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Abstract.

One classical sorting algorithm, whose performance 1n many cases

remains unanalyzed, 1s Shellsort. Let Rh be a t—component vector of

positive integers. An h -Shellsort will sort any given n elements

in t passes, by means of comparisons and exchanges of elements. Let

S.(h3n) denote the average number of element exchanges in the j-th
J

pass, assuming that all the n! initial orderings are equally likely.

In this paper we derive asymptotic formulas of 5, (3m) for any fixed

h = (h,k,1) , making use of a new combinatorial interpretation of ® :
For the special case h = (3,2,1) , the analysis is further sharpened

to yield exact expressions.

W»

; Wj This work was supported in part by National Science Foundation under
grant MCSTT7-05313. Part of this work was done while the author was
on leave at Bell Laboratories, 600 Mountain Avenue, Murray Hill,
New Jersey O797kL.
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| 1. Introduction.

| The analysis of sorting algorithms has been a prototype for the

| mathematical analysis of algorithms (Knuth [2][3], Sedgewick [T7]). One

classical sorting algorithm, whose performance remains unanalyzed 1n

most cases, is the Shellsort proposed by D. IL. Shell [8] in 1959, All

the known analytic results about this algorithm can be found in Knuth

[2, Sec. 5.2.1] and Pratt [4]. In this paper, we will -present some new

results concerning the average-case performance of Shellsort,

Let h = (hyohy 45 a +s hy) be a vector of positive integers with

hy = 1 . An h -shellsort on a list (or, an array) LIO: n-1] of n
elements performs an in-place sort in tT passes, using comparisons and exchanges

of the elements. In the j-th pass, (1 < j <t) , a straight-insertion sort 2/

1s done to each of the he si sublists, where the 1-th sublist

(0<i< By iq) consists of L[i] , Lii+hy sq] , Li + 2hy sq] ys...
Assuming that all n! initial orderings of the elements are equally

likely, let 5 (15m) be the average number of element exchanges in the
| j-th pass. The determination of s, (30) , a standard performance measure

for Shellsort, poses challenging mathematical questions. So far, the only

completely analyzed case 1s when hy divides h. 4 for each 1 <1 <1

(see Knuth [2]). In the present paper, we derive asymptotic formulas

for 5, (Bsn) when h = (h,k,1) is fixed and n - » . In the derivation
an interesting combinatorial interpretation of S5((h,k,1) 30) will be

| introduced. For the special case h = (3,2,1) , we further refine the

analysis to give exact expressions for 5. (50) :

Y See Knuth [2] for a description of the straight-insertion sort.
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2. Preliminaries. |

Let L = (aya)8, e058 1) be a list of distinct real numbers. An

inversion in L is a pair {i,j} such that i < j and a; > a. The
total number of inversions in L 1s denoted by I(L) . Clearly, the

concept of inversion depends only on the ordering of the ae It is

known (Knuth [2, equation 5.1.1-(12)]) that the expected value of I(L)

is n(n-1)/k for a random list L (i.e., all n! permutations of a,

are equally likely).

For any sublist L' of L , the number of inversions I(L') can

be defined in an obvious way. An important property of inversions is

that, when we perform a straight-insertion sort into ascending order

a sublist L' , the number of element exchanges is exactly equal to I(L').

Thus, (jn) 1s the sum of the average number of inversions 1n all the
hy 41 sublists that are to be sorted in the j-th pass.

For a listL of n elements, let p(s 9) (0< j < h) denote the

sublist (L[Jj],L[j+h],L[j+2h],...) of length | (nth-1-j)/h| . We will

call L h-ordered 1f, for each 0 < Jj < h , the elements 1n (By J) are

in ascending order. We say that we h-sort L , if we sort each LJ)

(0 < J <h) separately into ascending order.

Instead of drawing a list L as a single array, it 1s often

conveninet to show L 1n an h-row representation (Figure 1). The list

1s arranged in h rows, so that the j-th row (1 < j < h) contains the

sublist r, (Bs §-1) . Thus, to h-sort L 1s to sort the elements 1n each

row separately.

An h-ordered list LIO: n-1] 1s a random h-ordered list if any

ordering of 1ts elements consistent with h-ordering is equally likely,
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(3,0)

(3,1)
L “| Proprio [M13

(352)
L = 25] “8 %11 [14

Figure 1. A list L and its 3 -row representation.
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It 1s not difficult to see that, 1f we h-sort a random list L , the

resulting array 1s a random h-ordered list. We remark that, if L is

a random h-ordered list and 0 < i < Jj < h , then the union of row

i+l and row J+l forms a random 2-ordered list, ie., the sublist

| L{i] , L[j] , L{i+h] , L{j+h] , L[i+2h], L[j+3h], . . . is a random 2-ordered

list. Note that A , the average number of inversions 1n a random

2-ordered list of n elements, is given by (see Knuth [2, Sec. 5.2.1])

n-2 n

A, = Ln/2 Jz /( a2) . (1)
Asymptotically,

a = 18/2 + oa) (2)

Remark on the O-notation. In Section 4, Appendix, and in the statement

of Lemma 2, the constants in the O-notation are dependent on h and Kk.

Everywhere else, the constants are absolute constants.
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3. Asymptotics for the (3,2,1) Case.

| In this section we present our basic approach, by analyzing the

asymptotic performance of the (3,2,1) -Shellsort on a random list L

| of n elements. It will be shown that, for h =(3,2,1) ,

8, (hsm) = n /12 + O(n) , (3)

, me 5
S,(h;n) = Nr/192 0! + O(n) (1)

— 2/3

| S5 (hn) =n4 + O(n / ) (5)

Several facts for use in later sections will also be given.

| Analysis of Pass 1.

Consider L in a 3-row representation (see Figure 1). In the first

| pass of the (3,2,1)-Shellsort, each row is sorted by a straight-insertion

sort. Thus, 5, (Bsn) 1s equal to the expected value of the sum

2 rr3)y. As each row 1s initially a random list, we have J
J

s,(hsn) = TZ n,(n-1)/b (6)
| 0<i2

with n, = _ (nt2-1)/3| _, Asymptotically,

| ) 2
| S, (hn) = n°/12 + O(n) ,

| which is (3).

| *

/ Here and hereafter, we will often use the fact e(T % ) = 2 E(X,)i 1

for any variables Xs , without explicit reference to it. (B(X,) 1S
| the expected value of X, +)

;



Analysis of Pass 2. |

For the moment, assume that n = 3m for some integer m > 0 . At

the end of Pass 1, we have a random 3 -ordered list I . Pass 2 will

. perform a straight-insertion sort for the sublists (2:0) (the "shaded"

list in Figure 2) and (81) (the "blank" list in Figure 2), separately.

Let 509) (n) denote the average number of inversions in (239) ,
J € {0,1} . We have

=, (0) (1)
8,(hsn) = 87 (n) + 837 (n) . (7)

Now, consider a 2 -ordered list L' = (8390s 85075855005 0 eesa 5b 1)

in a 2 -row representation (Figure 3). Define four sublists as follows:

Leven, even = CRY by» 85 bs, 2)50)5.00) ’

Leven,odd = (a 0ybl,a,023,28,,b 4 5) 7

Load, even (0g; 819Dp1855b) 5855 000s) ?

Load,odd = (812Pps8ssPsragsDosees)

For each o,B e {even, odd} , let xX, 5 denote the random variable, definedJ

on the set of L', corresponding to the number of inversions 1n L, 5?4

and let B (2m) = E(X ) for a random 2-ordered L' . Clearly,

2, B (2m) = average # of inversions in L'
b

= A (8)

Returning to the evaluation of S, , we observe that the union of

- any two rows 1n Figure 2 1s a random 2 -ordered list at the start of

] Pass 2. It follows that

50) (n) = B (2m) + B (2m) + B (2m)
2 even, odd odd, even even, even ’

/
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77/7

Figure 2. The sublists (2,0) (the "shaded" list)

and 121) (the "blank" list).

BOROOE
| REEERER

Figure 3. A 2-ordered list L'.
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and

| s(n) = B (2m +B (2m) +B (2 hn
2 odd, even even, odd odd, odd

Together with (7) and (8), these lead to

5, (h;n) = App (Beven , 0a?) i Boad, even (2) ‘ (9)

+ :

It remains to evaluate Beven, oa (20) Budd, even (20 . A 'precise
calculation is possible (see Section 5), but here we will determine it

only asymptotically.

We assert that

B, (2m) = = + Om) for Op e {even,odd]} (10)a, B I fom ’ ?

Suppose (10) is true. It then follows from (9), (10) and (2) that

8, (h3n) = An/192 n/2 + O(n) ,
which 1s (4).

It remains to prove (10), which we will show in a more general form.

Let k >1 be an integer and L' = (22D 8ysbyra50 000) a 2-ordered

list of n elements. For each 0 < i,j < k , let Ly ; denote the list2

(85505585 1100 P 50854010 D gpg eee) if 1 <j, and the list

(0358350 5100854300spp 85 pp +++) if 1 > J. Define ¥, sto be the

random variable whose value for L' is the number of inversions in L, i?2

(k)
and let i] (n) E(Y y i) be the expected value of Yo for a

2

random 2 -ordered list IL! , It 1s clear that 3 ) (2m) are theJ

B. 5 (2m) defined earlier, provided we identify " 0 " with "even" and2

"1 " with "odd" in the subscripts. Thus, formula (10) is a special

case of the following result.

9
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| (k) 2
Lemma 1. For any fixed k > 1 , Bi, 3 (n) = A Jk + O(n/k) for 'any

| Kk) —= 3/2 /.2
Corollary. 5! 5(n) = Wn/l28 n / /x + 0(n/k) .

| Proof. Define the following random variables on the set of 2-ordered

lists L' :

] 1 if a, < b,
for 0<t< s< [n/2l

L O otherwise

1 if a, > by
v for 0<s<t<|n/2] ;
s,t = 0 otherwise

0 otherwise .

Then,

12d s mod k=1i"""" |

We wish to prove that, for 0<i# j<k,

- . . + O(n/k (12)Yi, 7 Ti, (n/k)
and

13)= Y, + 0(n/k) . (Ys 3 503 (n/k)

(¥)
This would imply the lemma, since all Y, 3 (and hence B; 4(n) ) would

be equal up to an additive O(n/k) term, whereas 5 5 143] Ayb

*

wi An equality (or inequality) involving random variables 1s valid if and
only 1f, for every event in the sample space, the valuesof the random

variables satisfy the given formula. ror example, (12) 1s equivalent to

the following statement: Yi exists a constant c¢ such that, forY _-v. .| <ecn/k.any L',  |¥,5YySS
10
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We will only prove (12); the proof of (13) is similar. For any t

satisfying t mod k = 1 , let t = t+ (J-1) and t_ = t- (k+i-7)

if i < jj, and t, = t+ (k+j-1) and t = t—- (1-3) 1f 1 > 7 .

Then tT, and t are, respectively, the smallest t' >t and the

largest t' < t that satisfy t' mod k = 7 . For the rest of the proof

of Lemma 1, we use variables s , t , t' exclusively for integers

satisfying s mod k =t mod k = 1 and t' mod k = J , and when they

appear in a summation, 1t 1s understood that they only range over such

values.

From the definition of Viiv and the fact that L' 1s 2-ordered,J

we deduce

+

Ys, . < Vs, t < Ist, if s > ttk , (14)
and

Is, t, < Vs, t < sst if t > s+k . (15)
Now, noting that 0 < y < 1 , we have

25 y = 2 y - Ly
s>t+k > t s>t 0 t ttk>s>t © ’t

= 2 — 0(n/k)
s>t © b '

LV, oy = LU Yo 4 4 Ye
s>t+k "7 + s>t 7+ t+tk>s>t +

= 2 Yq tr 0(n/k) J
s >t! ?

and

2 y = Tv EDI
s>t+k 2 © s>t out t+k>s>t bt

= 2 Yq +! Ei) 0(n/k) °
s >t! ’

11
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Together with (14), this implies |

s>t! ¢ s>t s >t!

A similar argument using (15) gives

oy, 4 = OnE) TL vy, yp SL Vp tO) (17)
s<tr 7’ s<t 7’ s<t'™’

Adding up (16) and (17), we obtain (12).

This completes the proof of Lemma 1. The corollary follows by using

the asymptotic expression (2) of A . Od

We have derived (4) for the case n mod 3= 0 . The other cases can

be handled in the same fashion. In fact, one obtains the following

generalization of (9): For h = (3,2,1) ,

+ + 1 f =

[a (Beven, oaa (2m) Boag, even (2) itn =n
hin) = fn = 8

5,(hsn) Boma © (Beven, oad (2m) ¥ Boaa, even 2) ) if n= ml, (16)

+ +2) + Lf n = +2

Bom (Beven, oda (2m 2) Budd, even (22) it n= 2m

The asymptotic formula (4), for general n , can be proved using 2),

(10) and (18).

Analysis of Pass J.

We now come to the analysis of Pass 3, which is the most interesting

part combinatorially. The question is "What is the average number of

inversions in a list, obtained by first performing a 3-sort and then a

2-sort on a random list?" It will be convenient to work with the

12
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equivalent form "Given a random 3-ordered list L of n elements,

what 1s the expected number of inversions in the new list L' obtained

from 2-sorting L ?".

Consider the following random variables 24s] (1, J integers)
defined on £ , the set of 3-ordered lists L of n elements

{1,25¢005n} |

(a) For 1< j<i<[n/27, 243 = 1 if the i-th smallest element
in (2:0) is less than the j-th smallest element in (8:1) 5

and Zy. = 0 otherwise;

(b) For 1 <1 < J < |n/2], Zy 5 = 1 if the i-th smallest element
in (250) 1s greater than the j-th smallest element in (21) ,

and Zy = 0 otherwise;

(¢) =z. ., = 0 otherwise.
Ly J

These random variables have the following interpretation. Let IL'[{0: n-1]

be the 2-ordered list resulting from 2-sorting L . (We remark that L'

also remains 3-ordered. See Knuth [2, Sec. 5.2.1 Theorem K].) Then

Zy 3 = 1 if and only if the pair {2i-2,2j-1} is an inversion in L',
i.e., the elements in L (2,0) [1-1] and (BL) are out of order

in L' . It follows that

5, (R79 = Zz. E(z; 3) , (19)’ J

where the expected values are for a random 3-ordered list L .

Formula (19) can be simplified, if we observe that 23 3 is 0
unless 1 = Jj or 1 = j+1 . This is due to the fact that only adjacent

elements may be out of order for IL', a list both 3-ordered and 2-ordered

1%



—

(see Knuth [2, Ex. 5.2,1-25]). Thus, |

S; (sn) = Lei liase, E(zg4) + PI B(z519,1) (20)

We shall derive (5) from (20). Assume that n = 3m is a multiple

of 3 for the present. A 3-ordered list IL of n elements {1 2,...,n}

can be represented as a ternary sequence of n symbols in {1,2,3} ,

with n/3 j 's for each j e {1,2,3} . The i-th symbol in the sequence

is J if and only if the integer i 1n the list appears in the j-th

row. Note that this representation is a 1-1 mapping from the set §

onto the set of ternary sequences with exactly n/3 J's for each

j €{1,2,3} . This shows, incidentally, | £] = (om) . Figure L
shows a 3-ordered list (in its 3-row representation) whose associated

sequence is (1,1,1,2,3,1,3%3,2,1,2,1,2,2,3,3,3,3,2,1,3%,2).

To evaluate E(z; 5) , we need to count the number of 3-ordered lists

in § for which Zi 4 = 1 . Consider the 3-row representation of L ,

with positions of (2,0) "shaded" as in Figure 2. It 1s easy to see

that 25.4 = 1 1f and only 1f there are more "blank" cells than "shaded"
cells in the positions occupied by the smallest 2i-1 elements

1,2, . . .,2i-1} . For example, 2),) = 1 in the example shown in Figure lb,
as there are U4 blank cells but only 3 shaded cells in positions

occupied by {1,25...,7} (see Figure 5). This condition can easily be

tested from the ternary sequence representation of L discussed above.

Suppose there are k, J's (J €{1,2,3}) in the first 2i-1 components
of the sequence. Then, using Table 1, one immediately sees that

14
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BREEN

Figure 4. A sample 3-ordered list L inf .

RRZR

i/ayR/n4 /

mn Ye11

Figure 5. The positions occupied by elements

{1,2, ..,7} in the list of

Figure 4.
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EERE ED
k. = even

J

Table 1. The contribution to

(# of blank cells- # of shaded cells)

by positions in row j as a function

of k. .
J

16



nll

# of blank cells - # of shaded cells

= ky, mod 2 - ky mod 2 - ky mod 2 .

It follows that 24,1 = 1 1f and only if ky and 5s are even and k,
*/is odd. Thus, for 1<i<|n/2),

21-1 3m-(2i-1)1

+ + = i- - = -

[ nirgm) bt tiy = 23-1 | Kpsky,ky J mek ymek, mek,
ky» k5 = even
k= odd

Or, equivalently,

my) /m m

Blzy35) = — 2 |+k +k =2i-(2%) pty =ei-l \h /\% 5
Kp» kK; = even

for 1< i<|n/2]. (21)

A similar argument for 2i41,1 leads to

1 m \ /m m \

#1, 1) ED) a =2i\ k Cy(25) EEHg=2ilE |x Ks
Krk _ odd
k= even

for 1 < i <[n/27. (22)

Formulas (20), (21) and (22) give an exact formula for 5, (nn) .
SC——————

Z/ We use the convention that a multinomial coefficient 1s zero whenever
any of 1ts lower indices 1s negative.

17
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We now assert that, as n » =» , (21) and (22) lead to

EZ Bz) = n/8 + ok’),
1<i< info)

| (23)

| 2 Bz, ,) = 08+ 0?
1<i< [n/27 ’

Intuitively, for each w , the summation

1 m m m

1 = T3m 2. || ( .) Btiptig=v \ In Jk J 5

can be partitioned into four approximately equal parts (each ~ l/h),

according to the parities of ky , k, and ks . Hence each sum in (23)
is roughly equal to 1/h times the number of terms. This argument can

| be made precise to prove (23), and in fact the next lemma.

1 Definition. Let hyk >1 be positive integers, and Cy x the set ofb

vectors ¢ = (CyrCyreeesCy 1) with integer components 0 < Cc. < k .

Suppose m > 0 1s an integer, and n= (Ds nyseeesny 1) 1s a vector

of integer components satisfying |n;-m]| < 2 for all i . For each

C€ Ch, x , we define

n n

| Gy, Llesn) = 2% = 2 [Fo 1... "hel .
O<w< ]. = j ] iwel ( ) Ld =v Le 1 Jp-1

J. mod k=¢,
} i 1

for all 1

18
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Lemma 2. Let hyk > 1 be fixed integers. As N = «©,

(cin) = + (N+1) + o@?/?) for each ceC .Gy,x C3 XB h,k

We emphasize that the constants in the O-notation in Lemma 2 are

dependent on h and k . The proof of Lemma 2 will be given in the

appendix.

Clearly, (23) is a special case of Lemma 2 with h =3, k = 2 .

It now follows from (20) and (23) that, for n mod 3= 0 , (9) Is true,

i.e.,

8, (Bsn) = n/4 + 0(n2/3) :
One can prove (5) for n mod 3# 0 in a similar way. In fact, for any

n > 3, formula (20) and the analogue to (21), (22) read: For

h = (3,2,1)

s_ (hyn) = > E(z, .) + > E(z,,, <) » (24)
> 1<i<|n/2] tad 1<i<[n/27 rls

1 L(+2)/31) L(nt1)/31\[ Ln/3]
E(zg 5) = TY 2 ’

’ +k +k = P2i-(201) Kathotiy = 21m 5 Ep 5
kyo ky are even

k, 1s odd

1<i< (0/2) (25)

and
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3 . L(+2)/31) [ L(o+1)/31\[ Ln/3]
E(Zi11,1) = 7a 2 ’+k +k = 2j

(2) Ky rhptiy= 2d 5 Ko Ks
; kok are odd

| k, is even

1<i< n/27 . (26)

Formula (5)then follows from (24)-(26) and Lemma 2, We shall see in

Section 9 that 0(n2/3) 1s an overestimate of the error term for 53
We have finished the asymptotic analysis for the (3,2,1) case.

Generalizations and refinements will be made in the next two sections.

20
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L, Generalization to the (h,k,1) Case. |

Let hy k > 1 be fixed distinct positive integers and h = (hyk,1) .

In this section, we will derive asymptotic formulas for the (h,k,1)

-Shellsort on n elements. Let {§(h,k) denote a function to be defined

in a moment. We will establish the following results,

Theorem 1.  Suppse ged(h,k) = 1 . Then, as n -» = ,

. oan +

of - (fa)— aft ah - (Ah 5/2

and

5 (hn) = y(hyk)n + 0 (n?/3 .

Theorem 2. Suppose ged(h,k) = d > 1 . Then, as n - « ,

. — <4-8, (hn) Tn O(n) J

— -1

2 3 k

and

8, (Bn) = FF (a1) 3/2 4 o(n)Ja

We will now define ¢ (hk) and some other terms. Assume that

ged(h,k) = 1 . Consider the hxk matrix V[1l:h, l:k] , where

V[i,j] = ((3-1)h+ (i-1)) mod k . Each row of V is then a permutation of the

integers in {0,1, 2, . . .,k-1} . For each Oe {0,1,25...,k=-1} and each

0<i<h, let u, (@) denote the position in row i+l where a

appears, i.e., 1< u, (@) < k and Viitl,u, (@)] = ®@ . For each

21
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| d,Re {0,1;25...5k=1} , there are some rows itl in which @ appedrs

| before B in the permutation, i.e., u, (@) < u. (B) ; denote the set

| : ! = 0 1 ee 0 h-1 - . LL| of such i as kK, 5, and define Kj {0515000501} - Kyo et
~ I. CL |

| My, 8 = IS$,,\ , and ba, = LN = h Ty, 8 . It is easy to see that,
for any ick, 8? the number of positions between the appearances of

@ and B in row i+l is u, (B) -u, (@) is independent of i , which

| we denote by My, 6 . Also, for any 1ic¢ 8 , the number of positions
between the appearances of 8 and @ is wu. (@) -u,(B) = h- Ny a1 1 »B

An illustration of these definitions is given in Figure 6. Note that

the matrix V can be obtained by filling in the sequence 0,1,2y...,k-1,

0y1y250005k-1,0,1,2,.045k-1,0,1,... , in a column by column manner;

| this 1s in general true.

For any integers p , £ satisfying f+p > 0 and any real number

| 0< gqg<1l, let

Pp 1 +P o! .

f(p, 4,9) = (1-q)7q = (#3)(%) 13 | ’ (27)
Define y§ by

. 8y(h,k) _ = 2 fm, 1, hm, os 8, o/k) (28)
k 0<a<B<k % PB PB )B

Finally, throughout this section, we use the symbol n. for

| (nth-i-1)/h| (0 <i <h) .

22
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BEBRE
BEEBE
BREED
HERR
BEDE
BEBDD
BEER
BREED

5 2 = 3 (3 appears before 2 in rows 1, 4 and 6);
{

Figure ©. An illustration of definitions for the matrix V

and related terms.
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4.1 Proof of Theorem 1.

| | | (h,i) |
Consider the first pass on a random list L . As each L 1s

initially a random list of n. elements, 1ts average number of inversions

is n, (n,-1)/k . Thus,

S, (hyn) = 2 n;(n,-1)/4 = = n° + O(n) .
= 0<i<h

This proves the formula for S, in the theorem.

Consider a random h-ordered list L of n elements in the h-row

representation. For each 0 <r <k, O0<s<h, 0<t<h, let

: (h, r)
L..q + denote the sublist of elements 1n L that are 1n thea2

(s+1) -st and (t+1) -st row. Then

s,(hsn) = 2 T.(n)
O<r<k

O<r<k O<s<t<h ~°7

h

where T, (n) 1s the average number of inversions 1n (Ps r) , and Tris,a

is the average number of inversions in L_,
r;s,t .

Let Py3 = ((j-1)h+ (i-1)) modk for 1 <i<h, 1<J< Dn._q
Then the j-th element of the 1-th row (in the h-row representation) of

L 1s 1n (Ks 7) where r= Py, . Clearly, the first k columns of
the matrix (Fy 5) form a matrix identical to the matrix V defined

earlier. As each row of (P,,) is periodic with period k , the sublist
( r) occupies positions v(s,r), v(s,r)+k, v(s,r)+2k, ... in row

stl , where v(s,r) is the position of the integer r in the (stl) -st

row of matrix V . It follows that, for 0 <r<k , O0<s<h,

0<t<h,

2h
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_ p®

| where i = v(s,r)-1 , j = v(t,r)-1 and ng ot = n +n .
| According to the corollary of Lemma 1,

| — 3/2

| Bi (ng, 4) = VIE ,2\™m O(n) (32)

| Substituting (32) into (30), we obtain

| 2h\/ nn 1 (on 3/
S,(h;n) = «( 2) 108 2 (2) + O(n)

— -1

This proves the formula for S, in Theorem 1.

We will now analyze Pass 3. Let f be the set of all h-ordered

| lists of n elements {1,2,3,...,n0} . For each 0 <a <B< k , let

Ty 5(L) denote the number of inversions between elements in a (k,@)1 p

and (68) , and let

Clearly

_ 1
: S.(hsn) = — 25 2 I, o(L)
| > IL] Leg O<a<B<k ls

| = >I ) (34)
| o<a<p<k PF
| where

| oN -a 35Oy B yi (39)Nyy Nyseeerlly 4

o5
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Consider any list Le £ in the h-row representation (Figure 7).

A position is called of type @ , or an O-cell (0 <a < k) if it is

in (ks 2) * It 1s easy to see that, for each 1 <1 <h , 1 < J< n. »
| the j-th position of row 1 1s a Po ; -cell. For each 0 < m < n and, =

| each Le £, let Q,(L) be the set of positions occupied by elements

{1,2,..05m} , and D, (mL) = |# of a-cells - # of p-cells | in Q, (L)yB

| for each 0 <a <B < k . We shall say that Q, (L) has shape (relative

| to the h-row representation) (3grdyoe.e “ Jy) 1f it consists of the

| leftmost Js positions of row i+l for 0 < i <h . In the example

shown in Figure 7, Q,(L) has shape (4, 6,3,3%, 8) and

| Dy 1 (m, L) = |9-8] = 1 when m = 24 (see Figure 8). Let s(mtl1l;L)2

| denote the type of the -position that the element m+tl occupies, We

| have, for 0 <K a <p << k ,

I L) = 2. 8 D m;I,

| Formula (36) can be proved as follows. For any given 0 < a <p <k ,
a !an inversion between I. (k) and L (528) oe uniquely labeled

oo '(k,o)| as (m+l,i,j) , meaning that the i-th smallest element in L 1s

| the element mtl , and 1s less (or greater) than the j-th smallest

| t (ky B) Co. Co
| element in L where j<i (or j>1). Foranygiven m

| and L , there are 8a, s (m1; 1) Pay p (3 L) such triplets (m+l,i,J) .
| Formula (36) follows.

| From (33) and. (36), we have

| 26
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JRE

EEE

LEER

Figure 7. A 5-ordered list L . Q,(L) consists of
all the cells to the left of the heavy line,

where m = 24

TTLTE
DnnDnanns
el rlofefog lr]
SEE
off r]ofe]r]o]e

Figure 8. In the example in Figure 6, Q(T) contains
9 O-cells, 8 1l-cells, and 7 2-cells. Thus

Dy 1(m, L) = 9-8] = 1 . (Each cell is markedJ

with its type.)
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3 = 2 2B .7y Dy n(m;L) |
a B o<m<n 1.eg Oos(mliL) "0,p

fof Leg with

5 5 5° element mtl in
O<m<n 0<J; sn.» Ti O0<i<h row itl, and shape

Der Tw gate + 0 Baal
i

for Q(T)

Xn, gldordgreeerdnn)

where SPC RPRREE RINE = Dey, (351) for all L whose Q(T) have
shape (307 Jp. Jn-1) Clearly, whether the (3;+1) -st position in

row i+l 1s an a-cell or not depends only on 1 , & , and c = Js mod k .

(Remember that P. 3 is periodic in j with period k .) DefineJ)

x(i,0, ¢) = 1 if it is an a-cell, and 0 otherwise. Then

A Jy =m i
+

/ m \ n-m-1

X - - - - []
Jo? dq soe) dp-1 Ny=do? . )0,=3, 1s oe EA a |

SS 2 z fy, (3g dp +e es3)

x(1,Q, J; mod k) =1

m n-m-1

X . (37)
Jo Jp coe) Jn-1 Ny=dg? oo FLFR Y oe erly 17dno1

28
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Now, note that the value of Der, p31) depends only on .

j, mod k, jp mod k where (3gpdq2everdpq) is the shape of

Q,(L) , because of the fact that Py; is periodic on J with period k.

Thus, we have 8, 5 J07 977 ees dy 1) ws &, 590 mod k, Jq mod k, . ._ SIN mod k) .
Thus, (37) leads to

0<i<h 0<£CyaCysevesCygy

i

m

2 2. . . .

>] =m
£ t

Jy mod k= Cp 2 Vt

n-m-1

. » . (38)

From (35) and (38), we obtain

ue oD Do Epler)

Bo \( © Bop \ ds

2 6) 2 ° NE | ) =. (39)O0<m<n a) JpreerIp_y Jo Jy Jh-1

jymodk=c,, Vt

We can use Lemma 2 to estimate the inner sum as follows:



| — |

1 5 "0 a
| ~ n : : : tee n—-m

| Osm<n a) Jo? + eer dp-1 Jo jh-1
7 Jy =m
£

| jymodk=c, , Vt

n. n n,-1 mn

m 0’°°*?%h-1 0 i h-1

g °

| n,

k

= — n + 0(n2/3) (LO)
hk

Thus, (39) implies

Ta, 8 = TR 2 8, pC07* #21) (# of i with <(iachep) <1»hk 0<CysCyreresCy 1 <k

| + 0?’ (41)

Let

| fs = BT © 2 8. 0(CgrCyserercy )x(Loe) | (be)

and

| c= = 2 (43)
hk bcos <b y

] It follows from (34 and (41) that,

30



—

8, (Bsn) = En+ 0(n/3) :

To prove the formula for 5; in Theorem 1, 1t remains to show

ge. y(hk) | (4h)

The Evaluation of ¢ .

Write (42) as

1)- zg 450, 0<i<h 0, p 4)

where

1 .

C07 C1

(46), th t most kP™1 ohIn ), there are at mos non-vanishing terms for each i , since

r(i,ac, ) = 0 except for one value of c. . In fact, we can write

1 2 2 19) ey
Et o<e <k \ 541 PJ~ 02 ¢ mE tg 12C5472% 0 @ “n-1 J#i

” 1f 1ie€ Ky, 8 Pi

SEE (57)

= > (- + 2c,- - pl

if 1¢ K'
a,p

The functions ne) are defined as follows:J
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| 1 fu @) Se < ud),
5 . LJ)then Cc) =

| 0 otherwise,

| [ if u, (B) < c < u, (@) ,: . . lJ) _f ! then c) =th Je hgp nape)
| \. O otherwise.

| Formula (47) follows from (46), by writing Zo, 5(C0? C17 er Cy 1) as a

| sum of Nos (c) , which are the contributions to2

|# of a-cells - # of B-cells | from rows J , with the row 1 contribution

explicitly taken care of.

To simplify (47) further, consider the following game using a biased

coin with probability g to be a "Head". Suppose we first flip p times,

collecting $1 for each occurrence of "Head", and then flip it / times,

losing $1 for each "Tail". What 1s the expected absolute value of

payoff? The probability for making §J is,

a -af 1 b I-b

Pr(payoff = J) = 2 (3) (1-)" (+) 0 qa-b= J

a,0

a-b
{ {

a-b =]

ab

1-4 ny b b+] 1-q

= (1-)Pt RY [A : (49)= q)q 143 T-g .
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The expected absolute value of payoff is then

£(p, 4,9) = 2 Pr(payoff = j). |j|
J

afd© (22) (2); (50

as defined earlier. Let us also define a related function f by

fr (py 1, a) = 2 Pr(payoff = j)- |3-1] (51)
J

It is easy to verify from (50) and (51) that

f (py 2-1, q) = f(p-1,4,q) . (52)

Returning to the evaluation of e (1) from (47) we note that (1)Xx, B Q, B

can be regarded as the expected absolute payoffs in the coin game with

A the payoff from the f-th coin toss (4 # i) . For ie Ky, 8 ,
th t f th =| K -1 = -1 , 1 = ! = h—-me parameters o e game are D = | 0 8 My |X, 6 yg 2

| and q by, 6/ us

(1) _ for 3
Sop = L(y pls bom oy byofk) 5 Tor deyqo (53)

Similarly,

(1) = ff (mn h-m ~~ _-1 k) for ie KX!Sa,8 <A, glo byof) “fo,8 (54)

From (45), (52), (53), (54), we obtain

(1)
g = Lg
“BP o<i<n WF

= [KypT,m2 0 Bomgs fyof)

+ ! f h~-m ~-1 kEY (To, 7 a,p 7 WY )

= hef(m -1, h-m k(my, 6 ap’ bg) (55)
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Substituting (55) into (43), we obtain

1

e _ xD fm ool bem as By ofk
k O0<a<B<k %P 5 PB

= y(bk) |

This proves (44). The proof of Theorem 1 is complete. OO

As an 1llustration of the formula for y (hk) , consider the example

h =5, k =3, whose V matrix consists of the first three columns in

Figure 8,. It 1s easy to see that 5,1 = 2 1 = 2 To, 0 =k,

bo,p = 1 oo 20 ly oo 2 . Thus,
1

$0 (5,3) = 3 (£(1, L,2/5) + £(3,3,1/5) + £(1, 4, 2/5))

2 1

= 5 TL, 4,25). 5£(5,3,1/5) .

1,2 Proof of Theorem 2.

The derivation of the expression for 5 (h;n) 1s exactly the same as

in the -proof of Theorem 1.

To prove the formula for 8, (h;n) , note that, at the end of Pass 1,
h, i .we have h independent sorted sublists 1 > 1) , 0<i<h . These

sublists can be grouped into d lists, with the (stl) -st list M_
h, s+]jd :(0 < s < d) containing the sublists r,{ , std) for 0 <j <h' . The

action of Pass 2 1s equivalent to performing a k'-sort (using straight-

insertions) on each Mg . Therefore,

S,((n,X%,1)n) = 2 S,((h'k'S1)5( (ntd-s-1)/d]) | (56)
O<s<d
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As gecd(h',k') = 1, we obtain from (56) and Theorem 1 that, .

Jz mr o- (ay rand?
S,((hyk,1)3n) = 4 x g§ — 7 LT) + O(n)

-1

EERCD ali TN
8 k

We turn to the evaluation of 5a Let §£ be the set of h-ordered

lists L of n elements {1,2,...,n} . For each 0 <m <n, let Z

denote the random variable on § defined as follows. For any Leg,

let L' be the list obtained by k-sorting L , then z(L) is equal

to the number of inversions in L' that involve the (m+l) -st smallest

element, 1.e., ml . Clearly,

— 1

s,(sn) = 5 T E(Z) (57)
O<m<n

where the expectation values are taken for a random Le f£ .

for 0 < s<d. Consider any list Le § 1n its h-row representation.

suppose Q, (L) has shape (3grdqseeerdy 1) . Define 3s 7 2 Jp .
S

Lemma 3. Suppose that the element mt+tl is in i 2) . Let

t = 1 mod d , then

_ we rE
7, (L) = 2 |dgmag oa)

O0<s<d

Proof. We first prove the following fact.

Fact 1. Let L' be the list obtained from L by k-sorting. Then in

its k-row representation, Q(T") has shape (£55 Lyseeesdy 1) with

1 -—
_ == f O<p<k.

‘p= %¥ Jpmodd + o(l) oF =P

35



Proof of Fact 1. Let M, (0 < s <d) be the sublist of L' that
!

consists of L (k, x) , rel . Then M_ can be viewed as obtained from
the h'-sorted list M, by k'-sorting. As gecd(h',k') = 1, the number

of r-cells in each row of M, are the same for all re hg » up to an

additive O(1l) term. Thus, for each pe A ,

| 1 .

Ly — 2. SI ol) . .| AL] re Ag

To prove Lemma 3, suppose that, in L' , element mtl appears

in LT (u) . Note that u mod d =t . The number of inversions in IL

involving mtl 1s then

Vv # u
O<v<k

Dividing the range of v 1nto groups Ag , and making use of Fact 1, we

obtain

7 (L)= 2D |i,- 3 | + o(1)
m 0<s<d”® umodd

O0<s<d

This proves Lemma 3.U

Let n, = | (n+th-1-i)/h} for 0<i<h, and ng = J n.,
rep

S

| O<s<d. It is easy to see that ng = | (n+d-1-s)/4d . Clearly n.

is the length of list (1 1) . It follows from Lemma 3 that,



—

1 m
E(7Z) = —m —————— 2 2

mn : Ph 0<i<h \ Jos] ;
} 0 , Jordyrecerdyg ~~ 0’ 1720? h-1pb] J ee 0)

0’ M1 "h-1 Si oom
{

n-m-1

ORCI AEE WR ICE PI Eh WUE Rb A B6 REFS LILLE Ae WL Jatt |

\ = |i.-d. | +0 (1) : (58)(LZ. S 1imodd
Formula (98) leads to

m

B(Z) = —m———— — ————— _ _ 2 _ 2 _ N
mn . 53 o<t<h\ J.J J- _ - Jo? dyreeerdgny ind 0’ 1’? d-1

Nasty eeernl -
> dp = Im

7 n-m-1

1: = - ~ = = = = = -~OREO RET Ra din SAC CS ALATA c I NS

X Z [dg = del ow) ) : (59)O<s<d

The derivation of (59) from (58) is elementary but tedious, and will be

sketched later. We now observe that (59) can be regarded as, up to an

additive O(1l) term, the expected number of inversions involving the

element mtl in a random d-ordered list of n elements {1,2,...,n} ,

Thus, from (57), we have as desired
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= 5,((a,1);n) + O(n) |

- TA - + On) |
o0<s<t<d Hg

3/2 |
= (2) (2) + O(n) |

8 Ja

Tt remains to derive (59) from (58). We write (58) as

n n, n, n n,-1 |
[ 3 I J eo & 0 . 1 . |

0 i-1 i+ h-1 1 |

m . : C<h RJgrdyreeerdyqy 0213S (“ ) |

x v J.-J. ) + ofl) (60(oes S imodd

For any o & s « « and integer Iq , define

Hy

jp (ren) | reng \ dy

2 Jp=1Jg
r

n.-1 n_
og) = ZZ 1 m1. ‘

ien, J, (rel i; ) reng-{il \ J,

Y3,=7
r

38



— |

ng _ n_-1 :
Fact 2. © (J) = , and ©'(J. =n :
— S's SIS S

J J
S S

Proof of Fact 2. Observe that

Hy ng
TT (+x) = (1+x) : (61)

re Ag

This gives

Is ng Te
J J J
S S S

and hence the first equality.

To obtain the other equality, we differentiate both sides in(61).

This gives

n,-1 n. _ n_-1
) n, (1+x) 0 (1+x) sa n_(1+x) .

len rep -{i}

The formula follows immediately by equating terms. C

Now write (60) as

1

1 1 os <t<d i

2 J =m 2 J,=Jd,, WV
Vv rel,

AY

n,-1 n, 1

Js 041 3, 0<s<d
0<f<h
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| v Vv

x 2. J, = J] 0; (7. i 6 (J) + o(l) .
O<s<d O<s<d

s#t

Using Fact 2, we obtain

n n n
1 O t-1 t+1

Jor deer 94 o n = 0 Jg-1/\ Jes
2 J =m
v Vv

n n, -1

Ja-1 Je 0< s<d

| This is just an alternative way of writing (59).

| This completes the proof of Theorem 2. O



5. An Exact Analysis of (3,2,1) -Shellsort. |

In this section we prove the following theorem. Recall that A_,

the expected number of inversions 1n a random 2-ordered list of n

n-2 n
elements, 1s n/2\|2

Theorem 3. For n > 3 ,

1 2 1

5,((3,2,1)3n) = § 2 L(wi)/3]7- Fn
0<i<z2

m

b) 1b _2 “om 8 2m it n=13m,
(=)

S.((3,2,1)3n) = - _ x = if n= 3m+lPANS EITIS Bont 2 Aon 8 2m ’
n )

m+1
1 1 4 |

| for 5 mz = mo ttn = Sw,. mt+l1l

and

1 1

S;((3,2,1)3n) =f Dn - 3 + R(n)

1

B(2mr1) 1f n= 3m,

where R(n) = I 1f n= ml
8(2m+1) ’

_3 if n = 3m2 ,
8(2m+3)

The expression for 5 follows directly from (6). To derive the

formula for 5, , we start with formula (18). Write

By B Boaa, even (21) ¥ Beven, oaa (2m) + We have

41



ul

As + B if n =3n,

| 5,((3,2,1)3n) = Aq + By if n = 3mtl , (62)

Asr1 tT Buia 1fn = m2

Let

Co. [it] P- (14341) )

It was known (Knuth [1l, Exercise 5.2.1-14]) that

| A = Zz |i-d fu, om) 3)
: 0<1,j<m

We extend it to show the following lemma. For &,B € {even, odd} , we
_ 4

! agree that even = odd , odd = even , and (-1)% & = 1 1f Od, B are

both odd or both even, and -1 otherwise.

Lemma 4. For each O,Be¢ {even, odd} ,

; a Co. Q+B
1 2m 1- . |i- - (-1) | .

] ’ 0<1,j<m 0<1,j<m

Proof. We will prove the lemma for & = even , B = odd ; the other three

cases can be proved 1n a similar way.

Let § be the set of 2 ordered lists (2392 815bys aera 150 1)

of 2m elements {1,2,...,2m} . For each Leg, let Q; (I) be the

set of inversions of the form (3550) with odd 2 . Then

2m

( m ) Beven, oad (2™ B 2 2 |, (T) | ‘ (64)
1 Le £ 1= even

] ho



For any even 1 , 1if a 1s the (i+j+1) -st smallest element in IL

with J < 1 , then

| »

0; (L) . {(a;,0)) | 2 is odd, J <2 < i) ,
| =

implying

, if J is even,

i=-J+1 : Lo
— 1f J is odd .

Similarly, 1f j > 1 then

0, (I) = {(a;sb,) | £ is odd, J > 1 >i},
and

5 if § is even,

11 | oo

oo = if J 1s odd ,

Thus, for any even 1 , 1if as is the (i+j+l) -st smallest element

in L , then

lid] 1f J is even,
0; (1) | = (65)

i-j+1 .

li-a] 1f J is odd.

Observing that w(i,j,m) is the number of Le g£ such that a 1s the

(i+j+1) -st smallest element in L , we have from (64) and (65)
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2m

(3 ) Beven, ogg (2M - 2. 2 |, (T) |
| i1=even Le §

NE oo i-j+l .
- SRR] SUNCIPI SNES Mlanid ICTR I

i=even | J=even J = odd

This proves Lemma 4 when @ = even , B = odd . 0

Define

Wo, = 2 u(i, Jom) +0 w(iy Jom) - 2 w(i, jym) - u (i, Jrm) .
J <i J <i J>1i J>1i

i= odd 1= even 1 = even i= odd

J = even j= odd J = odd J = even

From Lemma 4 and (63), we obtain after some manipulations,

2m 1 . . 1
n B = 35 2 |i-J lu (i, 3m) +5 Wo

0<1i,j<m

1 2m _L
= = + =2 (; Yoon 2 Min . (66)

We shall now show that, for m > 1 ,

m-1

Woo= -h . (67)

Formulas (62), (66) and (67) imply immediately the expression of 5,

given in the theorem.

To prove (67), we use a result due to R. Sedgewick [6].

Lemma 5 (Sedgewick [6, Theorem 2]). Let f(i,j) be a function defined

for integers 0 < i,j < m , and satisfying f£(i,J) = £(i-j,0) for i > J ,

£(i,3) = £(0,j-1) for Jj > i , and £(0,j+l) = £(j,0)+1 . Then

co . 2m “\

2 £(i, Juli Jom) = 2 (22) (2F(3)+3) >
0<1i,j <m j>1
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where F(j) = 2  £(4,0) .
0<£<J

In our problem, we write

Wo = = 2. £(1,3)u(i, Jom) ’

where

( 0 for i, j both even or both odd,
£(i,3) = -1 0<j<i<m

otherwise.

1 0<i<j<nmn

It is easy to verify that all conditions in Lemma > on f are satisfied.

Note that

| Fk) = I £(3,0) = -Lk/2) .
0<j<k

i We have, using Lemma 5

| W = - 22 (ae )(-eLE/2 pm)m m-k

k>1

2m

-2k+

k>1 m-2k+1

.- 3 ( Fine) (23)~ -2k+ -
1 m=-2k+1 + m=-2k

em-1

=~ ( i)k>1

_ 2m

This proves (67), and hence the expression for S, in Theorem3.

We now derive the expression for Sz The derivation will be given

only for the case n = 3m (integer m > 1). The other two cases

n=33ml, n=73mM2 can be similarly treated.
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Recall the formulas (24), (25), (26) for the case n = 3m :

| S 2,1); = 2 E(z, . + 2 E(z, J) (68)

| m m m

BzJ) = Hr 2 | \ IE 1<i<in/2), (69)| ’ L251 5 ky thotky =21-1 \ ky J\ Kk; 5
Kok are even

| kis odd

and

(egy4) = Ty 2 Co) , 1<i<rn/2]. (10: i+l,1 _ nu

A (F) mse (n\n \y

| k, 1s even

Consider the expansions

1 n n _ ny\._k
| 5) [ (1+x) + (1-x) ] = 2. Kk X P)
| k= even

| and

1 [(1+x)" - (1-x)™] = 2 (%)=2 k = odd

| It is easy to see that the quantity B(zy 5) , as given by (69), is
| 3m \7h Lo 21-1 11 the function| (25) times the coefficient of x

5 (0) + (1-0) (@)" - (1-0)

=F (@" + 10M (rT + (1-0)

= 3 (0 @0®™ + § (aR enn
; 2

— : 2 (a) + x (terms of odd -powers in (1-x)" (1+x) M .1

i
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| Let 8, k be defined by
2m k

(1-x)" (+x) = Z a, x (71)
Then

1 1 %mypi-1
E(z; 3) =T +T% 73m\ for 1< 1 < | 3m/2 | ; (72)

(2%)
Similarly, we can show that

1 1 mei
E(2i49,5) = T "I 3m for 1 < 1 < [3m/27 . (73)

21

From (68), (72) and (7 3), we obtain

. a
k k

5,((>2,1)30) = § (al) -f I (1) 6) :O0<k<3m K

Noting that %n, 0 = 1 and %n,3m = (-1)" , we can write this as
a

1 1 k m,k
((3,2,1)3n) = (ntl) - zi (=) 74

5,((3,2,1); in Bekemm (>) (74)
Let

k “mk
a = 2 (=1)" tr
TT 0<k<3m (3m)

S48 \ kJ

k T1(ktl)T(3m-k+1

- I (uf DEE a (75)

where T(x) is the Gemma function (see, e.g. [1]). The Beta function

(see, e.g. [1]) defined by

B(x,y) = T(xty)
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has an integral representation (when Re x > 0, Rey > 0) ,

L x-1 y-1
i B(x,y) = [ dt t= ~(1-t) dt .
: “0

; We can write (75) as

| a = Z (=D) a (Gwrl)R(kL, 3mokel)
| 0<k<3m ts

k 1 Kk 3m-k
| = ((3mtl) X (-1)% a [ t(1-t) dt
| O<k<3m >

| i t \& 3= (3mtl) 2 a (££) (1-t)"" at .| 0 L0<k<3m m,ky 1-t

| Using (71), we have

| 8, = (Bm+1) J (1 + 1% ) (1 - 5) (1-1) dt
2m

= (3mtl) [| (1-2%) dt
0

_ Smtl
Co omtl CC

Therefore, from (74), we obtain

1 1
((3 2,1)3n) = n+l) - a

I" 1 m+
= (etl) - TS

| 1 1 1
Nn = ~+ — —

=k 8  8(emtl)

| for n = 3m . This proves the formula for S, when n = 3m .
We have completed the proof of Theorem 3. mn

| 18
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0. Concluding Remarks.

In this paper we have analyzed the asymptotic behavior of

(h,k,1) -Shellsort for fixed h , k . This procedure can be generalized

to analyze h -Shellsort with more than 3 increments. We shall report

the results in a future paper, where we shall also study the situation

when h varies with n .

Acknowledgements. I wish to thank Bob Sedgewick for helpful suggestions

that led to the simplification of several derivations.
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Appendix: Proof of Lemma 2.

In this appendix we will show that, for each Ce “ny x?

Gy, L(e3m) — (+1) KP + 02/3) , (A.1)J

For notations and definitions, see Section 3 of the paper. In this appendix,

the constants in the O-notation can depend on h and k , which are fixed

integers.

Write ci = (n;-c;) mod k for 0 < i < h , and

(1) = = o
Gy, (esn) - 2 Xn, (C303 W) , (A.2)

’ ows w/z) 7

where

n n
~ - 1 0 \[ "1 "h-1
C'n:w — r——— >) oe 0 bd

J. modk = C.
1 1

Vi

It 1s easy to see that

To prove (A.1), it clearly suffices to prove the following result:

SACHS = (LN/2+1)/k" + O(N /3 for each ¢ . (4.3)

We shall prove (A.3) by establishing the following claim.

Claim. If c¢ = (CyrCqsCsenescy 1) €C and ad 4 (Q +1) mod k, ct, 0 Oslo)
then

1) = = (1) = = 2/3
Cy, (©3512) < Gy, (dn) + O(N /3) .

| 00



=

The Claim would imply that, 1f c,d e C differ only in the first

(1) 2/3
component, then their values of G, Kk differ at most by O(N )J

By symmetry, this conclusion 1s also true for Cc, ad differing only

in any one component, It then follows that, for any c,d ¢ Cc ,

(1) 3.2 13.7 2/3
Gy (e350) = Gy (dsm) + oN")

Formula (A.3) follows as

1 a As4 — =

_& G ) (30) = 2 R2 Xn (en)
ceC O<w< LN/2] cec 7

= LN/2j+1

It remains to prove the Claim. For ie {1,3} , let R, (w) denote

the set of integers in the interval (w/h - 1/3 , w/h + ivP/3)

Lemma Al. If 1< w <|N/2], then

; ) or |J w=] _
2 0 x 0 = O(w 1/3 » for each ie {1,3} .

Jo £ By (W) | )

ny N-n, NY
Proof. The hypergeometric distribution py = ,

k w-K W

(k = 0,1,2,...) , has expected value wn /N = w/h + 0(1) and variance
n n

0 0 w=-1 _

(see, e.g. Rényi [5, p. 1051). The lemma then follows from Chebychev's

Inequality (see, e.g. Rény [5, p. 3731). O
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| . : Ww 2

| Then

J Jatd
0 0 ~1

I
Ww or)

Proof.

ny \
: N

io) (wn) Gene
NER = (o-Jd) (wl)(+) "o Ay=dg) (whl)| W

Jotd

_ w/h + SCD N-w
| | (N-w)/h - ow" 2 whl

1+ owBy

We shall now prove the Claim. Without loss of generality, assume N

is-large enough so that ny £ Ry (w) . Let g(csw) denote the set of h-tuples

(302377. ¢ Jp.1) of non-negative integers such that Z3, - w , and
i

J; modk =c. for all 1 . Then, for each 1 < w <|N/2],

n n
| 1 0 1 "h-1

| Xh, (e3n;w) = 2 TH I Jo )| Je glesw) (5 ) NAH i.

~ 1 of M1 M1

Jo Bw) (5 cdo JN dn) dpa,
: je gle,w)

| n

; . N . . tT 8 @ )

je g(c,w)



Jo € Bs(W) | ( v) Jo/ \ 1 Jh-1

0

AS CONN j 1]

Using Lemmas Al and AZ, we have then

oo | 1 1 n n _

io € By (W) (or itl) \ ay Jpg
je gle,w)

\ | oe )J w=J

+ 0 > A
Jo # Bs (W) (%)

n n

Jo €Bs(W) \Jgt1/ \ J; Jp-1

It is straightforward to check that Ry (whl) - {dgtL | Jo c Ry (vw) } , Thus,
from (A.L),

* 1 Ll] J »

-/ Note that Jo € Ry (W) implies Jo 4 Ny because we have assumed
ny £ Ry () . This enables us to apply Lemma A2 in the ensuing
derivation.

.
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| n n
—- 0 1 "h-1 -1

Xp (csnsw) > 2 S oo + O(w /3)Jo €Ry (wl (5) Jo/ \ 91 Ip-1
je g(d,wrl)

—_ — ~-1

In the last line of the above derivation, we used a formula similar to

(A.4) for Xn (snl . On the other hand, it follows directly from2

(A.4) that

Xp, 1 (C3159) < xn (dns wel) + O(w / ) . (A.6)

Therefore, we obtain from (A.5) and (A.6) that

| Xp, x (CHW) = Xp, k 43057] + O(w / ) (A.7)

| “From (A.2) and (A.T), we obtain

Gy ACH = Xp,k\ =?
L<ws LN/2]

| = 2 Xp, i (d3n3wil) + 2 O(w /3) + 0(1)
| 1<w< | N/2) 7 1<wsS LN/2]

(1),3.7 2/3

This proves the Claim, and completes the proof of Lemma 2. CJ

51,



a

References

[1] G. F. Carrier, M. Krook, and C. E. Pearson, Functions of A Complex

Variable, McGraw-Hill, New York, 1966.

ot [2] D. E. Knuth, The Art of Computer Programming Vol. 3, Addison-Wesley,

Reading, Mass., 2nd printing, 1975.

[3] D. E. Knuth, "Mathematical Analysis of Algorithms," Information

Processing (IFIP) 71 (1972), North Holland, 19-27.

[L] V. R. Pratt, "Shellsort and Sorting Networks," Ph.D. Thesis,

Computer Science Department, Stanford University, 1972.

[5] A. Rényi, Probability Theory, North-Holland/ American Elsevier,

New York, 1970.

[6] R. Sedgewick, "Data Movement in Odd-Even Merging," SIAM J. on Computing

Co. 7 (1978), 239-272.

| [7] R. Sedgewick, "The Analysis of Quicksort Programs," Acta Informatica

7 (1977), 327-355.

[8] D. L. Shell, "A High-Speed Sorting Procedure," Comm. ACM 2 (1959),

30-32,

59



|
i

i

|

2

s

t

i

I

A

1


