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Abstract.

Consider the implementation of two stacks by letting them grow
towards each other in a table of size m . Suppose a random sequence
of insertions and deletions are executed, with each instruction having
a fixed probability p (0 < p < 1/2) to be a deletion. Let Ap(m)
denote the expected value of max{x,y} , where x and y are the

stack heights when the table first becomes full. We shall -prove that,

as m - ® , Ap(m) - m/2 + Wm/(2n(1-2p)) + 0((log m)/«/l_n) . This gives

a solution to an open problem in Knuth [The Art of Computer Programming

Vol. 1, Exercise 2.2.2-13].

*
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1. Introduction.

The purpose of this paper is to give a solution to an open problem
of Knuth [2, Exercise 2.2.2-13], regarding the effectiveness of implementing
two stacks by letting them grow towards each other.

Consider a contiguous block of m locations, which we use to
implement two stacks. One stack grows from the leftend of the block
and the other from the rightend; we denote the heights of the stacks
by x and y (see Figure 1). One measuref/ of the effectiveness of
the memory utilization for this scheme is the expected value of max{x,y}
when the two stacks first meet, i.e., when =Xty =m . For example, suppose
the value of max{x,y} is 2111/5 . If we had used one block for each stack,
then we should have reserved at least Um/3 locations instead of the
present m locations. The following model was proposed in [2], with D
(0 <p< 1) as a parameter. Consider a sequence of stack operations to be
carried out, until the two stacks meet. ©Each instruction is either on the
left stack or on the right stack with equal probability; and for each
choice, there is a -probability p for it to be a deletion and probability
l1-p to be an insertion. A deletion on an empty stack will not have any
effect. Let Ap(m) denote the expected value of max{x,y} when the two
stacks first meet. It was shown in Knuth [2, Exercise 2.2.2-12] that
A (m) = m/2 + Vm/(2n) + O(m-l/e) . It was also stated [2, Exercise 2.2.2-13]

0

that lim Ap(m) = 5m/1+ for fixed m . Thus, in this model, there is
r-1

little gain in memory utilization for large m when only insertions are

*
¥ This measure is somewhat conservative. An alternative measure might be
the expected value of ma.x{x,y[ at any time before the two stacks meet.
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Figure 1. Two stacks growing towards each other.



present; whereas substantial gain results when deletions are overwhelmingly
dominant. The question asked was the behavior of Ap(m) for fixed p

and large m .

In this paper we prove the following result.

Theorem 1.  Let pe (0,1/2) be a fixed number. Thenf/

w0 = 2o ey o222

Thus, for such p , there is no substantial gain in memory utilization
asymptotically. Note that the formula is also true for p =0 , as
mentioned earlier.

We leave open the question of the asymptotic behavior of Ap(m)

when p > 1/2

*

—/ Here and throughout this paper, ©p is assumed to be fixed and the
constants in the O-notations may depend on p . Logarithms are the
natural logarithms (i.e., with base e ).



2. Random Walks.

It is convenient to cast the above model in random walk terminologies
(see Feller [1] for backgrounds on random walks). Let IL , IR denote
an insertion instruction for the left and the right stack, respectively,

and D D, a respective deletion instruction. We can regard the

L’ "R
execution of a sequence of such instructions as a "particle" performing
a "walk" on the integer lattice points in the plane, with the coordinates

(x,y) being the current heights of the stacks. For example, an

instruction I. causes the particle to move from its current position

L
(x,y) to (x+l,y) . An instruction D; will cause the -particle to move
from (x, y) to (x-1,y) , unless x = 0 (i.e., an empty left stack),

in which case the position does not change. We shall call the line

X 0 a reflecting barrier, the line y = 0 being also a reflecting

barrier. The line x+y = m will be referred to as the absorbing barrier.

By a (pym;a,b) -random walk, we mean a random walk on the plane

that starts at an integer point (a,b) , moves according to the transition
rules given below, and stops when any point on the absorbing barrier is
reached (the -point reached is called the absorption point). We assume

hereafter that 0 < p<1/2, m>0, a>0,b >0, and atb <m



The Transition Rules (cf. Figure 2): Suppose (x,y) 1s the present

position. 5e next position (x',¥') is given below.

with probability

((e1,y) ()2

Doy (%, y+1) (L-p)/2
(@) If x £ 0, v #0, then (x',¥") = (x-L,y)  p/2

L(X,y-l) r/2

(@) (1-p)/2

= n (x! [ (O)y+l) (l-p)/2
(b)Ifx_0,y7go,the(,y)—<(o,y) p/2
_ (0,5-1) p/2

r(x+]_,o) (1-p)/2

() € x £0 , y =0, then (x',3') = ¢ E}:.i,)o) I(;P)/?

_(x,0) v/2

((1,0) (1-p)/2

(d) If x =0, y =0 , then (x',y') = { (01) (a-p)/2

(0, 0) .

et (X .,Y ] denote the pair of random variables that have as
a,b’ "a,b

their values the coordinates (%,y) of the absorption point if the walk

ends on the absorbing barrier, and have values (0,0) if the walk never

reaches the absorbing barrier. The value (0,0) in this latter

assignment is not important, as we shall see later (see the remark at the

end of this section) that it occurs only with probability 0 . Let
Za{b = nmx{xa,b,Ya,b} . The quantity of interest, APOM , 1is clearly
equal to Z

0,0 .



Figure 2, The transition rules for the (p,m;a,b) -random walk.,



We begin by considering a related random walk that is easier to

analyze. In a (p,mja,b)' -random walk, a particle starts at the point

(a,b) , moves according to the following transition rule

(x+1,y) with probability (l-p)/2
(x, y+1)  with probability (1-p)/2

(%,y) = . o
(x-1,y) with probability p/2
(x,y-1) with probability p/2 ,
and stops when it hits the absorbing barrier x+y =m . We use
X! Y! s 2! for the random variables defined in the same way

a,b ’ “a,b a,b

Z Again, we shall see later that the particle

as Xa;b ? Ya,b ’ %a,b .

will eventually hit the absorbing barrier with probability 1

The value of Zé p can be evaluated rather precisely. In particular,
2

we have the following result when (&b ) is close to the origin.

Lemma 1. If a+b = 0(log m) , then
' RN log m
Za,b =35 2 \/ on(1-2p) O( o

Proof. See Section 3. (d

We also have the following result.

10
L 2. If a,b > log m , th
~ce 2. *® 2 Tog((1-p)/p) OB M2 TEeR
-9
_ [}
Za,b = Za,b + 0o(m 7)
Proof. See Section 3. O



Let
minf(1-2p)/8, p/8} ,

m
i

D

N = max 10 L 10

P 2 |7 1-ep log((l-p)/p) ¢ ~°

by
1-2p

A= A
and . I o
Clearly, >\.1'3 > 10/1log((l-p /p) . Define R = [rxlvalog mw,rxp log m1+1]°

Lemmas 1 and 2 combine to give the following formula:

o = g*\"ﬁ(ﬁTﬂJ’ O(}%ﬂ) for (a,b)eR . (1)
) m

We shall now use (1) to evaluate ZO 0 -
J

Z

Let t = FKP log mf+1l and S be the set of all sequences of

length t in {IL’IR’DL’DR} . For each s =s;8, . . . s €8, let

r(s) = TT ro(si) , where ro(si) = (l-p)/2 if S5 € {IL,IR} and
1<i<t

ro(si)_ p/2 if s. € kaDR} For each s €8 , let (fl&ﬁ,fgﬁﬂ) be

the position of the particle in a (p,m;0,0) -random walk after the

sequence s has been executed. Clearly, for each k ,

Pr(Zg,0 = k) = S{'Sr(s) Pr(zfl(s),fe(s) . B

As a result, we have

= L r(s) Z

seS

. (2)

20,0 £,(8), £,(s)



Now, let be any integer such that, if m > M , then t <m .
" _

Lemma 3. Suppose m > MP . Let 8, = {s | ses; (fl(s),fe(s)))éR} . Then

2 r(s) < 8m ™10

seSO -

Proof. We need the following fact (see Rényi [3, p. 200]). If the toss

of a certain coin has a probability v (0 < v < 1) to result in a "Head",

then after tossing the coin N times,

l-v v -1
0<3 <‘(2 ma.x<v ’l—v}) B

2
Pr(l# of "Heads" - vN| > 8N) < 20 / (bv(1-v))

we have, for any

(3)
For each seS , 1let #IL(S) s #IR(S) ’ #DL(S) ’ #DR(S) denote the
number of appearances of IL , IR , DL ’ DR in s , respectively. It
follows from (3) and the fact Lv(l-v) < 1 that, for a random seS
(weighted by r(s) , of course),
1l-p 2
Pr (#IL(S) aa-u tl > EPt) < 2 eXp(-ep t) ,
1- 2
Pr (#IR(S) - —22 t| > ept) <2 e}@(—ep t) ,
Pr( |#D (s)-2t|>et < 2 exp(-e2 t)
L 2 P = P ’
Pr{ |#D,(s) - 2 t] > e t < 2 ex-p(-e2 t) (4)
L 2 jo) - P :

As m > MP , the particle will not be absorbed in t steps Since
fj(s) <t for j e {1,2} , it follows that s ¢ 8o only if

fJ.(s) < |'7\:E) log ml for some j e {1,2} . Observe that

fl(s) > #IL(S) -#DL(S) and fe(s) > #IR(S)-#DR(S) . It is

10



straightforward to verify that fj(s) < ['Ki) log m| for some J e{l,2}
only if at least one of the conditions l#i(s) -I‘o(i)t| > ept , where

ie {IL,IR,DL,DR} , 1is satisfied. It follows then from (4) that,

-e_t
2 r(s) < lLe2e P o0 O

seSO

From (1), (2) and Lemma 3, we obtain that for m > M

14

0,0 = SESO r(s) Zfl(s),fe(s) +s ?SOI(S) Zfl(s),fg(s)

(% * \/ 2n(lm-2p) + (%)) (1- o@™9)) + o@™%)-o(m)

m o, m + 0 log mb .
2 2n(1-2p) \[nT

1]

This proves Theorem 1. O

1-2 o
Remark. Let N be any large integer such that TPN >m . Similar to

2
-ep N
the proof of Lemma 3, one can show that, with probability 1- O(e ) ’

the particle must have been absorbed in the first N steps in a

(pym;a,b) -random walk (or a (p,m;a,b)' -random walk). Let N —-= .

This shows that the particle will be absorbed with probability 1

11



3. Proofs of Lemma 1 and Lemma 2.

We need some basic facts about l-dimensional random walks (see
Feller [1]). Consider a random walk in l-dimension that starts at 0 ,
and at each step, moves to the left with probability p (0 < p < 1/2)
and to the right with probability 1-p . ret um,n(P) be the probability
that position m (m > 0) is reached for the first time at exactly the

n-th step. It is known (see Feller [1l, Chap. 14, formula (4.14)]) that

n+m n-m

——

m n 2 2
Um’n(P)= o ((n+m)/2) (1-p) D if n>m and n,m are
of the same parity. (5)

All other um’n(p) =0 . Clearly,

n
Fact 1. Let ny = m/(1-2p) and c = hp(l-p)/(l-EPf . Then

7. um, n(p)n = n,

n

%um,n(P)(n-no) = .0,
Proof. The generating function Uﬁ(z): > ouz' is equal to UKZ))m’

m n

>0

G(z) =(l -\/l-hp(l-p)z2 )/(E'PZ) ’

as can be directly verified. The first sum is given by

where

um,n(P)n = U&(l) = mG'(l) = 0

12



The second sum is then the variance of the sequence u (p)

2
n=0,1,2,... , regarded as a probability distribution. Thus, after
some calculations, we find

- W)+ U @) - (g)?

= m(@" (1) + G (1) - (a' (1))

= cpnO . =

We also need the following result (see Feller [l, Chap. 14, formula (2.8)]).

Fact 2. The probability that the above random walk ever reaches -z

(where z > 0 ) is equal to (p/(l-p))z

We state one more fact. Let £ be any number. For each se {a,B}n ’

let Wr(lz)(s) denote the quantity |[# of B — # of & — £| . Let Wr(lﬂ) be

the average value of W(Iflg)(s) , assuming that all oft sequences are

equally likely.
Fact 3. w =

Proof.

Y4 ‘ l n
(£) 2 —“(k)‘ k) - k—ll
0<k<n 2"

=
Il

B (n-gk-p) ¢ T <§><ek-<n—z>>]

kzn-lz

N
2|-k<‘n—é£ =z

13



1 n n |£]
= = 2 (L )(n-2k-2) + Z 2k - (—-—)
=2
= iﬂ 2 (E)(n—Zk) + o(£> + 0<-|-E—I> (7)
2 k<521- . i

n
We have used the fact (n = O(-e—— ) in the derivation.
An

Fact 3 follows from (7) and the following formulas, which can be

obtained in the standard way (see Knuth [2, Chapter 1]):

n
T (p)n-2x) = rn/zw(
k<3 ‘ Mn/27

n

2
. V=" @+ om)) . O
Mn/27
Proof of Lemma 1. Let m' = m- (atb) and f=ab . A (p,mja,b)' —-random

walk can be generated in the following way. First generate a sequence

*
Ee {I,D} one symbol at a time, each has a probability p to be a " D "
and probability 1l-p to be an " I ", until (#I-4#D) = m' for the
first time. Then convert § into a sequence s ¢ {IX’Iy’DX’Dy}
probabilistically by attaching with equal probability a suffix x or y ,
to each symbol in E . We now associate with s a walk starting from the
point (a,b) to an absorption point on xty = m , by interpreting each
I, IY, D> DY as a step moving from position (x,y) to (x+l,y) ,

(%,yt1) , (x-1,y) , (x,y-1) , respectively, It is easy to verify that

*

Y We have ignored here the possibility that g may be infinite. However,
or discussion is valid as the probability is zero for E to be
infinite (see the remark at the end of Section 2).

1L



this procedure indeed generates a (p,m;a,b)' -random walk. It is also
not difficult to see that, for each such s generated, the value of

z)  is given by (see Figure 3),
)

m hgsz
= 34
Z; p(8) T T

where h(s) = |(# of I, ¥ # of D) - (# of I+ # of Dy)’f‘ .

Note that, for each sequence § of n symbols, the average value of

h(s) for s derived from & 1is in fact equal to gifl) . Thus, we have

n _om
Za,b T3

ol | o

7 (Probability that |g| = n)-wr(f) .
n

It is easy to see that the quantity (probability that 1g| =n) is

exactly um,

rl(p) Hence
) .

N _ b,
Za,b = 3

I+

Z u n(p>wr(1£)

t
n s’}
Using Fact 3 and the fact { = 0(log m) , we have

1 1
T R §um,,n<p>(vz+ o(jg_—m)) C®

write +[n and l/\[rT as

Vo - «/?1-(';+ % (n—n('))(lﬂ('))_l/2 + O((n-nc’))g(né)-B/g) ,

and
1 1 -3/2
—_ = — o( |n-nt | (n}) )
O
0
S O((n-né)g(nc'))-5/2) for all n >1 .
%

15



X+y=m

Figure 3. An illustration for z! (s = m/2 + h(s)/2
2

b(

16



Substituting these'expressions into (8), and making use of ﬁ‘act 1, we

obtain
— _ By L o+ -n
Za,b T2 2n Z m',n(P) lQO onnt (n no)
0
. (n-ng))a\
+ 0(log m)- +

Ty syl )

n'
m 0 log m 1 _a1)2
= 5% J_En + 0 (L + —n& ? um,,n(p)(n no) )

_ m J m' log m
2 2n(1l-2p) + ™
As m' = m- O(log m) , the lemma follows. O

Proof of Lemma 2. Consider a (py=ja,b) -random walk, and let Aa,b)

be the probability that the particle will ever touch the reflecting
boundaries (x = 0 or y = 0) . By Fact 2, the probability for it to
touch x = 0 is (p/(l-p))a and for it to touch y = 0 is (P/(l‘P))b .
This implies that A(ab) < (o/(1-p)% + (p/ (1-p))° <_2m-lo

Since any walk that does not touch the reflecting barriers occurs

with the same probability in both the (pym;a,b) -random walk and the

(pym;a,b)' -random walk, we conclude that

— = -9
- t .
o - Tl S mbled) £ 2

This completes the proof of Lemma 2. a

17
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