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Abstract.

One classical sorting algorithm, whose performance in many cases
remains unanalyzed, is Shellsort. Let B be a t—-component vector of
positive integers. An E-Shellsort will sort any given n elements
in t passes, by means of comparisons and exchanges of elements. Let
Sj(ﬁﬂﬂ denote the average number of element exchanges in the j-th
pass, assuming that all the n! initial orderings are equally likely.
In this paper we derive asymptotic formulas of Sj(ﬁuﬂ for any fixed
b= (h,k,1) , making use of a new combinatorial interpretation of 33

For the special case H::(B,E,l) , the analysis is further sharpened

to yield exact expressions.

f/ This work was supported in part by National Science Foundation under
grant MCS77-05313. Part of this work was done while the author was
on leave at Bell Laboratories, 600 Mountain Avenue, Murray Hill,

New Jersey O797h.



1. Introduction.

The analysis of sorting algorithms has been a prototype for the

mathematical analysis of algorithms (Knuth [2]1[3], Sedgewick [7]). One

classical sorting algorithm, whose performance remains unanalyzed in
most cases, is the Shellsort proposed by D. L. Shell [8] in 1959. All
the known analytic results about this algorithm can be found in Knuth
[2, Sec. 5.2.1] and Pratt [4]. In this paper, we will -present some new
results concerning the average-case performance of Shellsort,

£o17 c .,h2,hl) be a vector of positive integers with

hl =1 . An h-shellsort on a list (or, an array) LIO: n-1] of n
elements performs an in-place sort in t passes, using comparisons and exchanges

*
of the elements. In the j-th pass, (1 < j <t) , a straight-insertion sortJ

is done to each of the ht-j+l sublists, where the i-th sublist

(0<i< ht_j+l) consists of L[i], L[i+ht_j+l] » L1+ Eht_j+l] PR
Assuming that all n! initial orderings of the elements are equally
likely, let Sj(ﬁ;n) be the average number of element exchanges in the
j-th pass. The determination of S.(ff;n) , a standard performance measure
for Shellsort, poses challenging mathematical questions. So far, the only
completely analyzed case is when hi divides hi+l for each 1 < i <t
(see Knuth [2]). In the present paper, we derive asymptotic formulas

for Sj(l_{;n) when b = (hyk,1) is fixed and n » » . In the derivation
an interesting combinatorial interpretation of 35((h:k:l)5n) will be

introduced. For the special case = (3,2,1) , we further refine the

analysis to give exact expressions for Sj(h;n)

*
—/ See Knuth [2] for a description of the straight-insertion sort.



2. Preliminaries.

Let L = (ao,al,ag,...,an l) be a list of distinct real numbers. An
inversion in L is a pair {i,j} such that i < j and a; > a. - The
total number of inversions in L is denoted by I(L) . Clearly, the
concept of inversion depends only on the ordering of the au - It is
known (Knuth [2, equation 5.1.1-(12)]) that the expected value of I(L)
is n(n-1)/4% for a random list L (i.e., all n! permutations of a;
are equally likely).

For any sublist L' of L , the number of inversions I(L') can
be defined in an obvious way. An important property of inversions is
that, when we perform a straight-insertion sort into ascending order
a sublist L' , the number of element exchanges is exactly equal to I(L') .
Thus, Sj(ﬁuﬂ is the sum of the average number of inversions in all the

h sublists that are to be sorted in the j-th pass.

t-j+1

For a list L of n elements, let L(h’J) (0 < j < h) denote the
sublist (L{j],L[j+h],L[j+2h],...) of length [ (nth-1-j)/h| . We will
L(h’ J) are

(b, 3)

call L h-ordered if, for each 0 < j < h , the elements in
in ascending order. We say that we h-sort L , if we sort each L
(0 < j <h) separately into ascending order.

Instead of drawing a list L as a single array, it is often

conveninet to show L in an h-row representation (Figure 1). The list

is arranged in h rows, so that the j-th row (1 < j < h) contains the
sublist L(h’J—l) . Thus, to h-sort L is to sort the elements in each
row separately.

An h-ordered list LIO: n-1] is a random h-ordered list if any

ordering of its elements consistent with h-ordering is equally likely,
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L(BJO) - a

L)

(3,2)
L7250 = ey | 85 wg 81y nyy

Figure 1. A list L and its 3 -row representation.




It is not difficult to see that, if we h-sort a random list L , the
resulting array is a random h-ordered list. We remark that, if L is
a random h-ordered list and 0 < i < j < h , then the union of row

i+l and row J+l1 forms a random 2-ordered list, ie., the sublist

L{i] , ©[j] , L{i+h] , L[j+h] , L[i+2h], L[j+3h], . . . is a random 2-ordered
list. Note that An , the average number of inversions in a random

2-ordered list of n elements, is given by (see Kauth [2, Sec. 5.2.1])

A = Ln/gjzn-g/( Ln?2_|) : (2)

Asymptotically,

A = Wn/128 n3/2 + O(JH) . (2)

n

Remark on the O-notation. In Section b4, Appendix, and in the statement

of Lemma 2, the constants in the O-notation are dependent on h and k.

Everywhere else, the constants are absolute constants.



3, Asymptotics for the (3,2,1) Case.

In this section we present our basic approach, by analyzing the
asymptotic performance of the (3,2,1) -Shellsort on a random list L

of n elements. It will be shown that, for h =(3,2,1) ,

s;(M5n) = n°/12 + o(m) , 3)
Sg(ﬁ;n) = '\/;7192 nB/E + 0(n) > (4)
s, (B3n) = /4 + 0 (n?/3y (5)

Several facts for use in later sections will also be given.

Analysis of Pass 1.

Consider L in a 3-row representation (see Figure 1). In the first

pass of the (3,2,1)-Shellsort, each row is sorted by a straight-insertion
sort. Thus, Sl(l?;n) is equal to the expected value of the sum

i *
2 I(L(B’J)). As each row is initially a random list, we have-J

s.(hsn) = 2 n.(n.-1)/% , (6)
1 o<i<e ivi

with ng = L (nt2-i)/3 | . Asymptotically,
s, (h;n) = n2/12 + o(n) ,

which is (3).

*
¥/ here and hereafter, we will often use the fact E(Z Xi) = 2 E(Xi)
i i

for any variables Xi , without explicit reference to it. (E(Xi) is

the expected value of X, .)



Analysis of Pass 2.

For the moment, assume that n = 3m for some integer m > 0 . At
the end of Pass 1, we have a random 3 -ordered list I, . Pass 2 will
perform a straight-insertion sort for the sublists L(2’O> (the "shaded"

list in Figure 2) and L(E’l)

(the "blank" list in Figure 2), separately.
Let Séa)(n) denote the average number of inversions in L(E"J) '

j € {0,1} . We have
s, n) = 50 + s (1)

Now, consider a 2 -ordered list L' = (a'O’bO’al’bl’a2’b2’""am—l’bm l)
in a 2 -row representation (Figure 3). Define four sublists as follows:

Leven, even (8ps PprassPpsa)sDys. L) s

Leven, odd - (a O;bl ,a,\’b 2 3, a\,,b 4 5’““) ?
Lodd, even (bO’ al’bE’aB’bh’ 8oy e DI
Load,oaa = (819Pys855b5585,b050000)
For each O,B ¢ {even,odd} , let Xa 5 denote the random variable, defined
)
on the set of L', corresponding to the number of inversions in Loc 57
b
and let B (em) = E(X, .) for a random 2-ordered L' . Clearly,
a} 5 a)B
2 B (2m) = average # of inversions in L'

a5 VP

Aoy (®)

Returning to the evaluation of § we observe that the union of

2 14
any two rows in Figure 2 is a random 2 -ordered list at the start of

Pass 2. It follows that

(0) -
857" (n) = Beven,odd(em) * Bodd,even(em) * Beven,even(em) ’



N

Figure 2. The sublists L(E’O) (the "shaded" list)

(2,1)

and L (the "blank™ 1list).

Figure 3. A 2-ordered list L' .



and

Sél)(n) = (em +B (2m) +

odd, even even, odd Bodd, odd (2 )

Together with (7) and (8), these lead to

SE(H;n) = A2m + (Beven,odd(gm) * Bodd,even(Em)) ‘ (9)

It remains to evaluate B (2m) . A 'precise

+
even, odd(2m) Bodd, even
calculation is possible (see Section 5), but here we will determine it
only asymptotically.

We assert that

Ba,B(Qm) = %:—Azm + 0(m) for a,B e {even,0dd} . (10)

Suppose (10) is true. It then follows from (9), (10) and (2) that
Sg(h;n) = '\/n/l92 n3/2 + 0(n) ,

which is (4).

It remains to prove (lO), which we will show in a more general form.
Let k >1 be an integer and L' = (aO’bO’al’bl’aQ’bE"") a 2-ordered
list of n elements. For each 0 <i,j < k , let L.i i denote the list

2

(ai’bj’ai+k’bj+k’ai+2k’bj+2k"’") if 1< 3j, and the list

(bJ-,ai,bj+k,ai+k,bj+2k,ai+2k,....) if i >3 . Define ¥, ;to be the
random variable whose value for L' is the number of inversions in Li 3
2
k
and let Bg ).(n) = E(Y. ,) be the expected value of Y, . for a
1,J 1L, J 1

(2)
1]
(2m) defined earlier, provided we identify " 0 " with "even" and

random 2 -ordered list L', It is clear that B, %(2m) are the

B. .
1,d
"1 " with "odd" in the subscripts. Thus, formula (10) is a special

case of the following result.

)



)

2
Lemma 1. For any fixed k > 1 , Bi,j = Ah/k + O(n/k) for 'any

i,j € {O’l,2,-¢o,k-l} .

k 3/2
Corollary. (,3 = Nn/128 n / /k + o(n/k) .
Proof. Define the following random variables on the set of 2-ordered
lists L'
(1 ifa < b
S for 0<t < s< [n/21
L O otherwise
1 if a_>b
v < { S t for 0<s<t<|n/2] ,
s/t = 0 otherwise
0 otherwise
Then,
Y. . = Z y .t (’-'L:L)
12d s mod k=3i° :
t mod k=]

-x- . .
We wish to prove that,—/ for 0<i# j<k,

- v n/k (12)
Yi,i i,3 + O( / ) ?
and
— (15)
Yj,j = Yi,j + O0(n/k) .
(k)

This would imply the lemma, since all'Y )3 (and hence

\+>)
(i3 1( n) ) would
be equal up to an additive O(n/k) term, whereas ZZ.Bl 3( n) = A .
)

—/ An equality (or inequality) involving random variables is valid if and
only if, for every event in the sample space, the val%es of the random
variables satisfy the given formula. For example, (12) is equivalent to

the following statement: there exists a constant c such that, for
any L' , |Y, .-v. .| <en/k.
l’l l,J

10



We will only prove (12); the proof of (13)is similar. For any t
satisfying t mod k = 1 , let t+ = t+ (j-1) and t_ = t- (k+i-j)
if 1 < 3, and t+ = t+ (k+j-i) and t = t- (i-j) if i > j
Then t_ and t are, respectively, the smallest t' >t and the
largest t' < t that satisfy t'mod k = j . For the rest of the proof
of Lemma 1, we use variables s , t , t' exclusively for integers
satisfying s mod k =t mod k =1 and t'mod k = j , and when they
appear in a summation, 1t 1s understood that they only range over such

values.

From the definition of ¥ and the fact that L' is 2-ordered,

u,v
we deduce
i +
Vs, - < ys,t < ys,t+ if s > t+k , (1)
and
ys,t+ < ys,t < ys,t_ if t > s+k . (15)

Now, noting that 0 < yu v < 1 , we have
~Ju,y =

Eyt=2yt-2y’t

s>t+k °? s>t 9 tHk>s>1t ©

- Vs 4 - o(n/k)

s>t
2y = Z ¥ - y
s t
s>t+k 50 ¥ s>t S b tk>s>t 74
= Z y ] - O(n/k') 2
s>t s %
and
Z oy - 2 v - Iy
s>t+k 52 L s>t 9 tixss>t o0
= Z y 1 . O(n/k)
s>t S &

11



Together with (1), this implies

>y - o(n/k) < T ¥ < Z V.4 T O(n/k)
s>t 5o Y s>t St s>‘c's’t

A similar argument using (15) gives

Z - O(n/k) < T vy < 2 y.. * O(n/k)
S<'t' S,t' S-<_'t S,t Sft' S,t

Adding up (16) and (17), we obtain (12).

This completes the proof of Lemma 1. The corollary follows by using

the asymptotic expression (2) of An .

We have derived (4) for the case n mod 3= 0 . The other cases

be handled in the same fashion. In fact, one obtains the following

generalization of (9): For h o= (3,2,1) ,

A2m i (Beven, odd(gm) * Bodd, even(gm)) o
Sg(h;n) = \ A2nr+l * (Beven, odd(gm) * Bodd, even(gm) ) 1t n
A2m+l * (Beven, odd(2m+2) * Bodd,even(eme)) ifon

.
The asymptotic formula (%), for general n , can be proved using 2),

(10) and (18).

Analysis of Pass 3.

(16)
(17)
can
= 5111
= 3m+l , (18)
= §m+2

We now come to the analysis of Pass 3, which is the most interesting

part combinatorially. The question is "What is the average number of

inversions in a list, obtained by first performing a 3-sort and then a

2-sort on a random list?" It will be convenient to work with the

12



equivalent form "Given a random 3-ordered list L of n elements,
what is the expected number of inversions in the new list L' obtained
from 2-sorting L ?".

Consider the following random variables z (i, j integers)

1,5

defined on § , the set of 3-ordered lists L of n elements

{l,e,...,n} :

(a) For 1< j<if< n/27 , = 1 if the i-th smallest element

Z., .
1,J

in L(E‘,O) is less than the j-th smallest element in L(z’l) )
and z. . = 0 otherwise;
1
(b) For 1< i < j < |Ln/2], 25,5 = 1 if the i-th smallest element
- - s
in L(E’O) is greater than the j-th smallest element in L(e’l) s

and z.. . = 0 otherwise;
1,J

(e) 2z, .= 0 otherwise.

L J
These random variables have the following interpretation. Let L'[O: n-1]
be the 2-ordered list resulting from 2-sorting L . (We remark that L'

also remains 3-ordered. See Knuth [2, Sec. 5.2.1 Theorem K].) Then

205" 1 if and only if the pair {2i-2,2j-1} is an inversion in L',
)

1 \
i.e., the elements in L (2,0) [i-11 and L'(g’l)[j-l] are out of order

in L' . It follows that

DA (19)

s, (59 = T B(s

i

where the expected values are for a random 3-ordered list L .
Formula (19) can be simplified, if we observe that Z'i,j is O
unless 1 = j or i = J+1 . This is due to the fact that only adjacent

elements may be out of order for I', a list both 3-ordered and 2-ordered

13



(see Knuth [2, Ex. 5.2.1-25]). Thus,

) = 1_<_i52l.n/2j $s0) 151<Zrn/21 ge,e) - O
We shall derive (5) from (20). Assume that n = 3m is a multiple
of 3 for the present. A 3-ordered list L of n elements {1 2,...,n}
can be represented as a ternary sequence of n symbols in {1,2,3} ,
with n/3 j 's for each j ¢ {1,2,3} . The i-th symbol in the sequence
is j 1if and only if the integer i in the list appears in the j-th
row. Note that this representation is a 1-1 mapping from the set ¢

onto the set of ternary sequences with exactly n/3 j 's for each

m .
j € {1,2,3} . This shows, incidentally, |g£| = (mBmm) . Figure }
S s

shows a 3-ordered list (in its 3-row representation) whose associated
sequence is (1,1,1,2,3,1,3%3,2,1,2,1,2,2,3,3,3%,3,2, 1,3,2)
To evaluate E(Zi,i) , we need to count the number of 3-ordered lists

in ¢ for which Zi,i =1 . Consider the 3-row representation of L ,

with positions of L(E’O) "shaded" as in Figure 2. It is easy to see

that Zi,i = 1 if and only if there are more "blank" cells than "shaded"
cells in the positions occupied by the smallest 2i-1 elements

{1,2, . . .,2i-1} . For example, Zh,h _ 1 1in the example shown in Figure L,
as there are 4 blank cells but only 3 shaded cells in positions
occupied by {1,2,...,7} (see Figure 5). This condition can easily be
tested from the ternary sequence representation of L discussed above.

Suppose there are kj i's (3 €{1,2,3}) in the first 2i-1 components

of the sequence. Then, using Table 1, one immediately sees that

14



517114151617 |20

Figure 4. A sample 3-ordered list L in g .

U,

7,

1%

Figure 5. The positions occupied by elements
{1,2, ..,7} in the list of
Figure L.

15



row 1 row 2 row 3

even 0 0 0

odd -1 +1 -1

Table 1. The contribution to
(# of blank cells - # of shaded cells)
by positions in row j as a function

of k.
J

16



# of blank cells - # of shaded cells

=k2mod2-klmod2-]%mod2

It follows that zi,i = 1 if and only if IL_L and l% are even and k

2
*
is odd.  Thus, ¥ for 1< i< |n/2],

1 2i-1 3m-(2i-1)
E(zy 3) = n Lo
( m,m,m) oty =21-1 | kyky ko f | ek meko, ok,
kl’k3 = even
k2= odd

Or, equivalently,

m\ /m m
ey, ) = 7y D
) —_ DY -
(21-1) Kty =2i-l \K [\ % [ |5
kl,k3=even
k2= odd
for 1< i<|n/2]. (21)
A similar argument for zi+l,i leads to
m)) /m m \
1 / i
E(z, 5 .) = 2 , )
i+l,1 3m s | )
() merg-2iin )\ /X
kll%:odd
k2= even

for 1< i < [n/27. (22)

Formulas (20), (21) and (22) give an exact formula for S5(}T;n) .

*x
Y We use the convention that a multinomial coefficient is zero whenever
any of its lower indices is negative.

17



We now assert that, as n - » , (21) and (22) lead to

) B(z, ;) = n/8 + o),
1<i<in/2)
(23)
D B, ) = n8+ 0@’ .
1<i< [n/27 ’
Intuitively, for each w , the summation
1 m m m
+k +k =

(W) ket = v | Ky f Ky f\ K
can be partitioned into four approximately equal parts (each ~ 1/L ),
according to the parities of kl ) k2 and l% . Hence each sum in (23)
is roughly equal to l/h times the number of terms. This argument can
be made precise to prove (23), and in fact the next lemma.
Definition. Let hyk >1 be positive integers, and Ch K the set of

J
vectors ¢ = (co,cl,...,ck_l) with integer components O < ci <k.
Suppose m > 0 is an integer, and o = (nO’nl""’nk l) is a vector
of integer components satisfying \ni-m\ < 2 for all i . For each
Cce Ch,k , we define
1 (% \[ ™ -1

G (g.I—l.) = Z Z LK
h, k' N . . . .
O<W<N (W > '? jy=w kJO Jp Jyoq

35 mod k=ci

for all 1

18




Lemma 2. Let hyk > 1 be fixed integers. As N — @,

- 1 2/% -
Gh,k(c;n) = '}-{?1' (N+1) + oW / ) for each c»sCh,k

We emphasize that the constants in the O-notation in Lemma 2 are
dependent on h and k . The proof of Lemma 2 will be given in the
appendix.

Clearly, (23) is a special case of Lemma 2 with h =3, k = 2
It now follows from (20) and (23) that, for n mod 3= 0 , (5)is true,
i.e.,

s,(f3n) = 04+ o(n?/3)

One can prove (5) for n mod 3# 0 in a similar way. In fact, for any

n > 3, formula (20) and the analogue to (21), (22) read: For

h o= (3,2,1)

h; = 2 E(z, . 2 E(z, . ) (2k)
SB( n) lSi_<_Ln/2_] l,l) + lsi<rn/2"| i+l,1
(2. ) 1 s L(+2)/3 1\ [ L(nt1)/3 1\ [ Ln/3]
E(z. . = s

R vn PRSEEEY  W (

kl,k5 are even
k2 is odd
1<ig Ln/2) . (25)

and

19



) 5 Lw2)/31\ [ L(r1)/3 1\[ Ln/3]

( o ) Kt = et 5 ko ks
kl,k3 are odd

k2 is even

1<i< [n/27 . (26)

Formula (5)then follows from (24)-(26) and Lemma 2, We shall see in
Section 5 that O(n2/5) is an overestimate of the error term for 33

We have finished the asymptotic analysis for the (3,2,1) case.

Generalizations and refinements will be made in the next two sections.

20



4,  Generalization to the (h,k,1) Case.

Let hy, k > 1 be fixed distinct positive integers and b= (h,k,1) .
In this section, we will derive asymptotic formulas for the (h,k,1)
-Shellsort on n elements. Let {(hyk) denote a function to be defined

in a moment. We will establish the following results,

Theorem 1. Suppse ged(h,k) = 1 . Then, as n - » ,

2
s, (B30) = gz + o(n) ,

- [ +m fn -1
: dxoam - (Wh) T 3/2
Sg(h’n) 8 k o + O(n) 2
and
85 (’H;n) = y(hyk)n + O(ng/5 .
Theorem 2. Suppose ged(lyk) = d > 1 . Then, as n - « ,
Sl(hin) = Th + 0(n) ,
- -1
i) = Gl a2 o
2 8 k
and
- [ (a-
S, (h3n) = \-87—( (a-1 n5/2 + 0(n)
5 «/-d_
We will now define \y(h,k) and some other terms. Assume that
ged(h,k) = 1 . Consider the hxk matrix V[1l:h, l:k] , where
V[i,3] = ((3-1)h+ (i-1)) mod k . Each row of V is then a permutation of the
integers in {0,1,2,. . ,k1} . For each Qe {0,1,2,...,k-1} and each

0<i<h, let ui(OC) denote the position in row i+l where a

appears, i.e., 1< ui(oz) < k and V[i+l,ui(05)] = . For each

21



a,B ¢ {O,l,2,...,k—l} , there are some rows i+l in which @ appedrs
before B in the permutation, i.e., ui(Oé) < ui(B) ; denote the set

1 i ' = O l oo 0 h_l - - L
of such i as KO"B , and define I%‘:B {0,1,...,h-1} Ka’ﬁ et

— = 4 - - 1
mO‘:B = I$,,\ , and JZa,B = ll%t,B‘ = h m%B . It is easy to see that,
for any ieKa B the number of positions between the appearances of
)
o and B in row i+l is ui(B)—ui(ot) is independent of i , which
. 1 . .
we denote by AO!:B . Also, for any ie KOt,B , the number of positions
between the appearances of B and & is u. (@) -u.(B) = h— by g -
1 1 5B

An illustration of these definitions is given in Figure 6. Note that
the matrix V can be obtained by filling in the sequence 0,1,2,...,k-1,
0,1,2y00.,k-1,0,1,2,44.5k-1,0,1,... , in a column by column manner;
this is in general true.

For any integers p , [ satisfying I*+p > 0 and any real number

0<q<1l, let

j

fne) - 0eofl D (1) () 1 (21)
Define ¢ by

k) _ Dty ol hmy s by /K (28)

o<a<p<k

Finally, throughout this section, we use the symbol ns for

L (nth-i-1)/h] (0 < i < h)

22



I% 2 =3 (3 appears before 2 in rows 1, 4 and 6);

o~
[}
i
=]

Figure 6. An illustration of definitions for the matrix V

and related terms.
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4.1 Proof of Theorem 1.

Consider the first pass on a random list L . As each L(h’l) is

initially a random list of n. elements, 1its average number of inversions
is ni(ni-l)/h . Thus,

- 1 2
S, (hyn) = 2z n.(n.-1)/4 = E® + o)
* o<i<n * 7 h

This proves the formula for §, in the theorem.
Consider a random h-ordered list L of n elements in the h-row

representation. For each 0 <r <k, O0<s<h, 0<t<h, let

(h,r)

L denote the sublist of elements in L that are in the

rys,t

(s+1) -st and (t+1) -st row. Then

—
8,(nsn) = 2 T.(n)
O§r<k
O<r<k O0<s<t<h %
h
where T, (n) is the average number of inversions in L(’ r) » and Tr's,t
)
is the average number of inversions in L_,
r;s,t .
Let Pij= ((3-1)h+ (i-1)) mod k for 1 <i<h , 1<J< n, g
Then the j-th element of the i-th row (in the h-row representation) of
L is in L(k’r) where r = Pij . Clearly, the first k columns of

the matrix (Pij) form a matrix identical to the matrix V defined
earlier. As each row of (Pij) is periodic with period k , the sublist

L(k>r)

occupies positions v(s,r), v(s,r)+k, v(s,r)+2k, ... in row
st1 , where v(s, r) is the position of the integer r in the (stl) -st
row of matrix V . It follows that, for 0 <r <k, O0<s<h,

0<t<h,

ok



L s

r3s,t l,J S5 t) ? ‘ (31)

i = - ] = t - =
where i = v(s,r)-1 , j = v(t,r)-1 and ng 4 = ngtn .
According to the corollary of Lemma 1,

5/2
B'(k)'(ns,t) = V13g kl_e(e?n) +0(n) - (32)

1,d

Substituting (32) into (30), we obtain

()2 2

(n)
128 42 n

( 2n 5/2 o

S,(h;n)

n

-1
«/@E o - L«]/f) 5/2 , o(n)

This proves the formula for 82 in Theorem 1.

We will now analyze Pass 3. Let £ be the set of all h-ordered

lists of n elements {1,2,3,...,n} . For each 0 < a < 8 < k , let

(L) denote the number of inversions between elements in L'(k,a)
and L'(k’B> , and let
3 = 2 I, . 33
Clearly
= 1
8;(hsn) = — % b2 Ty g (L)
5 £l Leg 0<a<p<k % B
= g ; 34
o<a<p<k 26 (34
where
- n
I = cg .
Q (04 (35)
’B ’B/ no,nl,...,nk_l)
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Consider any list Le £ in the h-row representation (Figure 7).

A position is called of type @ , or an O-cell (0 <O < k) 1if it is
(k,@)

in L It is easy to see that, for each l<_i <h, 1<Jj< n; o,

the j-th position of row i is a P'i . —cell. For each 0 < m < n and
, >

each Le £, let Qm(L) be the set of positions occupied by elements

{1,2,.0.5m} , and D m;L) = |# of a-cells - # of p-cells | in Qm(L)

o, 8¢
for each 0 <@ < B <k . e shall say that Qm(L) has shape (relative
to the h-row representation) (jO"jl"" o jh-l) if it consists of the
leftmost 'ji positions of row i+l for O < i <h . In the example
shown in Figure 7, Qm(L) has shape (4, 6,3,3, 8) and

DO,l(m’L) = |9-8] = 1 when m = 2k (see Figure 8). Let s(mtl;L)

denote the type of the -position that the element mtl occupies, We

have, for 0 < <B <k,

o, p2) = O<§<n806,s(ml-l;L) D, p (m31) . (36)

Formula (36) can be proved as follows. For any given 0 < @ < B <k,

1
an inversion between I (k, ) and L (%:{ég')be uniquely labeled

as (m+l,i,j) , meaning that the i-th smallest element in L'(k’a) is

the element mtl , and is less (or greater) than the j-th smallest
L'(k,B>

element in where j<i (or j>1i ). Foranygiven m

and L , there are (m; L) such triplets (mtl,i,J) .

805)5(1“’*'131')])0‘:5
Formula (36) follows.

From (33) and. (36), we have
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31 L] 51825126373 |Lh]L5

1] 61112222327 28|40 |k

2113 1h|29 361 38] 39| 46 | 47

1017 {194 30|31 (323335 |Le

71 8| 9115|1620} 21 eulah

J

Figure 7. A 5-ordered list L . Qm(L) consists of
all the cells to the left of the heavy line,

where m = 24 .

ol 211 211160
1] 0] 2 c1211
21 11 0 110

Figure 8. In the example in Figure 6, Qm(L) contains
9 O-cells, 8 1l-cells, and 7 2-cells. Thus
Dy 1(mL) = |9-8] = 1 . (Each cell is marked
0,1

with its type.)
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= o] D m;L
e = o D, s DY
#of Lef with
5 > 5 element mtl in
0<m<n Osji_<_ni, Vi O<i<h row itl, and shape
- <\
L % : 1 Pﬁi, jfl=a (W@“ ' NWEEJ@

i

for Qm(L)

ng,B(JO’Jl""’Jh—l) P

where ga,B(JO’Jl’”"Jh—l) = DO&,B(m;L) for all 1L whose Qm(L) have
shape (jo, jl’ L e ‘jh-l) . Clearly, whether the (ji+l) -st position in
row i+l is an a-cell or not depends only on i , @ , and c = 'ji mod k

(Remember that P is periodic in j with period %k .) Define

1]
x(i,0 c¢) = 1 if it is an a-cell, and 0 otherwise. Then
cg = Z 2 Z ga (j ’jl"“,jh_l)
PP o<m<n Jgreeardy g 0<i<h B0
. X i,a,j.; mOdk):l
Z Jt=m -
t
/ m \ n-m-1

X
Ljo) Jl’ ceoe) Jh_l) nO—JO’ .o ')ni-Ji_l’ o "nh_l_Jh_l

= ) 2 z ga (393500053 )
) . . »8°70° 7L h-1
O<l<h O<m<n Jo,ooc,Jh_l
Zj =m
t t

x(i,a, 'ji mod k) =1
m n-m-1

X . . . (7N
Jo) Jl’ eeo o) Jh_l no_Jo’ o "ni-Ji-l, o -,ﬂh_l‘Jh_l
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Now, note that the value of Da,B(m;L) depends only on

jO mod ¥s . . . .jh_IHWd k where (jO’jl""’jh-l) is the shape of

q (L) , because of the fact that By, j is periodic on J with period k.

Thus, we have 8%3(30;31; ""jh—l) = goc,B(jO mod k, ‘jl mod k, ., . Ip-g mod k) .
Thus, (37) leads to
Sy = & z &, 50 1 o)
4 0<i<h Osco,cl,...,ch_l<k
X(i,a,ci) =1
m
Z Z - . 3
O0<m<n jo,jl,.“,jh-l ( JO)Jl’ "”Jh_l
% Jt=m
jtmodk=ct, vt
n-m-1
: ] oe®
no'jo?'-‘)ni'ji-l’--. @’@.@am@.
From (35) and (38), we obtain
i E E ga (Co) cl’ ce e s ch_l)
Cx’g | O<i<h Osco,cl)oo.,ch_l<k ’B
X(i,a, Ci) =1
n n n.-J.
1 o\ Moo | i
Z E n . 2 i A A n-m ° (539)
0<m<n m) jo)aoa)Jh_l JO Jl Jh_l

2.3, =m
t t

jtmodk.-. Ct s ¥t

We can use Lemma 2 to estimate the inner sum as follows:
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1 _ o M1 | P79
L 2 —
0o<m<n ( 2 Josenesd J . nm
- m o’ 7¢p-1 0 jh-1

T ig=m
T t
gtmodk=ct, vt
i il_:'; 5 1 5 nO] n,-1 nh—l
- n n"l . - - °e . o e o .
O0<m<n ( m) Jo?eeerdpg Jo Js Ih-1
2, =m
t t
Jtmodk=ct, ¥t

I

L n 0n2/5)
n(kh+ ( )

. 0?3y (50)
hk

1

Thus, (39) implies

ioc,s ] ﬁ O-<—°o’°l"z?"ch-1<k ga,g(coy.--:ch_l%(# of i with x(i,%c,)=1)n
+ o) (11)
Let
8 T kh%l Of_zi><h osco’cl’?-’ch_lﬁk &y, 5(CorCy7 e s er Oy ) XL (k2)
and
s h_]i{ 05a§3<1§:a’f3 . (43)

It follows from (34 and (1) that,
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8 (Hn) = gn+ o3y |

To prove the formula for 55 in Theorem 1, it remains to show

g . y(k) | (hh)

The Evaluation of g .

Write (L2) as

) (1)
et o
where
g(x = _}3-_—1- Z % (Co,cl,oo.,ch_l)x(i}a)ci) . (11"6)
»B k 0<eyreenscy 1<k 28

h-1
In (46), there are at most k non-vanishing terms for each i , since

r(i,q, Ci) = 0 except for one value of ¢, - In fact, we can write
1 (3)
h-1 2 2 nOCaB(Cj)
k I O S CO, o MME ‘i—l’ ci+l’. .o @ ch—l < k J # X1
. if ie KOL,B )
i
e T { (47)
- 2 -1+ 219 (c) l
k IOSCO""G"i-l’ci+l’~~-’ch—l<k j#i 77
if 1¢ K
\ %6

The functions T]E)?)B are defined as follows:
)
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1 ifuj(a)fc<uj(5):
If ‘jEI%C:B , then nézj,)l'g(c)

0 otherwise,
and (18)
(—1 if uj(B) <c< uj(oz) ,

' . /c‘ '
if je K&:B , then 'ﬂ(‘xj,)B(c)
. 0 otherwise.

Formula (47) follows from (46), by writing ga’B(cO,cl,...,ch_l) as a

sum of ng’)ﬁ (cj) , which are the contributions to

H,% of a-cells - # of 6-cells| from rows j , with the row i contribution
explicitly taken care of.

To simplify (47) further, consider the following game using a biased
coin with probability g to be a "Head". Suppose we first flip p times,
collecting $1 for each occurrence of "Head", and then flip it [/ times,
losing $1 for each "Tail". TWhat is the expected absolute value of
payoff? The probability for making ¢j is,

- b 4-b
Pr(payoff = J) = 2 I;)qa(l-q)P a(é)(l-q) ¢
a-b= j

a,b

et 2 () ()(5)

a,b

(1-9)%q" (% (é)(bfj ))(ﬁ_q‘)j

waret (15) () - e

a-b

It
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The expected absolute value of payoff is then

£(p, 4, q) = Z Pr(payoff = j). |j|
dJ
j
- a0 2 () ()1l (50)

as defined earlier. Let us also define a related function f by

f (p 49 = 2 Pr(payoff = j)-[3-1| | (51)
J
It is easy to verify from (50) and (51) that

£ (py2-1,q) = f£(p-1,4,q) . (52)

Returning to the evaluation of gg')B from (47) we note that ggl)ﬁ
2

can be regarded as the expected absolute payoffs in the coin game with
(£) . . .
th ff £ the f-th t . F
'na’e e payo rom e ! coin toss (£ # 1) or ie KO‘,B P
the parameters of the game are p = | K -l=m -1, ¢ =|K = h-m
P I P=lKypld=mg g 1%, 51 o,

and q = %L,B/k . Thus,

(i) _ ;

So,p = My pg=ls BTy o) by, /k) » Tor 1Ky (53)
Similarly,

(1) - -

go‘,ﬁ - f (ma’ 5 ? h ma’ 8 1, Aa, B/k) for i e Ka’ 5 (54)

From (45), (52), (53), (54), we obtain

_ 5 g(i)

g
;B 0O<i<h %P

"

K, 615y, gL s Doy g5 8y /)

+ |K&,Blf_(ma,6, h-m 71, Aa’a/k)

hef(my, o1, by o5 by ofk) (55)
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Substituting (55) into (4%), we obtain

1
E _ = Z f(m, _-1, h-m, _, /k

= §(hk)
This proves (4k). The proof of Theorem 1 is complete. O

As an illustration of the formula for ¢r(h,k) , consider the example
h =5, k =3, whose V matrix consists of the first three columns in

: i m = 2 ’ = 2 ;1 = )'"
Figure 8,. It is easy to see that 0,1 AO,l 0,2 ’
Ao,2=l’m1,2=2’A1,2=2' Thus,

(f(l) )4,2/5) + f(5:3:l/5) + f(l:4, 2/5))

WN{

$(5,3) =

£(1,%,2/5) . %"f(B, 3, 1/5)

1
WD

4,2 Proof of Theorem 2.

The derivation of the expression for Sl(H;n) is exactly the same as
in the -proof of Theorem 1.

To prove the formula for SE(H;n) , nhote that, at the end of Pass 1,
we have h independent sorted sublists L(h’ 1) , 0<i<h . These
sublists can be grouped into d lists, with the (s+l) -st list M
h, st+jd)

(0 < s <d) containing the sublists L( for 0<j<h' . The

action of Pass 2 is equivalent to performing a k'-sort (using straight-

insertions) on each MS . Therefore,
52((h:k:l)5n) = Sg((h':k':l)SL (ntd-s-1)/d ) | (56)
O0<s<d
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As gcd(h',k') = 1, we obtain from (56) and Theorem 1 that,

rE Aht' - (f\fh—')_l /1’1\5/2

S,((hk,1)30) = d x g T (z) * oW
-1
B e o
8 k
We turn to the evaluation of 83 Let £ be the set of h-ordered
lists L of n elements {1,2,...,n} . For each 0 <m<n, let Zm

denote the random variable on f defined as follows. For any Le g ,
let L' be the list obtained by k-sorting L , then Zm(L) is equal

to the number of inversions in L' that involve the (m+l) -st smallest

element, i.e., ml . Clearly,
- 1
s(m) = 3 T E(%) (57)
O<m<n

where the expectation values are taken for a random Le £ .

Let AS = {S+)\_d | }\_ = 0,1,2,.ao,h"'l} and Aé = {S+ }\_d ‘ >\_ = O,l’g,ooo’k'_l}
for 0< s < d . Consider any list Le ¢ in its h-row representation.
Suppose Qm(L) has shape ('jO’jl"‘”"jh l) . Define js
Lemma 3. Suppose that the element m+tl is in L( ) . Let
t =1 mod d , then

- s 3.3
7, (1) = o |3gmag ). o)
O0<s<d

Proof. We first prove the following fact.

Fact 1. Let L' Dbe the list obtained from L by k-sorting. Then in

its k-row representation, Qm(L') has shape (/ZO, Zl,...,zk_l) with

b4 =ki,3 +O(l) ) for Osp<ko

P pmod d
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Proof of Fact 1. Let Mé (0 < s <d) be the sublist of L' that

(k, r)

!
consists of L 3 reAé . Then Mé can be viewed as obtained from

the h'-sorted list M by k'-sorting. As ged(h',k') = 1, the number
of r-cells in each row of Ms are the same for all rezAé; up to an

additive O(l) term. Thus, for each p¢ Aé,

; L Zo§, - o) . .

To prove Lemma 3, suppose that, in L' , element mtl appears

in L'(u> . Note that umod d =t . The number of inversions in L'

involving mtl is then

z (L) = Z le -2 | 4 0(1) .
m v;éu v ou
O0<v<k
Dividing the range of v into groups Aé , and making use of Fact 1, we
obtain
7 (L) = T 5. - 3 | + o(1)
m O<s<dS umod d

Z '._'. ; o(1 .
O<s<<|iJS %l )

This proves Lemma 3.0
Let n; = [(nth-1-i)/h) for 0<i<h, and ng ;}i n.
S

O<s<d. TItis easy to see that n, = | (ntd-1-s)/dj . Clearly n,

(b, 1)

is the length of list L It follows from Lemma 3 that,
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m n . . . . . . .
(n . ) Jo?dqrererdy g 0<i<h Jordyreea2dpy
) ) e o)
o’ ™M o1 S5 oom
Z
n-m-1
G )
Ny=Jgreeeo By 3795 1o Ry =d5=bo0y 9=dy 0 ey 170y 5
X\ T |3 -3 | +0 (1) : (58)
O§s<d s imodd

Formulea (58) leads to

m
E(7,) = = D D 2 - - -
j j ) ] O<t<h j ;j )oco,,j
- - - Jo?dyrreerdgy V2 0’ d1 a-1
no,rll’uoo)n| _.
ZJrzm
7 n-m-1
Nog=dgreeesBy =3 po0e-dy=Lony 9=0p 95 eeesng 1704 1
(T3, - 3.0 - o(l)) . (59)
O0<s<d

The derivation of (59) from (58) is elementary but tedious, and will be
sketched later. We now observe that (59) can be regarded as, up to an
additive O(1l) term, the expected number of inversions involving the

element mtl in a random d-ordered list of n elements {1,2,...,n} .

Thus, from (57), we have as desired

37



n
g
=
~—
I
ol

z  EZ)

5 O§m<n

= 5,((8,1)3n) + O(n)

= > Ao 47 + O(n)
o<s<t<d g

- () F (2 oo

% i/él' /% + ofn)

Tt remains to derive (59) from (58). We write (58) as

%o i1 \( Mie1 (nh—l)n (ni'l
> Jo I )\ Jina 1) T\ 3

m .. T - n-1
Jo’Jl""’Jh_l OSl<h n( mn )
ZJ[ =M
X<O<§<d Js-‘]imodd|> + o(1) . (60

For any o & s « « and integer JS , define

n
0.(3) = z mi - ,
jr (rEAS) r€AS jr

I
™
™

61(5,)




- s
— | —_
Fact 2. @S(JS) = , and OS(JS = n
J J
s s
Proof of Fact 2. Observe that
nr Els
T (1+x) = (1+x) . (61)
re AS
This gives
Js l:ls Js
E @S(JS)X = Z X 3
J J J
s s S

and hence the first equality.
To obtain the other equality, we differentiate both sides in (61).

This gives

n,-1 n, _ n_-1
> ni(1+x) T (1+x) = ns(1+x) .
Lepg re./\s-{l}
The formula follows immediately by equating terms. O
Now write (60) as
1
E(Zm) = 2 7 o1\ 2z >z 2
] i | <t<d i
JO}Jl)..‘JJd_l n( m) JO’J1’°”’Jh-l O_t leAt
ZJv=m 2 jr=Jv)VV
v re;Av
v
nl—l nz + o(
x| 8510 1T (O<Z 4 17579 )
Oil<h
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= Z ril z
JO)Jl,ooo)Jd—l m )
2J =m
v v

X 2z JS—Jt])OJC(Jt) T e @) + o

O§s<d O<s<d
s#t
Using Fact 2, we obtain
n n n
1 0 t-1 t+1
Jordpreensdgy B\ = 0 Ig-1/\Jgs1
ZJ =m
v Vv

ﬁd—l - ﬁt'l
z J -J + 0(1) .
2 (OSM 17 t\) (1)

This is just an alternative way of writing (59).

This completes the proof of Theorem 2. )
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5. An Exact Analysis of (3,2,1) -Shellsort.

In this section we prove the following theorem. Recall that An'

the expected number of inversions in a random 2-ordered list of n

elements, is Ln/EJgn—e/ Lnr/12_| )

Theorem 3. For n > 3,
1 . . 2 1
5,((3,2,1)3n) = L L(e+d)/317- o o
0<i<?
4 m
%AQm - %‘- );m if n=3m,
(=)
1 1" .
Sg((3,2,l);n) = < A21n+1 + 5 A2m - '8' >m if n = 3m+l )
(=)
+ é .]_' ﬂ 1 f = 3m+2
Bomty T 3 Pomee T8 Tomro it n = w2,
L ()
and
SB((B)E:I)SH) = % n - ‘]8‘- + R(n) »
8 1
8_(2111"'—1) if n= m ,
where R(l’l) = J - 8—(-3:-&_1)_ if n = 3mtl ,
—_— if n o= 3m2
8(2u) tEon o= ome s,

The expression for Sl follows directly from (6). To derive the

formula for SE , we start with formula (18). Write

Bm - Bodd, even(em) * Beven,odd(em) - We have
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A2m+Bm ifn=3m,

5,((3,2,1)3n) = Aoy + By if n = 3m+l, (62)
Aoy * By if n = 3m2 .
Let
w(iam = () (G
It was known (Knuth [1, Exercise 5.2.1-14]) that
(V= T -3l 4w (63)

We extend it to show the following lemma. For Q,p e {even,odd} , we

. A
agree that even = odd , odd = even , and (-l)a & =1 if a, B are
both odd or both even, and -1 otherwise.
Lemma 4. For each Q,Be {even,odd} ,
: .. - o+B
om i- L. i-j- (-1 . s
( m )Ba B(Em) - 2 JTJI' u(lyJ:m) + 2 l d (2 ) Lu(l,J:m) .
’ 0<i,j<m 0<i,ji<m
i=a i=0C
j’_‘a j:&
Proof. We will prove the lemma for & = even , B = odd ; the other three

cases can be proved in a similar way.

Let £ be the set of 2 ordered lists (aO’bO’al’bl’“"am-l’bm l)
of 2m elements {1,2,...,2m} . For each Le g, let Qi(L) be the
set of inversions of the form (ai’bz) with odd ¢ . Then

(Exin)Beven,odd(gm) = Z Z lQi(L) | . (64)

Le £ i= even

Lo



For any even i , if a. is the (i+j+1) -st smallest element in L

with j < i , then

Qi(L) = {(ai,bz) | £ is oddy, 5 <2< 1) ,
implying
Zi‘j if j is even,
|Qi(L) | =
i:%il if j§ 1is odd .

Similarly, if j > i then

0, (L) =({(a;sb,) |4 is odd, J > >1},

and
if j 1is even,

o, (1) | =

if § is odd ,

Thus, for any even i , if a; is the ﬁﬁj+l)-st smallest element

in L , then

E:ZLL. if § 1is even,

2
lo, (@) | = (65)
|1-3+1
2

if j is odd.

Observing that w(i,j,m) is the number of Le £ such that ay is the

(i+j+1) -st smallest element in L , we have from (64) and (65)
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(?nn)Beven,odd(zm) = Z Z |Q;L(L) l

i=even Le §

o li-g . i-j+1 ..

= 2 2 'J——Jz'l' w(i,jom) + 2 ‘Tl p,(l,J,III)

i=even |\ j=-even J=odd
This proves Lemma 4 when @ = even , B = odd . O
Define
W= 2 w@am) + L uGHam) - L uhim) - T u(E, dm) .

j<i j<i >4 3> i

1=o0dd i= even 1i=even 1= odd

J = even Jj= odd j=odd J = even

Fron Lemma 4 and (63), we obtain after some manipulations,

2m 1 A .. 1
(3)e = 5 2 ledleom 2w
0<i,j<m
1 2m 1
= = + =
2 (m )AE‘m Z wm . (66)
We shall now show that, for m > 1 ,
W, o= N (67)

m
Formulas (62), (66) and (67) imply immediately the expression of 8,
given in the theorem.

To prove (67), we use a result due to R. Sedgewick [6],

Lemma 5 (Sedgewick [6, Theorem 2]). Let f(i,j) be a function defined
for integers 0 < i,j < m , and satisfying £(i,j) = £(i-j,0) for i > j ,

£(1,3) = £(0,3-1) for j > i , and £(0,j+1) = £(j,0)+1 . Then

2 £(i, J )u(i’ Jom) = 2 ( Em) (EF(J)"'J) ’

0<i,j <m j>1\ 0
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where F(j) = 2 £(2,0) .
0<1<j

In our problem, we write

Wm = = ) f(i:j)u(i:jym) s
0<i,j<m
where
( 0 for i, j both even or both odd,
£(i,3) = -1 0<j<i<m .
otherwise.
1 0<i<j<m

It is easy to verify that all conditions in Lemma 5 on f are satisfied.

Note that

F(k) = 2 £(3,0) = -Lk/2]
0<j<k

We have, using Lemma 5

om
W= -kzz“,l m_k)(-eLk/e_l+k)

I

2m
-z m-2k+l)

k>1
.. [( 2m-1 ) 2m-1):|
k1 m-2k+l / + m-2k
om-1
= Z m-k )
k>1
_ om?

This proves (67), and hence the expression for 82 in Theorem 3.
We now derive the expression for S5 The derivation will be given

only for the case n = 3m (integer m > 1 ). The other two cases

n=3ml, n=3m2 can be similarly treated.
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Recall the formulas (24), (25), (26) for the case n =3m :

5,((3,2,1);n) = 2 E(z, . *+ 2 E( (68)

Zs ) s
1<i<Tn/e1-1 b

m m m
E(Zi i) = _51T 2 ) ( )( )( ) » 1 <1< Ln/2_| s (69)
’ T e DA A
kl’k3 are even

k2 is odd
and
E(z,,, .) = L Z NN , 1< i <Tn/21 . (70)
i+l,1 (52311 ) kl+k2+k§ = 21 kl k2 l% =
kl’k3 are odd

is even
5

Consider the expansions

1 n n y n k
= [(a+ + (1- ] = 2 X
e ( X) ( X) k= even (k)
and
1 n n n k
= [(x - (-x)"]1 = Z X
g L0 - (49 k = odd k)

It is easy to see that the quantity E(Zi,i) , as given by (69), is
-1 2i-1 .
(2511?1) times the coefficient of x in the function

(@™ + (102 ()" - 10

- F @™+ @™ (@™ - (107

= E (@™ - @™+ § (0™ - ()

2m

) .

= %‘ z ( giml)XQi-l + % x (terms of odd -powers in (1-x)" (1+x)
n -
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Let a be defined by

my, k
k
(1-0)"(w0)™ = T a S (71)
k>0
Then
1 1 %moi-1
E(Zi, i) =y + T %—m for 1< i < |_3m/2J . (72)
( 21-1)
Similarly, we can show that
E(z ) = “m, 24 for 1< i < [3m/27]
i+1,i/ < E E ﬁ = ’ (73)
2i

Fram (68), (72) and (7 3), we obtain

55((32,1)5m) = T (a-1) - § o< (-1)* (%{y :
Noting that & o =1 and a . = (-1)™ , we can write this as
8;((3,2,1)3n) = % (ntl) - %Sk’ﬂg (I;;Tk (74)
Let
T ogEgm 1) [
where T(x) is the Gamma function (see, e.g. [1]). The Beta function

(see, e.g. [1]) defined by

rx)ry

B(x,Y) Tty
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has an integral representation (when Re x > 0, Re 'y > 0 ),

1
B(x,y) = r dt 'tx_l(l-‘t)y-l dt
"0

We can write (75) as

k
a = Z (-1)" a_ , (3ol R(k+1, 3m-k+1
m 0<k<3m m, k i )
k L k 3m~k
= (Bm+l) 3 (-1) amkj t7(1-t) at
0<k<3m 2%
1 t k 3
= (3mtl) 2 a (-'—) 1-t)”"" 4t
I() O<k<3m R\ 17 (1-%)
Using (71), we have
1 m 2m
t t
&y = (3m+1) IO (1 + it ) (l - -l—_-_-E) (l-t)am dt
! 2
= (3mtl) [ (1-2%)™"  at
0
_ Smtl
Toomtl C
Therefore, from (74), we obtain
5((3,2,1)58) = T (041) - § @
k"
_ 1 B+l
BRGNS s
1 1 1
I S
- 7% 8w
for n = 3m . This proves the formula for 33 when n = 3m .

We have completed the proof of Theorem 3. o
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6. Concluding Remarks.

In this paper we have analyzed the asymptotic behavior of

(h,k,1) -Shellsort for fixed h , k This procedure can be generalized

to analyze h -Shellsort with more than 3 increments. We shall report

the results in a future paper, where we shall also study the situation

-

when h varies with n

Acknowledgements. I wish to thank Bob Sedgewick for helpful suggestions

that led to the simplification of several derivations.
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Appendix: Proof of Lemma 2.

In this appendix we will show that, for each Ce Ch,k ’

G, (@) = @)/ + oat) (21)

For notations and definitions, see Section 3 of the paper. 1In this appendix,
the constants in the O-notation can depend on h and k , which are fixed
integers.

Write ¢} = Oﬁfci> mod k for 0 < i < h , and

( — - — —
Gh k(CEn) = 2 Xn k(c;n;w) ’ (A°2)
’ o<w< |\N/2) Y
where
n n
- - 1 o\[™1 Mh-1
Xh,k(c;n;w) = T s 23 B EEE .
( W ) T 91TV Jo \ 91 Ip-1
jimodk c
Vi

It is easy to see that
. (l l — —
O, 1 (&8 = G + gHER) + o)
To prove (A.1), it clearly suffices to prove the following result:

( )(c n) = (LN/E_|+1)/kh + O(NE/B) for each ¢ . (A.3)

We shall prove (A.3) by establishing the following claim.

-—

Claim. If ¢ = (co’cl’CQ""’Ch—l)ec and d=((% +1) modk,cl,cg,j D@mmﬂm) /
then

Gk(li-l){(g’rT) < Glg-]?{(a,r-l.)+ O(NE/B)
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The Claim would imply that, if g,ae C differ only in the first
, )y .. 2/3
component, then their values of Gh X differ at most by O(N ) .
3
By symmetry, this conclusion is also true for g, g differing only

in any one component. It then follows that, for any E,Ee c,
1) 2.7 3.3 2/3
Goe(®0) = G (@) + o)

Formula (A.3) follows as

D)3y = z 2z (c31)

- - X
Sec Wk o<w< |N/2) cecC by K

LN/2+1

]

It remains to prove the Claim. For ie {1,3} , let Ri(W) denote

the set of integers in the interval (w/h - iw2/3 , w/h + iw2/3) .

Lemma Al. If 1< w < |N/2], then

no l\T--no

5 jO NW-jO ) o(w'l/B)
Jo # Ry () (¥)

» for each ie {1,3}

n, N—nO N
Proof. The hypergeometric distribution Py = 5
k w-k

(k = 0,1,2,...) , has expected value WnO/N = w/h + 0(l) and variance

n n
0 0 w=-1 _
Wﬁ(l'ﬁ)(l'm) = ow

(see, e.g. Rényi [5, p. 1051). The lemma then follows from Chebychev's

Inequality (see, e.g. Rény [5, p. 3731). O
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Lemma AZ. Let 1 < w SLN/E_] s 0§j0<no, and 'jO -%: O(WQ/B)

Then
o) ()
Jo JotL -1/3
= ( ( .
(g) (;\il) 1+ o(w ))
Proof.

(h)  Geneew
X no - (nO—jO) (W+l)
Jatl

w/h + O(WE/B) N-w
(N-w) /b - o(w/2y Wl

1+ O(w-l/B) . 0

We shall now prove the Claim. Without loss of generality, assume N
is-large enough so that no;éRj(w) . Let g(g;w) denote the set of h-tuples
(Jgrdpsece o Jp.1) ©of non-negative integers such that j_l =w , and

i
J; mod k =c, for all 1 . Then, for each 1 < w < |N/2],

1
Xn, CHHY Loz, I]\f o[ M ) e “n-1
Je glesw) (W ) o J\ 91 Iy

-z 3 (no)(nl)... nh'l)
Jo B (W) (_lﬂ. Jo J\ 33 (jh—l

—

3e g(Sw)

]




. > = 5 (nl)ﬁm nh-l
Jo # Ry (W) (w) Jpreeerdyg I Ip-1

\ Iyt g = W

0/
Using— Lemmas Al and A2, we have then
- - ‘ -1 1 n n -
Y, ((C35W) = 2 (1+ o(w /E)X_ﬁ' ( 0 )( l) (nh l)
Jo € B (¥) (w+l JotL/ \ Jp Ip-1
( no ) ( N-no )
Jo J\¥dg

o5 (1) )

= > ( %o )(nl) -1 + o(w'l/B) . (A k)
Jg € RB(W) J'O"'l Jq 'jh-l

e ﬂ(aw)

It is straightforward to check that Rl(w+l) c {jo+l | Jg € R5(W)] , Thus,

from (A.L4),

*
Y Note that jOGRB(W) implies ‘jO ;é 0y s because we have assumed
nO¢R3(w) . This enables us to apply Lemma A2 in the ensuing

derivation.

53



>
jnx
~
o
—
(¢]
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™
lam
=1
(=}
(@)
~——
=i
[
~————”’
A
l._l
N——
+
o
—~
£|
}.—l
~
N

(E;I—;;Wﬂ.) + o(w—l/B) . (A.5)

= Xh,k

In the last line of the above derivation, we used a formula similar to

(A.4) for Xn k(E;H;erl . On the other hand, it follows directly from
J

(A.4) that

—_ - - - -l 5
ok @) S gy @) + o) (8.6)

Therefore, we obtain from (A.5) and (A.6) that

RN — - -1
Xp, x(C303W) = Xh,k(d§ﬂ5W+l + O(w /5) . (A.7)

" From (A.2) and (A.7), we obtain

(1) =, = = o
a.-l(c;n) = Z Xy o (C3n3w) + 0(1)
e 1<ws w/e) F
= Z Xn k(tf;n;wﬂ) + 2z O(W_l/B) + 0(1)
1<w< | N/2) 7 1<w< | N/2]
(1) 3.7 2/3
= Gh’k(d,n) +  o(N™/7)
This proves the Claim, and completes the proof of Lemma 2. O
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