

AN ANALYSIS OF A MEMORY ALLOCATION SCHEME
FOR IMPLEMENTING STACKS

by

Andrew C. Yao

STAN-CS-79-708
January 1979

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY



An Analysis of a Memory Allocation Scheme
for Implementing Stacks $\frac{*}{\sim}$

Andrew C. Yao

Computer Science Department
Stanford University
Stanford, California 94305

Abstract.

Consider the implementation of two stacks by letting them grow towards each other in a table of size m . Suppose a random sequence of insertions and deletions are executed, with each instruction having a fixed probability p ($0 < p < 1/2$) to be a deletion. Let $A_p(m)$ denote the expected value of $\max\{x, y\}$, where x and y are the stack heights when the table first becomes full. We shall prove that, as $m \rightarrow \infty$, $A_p(m) = m/2 + \sqrt{m/(2\pi(1-2p))} + o((\log m)/\sqrt{m})$. This gives a solution to an open problem in Knuth [The Art of Computer Programming Vol. 1, Exercise 2.2.2-13].

$\frac{*}{\sim}$ This research was supported in part by National Science Foundation under grant MCS77-05313. Part of this paper was prepared while the author was visiting Bell Laboratories, Murray Hill, N.J.

1. Introduction.

The purpose of this paper is to give a solution to an open problem of Knuth [2, Exercise 2.2.2-13], regarding the effectiveness of implementing two stacks by letting them grow towards each other.

Consider a contiguous block of m locations, which we use to implement two stacks. One stack grows from the leftend of the block and the other from the rightend; we denote the heights of the stacks by x and y (see Figure 1). One measure^{*/} of the effectiveness of the memory utilization for this scheme is the expected value of $\max\{x,y\}$ when the two stacks first meet, i.e., when $x+y = m$. For example, suppose the value of $\max\{x,y\}$ is $2m/3$. If we had used one block for each stack, then we should have reserved at least $4m/3$ locations instead of the present m locations. The following model was proposed in [2], with p ($0 \leq p < 1$) as a parameter. Consider a sequence of stack operations to be carried out, until the two stacks meet. Each instruction is either on the left stack or on the right stack with equal probability; and for each choice, there is a probability p for it to be a deletion and probability $1-p$ to be an insertion. A deletion on an empty stack will not have any effect. Let $A_p(m)$ denote the expected value of $\max\{x,y\}$ when the two stacks first meet. It was shown in Knuth [2, Exercise 2.2.2-12] that $A_0(m) = m/2 + \sqrt{m/(2\pi)} + O(m^{-1/2})$. It was also stated [2, Exercise 2.2.2-13] that $\lim_{p \rightarrow 1} A_p(m) = 3m/4$ for fixed m . Thus, in this model, there is little gain in memory utilization for large m when only insertions are

^{*/} This measure is somewhat conservative. An alternative measure might be the expected value of $\max\{x,y\}$ at any time before the two stacks meet.

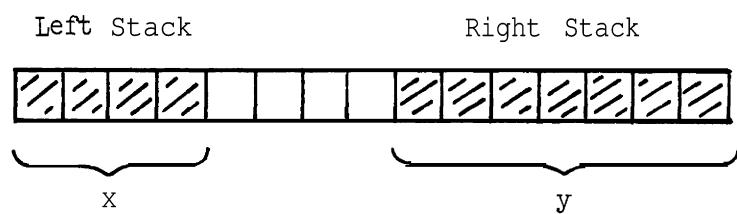


Figure 1. Two stacks growing towards each other.

present; whereas substantial gain results when deletions are overwhelmingly dominant. The question asked was the behavior of $A_p(m)$ for fixed p and large m .

In this paper we prove the following result.

Theorem 1. Let $p \in (0, 1/2)$ be a fixed number. Then $\underline{\text{*}}$

$$A_p(m) = \frac{m}{2} + \sqrt{\frac{m}{2\pi(1-2p)}} + O\left(\frac{\log m}{\sqrt{m}}\right)$$

Thus, for such p , there is no substantial gain in memory utilization asymptotically. Note that the formula is also true for $p = 0$, as mentioned earlier.

We leave open the question of the asymptotic behavior of $A_p(m)$ when $p \geq 1/2$.

$\underline{\text{*}}$ Here and throughout this paper, p is assumed to be fixed and the constants in the O -notations may depend on p . Logarithms are the natural logarithms (i.e., with base e).

2. Random Walks.

It is convenient to cast the above model in random walk terminologies (see Feller [1] for backgrounds on random walks). Let I_L , I_R denote an insertion instruction for the left and the right stack, respectively, and D_L , D_R a respective deletion instruction. We can regard the execution of a sequence of such instructions as a "particle" performing a "walk" on the integer lattice points in the plane, with the coordinates (x, y) being the current heights of the stacks. For example, an instruction I_L causes the particle to move from its current position (x, y) to $(x+1, y)$. An instruction D_L will cause the -particle to move from (x, y) to $(x-1, y)$, unless $x = 0$ (i.e., an empty left stack), in which case the position does not change. We shall call the line $x = 0$ a reflecting barrier, the line $y = 0$ being also a reflecting barrier. The line $x+y = m$ will be referred to as the absorbing barrier.

By a $(p, m; a, b)$ -random walk, we mean a random walk on the plane that starts at an integer point (a, b) , moves according to the transition rules given below, and stops when any point on the absorbing barrier is reached (the -point reached is called the absorption point). We assume hereafter that $0 < p < 1/2$, $m > 0$, $a \geq 0$, $b \geq 0$, and $a+b \leq m$.

The Transition Rules (cf. Figure 2): Suppose (x, y) is the present position. The next position (x', y') is given below.

with probability

$$(a) \text{ If } x \neq 0, y \neq 0, \text{ then } (x', y') = \begin{cases} (x+1, y) & (1-p)/2 \\ (x, y+1) & (1-p)/2 \\ (x-1, y) & p/2 \\ (x, y-1) & p/2 \end{cases},$$

$$(b) \text{ If } x = 0, y \neq 0, \text{ then } (x', y') = \begin{cases} (1, y) & (1-p)/2 \\ (0, y+1) & (1-p)/2 \\ (0, y) & p/2 \\ (0, y-1) & p/2 \end{cases}$$

$$(c) \text{ If } x \neq 0, y = 0, \text{ then } (x', y') = \begin{cases} (x+1, 0) & (1-p)/2 \\ (x, 1) & (1-p)/2 \\ (x-1, 0) & p/2 \\ (x, 0) & p/2 \end{cases},$$

$$(d) \text{ If } x = 0, y = 0, \text{ then } (x', y') = \begin{cases} (1, 0) & (1-p)/2 \\ (0, 1) & (1-p)/2 \\ (0, 0) & p \end{cases}.$$

Let $(X_{a,b}, Y_{a,b})$ denote the pair of random variables that have as their values the coordinates (x, y) of the absorption point if the walk ends on the absorbing barrier, and have values $(0, 0)$ if the walk never reaches the absorbing barrier. The value $(0, 0)$ in this latter assignment is not important, as we shall see later (see the remark at the end of this section) that it occurs only with probability 0. Let $Z_{a,b} = \max\{X_{a,b}, Y_{a,b}\}$. The quantity of interest, $A_p^{(m)}$, is clearly equal to $\overline{Z_{0,0}}$.

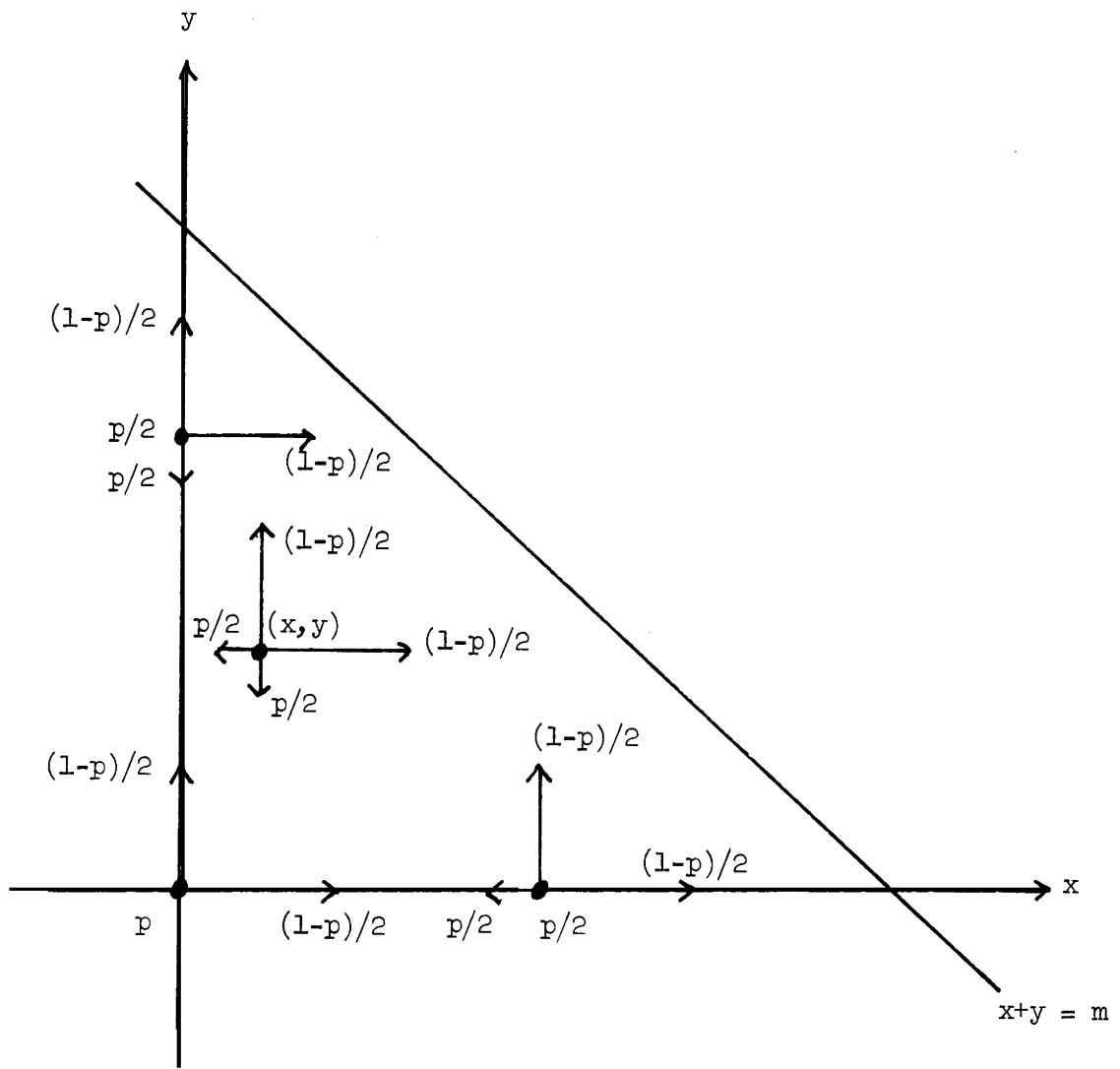


Figure 2. The transition rules for the $(p, m; a, b)$ -random walk.

We begin by considering a related random walk that is easier to analyze. In a $(p, m; a, b)$ -random walk, a particle starts at the point (a, b) , moves according to the following transition rule

$$(x, y) \rightarrow \begin{cases} (x+1, y) & \text{with probability } (1-p)/2 \\ (x, y+1) & \text{with probability } (1-p)/2 \\ (x-1, y) & \text{with probability } p/2 \\ (x, y-1) & \text{with probability } p/2 \end{cases}$$

and stops when it hits the absorbing barrier $x+y = m$. We use

$\overline{X}_{a,b}$, $\overline{Y}_{a,b}$, $\overline{Z}_{a,b}$ for the random variables defined in the same way as $X_{a,b}$, $Y_{a,b}$, $Z_{a,b}$. Again, we shall see later that the particle will eventually hit the absorbing barrier with probability 1.

The value of $\overline{Z}_{a,b}$ can be evaluated rather precisely. In particular, we have the following result when (a, b) is close to the origin.

Lemma 1. If $a+b = O(\log m)$, then

$$\overline{Z}_{a,b} = \frac{m}{2} + \sqrt{\frac{m}{2\pi(1-2p)}} + O\left(\frac{\log m}{\sqrt{m}}\right) .$$

Proof. See Section 3. \square

We also have the following result.

Lemma 2. If $a, b \geq \frac{10}{\log((1-p)/p)} \log m$, then

$$\overline{Z}_{a,b} = \overline{Z}_{a,b} + O(m^{-9}) .$$

Proof. See Section 3. \square

Let

$$\epsilon_p = \min\{(1-2p)/8, p/8\} ,$$

$$\lambda_p = \max \left\{ \left\lceil \frac{10}{\epsilon_p^2} \right\rceil, \frac{4}{1-2p} \frac{10}{\log((1-p)/p)} \right\} ,$$

and $\lambda'_p = \frac{1-2p}{4} \lambda_p$.

Clearly, $\lambda'_p \geq 10/\log((1-p)/p)$. Define $R = [\lceil \lambda'_p \log m \rceil, \lceil \lambda'_p \log m \rceil + 1]^2$.

Lemmas 1 and 2 combine to give the following formula:

$$\overline{z_{a,b}} = \frac{m}{2} + \sqrt{\frac{m}{2\pi(1-2p)}} + O\left(\frac{\log m}{\sqrt{m}}\right) \quad \text{for } (a,b) \in R . \quad (1)$$

We shall now use (1) to evaluate $\overline{z_{0,0}}$.

Let $t = \lceil \lambda'_p \log m \rceil + 1$ and S be the set of all sequences of length t in $\{I_L, I_R, D_L, D_R\}$. For each $s = s_1 s_2 \dots s_t \in S$, let $r(s) = \prod_{1 \leq i \leq t} r_0(s_i)$, where $r_0(s_i) = (1-p)/2$ if $s_i \in \{I_L, I_R\}$ and $r_0(s_i) = p/2$ if $s_i \in \{D_L, D_R\}$. For each $s \in S$, let $(f_1(s), f_2(s))$ be the position of the particle in a $(p, m; 0, 0)$ -random walk after the sequence s has been executed. Clearly, for each k ,

$$\Pr(z_{0,0} = k) = \sum_{s \in S} r(s) \Pr(z_{f_1(s), f_2(s)} = k) .$$

As a result, we have

$$\overline{z_{0,0}} = \sum_{s \in S} r(s) \overline{z_{f_1(s), f_2(s)}} . \quad (2)$$

Now, let M_p be any integer such that, if $m > M_p$, then $t < m$.

Lemma 3. Suppose $m \geq M_p$. Let $S_0 = \{s \mid s \in S; (f_1(s), f_2(s)) \notin R\}$. Then

$$\sum_{s \in S_0} r(s) \leq 8m^{-10} .$$

Proof. We need the following fact (see Rényi [3, p. 200]). If the toss of a certain coin has a probability v ($0 < v < 1$) to result in a "Head", then after tossing the coin N times, we have, for any

$$0 < \delta < \left(2 \max \left\{ \frac{1-v}{v}, \frac{v}{1-v} \right\} \right)^{-1} ,$$

$$\Pr(|\# \text{ of "Heads"} - vN| > \delta N) \leq 2e^{-N\delta^2/(4v(1-v))} . \quad (3)$$

For each $s \in S$, let $\#I_L(s)$, $\#I_R(s)$, $\#D_L(s)$, $\#D_R(s)$ denote the number of appearances of I_L , I_R , D_L , D_R in s , respectively. It follows from (3) and the fact $4v(1-v) < 1$ that, for a random $s \in S$ (weighted by $r(s)$, of course),

$$\Pr \left(|\#I_L(s) - \frac{1-p}{2} t| > \epsilon_p t \right) \leq 2 \exp(-\epsilon_p^2 t) ,$$

$$\Pr \left(|\#I_R(s) - \frac{1-p}{2} t| > \epsilon_p t \right) \leq 2 \exp(-\epsilon_p^2 t) ,$$

$$\Pr \left(|\#D_L(s) - \frac{p}{2} t| > \epsilon_p t \right) \leq 2 \exp(-\epsilon_p^2 t) ,$$

$$\Pr \left(|\#D_R(s) - \frac{p}{2} t| > \epsilon_p t \right) \leq 2 \exp(-\epsilon_p^2 t) . \quad (4)$$

As $m \geq M_p$, the particle will not be absorbed in t steps. Since $f_j(s) \leq t$ for $j \in \{1, 2\}$, it follows that $s \in S_0$ only if $f_j(s) \leq \lceil \lambda_p^{-1} \log m \rceil$ for some $j \in \{1, 2\}$. Observe that $f_1(s) \geq \#I_L(s) - \#D_L(s)$ and $f_2(s) > \#I_R(s) - \#D_R(s)$. It is

straightforward to verify that $f_j(s) \leq \lceil \lambda'_p \log m \rceil$ for some $j \in \{1, 2\}$ only if at least one of the conditions $|\#i(s) - r_0(i)t| > \epsilon_p^2 t$, where $i \in \{I_L, I_R, D_L, D_R\}$, is satisfied. It follows then from (4) that,

$$\sum_{s \in S_0} r(s) \leq 4 \cdot 2e^{-\epsilon_p^2 t} < 8m^{-10} . \quad \square$$

From (1), (2) and Lemma 3, we obtain that for $m \geq M_p$,

$$\begin{aligned} \overline{z_{0,0}} &= \sum_{s \notin S_0} r(s) \overline{z_{f_1(s), f_2(s)}} + \sum_{s \in S_0} r(s) \overline{z_{f_1(s), f_2(s)}} \\ &= \left(\frac{m}{2} + \sqrt{\frac{m}{2\pi(1-2p)}} + \left(\frac{\log m}{\sqrt{m}} \right) \right) (1 - o(m^{-10})) + o(m^{-10}) \cdot o(m) \\ &= \frac{m}{2} + \sqrt{\frac{m}{2\pi(1-2p)}} + o\left(\frac{\log m}{\sqrt{m}}\right) . \end{aligned}$$

This proves Theorem 1. \square

Remark. Let N be any large integer such that $\frac{1-2p}{8}N > m$. Similar to the proof of Lemma 3, one can show that, with probability $1 - o\left(e^{-\epsilon_p^2 N}\right)$,

the particle must have been absorbed in the first N steps in a $(p, m; a, b)$ -random walk (or a $(p, m; a, b)'$ -random walk). Let $N \rightarrow \infty$.

This shows that the particle will be absorbed with probability 1.

3. Proofs of Lemma 1 and Lemma 2.

We need some basic facts about 1-dimensional random walks (see Feller [1]). Consider a random walk in 1-dimension that starts at 0, and at each step, moves to the left with probability p ($0 < p < 1/2$) and to the right with probability $1-p$. Let $u_{m,n}(p)$ be the probability that position m ($m > 0$) is reached for the first time at exactly the n -th step. It is known (see Feller [1, Chap. 14, formula (4.14)]) that

$$u_{m,n}(p) = \frac{m}{n} \binom{n}{(n+m)/2} (1-p)^{\frac{n+m}{2}} p^{\frac{n-m}{2}} \quad \text{if } n \geq m \text{ and } n, m \text{ are of the same parity.} \quad (5)$$

All other $u_{m,n}(p) = 0$. Clearly,

$$\sum_n u_{m,n}(p) = 1. \quad (6)$$

Fact 1. Let $n_0 = m/(1-2p)$ and $c_p = 4p(1-p)/(1-2p)^2$. Then

$$\sum_n u_{m,n}(p)n = n_0$$

$$\sum_n u_{m,n}(p)(n-n_0)^2 = c_p n_0 .$$

Proof. The generating function $U_m(z) = \sum_{n \geq 0} u_{m,n} z^n$ is equal to $(G(z))^m$, where

$$G(z) = \left(1 - \sqrt{1 - 4p(1-p)z^2} \right) / (2pz) ,$$

as can be directly verified. The first sum is given by

$$\sum_n u_{m,n}(p)n = U'_m(1) = mG'(1) = n_0 .$$

The second sum is then the variance of the sequence $u_{m,n}(p)$,
 $n = 0, 1, 2, \dots$, regarded as a probability distribution. Thus, after some calculations, we find

$$\begin{aligned}\sum_n u_{m,n}(p)(n-n_0)^2 &= U_m''(1) + U_m'(1) - (U_m'(1))^2 \\ &= m(G''(1) + G'(1) - (G'(1))^2) \\ &= c_{p,0}^n . \quad \square\end{aligned}$$

We also need the following result (see Feller [1, Chap. 14, formula (2.8)]).

Fact 2. The probability that the above random walk ever reaches $-z$ (where $z > 0$) is equal to $(p/(1-p))^z$.

We state one more fact. Let ℓ be any number. For each $\{\alpha, \beta\}^n$, let $w_n^{(\ell)}(s)$ denote the quantity $|\# \text{ of } \beta - \# \text{ of } \alpha - \ell|$. Let $w_n^{(\ell)}$ be the average value of $w_n^{(\ell)}(s)$, assuming that all 2^n sequences are equally likely.

Fact 3. $w_n^{(\ell)} = \sqrt{\frac{2n}{\pi}} + O\left(\frac{|\ell|+1}{\sqrt{n}}\right) ,$

Proof.

$$\begin{aligned}w_n^{(\ell)} &= \sum_{0 \leq k \leq n} \frac{1}{2^n} \binom{n}{k} |\binom{n}{n-k} - \binom{n}{k} - \ell| \\ &= \frac{1}{2^n} \left[\sum_{k < \frac{n-\ell}{2}} \binom{n}{k} (n-2k-\ell) + \sum_{k \geq \frac{n-\ell}{2}} \binom{n}{k} (2k-(n-\ell)) \right]\end{aligned}$$

$$\begin{aligned}
&= \frac{1}{2^n} \left[\sum_{k < \frac{n}{2}} \binom{n}{k} (n - 2k - \ell) + \sum_{k \geq \frac{n}{2}} \binom{n}{k} (2k - n + \ell) \right] + o\left(\frac{|\ell|}{\sqrt{n}}\right) \\
&= \frac{1}{2^n} \left(2 \sum_{k < \frac{n}{2}} \binom{n}{k} (n - 2k) + o\left(\frac{2^n}{\sqrt{n}}\right) \right) + o\left(\frac{|\ell|}{\sqrt{n}}\right). \quad (7)
\end{aligned}$$

We have used the fact $\binom{n}{k} = o\left(\frac{2^n}{\sqrt{n}}\right)$ in the derivation.

Fact 3 follows from (7) and the following formulas, which can be obtained in the standard way (see Knuth [2, Chapter 1]):

$$\begin{aligned}
\sum_{k < \frac{n}{2}} \binom{n}{k} (n - 2k) &= \lceil n/2 \rceil \binom{n}{\lceil n/2 \rceil}, \\
\binom{n}{\lceil n/2 \rceil} &= \sqrt{\frac{2}{\pi n}} 2^n (1 + o(1/n)). \quad \square
\end{aligned}$$

Proof of Lemma 1. Let $m' = m - (a+b)$ and $\ell = a-b$. A $(p, m; a, b)$ '-random walk can be generated in the following way. First generate a sequence $\xi \in \{I, D\}^*$ one symbol at a time, each has a probability p to be a "D" and probability $1-p$ to be an "I", until $(\#I - \#D) = m'$ for the first time. ^{*/} Then convert ξ into a sequence $s \in \{I_x, I_y, D_x, D_y\}^*$ probabilistically by attaching with equal probability a suffix x or y , to each symbol in ξ . We now associate with s a walk starting from the point (a, b) to an absorption point on $x+y = m$, by interpreting each I_x, I_y, D_x, D_y as a step moving from position (x, y) to $(x+1, y)$, $(x, y+1)$, $(x-1, y)$, $(x, y-1)$, respectively. It is easy to verify that

^{*/} We have ignored here the possibility that ξ may be infinite. However, our discussion is valid as the probability is zero for ξ to be infinite (see the remark at the end of Section 2).

this procedure indeed generates a $(p, m; a, b)'$ -random walk. It is also not difficult to see that, for each such s generated, the value of $z'_{a,b}(s)$ is given by (see Figure 3),

$$z'_{a,b}(s) = \frac{m}{2} + \frac{h(s)}{2} ,$$

where $h(s) = |(\# \text{ of } I_y + \# \text{ of } D_x) - (\# \text{ of } I_x + \# \text{ of } D_y) - \ell|$.

Note that, for each sequence ξ of n symbols, the average value of $h(s)$ for s derived from ξ is in fact equal to $\frac{(\ell)}{w_n}$. Thus, we have

$$\overline{z'_{a,b}} = \frac{m}{2} + \frac{1}{2} \sum_n (\text{Probability that } |\xi| = n) \cdot w_n^{(\ell)} .$$

It is easy to see that the quantity (probability that $|\xi| = n$) is exactly $u_{m',n}(p)$. Hence

$$\overline{z'_{a,b}} = \frac{m}{2} + \frac{1}{2} \sum_n u_{m',n}(p) w_n^{(\ell)} .$$

Using Fact 3 and the fact $\ell = O(\log m)$, we have

$$\overline{z'_{a,b}} = \frac{m}{2} + \sqrt{\frac{1}{2\pi}} \sum_n u_{m',n}(p) \left(\sqrt{n} + O\left(\frac{\log m}{\sqrt{n}}\right) \right) . \quad (8)$$

Write \sqrt{n} and $1/\sqrt{n}$ as

$$\sqrt{n} = \sqrt{n'_0} + \frac{1}{2} (n - n'_0) (n'_0)^{-1/2} + O((n - n'_0)^2 (n'_0)^{-3/2}) ,$$

and

$$\begin{aligned} \frac{1}{\sqrt{n}} &= \frac{1}{\sqrt{n'_0}} + O(|n - n'_0| (n'_0)^{-3/2}) \\ &= \frac{1}{\sqrt{n'_0}} + O((n - n'_0)^2 (n'_0)^{-3/2}) \quad \text{for all } n \geq 1 . \end{aligned}$$

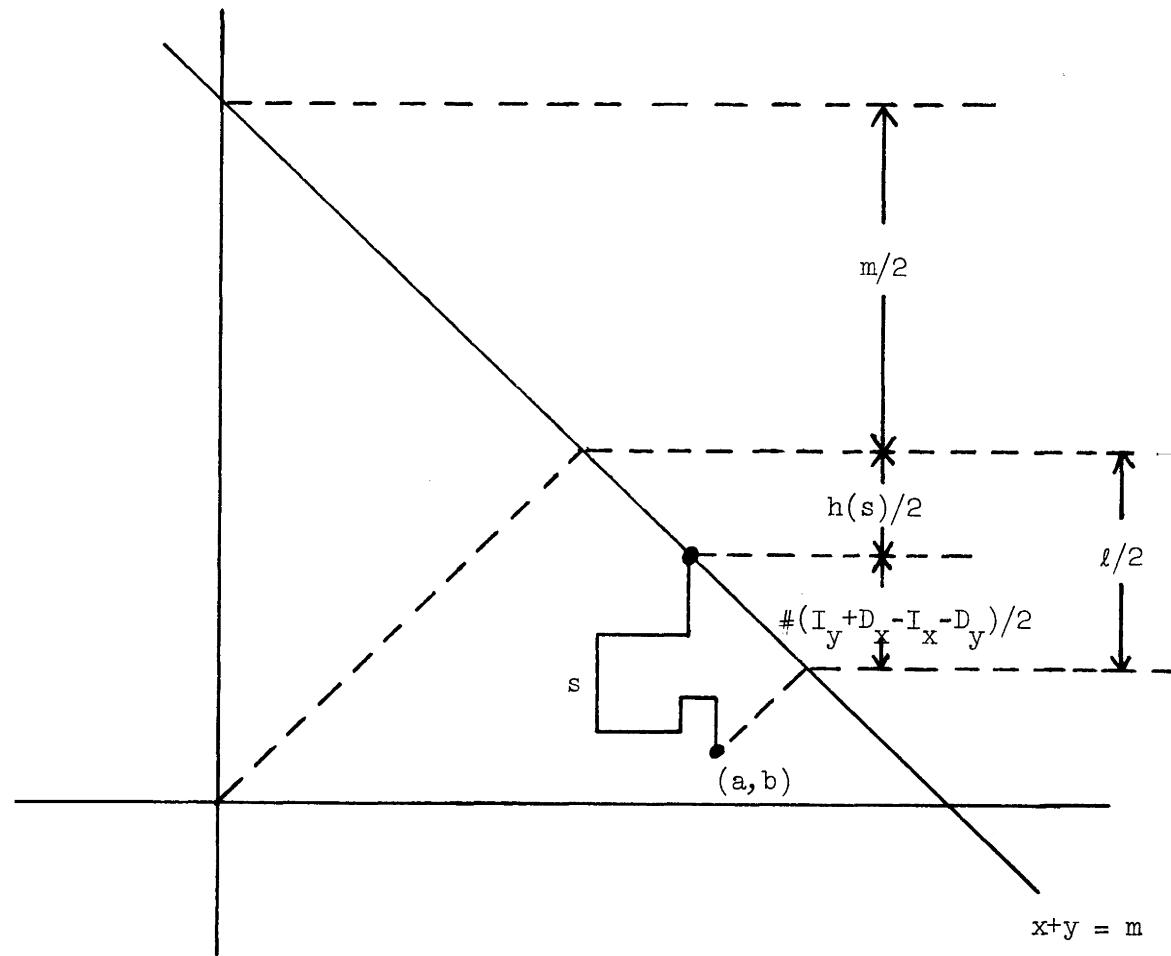


Figure 3. An illustration for $z'_{a,b}(s) = m/2 + h(s)/2$

Substituting these expressions into (8), and making use of Fact 1, we obtain

$$\begin{aligned}
 \overline{Z'_{a,b}} &= \frac{m}{2} + \sqrt{\frac{1}{2\pi}} \sum_n u_{m',n}(p) \left(\sqrt{n'_0} + \frac{1}{2\sqrt{n'_0}} (n - n'_0) \right. \\
 &\quad \left. + O(\log m) \cdot \left(\frac{1}{\sqrt{n'_0}} + \frac{(n - n'_0)^2}{n'_0 \sqrt{n'_0}} \right) \right) \\
 &= \frac{m}{2} + \sqrt{\frac{n'_0}{2\pi}} + \frac{\log m}{\sqrt{n'_0}} O \left(1 + \frac{1}{n'_0} \sum_n u_{m',n}(p) (n - n'_0)^2 \right) \\
 &= \frac{m}{2} + \sqrt{\frac{m'}{2\pi(1-2p)}} + \left(\frac{\log m}{\sqrt{m'}} \right)
 \end{aligned}$$

As $m' = m - O(\log m)$, the lemma follows. \square

Proof of Lemma 2. Consider a $(p, \infty; a, b)$ -random walk, and let $\Delta(a, b)$ be the probability that the particle will ever touch the reflecting boundaries ($x = 0$ or $y = 0$). By Fact 2, the probability for it to touch $x = 0$ is $(p/(1-p))^a$ and for it to touch $y = 0$ is $(p/(1-p))^b$. This implies that $\Delta(a, b) \leq (p/(1-p))^a + (p/(1-p))^b \leq 2m^{-10}$.

Since any walk that does not touch the reflecting barriers occurs with the same probability in both the $(p, m; a, b)$ -random walk and the $(p, m; a, b)'$ -random walk, we conclude that

$$|\overline{Z_{a,b}} - \overline{Z'_{a,b}}| \leq m \cdot \Delta(a, b) \leq 2m^{-9}$$

This completes the proof of Lemma 2. \square

References

- [1] W. Feller, An Introduction to Probability Theory and Its Applications, Volume I, John Wiley and Sons, New York, **1968**, 3rd edition.
- [2] D. E. Knuth, The Art of Computer Programming, Volume 1, Addison-Wesley, Reading, Mass., 1975, 2nd edition.
- [3] A. Rényi, Foundations of Probability, Holden-Day, San Francisco, 1970.