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Abstract

The solution of the differential system Bx = Ax + f where

A and B are n x n matrices and A - AB 1s not a singular

pencil may be expressed in terms of the Drazin inverse. It is

shown that there 1s a simple reduced form for the pencil

A- AB which is adequate for the determination of the general

sobution and that although the Drazin inverse could be determined

efficiently from this reduced form it 1s 1nadvisable to do so.





l INTRODUCTION

In a recent paper L2 1 the solution of the differential system

Bx = Ax + f(t), (1.1)

where B and A are n x n matrices and f 1s an n-vector has been discussed in

terms of the Drazin inverse. Although this work gives considerable insight

into the nature of the general solution of (1.1) it should not be assumed that

because the explicit solution can be expressed directly in terms of the Drazin

inverse that economical algorithms will involve its explicit computation.

Numerical analysts will be familiar with this in connexion with the simpler

problem Ax = b where A is non-singular. Although the solution 1s given by

X = 27M it 1s seldom advisable to compute the inverse explicitly. However

algorithms for solving Ax = b based on direct methods do provide the basic

tools for the efficient computation of A™' if that should be required; we

might therefore expect that practical algorithms for solving (1.1), or

closely related algorithms, would provide effective methods for computing the

Drazin inverse and this 1s indeed true.

2 THE DRAZIN INVERSE

If A 1s an n ¥n matrix then the Drazin inverse | 4 ] of A 1s the matrix X

satisfying the relations

(i) AX = XA

(ii) XAX = X

(iii) xa® 2 4%) where x = Ind(a).

Ind(A), the index of A, is the smallest non-negative integer for which
k+

rank (a5) = rank (A h.

The existence and uniqueness of A may be proved as follows. The proof 1s

given 1n matrix terms since we shall need to work in these terms in subsequent

sections. Let J be the Jordan canonical form of A, and suppose J 1s expressed

as the direct sum of C and N where C 1s associated with the non-zero

eigenvalues and N 1s associated with the zero eigenvalues and 1s therefore

nil-potent. We may write
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Cc] 0

A=T 7 (2.1)
O| N

where C is non-singular and N is nil-potent. If k 1s the smallest integer for

which we = 0 1t 1s clear that k 1s the index of A since

~ oK 0 a 0

A oT Tr AT op — |r (2.2)

0 0 0 0

k kt 1 p
and rank (A7) = rank (A" ') = order of C, On the other hand rank (4%) >

rank (A"'1) when p < k. Obviously k 1s the dimension of the largest Jordan
submatrix associated with a zero eigenvalue.

Any n Xx n matrix X may be expressed in the form X = TY”! and relations (1),
(11) and (111) are satisfied 1f and only if

(iv) JY = YJ

(v) YJY = Y

(vi) YI gf

where

“Cc | 0

J = (2.3)

O| N

Partitioning Y conformally with J we may write

Pl Q

Y = (2.4)

R| S

Equation (iv) then gives

CP = PC (a) , CQ = QF (Db)

: (2.5)

NR= RC (c) , NS= SN (d)
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From (b) we have

~1

can™ = are =0 , (2,6)

on! CLHence = 0 since C 1s non-singular. Continuing in this way we have

ns a3 mdsuccessively = 0, = 0, «o., Q = 0. Similarly from (c) R = O.

Now from (v) and (d)

SNS = S and SN = § . (2.7)

Hence

SNS = SI givingSN = 0 . (2.8)

Continuing in this way SE? = 0, S73, ..) 5s =0. Finally from (vi)

k+ ]

pc! = ¢¥ giving Pp = (2.9)

and hence

co
-1

X=" I (2.10)
0 0)

showing that X 1s uniquely determined. In proving this result we did not make

; use of the fact that C and N were the direct sum of Jordan matrices but merely

that they were non-singular and nil-potent respectively. Hence to derive the

Drazin inverse 1t 1s not necessary to obtain the Jordan canonical form itself

but merely the identification of the nil-potent part, a much simpler objective.

When A 1s non-singular X 1s obviously al the usual inverse. Notice that it

1s not generally true that AXA = A and hence a solution of a compatible system

AX= b is not, in general, given by x = Xb,

3 COMPUTATION OF THE DRAZIN INVERSE

We have shown that the Drazin inverse of A 1s available 1f we have expressed

A in the form
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A=T T (3.1)
Ol N

where C 1s non-singular and N 1s nil-potent. A factorization of that form in

which T is unitary has in fact been derived by Golub and Wilkinson [ 6 1. In

that factorization the singular value decomposition was used so as to give

the maximum numerical stability. A similar reduction could be achieved by a

whole range of elementary transformations and this we now describe 1n general

terms.

We denote the original matrix by a1) In the rth step a similarity
transformation,based on multiplications with elementary matrices is applied to

NS to give a 1, The general form of the matrices £ ) 1s adequately
illustrated by the fact that

AD 8] @ |
44 43 42 47

EE EIR
(4) ce IP
vT 0 o | o | al4) (2-2)

! 21 a

o | o 0 0 } n,
—r — ee

ny n, n,

where the significance of the n, will become apparent in the description of
the rth step which 1s as follows.

If the-matrix ar) 1s non-singular the reduction 1s complete. Otherwise premultiply
alr) with a sequence of elementary transformations, the product of which 1s
denoted by or), such that

oo |r) (r) | __
QA = , (3.3)

0 } nr
/

where n_ 1s the nullity of alr), The matrices involved in d ) nay be unitary
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(orthogonal, 1f real) or may be elementary matrices corresponding to elimination

techniques. If A had small integer elements the use of rational numbers
renables this reduction to be done exactly. Note that gl ) need not be trapezoidal

so that this reduction can be achieved entirely by pre-multiplications. If we
=

now post-multiply by @{ we may write

(ee) |(ee)
r+1, r+ r+,r

(r) (x) (or)
Qa @NT ed (3.4)

i 0 | 0 1

Writing

ol)J — (3.5)
1 0 I

-1where rr) 1s of order n, then alr+1) = pr) a() (r{r)) is again of the
. required form. Notice that the pre-multication with { 7) affects only the

leading block row of alr) while the post-multiplication affects only the
principal leading submatrix. We must have n,n, since 1f n,>n, this

would imply that in the preceding stage n_ , was not the full nullity.

Indeed the a must be of full row rank at every stage for the same reason.
?

)

If the matrix 2(1) 1s entirely nil-potent then we must reach an fx which 1s
null and the final matrix 1s of the block form illustrated by

0 X X X |

0 O00 X X (3.6)

0 | I I {|

(k+1)
Otherwlse we terminate with an Ay ok 1 which 1s non-singular. (In using the

3 1

symbol k we are anticipating that this is the index of al ). In this secondkt]

case we can annihilate all blocks 1n the first row except WE py further
similarity transformations. This 1s adequately illustrated by'the case when/ .

k =3 for which a4) is as in (3.2) wien(d); non-singular. Post-multiplication
with
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(4)y=1,(4)
I ~(A A( 44 ) 43
0 I

Py (3.7)|I

1

annihilates ad) and leaves all other submatrices unaltered. Pre-multiplication
with {1 preserves all the null matrices and changes ald) and a), The (4,2)
and (4,1) blocks may be annihilated successively 1n a similar way.

Thus according as a(1) 1s entirely nil-potent or not we achieve a reduction to
one or other of the forms illustrated by

0 X X X | C 0 0 0

0 0 X X O 0 X X
(3.8)

00 (|= De won ow
with C non-singular. We may denote this final matrix by

 c

"
in the two cases. Obviously ve = 0 while it 1s easy to see that since the
(i,i+1) blocks are all of full row rank we / 0 (£ < K). Hence k is indeed the
index,

The Drazin inverse could now be computed explicity using the product of all the

transformation matrices but it would usually be more expedient to keep it in

factorized form.

4 THE SOLUTION OF THE DIFFERENTIAL SYSTEM

When B 1s non-singular the system (1.1) may be written in the form

. ~1 -1

x =BAx + B f . (4.1)

There 1s a solution corresponding to any f and for arbitrary initial values Xe

This solution may be expressed in terms of exp(B™ at). Singularity of A in no
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way affects the explicit form of the solution. Although this 1s a non-trivial

matter we shall assume, in common with the paper we have referred to, that we

have satisfactory algorithms for it.

When B 1s singular but A 1s non-singular (1.)may be written 1n the form

-]_ ~1
A Bx=x +A f (4.2)

ie Kx =x _ g (say) . (4.3)

The existence and nature of the solution may be examined in terms of the

Drazin inverse of K but there seems to be little point in computing the latter

explicitly, Indeed 1f

1 C
K = T™ T, (4.4)

N

then

C -
Tx = Tx+ Tg , (4.5)

N

or

C y y p |
| = + , (4.6)

N 2 yA q

-T
= Tx , = Tg. (4.7)

Z q

Hence

Cy =y+0p (4.8)

Ni = 2+ gq . (4.9)

Since" = 0, (4.9) gives

-~1 ~10 = Ne z + Ne q . (4. 10)
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EeMultiplying (4.9) by and substituting from (4.10)

— lg ng Ty (4.11)

and continuing in this way

z = — [I + ND+ .** + pf] q where D = =. (4.12)

Notice that we must have

z= (-(1 + ND+  ** + rp] a), (4.13)

and since the components of z, are linear combinations of those of X this

means that the initial x must satisfy certain conditions for a solution to be
possible. Provided these consistency conditions are satisfied there 1s then a

unique solution corresponding to any gq, assuming that it has k-1 derivatives.

We observe that in the homogeneous case q = 0, and the only solution of (4.9)

1s z = 0.

Since C is non-singular the system (4.8) has a unique solution corresponding

to any initial Y, and this may be expressed in terms of exp(C 1).

The solution described above has been given in the spirit of the work based on

the use of the Drazin inverse, but we would submit that even here too much

attention has been paid to obtaining explicit expressions. It 1s more economical

to-work with the form exemplified in (3.2). We describe this below and for

convenience of presentation we assume that k = 3 and omit upper suffices. A

transformation of variables has then reduced the original system to one of the

form

A A A A 3 - i

4 C43 C42 Cg +] Ys °¥3 73 °3
I = + o |

- 7, e, (4.14)
A :il il 200 ilu Cy | I i , |
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where the blocks on the diagonal are square and Aa 1s non-singular. The
matrix

A
0 Ay Ay

ol0 0 A, (4.15)
O ©O 0 :

1s the N and Ba 1s the C of our previous analysis.

The relation (4.14) gives successively

—_ w— == — y —_ a — ot — ’ , 16

Finally we have

A J = + -— A J - A = A ; opp = TF ey = hyd Apoy, = A035) (4.17)

and at this stage Y1s Io and Ys and hence Yq Vy and ys have already been
determined. Notice that when we describe the solution in these terms there is

no need to annihilate the blocks EY Ayo and Ay as we did in section 3} when
describing a reduction to the form

Cc O

. (4.18)
O N

- Now we merely have terms involving these Api on the right of(4.17).At the
end of the next section we show how the volume of work maybe reduced even

further.

5 SINGULAR A AND B

When both A and B are singular one cannot proceed as in the previous section.

The use of the Drazin inverse has been concerned with the case when det(A-\B) ¥ 0

ie when the pencil A-AB is non-singular in the Kronecker sense (see eg 3,5,8 ]).
The matrix A-cB 1s then non-singular for any c¢ which is not a root of the

equation det(A\B) = 0. If one takes any such c then the system (1.1) is

equivalent to
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(A~cB)”'Bf = (A~cB) Ax + (A—cB)T'f (5.1)

or

TARR A A
Bx = Ax + © . (5.2)

It may be readily verified that BA = is. The explicit solution of (5.2) may

be expressed 1n terms of the Drazin inverse of B, Although, of course, the

derived solution must be independent of c¢, its introduction is undesirable.

In practice 1t would be important for A-cB to be, not merely non-singular, but

well conditioned with respect to inversion, otherwise there will be a loss of

accuracy which may be far greater than that resulting from the inherent

sensitivity of the problem.

It will be appreciated that one will not necessarily know in advance whether

A and B are singular or indeed whether det(A-\B) £ 0. The method described

below, which 1s analogous to that described in section 3 for the computation of

the Drazin inverse of a matrix, does not require any previous knowledge and

does not require the use of the arbitrary scalar c.

We observe that 1f P and Q are non-singular then pre-multiplication of the

system (1.1) with P and the transformation x = Qy transforms it to the

equivalent system

PBQy= PAQy+ Pf . (5.3)

In our algorithm P and Q are determined as products of elementary matrices

in such a way that (5.3) is typically of the form illustrated by

(4) (4) (4) (4) 3 24) 44) 4) (4) . -
44 43 TA TAT 4 44 C43 C42 TH || 4 4

32 U3 73 33 “32 U3 F =3Vo = + .

o oO BW, oo A@ ,@ || | OG
2 22 21 2 2

0 : (4)
0 0 0 RL 0 0 0 Aj | Ii g,

The diagonal blocks are square and a4) als) AC and 5,4) are non-singular.
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The matrices 34) and 34) are of Full row rank. In general there are k steps,+1)
the process coming to an end when Bert, ket 1s non-singular.

Suppose we have performed r-1 steps and 5) 5 still singular. In this case
9

37) may be reduced to the form
’

(x)
— (5.5)

0 } nr

by pre-multiplication with elementary matrices. Here n 1s the nullity of

5%) and 5(7) 1s not required to be of upper trapezoidal form. If the same
J

operations are performed on alr) the resulting matrix may be denoted by

or) |
— (5.6)

o(7) } nL oF

Now GT must be of full row rank n_, since otherwise a) and AS share a
common left-hand null vector and this would imply that det alr) _p = 0.rr

Hence or) may be multiplied on the right by elementary matrices to give

I (+1) |

where alm) 1s non-singular. If these right-hand transformations are applied
) to the full matrices

+(x) A(x)
— and (5.8)

0 o{r)

the resulting matrices may be denoted by

(21) A(r+1) (21) A(+1)
r+1, r+ r+, r r+1, r+1 r+1,r

| EPS and . (5.9)0 0 0 alr)
rr
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The rth step 1s completely determined by the matrices B and A but if we
apply the transformations to the full n Xx n matrices and to the current forcing

vector we arrive at an rth derived system of the same form as the (r-1)th system

from which we started. The p+) must be of full row rank otherwise the no
determined 1n the previous stage would have been incorrect.

If det(A)B)# 0 we must either reach a ar) which is non-singular or one which
| | ( r) | rr _ |
1s completely null with E non-singular. If however det (AB) = 0 this would
be detected by the algorithm since we would reach a stage at which the { ) of
(5.6) was not of full rank and this would reveal itself when performing the

elementary operations on &)

For simplicity of presentation let us assume that the process terminates when

k = 3 so that the final system is as given in (5.4). We suppress the upper

suffix for convenience. The solution is then given by

A07g = = 8

Aoo¥o = = & = Avy = Boy, (5.10)
A = - - A - - B.,y., — B__.y
33Y3 © 7 83 7 A3q¥y 7 A3p¥p = Bad = Biol;

so that the components of y,, y, and yy are all uniquely determined and the
initial values must satisfy equations (5.10) for consistency. Finally

By, =A y+ (A y+ A +A -B,.y, -B .y. - B,.y 11

and the vector in parenthesis 1s already determined. Since Ba 1s non-singular
this has a unique solution for arbitrary initial Yy which may be expressed in

-
terms of exp{B,, A, t).p(B), 2g

The elementary transformations on or) would usually be carried out in such a
way that plo) would be at least triangular (though possibly even diagonal)
according to the method used. The computation of the vectors Tr Tor Vy from
relations (5.10) would therefore be particularly convenient. As we remarked above

1f at any stage o(r) is not of full rank this would be exposed automatically in
the execution of the algorithm. (We assume here that the algorithm used to
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reduce 6) stable enough to detect rank reliably!). This can happen only
if det(A-\B) £ 0. This situation is not usually covered by the use of the

Drazin inverse. When 6" has a rank deficiency of p then p linear relations
must hold between components of f for the differential equations to be

compatible. This is discussed in detail in[8 ]. However the generalMi

situation may be illustrated by considering what happens when ¢''/ has a rank

deficiency of p. This means that the original system 1s equivalent to a system

of the form

K L

| np | 0 | v= np | Mo y+ eg, (5.12)
p { i 0 P | ;

where M 1s of full rank, n,=p. Hence the last p components of g must be zero
for the equations to be compatible, and the components of g are linear combinations

of the original components of f.

When both A and B are singular but det(A-\B) # 0, then when we reach the
/

terminating non-singular p\3 the corresponding PSR be singular. This/.

follows because the earlier alt) were non-singular and if AY ere non-singular
this would imply non-singularity of A.

We have remarked that the solution may be expressed in terms of the Drazin

inverse of (A=cB)™'B and the form of the solution is determined by the index
) of (A-cB)™'B. The k introduced above is in fact this index as we now show.

Denoting the successive n X n matrices derived by the algorithm by ) and alr)
respectively, p(k) - op(kr1) has as 1ts diagonal blocks

(kt1) _ (kt1) (k+1) (kt1) (kt1)
Mertler Pert ker fae 0 cre Ao HALT (5.13)

The last k of these and kk kt are non-singular by deyrnaton of the algorithm.CL nN | a ket)The first is non-singular for any c¢ for which det (Ber) OB 1) # 0 ie
for almost all c¢. Obviously

x = | aller?) opie? )| 1 L(k+1)
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1s block upper-triangular and its diagonal blocks are

 (k#1) (+1) | = (+1)— R -

kek 1) - + | :Further X. . = (0 1) I glk?) and hence 1s of full row rank for
1,11 11 1, 1-1

2 = 1 € k since this 1s true of the pit) Hence the k of our algorithm 1s
- +1) -1 (k+ et 1 et1the index of [4 (+1) — 05 1] 5 1) and since a ) _paq, BC ) - PBO

for some non-singular P and Q, our k 1s the index of (4-cB)™'B,

The algorithm we have described works in terms of full n x n matrices at all

stages 1n the reduction, though to be sure in later stages only parts of these

matrices are affected by the transformation. We have presented the algorithm

in this way 1n order to give a closer tie up with earlier work involving the

Drazin inverse. However, if one were concerned with only one forcing vector f,

or 1f indeed one were interested in several different forcing functions all of

which were known at the time when the reduction was performed then a

considerable economy would be achieved as follows. Suppose we have completed

one stage of the reduction and have reached the reduced system

2) (2) | - Fe) (27.(2) g |22 21 | i | Hot AT 52
| = I (2) | + : (5.15)0 0 5, OA Yq g

At this stage the variables 1n y, are completely determined and these variables
undergo no further transformations. We have then

(2)\-1
yy == (A027) g (5.16)

and

(2). (2) | (2). (2)B _ - a

200 Tp = Bop Vp+ | 8 = Boy + AxyTyg

(2) |

Hence we can continue with a system of lower order. In this way we avoid
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(2) (2)
performing any transformations on BS, and As, in the next step. The first
stage is wholly typical; in the rth stage we determine n_ more variables and

are left with a system in n., fewer variables. Obviously 1f we are interested
in the effect of several forcing functions we can deal with them all

simultaneously. Asimilar reduction of effort may be achieved with the

simpler algorithm of section 4.

0 NUMERICAL EXAMPLE

As an 1llustration of our algorithm we describe 1ts performance on the example

used by Campbell et al [2].

The systemof differential equations 1s

Ax+ Bx =D

1 0 2 | 27 22 7 2

> 3 2 x+| 18 14 10 | x=] O , (6.1)

1 0 =2 0 1 2 _

where we have reordered the equations in order to avoid a row permutation

during the course of the solution. This makes the process a little easier to

follow. Naturally we have used rational elimination techniques. The authors

gave the general solution to the homogeneous system as well as that

corresponding to the forcing function b. For convenience of comparison we

- have followed the notation Ax + Bx = b used by Campbell et al.

Exposing the row nullity of A gives

| 10 2 [27 22 17 2> 3 2 | x+ 18 14 10 | x= |O . (6.2)

0 0 0 27 =21 -15 3

We now reduce the rows of B corresponding to the null rows of A. In fact there

1s only one such row and to facilitate comparison with Campbell et al we leave

(3,1)as the non-zero element rather than (3,3). This involves the
transformation
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_L _2 A)
9 9 12% 73% 2973

X = Y Or 2 = X, (6.3)

. =

3773

and leads to

7 23 | I-1 a =27 - 1 —2 > |
9 9

LB gels 0 ofy-lo (6.1)
L 00 o 27 0 | nN

At this stage the singularity of B is exposed. The third equation gives

=21y, = 3 ie Ox1 + [R= + DX +1 =0 (6.5)

while for the homogeneous system

9x1 + Tx, + 5x4 = 0 (6.6)3

Notice that these relations must hold for all values of t and therefore in

particular for t = 0; at t = 0 they are in fact equations (35) and (29)

respectively of Campbell et al.

Substituting y= = 1/9 into the first two equations and remembering that
Y2, T= X99 Y3 = x3 we have

Ly +235 _ 4 _ _

5 Xo Tg *y x, 2X4 = 1 | (6.7)

5 *2 79% °c .

and the solution 1s now trivial. The general solution 1s

2/3t _ 1 il
X, _ ~ 78 (x, (0) + 2x,(0))e - 78 (13x, (0) + 8x,(0)) t 5

oz 2/3, 1 (0) + 26 (6X, = = 73 (8x,(0) + 16x, 0))e + 5 (26x,(0) + 1 x. )) + (6.8)
1 2/3t 1= — _— + -Xq —=(13x,(0) + 26x,(0) )e 3 (13x,(0) 8x,(0)) t
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For the homogeneous case the general solution consists merely of the terms in

(6.8) involving x,(0) and x,(0) with the others omitted. The solutions given
here differ somewhat from those given by Campbell et al; this results from a

trivial error made by them in the execution of their algorithm.

Of course this example 1s in some ways deceptively simple; however this 1s

equally true of the solution obtained via the Drazin inverse. In general the

system (6.7) above in which the matrix involving the derivatives is non-singular

would be reached only after several stages of reduction (in fact k stages where

k is the index associated with the relevant Drazin inverse). The solution of

this reduced system can be expressed in terms of an exponential involving only

an ordinary 1nverse.
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