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Abstract

The solution of the differential system Bx = Ax + f where

A and B are n x n matrices and A - AB is not a singular
pencil may be expressed in terms of the Drazin inverse. It is
shown that there is a simple reduced form for the pencil

A - AB which is adequate for the determination of the general
sobution and that although the Drazin inverse could be determined

efficiently from this reduced form it is inadvisable to do so.






l INTRODUCTION

In a recent paper L2 1 the solution of the differential system
Bx = Ax + £(t), (1.1)

where B and A are n x n matrices and f is an n-vector has been discussed in
terms of the Drazin inverse. Although this work gives considerable insight
into the nature of the general solution of (1.1) it should not be assumed that
because the explicit solution can be expressed directly in terms of the Drazin

inverse that economical algorithms will involve its explicit computation.

Numerical analysts will be familiar with this in connexion with the simpler
problem Ax = b where A is non-singular. Although the solution is given by
X = Af1b it is seldom advisable to compute the inverse explicitly. However

algorithms for solving Ax = b based on direct methods do provide the basic

' {f that should be required; we

tools for the efficient computation of A~
might therefore expect that practical algorithms for solving (1.1L or
closely related algorithms, would provide effective methods for computing the

Drazin inverse and this is indeed true.

2 THE DRAZIN INVERSE

If A is an n ¥ n matrix then the Drazin inverse EA ] of A is the matrix X

satisfying the relations

(i) AX = XA
(ii) XAX = X
(ii1) xa®7 o 4K

, where k = Ind(A).

Ind(4), the index of A, is the smallest non-negative integer for which
rank (Ak) = rank (Ak+1x

The existence and uniqueness of A may be proved as follows. The proof is
given in matrix terms since we shall need to work in these terms in subsequent
sections. Let J be the Jordan canonical form of A, and suppose J is expressed
as the direct sum of C and N where C is associated with the non-zero
eigenvalues and N is associated with the zero eigenvalues and is therefore

nil-potent. We may write



o~ (2.1)

where C is non-singular and N is nil-potent. If k is the smallest integer for

which Nk = 0 it is clear that k is the index of A since

(2.2)

and rank (Ak) = rank (Ak+1)= order of G, On the other hand rank Oﬁ» >
APy

rank ( when p < k. Obviously k is the dimension of the largest Jordan

submatrix associated with a zero eigenvalue.

Any n x n matrix X may be expressed in the form X = TYT™ and relations (1),

(ii) and (iii) are satisfied if and only if

(v) YJY = Y

k+1 _ Jk

(vi) YJ

where

J = (2.3)
Partitioning Y conformally with J we may write
Y = (2.4)
Equation (iv) then gives
CP = PC (a) , CQ = QN (b)
. (2.5)
NR = RC (c) , NS = SN (d)



From (b) we have
ca - -0 . (2.6)

Hence Ql\Tk'1 = 0 since C is non-singular. Continuing in this way we have
successively QNk_Z =0, QNk-3 =0, +u., 0 = 0. Similarly from (c) R = 0.

Now from (v) and (d)

2

SNS = S and SN = S . (2.7)
Hence

s°rE = o giving s o0 . (2.8)
Continuing in this way SNk_2 = O,SNk-% . ..) s=0. Finally from (vi)

pc® 1 = ¢* giving p = ¢! (2.9)
and hence

™, (2.10)

showing that X is uniquely determined. In proving this result we did not make
use of the fact that C and N were the direct sum of Jordan matrices but merely
that they were non-singular and nil-potent respectively. Hence to derive the
Drazin inverse it is not necessary to obtain the Jordan canonical form itself

but merely the identification of the nil-potent part, a much simpler objective.

When A is non-singular X 1is obviously A-], the usual inverse. Notice that it
is not generally true that AXA = A and hence a solution of a compatible system

AX= b is not, in general, given by x = Xb,

3 COMPUTATION OF THE DRAZIN INVERSE

We have shown that the Drazin inverse of A is available if we have expressed

A in the form



7 (3.1)

where C is non-singular and N is nil-potent. A factorization of that form in
which T is unitary has in fact been derived by Golub and Wilkinson [ 6 ]. In
that factorization the singular value decomposition was used so as to give

the maximum numerical stability. A similar reduction could be achieved by a

whole range of elementary transformations and this we now describe in general

terms.

We denote the original matrix by A(I). In the rth step a similarity

transformation, based on multiplications with elementary matrices is applied to

1)

A(r) to give A(r+ . The general form of the matrices ﬁ ) is adequately

illustrated by the fact that

IRORRONIRO RN
Ay | A3 | A2t | A
(4) | ,(4)
A(4) ) 0 0 A32 A31 } n3 (3 2)
(4) ’ )
0 f 0 0 A21 } n2
o | o 0 0 } n,
- e~ —— —
1’13 n2 l’l1

where the significance of the n, will become apparent in the description of

the rth step which is as follows.

If the-matrix Aii) is non-singular the reduction is complete. Otherwise premultiply

Ari with a sequence of elementary transformations, the product of which is

denoted by Q(r), such that

A(2)
o) Aﬁi) = , (3.3)

0 n
T

/
where n_ 1is the nullity of A;i)- The matrices involved in é 7) may be unitary



(orthogonal, 1f real) or may be elementary matrices corresponding to elimination
techniques. If A(1 had small integer elements the use of rational numbers
enables this reduction to be done exactly. Note that B "/ need not be trapezoidal
so that this reduction can be achieved entirely by pre-multiplications. If we

now post-multiply by (.Q(r))_1 we may write

Mraer | A
o) AE;) T - — - (3.4)
.0 | °
Writing
SRR
o) | (3.5)
1T o I

(r)

required form. Notice that the pre-multication with T Y affects only the

(241 _ 3(8) 4() (g(2))

where T is of order n, then A is again of the

leading block row of A(r), while the post-multiplication affects only the

principal leading submatrix. We must have n,£n. since if no>n. g, this

would imply that in the preceding stage n, , was not the full nullity.

Indeed the Ai+ai must be of full row rank at every stage for the same reason.

I

(1)

null and the final matrix is of the block form illustrated by

)
If the matrix A is entirely nil-potent then we must reach an Xﬁk which is

0O 0 X X ) (3.56)
w0 010
. . . (ket1) . . . .
Otherwise we terminate with an 1 dek1 which 1s non-singular. (In using the
? 1 .
symbol k we are anticipating that this is the index of A 2. In this second
kit

case we can annihilate all blocks in the first row except A} ) by further

ket 1 ket
similarity transformations. This is adequately illustrated by'the case when

/ . .
k =3 for which A(4) is as in (3.2) with Aﬁz non-singular. Post-multiplication
with



B (A(4))_1 (4)

b= (3.7)

annihilates A(4) and leaves all other submatrices unaltered. Pre-multiplication

with P(—1) preserves all the null matrices and changes Aig) and A( ) The (4,2)

3 41 °
and (4,1) blocks may be annihilated successively in a similar way.

Thus according as A(1) is entirely nil-potent or not we achieve a reduction to

one or other of the forms illustrated by

o X X X | c 0o 0 o]
o X X 0 X
(3.8)
mowoow x [Cl{ w w p
_l - i
with C non-singular. We may denote this final matrix by
- 1
N or (3-9)

"
in the two cases. Obviously Nk = 0 while it is easy to see that since the
(i,i+1) blocks are all of full row rank N££ 0 (£< k). Hence k is indeed the

index.

The Drazin inverse could now be computed explicity using the product of all the

transformation matrices but it would usually be more expedient to keep it in

factorized form.

4 THE SOLUTION OF THE DIFFERENTIAL SYSTEM

When B is non-singular the system (1.1) may be written in the form
-1 -1
=B Ax + B £ . (4.1)

There is a solution corresponding to any f and for arbitrary initial values X

This solution may be expressed in terms of exp(B°1At). Singularity of A in no



way affects the explicit form of the solution. Although this is a non-trivial
matter we shall assume, in common with the paper we have referred to, that we

have satisfactory algorithms for it.

When B is singular but A is non-singular (I.1)may be written in the form
-1 -1
A Bx=x+A T (4.2)
ie IGC'_" X = g (SaY) . (4'3)

The existence and nature of the solution may be examined in terms of the

Drazin inverse of K but there seems to be little point in computing the latter

explicitly, Indeed if
-1 [ C
K=1" T, (4.4)
N
then
]
Tx = Tx + Tg , (4. 5)
L v
or
C y y p
. = + ’ (4.6)
| N 2z z o}
B D
= Tx , = Tg. (4.7)
Hence
Cy =y+0p (4.8)
Ni =2z+q . (4.9)

SinceNS = 0, (4.9) gives

0=+ g, (4. 10)



Multiplying (4.9) by ¥ and substituting from (4.10)
STy - w4 Yy (2.11)

and continuing in this way

Z = - [I + ND+ . ** + Nk—qu_1] q where D = gg. (4.12)

Notice that we must have
z0 = (—[I + ND+ . ** + Nk_1Dk—1] q)o (4.13)

and since the components of z, are linear combinations of those of X this
means that the initial X must satisfy certain conditions for a solution to be
possible. Provided these consistency conditions are satisfied there is then a
unique solution corresponding to any g, assuming that it has k-1 derivatives.
We observe that in the homogeneous case q = 0, and the only solution of (4.9)

is z = 0.

Since C is non-singular the system (4,8) has a unique solution corresponding

to any initial ¥, and this may be expressed in terms of exp(C-th

The solution described above has been given in the spirit of the work based on
the use of the Drazin inverse, but we would submit that even here too much
attention has been paid to obtaining explicit expressions. It is more economical
to-work with the form exemplified in (3.2). We describe this below and for
convenience of presentation we assume that k =3 and omit upper suffices. A

transformation of variables has then reduced the original system to one of the

form
fa,, AL A AT |3 ] "y, 1 [e]
44 43 Pg2 g 4 4 &
I3 73 &3 (1.12)
. = + 4.14
I I &
Il i Yoo b 5’1J RREN &1




where the blocks on the diagonal are square and A is non-singular. The

44
matrix
0 Ay Ay
0 0 Ay (4.15)
0 0 0

is the N and A,, is the C of our previous analysis.

44

The relation (4.14) gives successively

V= By N = =g~ Ay, ¥y = -8y - Aydy = Ay9, (4.16)
Finally we have
e (e o C .
baaa= Vot (= Ryady= Agpda = Aydy) (4.17)

and at this stage Y19 Y5 and y3 and hence &1, &2 and &3 have already been
determined. Notice that when we describe the solution in these terms there is

and A as we did in section 3 when

no need to annihilate the blocks A43, A42 11

describing a reduction to the form

. (4.18)

41 O the right of (4.17). At the

end of the next section we show how the volume of work meybe reduced even

Now we merely have terms involving these A
further.

5 SINGULAR A AND B

When both A and B are singular one cannot proceed as in the previous section.

The use of the Drazin inverse has been concerned with the case when detOL%B)i 0
ie when the pencil A-AB is non-singular in the Kronecker sense (see eg [%5,8 ]).
The matrix A-cB is then non-singular for any c which is not a root of the
equation det(A\B) = 0. If one takes any such c then the system (1.1) is

equivalent to
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(4=cB)™'B% = (A=cB) 'ax + (A-cB)”'¢ (5.1)

or
N . A A
Bx = Ax + F . (5.2)

It may be readily verified that BA = iB, The explicit solution of (5.2) may
be expressed in terms of the Drazin inverse of B, Although, of course, the

derived solution must be independent of c, its introduction is undesirable.

In practice it would be important for A-cB to be, not merely non-singular, but

well conditioned with respect to inversion, otherwise there will be a loss of

accuracy which may be far greater than that resulting from the inherent

sensitivity of the problem.

It will be appreciated that one will not necessarily know in advance whether

A and B are singular or indeed whether det(A-\B) £ 0. The method described

below, which is analogous to that described in section 3 for the computation of

the Drazin inverse of a matrix, does not require any previous knowledge and

does not require the use of the arbitrary scalar c.

We observe that if P and Q are non-singular then pre-multiplication of the
system (1.1) with P and the transformation x = Qy transforms it to the

equivalent system
PBQy = PAQy + Pf . (5.3)

In our algorithm P and Q are determined as products of elementary matrices

in such a way that (5.3) is typically of the form illustrated by

9 49 40 0[] |40 40 40 9| ] s
ol ng) Bgﬁ) ¥y ° A%) Agg) Agﬁ) ,’Y3 g3
IR I R I
.0 0 0 0 ol Lo 0 0 A%)_ ¥ g

The diagonal blocks are square and Ag?l Agg) ,Agg) and B(A) are non-singular.

44

(5.4)
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é?) and ng) are of full row rank. In general there are k steps,

. k1)
the process coming to an end when 1, k1

The matrices B
is non-singular.

gr» is still singular. In this case
s

Sup§ose we have performed r-1 steps and B
Bgrr may be reduced to the form
’

" ()

0 } n
T
by pre-multiplication with elementary matrices. Here n,

Bgr) and E(r) is not required to be of upper trapezoidal form.
Y

operations are performed on Ari the resulting matrix may be denoted by

e
’ 1 (5.6)

G(r) J } n
Jr
Now G(r) must be of full row rank N, since otherwise Agz) and B(r) share a

common left-hand null vector and this would imply that det (Aﬁi) —'chrb = 0.
rr
) may be multiplied on the right by elementary matrices to give

[ o] A(I‘”)] , (5.7)

rr

(5.5)

is the nullity of
If the same

Hence G(r

where A§;+1) is non-singular. If these right-hand transformations are applied

to the full matrices

e

and (5.8)
0]
the resulting matrices may be denoted by

p(r+1) p(r+1) A(r+1) A(r+1)

r+1, 7+ r+1,r r+1, T+ 1, T
and | . (5.9)

0 l 0 0 } almr1)

. rr
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The rth step is completely determined by the matrices %;: and Aii) but if we
apply the transformations to the full n x n matrices and to the current forcing
vector we arrive at an rth derived system of the same form as the (r-1)th system
from which we started. The B(P+1) must be of full row rank otherwise the n

r.r-1 r-1
determined in the previous stage would have been incorrect.

If det(A-kB)# 0 we must either reach a BE;) which is non-singular or one which
is completely null with éqﬁ non-singular. If however det(A<\B) = 0 this would
be detected by the algorithm since we would reach a stage at which the & ) of

(5.6) was not of full rank and this would reveal itself when performing the

elementary operations on %Fl

For simplicity of presentation let us assume that the process terminates when
k = 3 so that the final system is as given in (5.4). We suppress the upper

suffix for convenience. The solution is then given by

Ay = - g

Ayayy = =8y = Ayyy = Ay, = Byyyy - Byoy,

so that the components of Y1 ¥ and yy are all uniquely determined and the
initial values must satisfy equations (5.10) for consistency. Finally

( = B9y« gy) (5.11)

B, v, = + + A +A -B, .y, =B, .3
4474 = “44%1 4373t BVt R Yy TPV T EpeYe
and the vector in parenthesis is already determined. Since B44 is non-singular
this has a unique solution for arbitrary initial ¥y which may be expressed in
terms of exp(B- A t).

p(Byy Byt
The elementary transformations on G(r) would usually be carried out in such a
way that A£;+1) would be at least triangular (though possibly even diagonal)
according to the method used. The computation of the vectors Tqs yz,yé from
relations(5.10) would therefore be particularly convenient. As we remarked above

if at any stage G(r) is not of full rank this would be exposed automatically in

the execution of the algorithm. (We assume here that the algorithm used to
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reduce G(r)is stable enough to detect rank reliably!). This can happen only
if det(A-\B) = 0. This situation is not usually covered by the use of the
Drazin inverse. When G ! has a rank deficiency of p then p linear relations
must hold between components of f for the differential equations to be
compatible. This is discussed in detail 1n[:8] However the §eneral
situation may be illustrated by considering what happens when ¢''"/ has a rank
deficiency of p. This means that the original system is equivalent to a system

of the form

B L
n1-p{ 0 Sr=n1-p{ Mily+ts, (5.12)
P { 0 P { 0
. L

where M is of full rank, n,=Pp. Hence the last p components of g must be zero
for the equations to be compatible, and the components of g are linear combinations

of the original components of f.

When both A and B are singular but det(A-\B) # 0, then when we reach the
/
terminating non-singular B\r the corresponding AN 7 must be singular. This

follows because the earlier A\ were non-singular and if Aii were non-singular

this would imply non- 31ngular1ty of A.

We have remarked that the solution may be expressed in terms of the Drazin
inverse of (A—cB)-1B and the form of the solution is determined by the index

of (A—cB)_1B. The k introduced above is in fact this index as we now show.

(r)

Denoting the successive n X n matrices derived by the algorithm by g ) and B

(k1) _ p(k+1)

respectively, A has as its diagonal blocks

(k1) _ ger1) (k1) ACek1) ) (ek1)

Bert e T %P ey Bac T e oo AL T

(5.13)

are non-singular by deflnltlon of the algorithm.
k&1 §+1 k*1
The first is non-singular for any c for which de‘l:(.Ak;._1 o] " k+1k&1 # 0 ie

The last k of these and ﬁ

for almost all c. Obviously

x = [ aCer1) _ gp(er1)] =1 p0er1)
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is block upper-triangular and its diagonal blocks are

C (k+1) (k+1)

- -1 (ker1)
I_Ak+1,k+’| Byir, k41 Oy eev, 0, 0. (5.14)

k+1 ykt1? 72

) (A(k:H)) (k+1)

T and hence is of full row rank for

(k*1)

Further X. .
ll—

2 £ 1 €k since this is true of the B Hence the k of our algorithm is

the index of LA(k+1) (k+1)] - (k+1) since A(k+1) =PAQ, B(k+1) - PBQ

for some non-singular P and Q, our k is the index of (A—CB)—1B.

The algorithm we have described works in terms of full n % n matrices at all
stages in the reduction, though to be sure in later stages only parts of these
matrices are affected by the transformation. We have presented the algorithm
in this way in order to give a closer tie up with earlier work involving the
Drazin inverse. However, if one were concerned with only one forcing vector f,
or if indeed one were interested in several different forcing functions all of
which were known at the time when the reduction was performed then a
considerable economy would be achieved as follows. Suppose we have completed

one stage of the reduction and have reached the reduced system

) 7
£ ) 5] [ 2w s -
= l + . 5.15
0 0 1.5’1J 0 Aﬁ) l.y1 &

At this stage the variables in y, are completely determined and these variables

undergo no further transformations. We have then

¥, = - (Agf)f1 g, (5.16)

and

pl2):  ,(2) (2)

(2),
20 Vo = AWy + {gz BTy + A7

( )

o'+ £, (say) (5.17)

Hence we can continue with a system of lower order. In this way we avoid
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(2)
21
stage is wholly typical; in the rth stage we determine n, more variables and

2) . .
performing any transformations on B and Ag1) in the next step. The first

are left with a system in n, fewer variables. Obviously if we are interested

in the effect of several forcing functions we can deal with them all
simultaneously. A similar reduction of effort may be achieved with the

simpler algorithm of section 4.

6 NUMERICAL EXAMPLE

As an illustration of our algorithm we describe its performance on the example
used by Campbell et al[2J.

The system of differential equations is

Ax+ Bx = b
-1 0 2 | 27 =22 -7
o 3 2 lxk+| 18 14 10| x=|o0] , (6.1)
10 =2 0 1 2 1

where we have reordered the equations in order to avoid a row permutation
during the course of the solution. This makes the process a little easier to
follow. Naturally we have used rational elimination techniques. The authors
gave the general solution to the homogeneous system as well as that

corresponding to the forcing function b. For convenience of comparison we

have followed the notation Ax + Bx = b used by Campbell et al.

Exposing the row nullity of A gives

—

-1 0 2 27 =22 =17 ’ 2
2 3 2 | x+ 18 14 10 | x= |0 . (6.2)
0 0 O =27 =21 =15 LB

We now reduce the rows of B corresponding to the null rows of A. In fact there
is only one such row and to facilitate comparison with Campbell et al we leave
(3,1) as the non-zero element rather than (3,3). This involves the

transformation
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L _2 - ] 2
1 - 9 9 ¥y, % + %;x E 5) x3
X = ! Y oT y2 = X, (6.3)
' Y3773
and leads to
7 23] i T ]
- - = -2 -1 =2 2
I ) 5 7
2 %% g y+| 18 0 0{y=;0 1 . (6.4)
LO00 ol L[=2r o of [3]

At this stage the singularity of B is exposed. The third equation gives
2Ty, = 3 ie 9xl + Ty + 5%y + 1 =0 (6.5)
while for the homogeneous system

9x1 + 7x2 + 5x 0 . (6-6)

3 =

Notice that these relations must hold for all values of t and therefore in
particular for t = 0; at t = 0 they are in fact equations (35) and (29)
respectively of Campbell et al.

Substituting ¥y == 1/9 into the first two equations and remembering that
Y2 =X29 Y3 = XB we have

-1

M
I
s
1
no
P
I

(6.7)

i

N-

+
Ol

=

I

nNo

and the solution is now trivial. The general solution is

2/3t

x, _ - 75 (5(0) + 2x,(0))e 3 = 5 (135,(0) + 8xy(0)) — ¢ - £
4

el
]

(8x,(0) + 16x, 0))6%/3 + o (263,(0) + 16x,(0)) + 28 (6.8)

™
]

- 18
, f%(13x2(o) + 26x3(o))e2/3t ~'£g (13x,(0) + 8x,(0))- ¢
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For the homogeneous case the general solution consists merely of the terms in
(6.8) involving x2(0) and x3(0) with the others omitted. The solutions given
here differ somewhat from those given by Campbell et al; this results from a

trivial error made by them in the execution of their algorithm.

Of course this example is in some ways deceptively simple; however this is
equally true of the solution obtained via the Drazin inverse. In general the
system (6.7) above in which the matrix involving the derivatives is non-singular
would be reached only after several stages of reduction (in fact k stages where
k is the index associated with the relevant Drazin inverse). The solution of

this reduced system can be expressed in terms of an exponential involving only

an ordinary inverse.
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