of performance (the esvalustion function) to be
applied by the critic. Domain specific heuristics are also commonly added to the world model
of Al systems to guide infersnces made by the LS (e.g., heuristics sbout the worid of blocks
In Winston's program [Winston, 1976]). Definitions of the syntax and semantics of
intormation to be learned define the mode of communication between the lsarning and
performance siemants.

The assumptions and constraints from which the world mod! (3 composed are of critical
importance in the design and characterization of LSs. Although many of tnhese assumptiona
are often hidden in the various functional components, the LS designer and user must both be
aware of each of them. We belleve that, where possible, worid mode! constraints shouid be
made explicit in order to allow for their modification during the design process.

6.8 Muiti-Layer Learning Systems

Although the worid model cannot be aitersd by the LS that uses It, the designer can
aliter its contents in order to improve LS performance. He oiten changes parameters and
procedures of the basic LS after observing and criticizing its behavior for some carefully
chosen training set. These aiterations result in a new version of the LS, which is then tested
on some training set, end 20 on. The designer views the whoile LS ss a system whose
performance needs improvement, and he selects instances, criticizes performance, and
makes changes accordingly. in other words, the designer's activities can be modeied by a
system whoese compunhents are just those of Figure 2. This leads us to the concept of
layered L8s, sach higher layer abie to chenge the world model (vocabulary, sssumptions,
etc.) of the next lower layer on the basis of criticizing its performance on a chosen set of
instances. Thus, ad)ustments can b3 made to the world modsi of some leaming system LS 1
by another learning system, L82, that has its own functions! components (oritic, world model,
etc.), as shown in Figuwre 3. In turn, it is conoelveble that a third system, L8S, oould
the worid mode! of L82, and 00 On. The designer constitutes the final oritic, of cowrse.
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Figure 3. Layering of Learning Bystems. (Components are labelled as in Figure 2).

This multi-layer architecture Inviives bidirectional information passing; that is, ths
effects of adjustments made in a lays! may propsgate both to lower and higher level layers.
it Is a hisrarchical architec.urs, in the general sense [8imon, 1969] and includes as a
specific cese the bottom-to-top hersrchical architecture used, for cxample, by Soloway
[soloway, 1977).

One existing LS which may e viowed as a layared system is the version of Samuel's
prograia [Samuel, 198T] that learns a po'ynome! evaluation function for selecting checkers
moves (see the Appendix for detalis). The lower layer (LS1) in this system adjusts the
coefficients of a given set of geme board features In order to improve performance of the
move selection program. The second leyer system (L82) adjusts the set of board features
used In the evaiuation function in order to improve the performence of L81. Since L81 e
ocontained in L82 as the performance sicment, all the assumptions necessary for ite operation
steo belong to the L82 world model. n addition, the L82 world model oontains assumptions
about the set of allowsble game board featwes and the standerd for eveluating LS8t
periormanrce.
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A single layer LS, then, can never move outside its worid model to make radical
revisions to its way of viewing the task tc achieve a paradigm shift, as discussed by Kuhn
[Kuhn, 1970). However, a shift in the conceptus! framework of LS1 could be made by a
properly programmed LS2 [Buchanan, 1974). We belleve that a layerad approach such as
that described above provides a useful system organization for learning at various ievelis cf
abstraction in complex domains. Although there are examplaes of this kind of layering in the
literature [Samuel, 1963]), [Uhr, 1963) and [Soloway, 1977). no one has carried it as far
as the model suggests. In fact, single layer learning systems are Just now becoming well
enough understooud to consider developing more sophisticated systems.

5.10 Implications of the Model

The LS model described here provides a common language for characterization and
comparison of different types of learning systems that operate in a variety of task domains.
The model is a useful conceptual guide for LS design, because it isolates the sssential
functional components, and ths information that must be availlable to these components.

A number of desirabie features fcr future learning system designs are brought out by
this model. First, the design should be modular, with individual modules corresponding to the
functional components shown in the model. The knowledge used by the sysiem should be
made explicit and collected, as much as efficiency considerations permit, in a world model
component. Especially the parts of the LS that are to be adjustable must be explicitly
exposed. Intelligent criticism is important, as is active instance selection, although neither
has been isolated as a sejarate object of study. Finally, a muiti-layer architecture for
learning at different isveis of abstraction is suggested by the model as a way of introducing
still more intelligence into the whole learning system.
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Appendix A

Characterization of Existing Systems

in this appendix several existing LSs are characterized using the framework provided
by the model dascribed in Section 5. The systems sslected are representative of several
approaches to machine learning. Because the blackboard contains information in a state of
flux, its contents are not specified sxplicitly for the systems characterized below.

Model Relerence Adaptive Control, [Landau, 1974]

Purpose: Construct a controller that preprocesses inputs to an existing system (called
the plant). The behavior of the combined controlier-plant system is to mimic the behavior of a
third system (calied the reference model) on the training data.

Environment: The piant to be controled. and the set of possible inputs (incwding
disturbances).

Performance Element: The controlier--a system whose output s used as input to the
plant. its behavior i3 a function of the input signal, past |/O behavior of the plant, and a set
of adjustable parameters.

instance Selector: Accepts data sequence (as input ‘0 the controller) from the
onvironment.

Critic: Evaluation--applies s measure of performance that is some function of the
arithmetic differsnce bstween the plant and reference model outputs. In some cases the
reference mode! Is mathematically defined, and can therefore be considered part of the
critic. (n other cases the reference model is an actual system, and ls considered part of the
environment.

Learning Element: Modifies the parameters of the performance element (ocontroler),
depending on the performence measurs supplied by the oritic.

World Model: Control theory assumptions (time Inveriance, lnearity, etc.) and
techniques, and the standard of performance embodied In the oritic.
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Adaptive Pattern Classitier, [Koford, 1966)

Purpose: Learn the parameters of a classifier that can classify a set of patterns in such
a way as to minimize a specified cost functional.

Environment: Patterns drawn from a pre-specified set of classes. Each pattern is
represented as a feature vector.

Performance Element: A linear pattern classifier that forms the inner product of a
pattern feature vector (that constitutes the input), and a weight vector (where the weights
constitute the adjustable parameters or the classifier). Based on the resultant scalar value,
the classifier assigns the pattern to a class.

Instance Selector: Accepts instances from & human trainer. The classifiar uses a set of
patterns of known class membership to tune the weights. Thereafter, the weights are heid
constant.

Critic: Evaluation--computes the difference between the output vaiue of the classifier,
and the known acceptable output (the learning in this example is supervised).

Learning Element: Modifies the weights used by the classifier according to the LMS
algorithm [Widrow, 1960], based on the information received from the critic. This algorithvn
attempts to adjust the set of weights 80 as to minimize the mean-square error between the
output of the classifier, and the desired output.

World Modei: Pattern recognition assumptions concerning the suitability of reprusenting
the patterns as feature vectors, the suitability of a statistical formulation of the
classification problem, the suitability of a linear pattern ciassifier. the sultabiiity of the
selected performance maasure, and the specific adaptation nigorithm.

Chacher Piayer, {Sasauvel, 1083], [Samuet, 1867)

Purpose: Learn to play good geme of checkers (here we disc.iss only the version of the
program that learns & lineer polynomial eovalation fwnction by examination of moves

suggested by experts (besk moves).
Environment: Seot of all lagal game boards.
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L81 (lower layer):
Purpose: Learn a good set of mmmm for combining board featurss in a linear

polynomial evaluation function.

Performance E:ement: Uses the learned evaluation function to rank plausible moves for
a given board position.

instance Selector: Reads instances from a list of pre-defined game-
board/recommended-move pairs.

Critic: Evaluation--examines the ranking given to the book move by the performance
sisment. Localization--suggests that the book movs should be ranked above all other moves.

Learning Element: Adjusts weights of lnesr polynomial to make move selectior
correspond to the critic's recommendation.

Worid Model: Syntax of game boerd, form and features of linsar poltynomial evel.ation
function, method for adjusting evaluation function, and rules of checkers.

L82:

Purpose: improve the performance of LS1 by seiection of a good set of boari features.
Performance Element: LS1.

instance Selector: The entire set of possidie training instances is simply passed to LS?
(via the blackboard).

Critic: Evaluation--analyses the leaming ability of LS1 (ie., the LS2 performance
slement) with the current set of evaluation function features. Localization--singlss out
features that are not useful. Recommendation--selects new features from a predefined Hst
to replace useless features.

Learning Element: Redefines the current set of features as recommended by the critic.

w:mm:mmw&wmmm«mmmmtnywmm.-m
the performance standard empioyed by the L82 critic.




24 HPP-77-38

Poker Player, [Waterman, 1870]

Purpose: Learn a good strategy for making bets in draw poker.
Environmunt: Set of all lagal piaker game states.

Performance Element: Applies the learnc d production rules to Jenerate actions in a
poker game, 6., bets.

Instance Selector: Selects each game state derived by play against an opponant as a
training instance.

Critic: Two versions of the program use two different criiics. in both cases the critic
performs the following functions: Evaluation--decides whether the poker bet made by the
Performance Element was acceptable. Localization--givas Important state vaerigbles for
deciding the correct bet. Recommendation--provides the bet which the Pearformance Element
should have made. In explicit learning the critic is an expert poker player , either human or
programmed. tn implicit leaming, the evaiuation and recommendation are deduced from the
next action of the opponent and & set of predefined axioma, while localization is read from a
predefined decl/slion matrix.

Learning Element: Modities and adds production rules to the system. Mistakes are
corrected by adding a new rule in front of the rule responsible for the incorract response.

Worid Modei: Rules of poker, features used to describe the game state, the language of
prociuction rules, heuristics for updating the rule base, the modal of an opponent.

Meta-DENDRAL, [Buchanan, 1978)

Purpose: Learn to. predict data points in the mess spectra of molecules.

Environment: Set of all knowr wolecule/data-point pairs.

Perform ance Element: Predicts peaks (data points) in mass-spectra of moleowies using
learned production rules. Employs a mode! of mass specirometry for transiating between
mass-spectral processaes (predicted by the rules) and data points in the spectrum.

instance Selecior: Acoepts a set of known molecule/spectrum pairs from t ¢ user.

Critic: Evaluation--determines the suitabiity of the sst of predictiona generated by a

rule. Localization--states whether the rule s acoeptable, t00 specific, or t00 genaral.
Recommendation--recomends adding or deleting featurse to the left-hand sides of rules.
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Learning Element: Conducts a heuristic seerch through the space of pilausible rules
using a predefined rule generator. At each step in the search the potential rule's
performance is reviewed by the critic.

World Model: Representation of molecuies as graphs, production rule model of mass
spectrometry, vocabuiary of rules used t~ reprosent lsarned information; hauristics used by
the oritic in directing the rule search. -

Learning Structural Descriptions from Examples, [Winston, 1970], [Winston, 1075)

Purpose: Learn to identify blocks world structures (such as arches end towers).
Environment: Set of poasible line drawing/structure-ciassification pairs.

Performance Element: Decides class ot structures to which the input structure belongs.
Uses & model of the structure class supplied by tha learning element.

Instance Selector: Accepts training instances supplied individually by the user.

Critic: Eveluation--comparss the classification made by the Performance Element
against the correct classification as suppled with sach training instance. Localization--
generates a comparison dascription pointing out differences between the model and the
structure description.

Learning Elemant: Constructs a mode!l of the class of structures undet consideration.
Examines the comparison description sugpliad by the critic, and modifies the model to
strengthen or weaken the correspondence bstween the model and the training instance.

World Model: Representation of scenes as Wne drawings, mothod of translating lne
drawings to graphical descriptions, grammar for drawings to graphicel descriptions, grammar
for representing the learned information, domain-specific heuristics for resoiving among
possibie changes to sach structurs class model.
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