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Abstract.

Consider the implementation of two stacks by letting them grow

towards each other in a table of size m . Suppose a random sequence

of insertions and deletions are executed, with each instruction having

a fixed probability p (0 <p < 1/2)to be a deletion. Let Aj (m)

denote the expected value of max {x,y} , where x and y are the

stack heights when the table first becomes full. We shall -prove that,

as m — © , Am) _ m/2 + Nm/(2n(1-2p)) + 0((log m)/m) . This gives
a solution to an open problem in Knuth [The Art of Computer Programming

Vol. 1, Exercise 2,2.2-13].
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| 1. Introduction.

The purpose of this paper is to give a solution to an open problem

of Knuth [2, Exercise 2.2.2-13], regarding the effectiveness of implementing

two stacks by letting them grow towards each other.

Consider a contiguous block of m locations, which we use to

implement two stacks. One stack grows from the leftend of the block

and the other from the rightend; we denote the heights of the stacks

by x andy (see Figure 1). One neasurer/ of the effectiveness of

the memory utilization for this scheme is the expected value of max{x,y}

when the two stacks first meet, 1.e., when xty =m. For example, suppose

the value of max{x,y} is 2m/3 . If we had used one block for each stack,

then we should have reserved at least Um/3 locations instead of the

present m locations. The following model was proposed in [2], with p

(0 < p< 1) as a parameter. Consider a sequence of stack operations to be

carried out, until the two stacks meet. Each instruction 1s either on the

left stack or on the right stack with equal probability; and for each

choice, there 1s a -probability p for it to be a deletion and probability

l-p to be an insertion. A deletion on an empty stack will not have any

effect. Let A (m) denote the expected value of max {x,y} when the two
stacks first meet. It was shown in Knuth [2, Exercise 2.2.2-12] that

A, (m) = m/2 + Sof (2n) + o(m™Y/3) . It was also stated [2, Exercise 2.2.2-13]
that lim A_(m) = 3m/4 for fixed m . Thus, in this model, there is

p-1 *

little gain in memory utilization for large m when only insertions are

mis measure 1s somewhat conservative. An alternative measure might be

the expected value of max{x,y}]at any time before the two stacks meet.
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Figure 1. Two stacks growing towards each other.
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present; whereas substantial gain results when deletions are overwhelmingly

dominant. The question asked was the behavior of A (m) for fixed p
and large m .

In this paper we prove the following result.

¥Theorem 1. Let pe (0,1/2) be a fixed number. Then

(m) _B. = + of oem
A 2 2 (1-2p) N™ |m

Thus, for such p , there is no substantial gain in memory utilization

asymptotically. Note that the formula 1s also true for p =0 , as

mentioned earlier.

We leave open the question of the asymptotic behavior of A (m)
when p > 1/2 .

*/
Here and throughout this paper, 1p is assumed to be fixed and the

constants in the O-notations may depend on p . Logarithms are the
natural logarithms (i.e., with base e ).



2. Random Walks.

It 1s convenient to cast the above model 1n random walk terminologies

(see Feller [1] for backgrounds on random walks). Let 11, , In denote

an insertion instruction for the left and the right stack, respectively,

and Dp ’ Dp a respective deletion instruction. We can regard the

| execution of a sequence of such instructions as a "particle" performing

| a "walk" on the integer lattice points in the plane, with the coordinates

(x,y) being the current heights of the stacks. For example, an

| instruction I. causes the particle to move from its current position

(x,y) to (xt1,y) . An instruction D, will cause the -particle to move

| from (x, y) to (x-1,y) , unless x= 0 (i.e., an empty left stack),

| in which case the position does not change. We shall call the line

| x = 0 a reflecting barrier, the line y = 0 being also a reflecting

barrier. The line x+y =m will be referred to as the absorbing barrier.

| By a (pym;a,b) -random walk, we mean a random walk on the plane
| that starts at an integer point (a,b) , moves according to the transition

| rules given below, and stops when any point on the absorbing barrier is
| reached (the -point reached 1s called the absorption point). We assume

hereafter that 0 < p < 1/2 , m>0, a>0,b >0, and atb <n .



The Transition Rules (cf. Figure 2): Suppose (x,y) 1s the present

| position. He next position (x',y') is given below.

J with probability

(+1, y) (1-p)/2

(x, y+1) (L-p)/2(a) If x # 0, y # 0, then (x',y') = ’ /
(x-1,¥) p/2
(x, y-1) p/2

(1,7) (1-p)/2

0, y+1 1-p)/2

: (b) If x= 0 , \Y 4 0 , then (x',5") = ( 24 ) ( P)/
(0,5) p/2

(0,y-1) p/2

(x+1,0)  (1-p)/2

; x, 1 1-p)/2(c) If x #0, y=0, then (x,y') = (% 1) (1-p)/
] (x-1,0) p/2

(x,0) p/2

| (1,0) (1-p)/2
(d) Ifx=0, y=0, then (x,y) = { (0,1) (1-p)/2

(0, 0) IY .

] Let (X .,Y .| denote the pair of random variables that have as
a,b’ "a,b

their values the coordinates (X,y) of the absorption point if the walk

ends on the absorbing barrier, and have values (0,0) if the walk never

reaches the absorbing barrier. The value (0,0) in this latter

i assignment is not important, as we shall see later (see the remark at the

end of this section) that it occurs only with probability 0 . Let

| Zab = max{X, Yo pl . The quantity of interest, Am) , 1s clearly

equal to 20, 0 ]
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Figure 2. The transition rules for the (p,m;a,b) -random walk.
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We begin by considering a related random walk that 1s easier to

analyze. In a (p,m3a,b)' -random walk, a particle starts at the point

(a,b) , moves according to the following transition rule

(x+1,y) with probability (1-p)/2

(5,7) (x, y*1) with probability (1-p)/2Xe) —

’ (x-1,¥) with probability p/2
(x,y-1) with probability p/2 ,

and stops when it hits the absorbing barrier xty =m . We use

1 t ! : : :

Xb 9 Tab P Zab for the random variables defined in the same way

as Xa, b ’ Ta,b ’ La, b Again, we shall see later that the particle
will eventually hit the absorbing barrier with probability 1 .

The value of 2 , can be evaluated rather precisely. In particular,2

we have the following result when (a,b) is close to the origin.

Lemma 1. If a+b = O(log m) , then

—— nm m logm

PyMN o((2&2)a,b “22 VV 2x(1-2p) Ny

Proof. See Section 3. J

We also have the following result.

Lemma 2 If a,b > — 10 m , then
EE— >" = log((1-p)/p) ’

CE FYE -9_ '

ab = A + Om 7) .

Proof. See Section 3.
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- Let

cy = min{(1-2p)/8, p/8} ,

A = max 19 BH LL
P 2 |’ 1-2p log((l-p)/p) ( ~’

b

1-2p
d N'Y = IN

an 5 Tp.

Lemmas 1 and 2 combine to give the following formula:

—_— m m log m= =— + + —_—— b . 1Za, 0 > J 75 1-57 of m ) for (a,b) eR (1)

h We shall now use (1) to evaluate Zo 0J

| Let t = JES log m]+1l and S be the set of all sequences of

length t in {I;,I0s Dry Dp) . For each s =s;s, . . . 5 ¢85, let

r(s) = 11 ro(s;) , where ry(s;) = (1-p)/2 if s, {I;,I;} and
1<i<t

ro(s;) = p/2 if s, ee {D> Dp} . For each s ¢S , let (£,(s),£,(s)) be

the position of the particle in a (p,m;0,0) -random walk after the

sequence Ss has been executed. Clearly, for each k ,

Pr(z. ~ = k) = 2. r(s) Pr(Z . kK)

As a result, we have

- z = 2 r(s) Z . (2)
0,0 Ses £1(s), f(s)

9



Now, let M, be any integer such that, 1f m > M , then © <m .— P

Lemma 3. Suppose m > My . Let 8, = {s ses 3 (£,(s),£,(s)) ¢R) . Then

2 r(s) < am
S € 9

Proof. We need the following fact (see Rényi [3, p. 200]). If the toss

of a certain coin has a probability v. (0 < v < 1) to result in a "Head",

then after tossing the coin N times, we have, for any

l-v wv -1
0 < —-< (: aa (2 =) ’

6°) (Uv (1-v))
Pr(|# of "Heads" - vlNN| > BN) < 2e (3)

For each seS , let #I.(s) ) #Ip(s) ) #0, (s) ’ #0 (5) denote the

number of appearances of I, , Iz , Dr , Dp in s , respectively. It

follows from (3) and the fact Lv(l-v) < 1 that, for a random seS

(weighted by r(s) , of course),

Pr(41.(s)- ZR t| > ¢ t) < 2 exp(-eo t)

1-p 2

Pr (#1502 - 5 t| >  ) <2 exp(-e t) ,
pr [4D (s) - 2 | > et ) < 2 exp(-c® t)

L 2 p —~ p '

Pr{ |#D, (s) - 14 t | > et < 2 exp(-e” t) (4)L 2 P —- je )

As m > Mo , the particle will not be absorbed in t steps. Since

£4(s) < t for je {1,2} , it follows that s ¢ 8, only if

£,(s) < A log m] for some j e {1,2} . Observe that

f(s) > #1, (s) - #D, (s) and f(s) > #Ig(s) - #D(s) . It is

10
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straightforward to verify that £,(s) < A log m] for some J e{1,2}

only if at least one of the conditions | 41 (s) - ro (1)t] > <b , where

ie REFRSNRUSINN , 1s satisfied. It follows then from (4) that,

_2t 10
2, rs) < Le2e P< 8m .

S € So

From (1), (2) and Lemma 3, we obtain that for m > M, ,

7 3 2. r(s) z + 2 r(s) Zz
0,0 = 5 ¢ a £,(s), f(s) s cS £,(s),f,(s)0 0

m m log m -10 -10= ET — (L-0(m 77)) + 0(m 7) 0(m)3 2n(1-2p) + (7 ))
_ mo, | nm, (len2 2n(1-2p) ( Jo

This proves Theorem 1. [J

1-2p _

Remark. Let N be any large integer such that 5 N>m. Similar to

-e N
the proof of Lemma 3, one can show that, with probability 1- 0\ © ’

the particle must have been absorbed in the first N steps in a

(p,mja,b) -random walk (or a (p,m;a,b)' -random walk). Let N - oo,

This shows that the particle will be absorbed with probability 1 .

11



3, Proofs of Lemma 1 and Lemma 2.

We need some basic facts about 1l-dimensional random walks (see

Feller [1l]). Consider a random walk in l-dimension that starts at 0 ,

and at each step, moves to the left with probability p (0 < p < 1/2)

and to the right with probability 1l-p . [et u ,(P) be the probability
2

that position m (m > 0) is reached for the first time at exactly the

n-th step. It is known (see Feller [1, Chap. 14, formula (4.1L4)]) that

n+m n-m

m el 2 2

Un, n(P) - Tn ( (xem) 2 ) (1-7) p if n>m and n,m are
of the same parity. (5)

All other uw (p) = 0 . Clearly,
M,N

n

Fact 1. Let ny = m/(1-2p) and ¢ = bp(1-p)/(1-2p). Then

2. %, , (Pn = nj,
n

2

z uo (@) (nny) = cy

Proof. The generating function U (z) = > ou zh ois equal to (G(z Hy |
— n>0 m,n
where

/ >G(z) = { -V 1-L4p(l-p)z (pz)
as can be directly verified. The first sum is given by

2 Ym, n (P) I = uy (1) = mG' (1) = Ny .

12



3

The second sum is then the variance of the sequence uw ,(P) ’4

n=0,1,2,... » regarded as a probability distribution. Thus, after

some calculations, we find

. 2 2
- = n + II! - !

Zy, (0) (an) = G1) + G@) = (a)

= m(@"(1) + 6' (1) - (6'(1))%)

= So 2

We also need the following result (see Feller [l, Chap. 14, formula (2.8)]).

Fact 2. The probability that the above random walk ever reaches -z

| (where z > 0) is equal to (p/(1-p))” .

We state one more fact. Let / be any number. For each se (0,8) /
{

let WH (s) denote the quantity |# of 8 — # of @ - 2] . Let wl ) be
the average value of ts) , assuming that all ol sequences are
equally likely.

£21+1

Fact 3. wit) = ep 0 1] ’
— Jn
Proof.

1 l n

wih) = 2 = (1 )] ow - k-g]
O0<k<n 2"

1 n n

- 1 2 ()(n-2k-yg)+ J (exten |2 | n-{ n-/{k<= £273



1 n £

= =| 2 (1) (n=2k- 1g) + 2 (nen | o( 1d)2 n n n

k<3 k>=

n
1 £

= — [2 = (7)(n-2k) + o(2))o(4) : (7)2 n An n
k<=

2

n oft
We have used the fact (3) = Of — in the derivation.

ny

Fact 3 follows from (7) and the following formulas, which can be

obtained in the standard way (see Knuth [2, Chapter 1]):
n

n

Z (g)a-2K) = we ) ;k<= (n/27
2

. 2 n
. —2 @+ on) . O

[n/27]

Proof of Lemma 1. Let m'= m- (atb) and f=a-b . A (p,m;a,b)' —random

walk can be generated in the following way. First generate a sequence

*

Ec {I,D} one symbol at a time, each has a probability p to be a " D "

and probability 1-p to be an " I ", until (#I -4#D) = m' for the

first time. Then convert § into a sequence s ¢ {Tp I,5D,5D ]
probabilistically by attaching with equal probability a suffix x or y ,

to each symbol in § . We now associate with s a walk starting from the

point (a,b) to an absorption point on xty = m , by interpreting each

I, > I, > D, D, as a step moving from position (x,y) to (x+l,y) ,

(x,y+1) , (x-1,y) , (x,y-1) , respectively, It is easy to verify that

x

We have ignored here the possibility that € may be infinite. However,
our discussion 1s valid as the probability is zero for g to be
infinite (see the remark at the end of Section 2).

2



a

this procedure indeed generates a (p,m;a;b)' —random walk. It is also

not difficult to see that, for each such s generated, the value of

Z) is given by (see Figure 3),J

' — = +

Ze, b(S) 2 2 ’

where h(s) = | (# of I, + # of D) - (# of I + # of D )-¢| .

Note that, for each sequence § of n symbols, the average value of

h(s) for s derived from€ 1s in fact equal to WA) . Thus, we have

7! = = + 1 >, (Probability that |€| = n). wk) .
a,b 2 2 hn n

It 1s easy to see that the quantity (probability that |€]| =n) 1s

exactly Worn (P) | Hence

oo. Bn, Z (2)
2,1 To 2 2 2 Yi (PW y

Using Fact 3 and the fact f = 0(log m) , we have

— 1 log m

Ze,b - 5 + [1 Zu (P) Wo + 0 =E2 ) . (8)ay n J Jo

Write In and 1/4n as

iN 1 -1/2 2 -3/2fn = fag + 3 (en) () 2 + o((an)Pa2) 2)
and

1 1 -3/2
— = m+ 0(|n-n4 | (ng) )
Jn Jn

0

- 14 0((n=n)?(n2) 2/2) for all n >1 .
vag

15
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m/2

h(s)/2 1
— — — -%- — 2/2

yy“I,.-D,) /2 i

Xty =m

Figure 3. An illustration for Z! ,(s = m/2 + h(s)/2
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Substituting these'expressions into (8), and making use of Fact 1, we

obtain

—— m / 1 y 1A = =+ \[==2 uw, (P|Vn + —— (n-n}!)

(n-n8)"
1 0

+ O(log m)s | —— +
t. !

Vong FoVio

n' 5
Ly = + 88 of + 25 u, ,(p)(n-n})

2 n vn) Tn ?

om, rim log m |2 2n(1l-2p) + [ar

As m' = m- O(log m) , the lemma follows. CO

Proof of Lemma 2. Consider a (pyxja,b) -random walk, and let Arla, b)

be the probability that the particle will ever touch the reflecting

boundaries (x = 0 or y = 0) . By Fact 2, the probability for it to

touch x = 0 1s (p/(1-p)) and for 1t to touch y = 0 1s (p/(1-p)) .
Co a b -10

This implies that  A(a,b) < (p/(1-p))" + (p/(1-p)) <2m .

Since any walk that does not touch the reflecting barriers occurs

with the same probability in both the (Psmja,b) -random walk and the

(pym3a,b)' -random walk, we conclude that

|Z ~ 2! | < meA(a,b) < om”?oN a,b a,b! =— —

This completes the proof of Lemma 2. 0
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