

Stanford Verification Group
Report No. 12

September **1979**

Computer Science Department
Report No. STAN-CS-79-740

THE LOGIC OF **ALIASING**

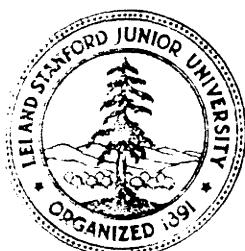
by

Robert Cartwright and Derek Oppen

Research sponsored by

National Science Foundation

COMPUTER SCIENCE DEPARTMENT
Stanford University



THE LOGIC OF ALIASING

Robert Cartwright
Computer Science Department
Cornell University, Ithaca, N.Y. 14853

Derek Oppen
Computer Science Department
Stanford University, Stanford, Ca. 94305

Abstract

We give a new version of **Hoare's** logic which correctly handles programs with **aliased** variables. The central proof rules of the logic (procedure call and assignment) are proved sound and complete.

An earlier version of this paper appeared in the Proceedings of the Fifth ACM Symposium on Principles of Programming Languages, 1978. This research has been partially supported by National Science Foundation Grants MCS76- 14293 and MCS76-000327.

1. introduction

One of the most discredited features common to many programming languages is **aliasing**, the ability for a piece of storage to have more than one name in a program. Since changing the value of one variable explicitly may cause the values of other variables to be changed implicitly, it is widely argued that aliasing **makes writing**, debugging and understanding programs more difficult.

The major technical argument **against aliasing is that it makes devising intelligible proof rules** for reasoning about programs more difficult -- that programming languages which admit aliasing cannot be satisfactorily axiomatized. The problem is most acute for assignment rules and procedure call rules. None of the assignment or procedure call rules published to date admit aliasing (see, **for example**, [Hoare 1969], [Hoare and Wirth 1973], [Cook 1975], [Gorelick 1975], [Igarashi, London and Luckham 1975], [Donahue 1976], [London et al 1978]).

Although prohibition of aliasing is the most severe limitation imposed by existing proof rules, all place additional restrictions on procedures and procedure calls*. For instance, the most comprehensive procedure call rule proposed to date (for EUCLID by [London et al 1978]) must:

1. Prohibit aliasing in procedure calls.
2. Disallow passing procedures and functions as parameters.
3. Require that value parameters be read-only (that is, constant parameters).
4. Prohibit declaring a procedure within a procedure of the same name.
5. Require that global variables accessed by a procedure be accessible at every point of call.

Our purpose in this paper is to develop a new version of **Hoare's** logic which handles unrestricted aliasing. We therefore concentrate on rules for assignment and for procedure calls. The proof rules we give are no more complex than existing rules of comparable scope which prohibit aliasing. The tradeoff is that proofs are more tedious when aliasing is actually used.

First we give a simple simultaneous assignment rule (similar to that given by [Gries 1977]) and then a simple procedure call rule (patterned after [Hoare 1971] along lines very similar to the EUCLID rule by [London et al 1978]) for calls where no aliasing is present. Next, we propose generalized **assignment and procedure call** rules for contexts where aliasing is permitted. Both generalized rules collapse to the corresponding simple rules if no aliasing is present.

*[Apt and de Bakker 1977] have proposed procedure call and assignment rules which eliminate all of these restrictions. except 2. However, their proof rules violate a fundamental principle of Hoare's logic: that proof rules not modify program text. Their procedure call rule rewrites the entire procedure body, destroying the direct relationship between asserted programs and the structure of proofs in Hoare's logic. Further. the Apt-deBakker rules force the correctness of a procedure to be re-established for every syntactically distinct call.

All the rules that we propose in this paper are proved sound and relatively complete (in the sense of Cook). Although this may seem a tedious and unnecessary exercise, we feel that it is essential to give formal justifications for proof rules. The semantics of procedure calls in “real” programming languages such as Pascal are so complicated that none of the proposed axiomatizations for such languages in **Hoare’s logic** ([Hoare and Wirth 1973], [London et al 1978]) is sound. We too found errors in our first attempts at axiomatizing **aliasing**, and we found these errors only when trying to formally justify our axiomatization.

The rules we give in this paper are somewhat more formally stated than is common in the literature. Since we wished to prove our rules sound, we had to state explicitly what assumptions our rules require. Consequently, our rules will appear longer and **more complicated than** most of the rules of comparable scope in the literature.

2. Mathematical Foundations

Before we can formulate and justify our proof rules, we must establish the mathematical foundations for our version of **Hoare’s logic**. We introduce three sets of definitions.

2.1 State Vectors and Access Sequences

From an informal viewpoint, a state vector is a sequence of bindings of program variables to data values, and procedure names to procedure bodies (as in a LISP association list). An access sequence is a canonical name for an entry in a state vector. For example, the access sequence for the variable x is $\langle 'x' \rangle$ (since x typically means the value of the variable x , we use the notation ‘ x ’ to refer to the variable itself). The access sequence for the array element $a[1]$ is $\langle 'a, 1' \rangle$. An access sequence can be considered an abstract address.

More formally, we let D denote the set of data values that program variables may assume, and let I and I' denote the set of program identifiers a, b, c, \dots , and quoted program identifiers ‘ a , ‘ b , ‘ c , \dots , respectively. We let B denote the set of procedure bodies. A variable-specifier is any legal left-hand side of an assignment statement. A **simple variable** is a variable-specifier consisting of a single identifier. For example, $a[x]$ and x are both variable-specifiers; x is a simple variable, but $a[x]$ is not.

For the sake of simplicity, we limit our attention to a subset of PASCAL restricting the set of variable-specifiers to simple variables and singly subscripted arrays. We assume the data value domain for our PASCAL dialect has the form $\{ \bigcup_{j \in J} D_j \} \cup \{ \bigcup_{j, k \in J} (D_j \rightarrow D_k) \}$ where the sets D_j , $j \in J$, are disjoint sets of primitive data objects (for example, integers, characters, booleans) and $(D_j \rightarrow D_k)$ denotes the set of mappings (arrays) from D_j into D_k . We call each set D_j and $(D_j \rightarrow D_k)$ a type. These restrictions are made only for explanatory purposes. All of our results generalize to arbitrary PASCAL data domains.

We define the **access** sequence corresponding to the simple variable v as the singleton sequence $\langle 'v' \rangle$. For a variable-specifier of the form $a[e]$ (where a is an array and e is an expression), the access sequence is $\langle 'a, e_0 \rangle$ where $e_0 \in D$ is the value of e . We define two access sequences to be **disjoint** if and only if neither is an initial segment of the other.

Let H be a finite set of variable declarations $v : T_v$ (where v is a program identifier and T_v is a type) and procedure declarations procedure $p(\alpha_p); B_p$ (where p is a program identifier, α_p is a sequence of **var** and **value** parameter declarations and B_p is the remainder of the procedure **body**). We call H a **declaration set**. A **state vector** s consistent with H is a mapping from I (identifiers) into D (data values) $\cup B$ (procedure bodies) such that each variable v declared in H is bound to a data value of type T_v and each procedure p is bound to the body **procedure** $p(\alpha_p); B_p$.

Typically, we are only interested in a finite restriction of the state vector s -- specifically the bindings of the variables and procedure names declared in H . In this case, we can think of s as a finite sequence of ordered pairs (x, d) where x is a program identifier declared in H and d is its binding.

We let A and S denote the set of access sequences and the set of state vectors respectively.

2.2 Value and Update Functions

We introduce two functions **Value** and **Update** to access and modify states, analogous to the array access and update functions defined by [McCarthy 1963]. **Value** maps a state vector s and an access sequence a into the binding of a in s . **Update** maps a state vector s , an **access** sequence a , and a value d into the state vector s' , where s' is identical to s except that the entry within s' specified by a has the new value d .

In more formal terms, **Value** is a mapping from $S \times A$ into $D \cup B$ and **Update** is a mapping from $S \times A \times (D \cup B)$ into S satisfying the following **axioms**:

1. **Value(Update(s, a, e), a) = e** for arbitrary state vector s , access sequence a , and value e , provided the entry specified by a exists in s .

2. **Value(Update(s, $\alpha_1, e), \alpha_2) = Value(s, \alpha_2)$** if α_1 and α_2 are disjoint access sequences and the entries specified by α_1 and α_2 exist in s .

3. Let **Select** be the standard array access function mapping $(D_i \rightarrow D_j) \times D_i$ into D_j for all i, j . Then **Value(Update(s, $\langle 'v' \rangle, d), \langle 'v, e \rangle) = Select(d, e)$** for arbitrary state vector s , identifier v , array value d , and data value e , provided e is in the domain of d .

4. Let **Store** be the standard array update function mapping $(D_i \rightarrow D_j) \times D_i \times D_j$ into $(D_i \rightarrow$

D_j for all i, j . Then $\mathbf{Value}(\mathbf{Update}(s, \langle 'v, e \rangle, d), \langle 'v \rangle) = \mathbf{Store}(\mathbf{Value}(s, \langle 'v \rangle), e, d)$ for arbitrary state vector s , identifier v , and data values d and e , provided e and d belong to the domain and range of $\mathbf{Value}(s, \langle 'v \rangle)$ respectively.

We extend **Value** and **Update** to apply to sequences of disjoint access sequences as follows:

1. $\mathbf{Value}^*(s, \langle \alpha_1, \dots, \alpha_n \rangle) = \langle \mathbf{Value}(s, \alpha_1), \dots, \mathbf{Value}(s, \alpha_n) \rangle$ for arbitrary state vector s and access sequences $\alpha_1, \dots, \alpha_n$, provided the entries specified by $\alpha_1, \dots, \alpha_n$ exist in s .

2. $\mathbf{Update}^*(s, \langle \alpha_1, \dots, \alpha_n \rangle, \langle d_1, \dots, d_n \rangle) = \mathbf{Update}(\dots \mathbf{Update}(s, \alpha_1, d_1) \dots, \alpha_n, d_n)$ for arbitrary access sequences $\alpha_1, \dots, \alpha_n$ and values d_1, \dots, d_n provided the specified updates are well-defined.

3. Let $\alpha_1, \dots, \alpha_n$ be disjoint access sequences such that $\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{ik}$ have the form $\langle 'v, e_i \rangle$, $1 \leq i \leq k$, where ' v ' is an identifier; and e_i is a data value. Let $\alpha_{j1}, \alpha_{j2}, \dots, \alpha_{jn-k}$ be the remaining access sequences, and let d denote $\mathbf{Value}(s, \langle 'v \rangle)$. Then $\mathbf{Update}^*(s, \langle \alpha_1, \dots, \alpha_n \rangle, \langle d_1, \dots, d_n \rangle) = \mathbf{Update}^*(s, \langle \alpha, \alpha_{j1}, \alpha_{j2}, \dots, \alpha_{jn-k} \rangle, \langle \mathbf{Store}(\dots \mathbf{Store}(d, e_1, d_{j1}) \dots, e_k, d_{ik}), d_{j1}, \dots, d_{jn-k} \rangle)$ provided the specified updates are well-defined.

The final axiom above merely collects updates to various elements of the same array and combines them into a single update of the entire array. We can use this axiom to convert an arbitrary sequence of disjoint updates to an equivalent set of simple updates (that is, updates of simple variables rather than array elements). For example,

$\mathbf{Upd\ at\ e}^*(s, \langle \langle 'a, 1 \rangle, \langle 'b \rangle, \langle 'a, 4 \rangle, \langle 'c \rangle, \langle 1, 2, 3, 4 \rangle \rangle) = \mathbf{Update}^*(s, \langle \langle 'a \rangle, \langle 'b \rangle, \langle 'c \rangle \rangle, \langle \mathbf{Store}(\mathbf{Store}(\mathbf{Value}(\langle 'a \rangle, s), 1, 1), 4, 3), 2, 4 \rangle).$

We denote the set of sequences of access sequences by A^* .

2.3 Definition of Truth

In this section, we define the syntax and meaning of statements in our version of **Hoare's logic**.

2.3.1 The Base Logic

We assume we are given a base first order theory (L, M) (for the program data domain), consisting of a logical language L with equality and a model M for L , with the following properties:

1. The domain of the model M includes D (data values), I' (quoted identifiers), A (access sequences), A^* (sequences over A), and B (procedure bodies).
2. The variables of L include two disjoint sets: I (programming language identifiers) and V , a

set of logical variables which may not appear within programs.

3. The logic includes the binary function \bullet and the unary function **Seq**. The \bullet operator concatenates two sequences; that is, $\langle u_1, \dots, u_m \rangle \bullet \langle v_1, \dots, v_n \rangle = \langle u_1, \dots, u_m, v_1, \dots, v_n \rangle$. **Seq** maps a data object d (specifically a quoted identifier, a data value, or an access sequence) into the singleton sequence $\langle d \rangle$. With the functions \bullet and **Seq**, we can construct arbitrary members of A and A^* .

4. The logic includes all the primitive functions of programming language including array access and update functions Select and Store. We let $a[e]$, where a is an identifier and e is a term, abbreviate the term **Select**(a, e) .

5. The logic includes a characteristic predicate P_T for each data type T in D . We will use the familiar notation $x : T$ to abbreviate $P_T(x)$.

6. The logic includes the predicates **Disjoint** and **Pair-Disjoint** with domains A^* and $A^* \times A^*$ respectively. **Disjoint** ($\langle \alpha_1, \dots, \alpha_n \rangle$) is true if and only if access sequences α_i and α_j are disjoint for all i, j such that $i \neq j$. **Pair-disjoint** ($\langle \alpha_1, \dots, \alpha_m \rangle, \langle \beta_1, \dots, \beta_n \rangle$) is true if and only if α_i and β_i are disjoint for all i, j .

Given an arbitrary variable specifier v , we can construct a term v^* in L such that the meaning of v^* is the access sequence for v . If v is a simple variable x , then v^* is simply **Seq**(x) . If v is an array element $a[e]$, then v^* is **Seq**(a) \bullet **Seq**(e) . We will frequently employ this construction in our proof rules.

2.3.2 Extended Terms and Formulas

For the sake of clarity, we prohibit formulas of L from using program identifiers as bound (quantified) variables. In addition, to conveniently handle updates to the state vector, we extend the logical language L to include updated formulas and terms. We define an **extended formula** (term) of L as follows. An extended formula (term) has a recursive definition identical to that of an ordinary formula (term) [Enderton 1972] except that there is an additional mechanism (called an update) for building new formulas and terms from existing ones. Given an extended formula (term) a , the form $\llbracket v \leftarrow t \rrbracket a$ is also an extended formula (term) , where v is a sequence of disjoint variable-specifiers and t is a corresponding sequence of ordinary (not updated) terms in L . We will call $\llbracket v \leftarrow t \rrbracket a$ a **simultaneous update**. Henceforth, we will simply use the term **formula (term)** to refer to an extended formula (extended term) .

2.3.3 Hoare Assertions and Statements

Let Q be an arbitrary formula in L and let x_1, \dots, x_n be the program identifiers which occur in Q . Let H be a declaration set including declarations for x_1, \dots, x_n . A **Hoare assertion** has the form

$$H \mid Q$$

Let A be a program segment and P and Q be formulas in L . Let H be a declaration set including declarations for all the free program variables and procedure names in A , P , and Q . A **Hoare statement** has the form

$$H \mid P\{A\}Q$$

We define the meaning of **Hoare** assertions and statements as follows. Let $H \mid Q$ be an arbitrary **Hoare** assertion. The definition of truth for $H \mid Q$ is identical to the standard first-order definition of truth for Q [Enderton 1972] except:

1. $H \mid Q$ is vacuously true for states inconsistent with H .
2. The meaning of the updated formula (term) $\llbracket v \leftarrow t \rrbracket a$ for state s is the meaning of the formula (term) a for state $\text{Update}^*(s, v^*, t_s)$ where v^* denotes the sequence of access sequences corresponding to v and t_s denotes the interpretation of t under state s .

Let $H \mid P\{A\}Q$ be an arbitrary **Hoare** statement and let **Eval** be an interpreter (a partial function) mapping states x program-segments into states. Then $H \mid P\{A\}Q$ is true if and only if for all states s either

1. $H \mid P$ is false for s .
2. $\text{Eval}(s, a)$ is undefined.
3. Q is true for $\text{Eval}(s, A)$.

2.3.4 Standard Proof Rules

The standard simple **Hoare** proof rules have obvious analogs in our version of the logic. The most fundamental rules -- **consequences**, composition, and substitution -- have the following form:

1. Consequence

$$\frac{H \mid P \triangleright Q, H \mid Q\{A\}R, H \mid R \triangleright S}{P\{A\}S}$$

2. Composition

$$\frac{H \mid P\{A\}Q, H \mid Q\{B\}R}{H \mid P\{A;B\}R}$$

3. Substitution

$$H \mid P \{ A \} Q \quad \frac{H \mid P \{ A \} Q}{H \mid P(t/x) \{ A \} Q(t/x)}$$

where x is a logical variable and $Q(t/x)$ denotes Q with every free occurrence of x replaced by t (renaming bound variables) .

The other standard rules which we will take as given are:

4. Declaration

$$\frac{H(x'/x, p'/p) \cup \{ x:T, p:B \} \mid P(x'/x) \{ A \} Q(x'/x)}{H \mid P \{ \text{begin } x:T, p:B; A \text{ end } \} Q}$$

where $x:T$ and $p:B$ are sequences of variable and procedure declarations, and x' and p' are **sequences** of fresh program variables and procedure **names** corresponding to x and p .

2.3.5 Reasoning about Updated Formulas

In order to prove **Hoare** assertions involving updated formulas, we need special axioms about updates. For disjoint updates modifying entire formulas, the following axioms (derived from the corresponding axioms for **Update**^{*}) are sufficient:

1. $\llbracket x \leftarrow t \rrbracket Q = Q(t/x)$ where x is a sequence of distinct **simple** variables, and Q is a formula containing no updates.

2. Let v_1, \dots, v_n be disjoint variable specifiers where v_{i1}, \dots, v_{ik} **have** the form $a[e_i], i = 0, \dots, k$, where a is a particular array identifier. Let v_{j1}, \dots, v_{jn-k} be the remaining variable-specifiers. Let v' denote the sequence of variable-specifiers $a, v_{j1}, \dots, v_{jn-k}$ and let t' denote the sequence of terms $\langle \text{Store}(\dots \text{Store}(a, e_1, t_{i1}), \dots, e_k, t_{ik}), t_{j1}, \dots, t_{jn-k} \rangle$. Then

$$\llbracket v \leftarrow t \rrbracket Q = \llbracket v' \leftarrow t' \rrbracket Q$$

Given an arbitrary disjoint simultaneous update $v \leftarrow t$, we can eliminate the update $\llbracket v \leftarrow t \rrbracket$ from **a** formula of the form $\llbracket v \leftarrow t \rrbracket Q$ where Q is update free by using axiom 2 to eliminate **all assignments** to array elements and then applying axiom 1. We can similarly eliminate all updates from a formula of the form $\llbracket \dots \rrbracket \llbracket v \leftarrow t \rrbracket Q$ where Q is update free by repeatedly applying the same simplification procedure.

3. Simple Simultaneous Assignment

Given the concept of simultaneous updates within formulas, it is easy to give a simple simultaneous assignment rule. Let $v \leftarrow t$ be a simultaneous assignment to disjoint variables v , let v^* be the access sequence terms in L corresponding to v , and let P be an arbitrary formula in L . The rule is as follows.

$$\frac{H \mid \text{Disjoint}(v^*)}{H \mid \llbracket v \leftarrow t \rrbracket P \{ v \leftarrow t \} P}$$

The soundness and relative completeness of this rule follows immediately from the definition of meaning of statements in the logic and the definition of simultaneous assignment.

4. Simple Procedure Call Rule

In this section we assume that our PASCAL subset:

1. Prohibits aliasing **in** procedure calls.
2. Disallows passing procedures and functions as parameters.
3. Requires that the global variables accessed by a procedure be explicitly declared at the head of the procedure and that these variables be accessible at the point of every call.

Under these assumptions, it is straightforward to formulate a procedure call rule by treating procedure calls as simultaneous assignments to the variables passed to the procedure. The assigned values are any values consistent with the input-output assertions for the procedure.

Let p be declared as **procedure** $p(\text{var } x:T_x; \text{val } y:T_y); \text{global } z; B$ in the declaration set H . B may not access any global variables other than z . Let H' be H augmented by the declarations $x:T_x$ and $y:T_y$ (prior declarations of x and y are replaced). Let P and Q be formulas containing no free program variables other than x, y, z and x, z respectively. Let v be the free logical variables of P and Q , and let x' and z' be fresh logical variables corresponding to x and z . Then the (non-recursive) simple procedure call rule has the following form:

$$\frac{H \mid \text{Disjoint}(a^* \circ z^*), H' \mid P \{ B \} Q \\ H \mid \forall v [P(a/x, b/y) \supset Q(x'/x, z'/z)] \supset [R \supset \llbracket a, z \leftarrow x', z' \rrbracket S]}{H \mid R \{ p(a; b) \} S}$$

It is important to note that the free logical variables x' and z' in the third premise are implicitly universally quantified. The rule forces $R \supseteq \llbracket a, z \leftarrow x', z' \rrbracket S$ to be true for arbitrary x' and z' consistent with $\forall v[P(a/x, b/y) \supseteq Q(x'/x, z'/z)]$. In contrast, the EUCLID procedure **call** rule explicitly omits the corresponding quantifier -- permitting false deductions. Like the EUCLID rule, our rule generalizes **Hoare's** original rule [Hoare 1971] to apply to a richer programming language. The main difference is between our rule and its predecessors (**Hoare's** original rule and the EUCLID rule) is that our rule precisely states the assumptions left implicit by the earlier rules.

4.1 Soundness

If **Eva/** is properly defined, it is easy to prove the soundness of the simple procedure call rule. Let s be an arbitrary state, consistent with H such that $H \mid R$ is true for s and $\mathbf{Eval}(s, p(a;b))$ is defined. We must show s is true for $\mathbf{Eval}(s, p(a;b))$. Let s' be $\llbracket x', z' \leftarrow x_0, z_0 \rrbracket s$ where x_0, z_0 are the output values of x and z in the call $p(a;b)$ (that is, the values of x and z in the state $\mathbf{Eval}(\llbracket x, y \leftarrow a, b \rrbracket s, b)$). Since s' satisfies both $\forall v[P(a/x, b/y) \supseteq Q(x'/x, z'/z)]$ and R in the second premise, s' must also satisfy $\llbracket a, z \leftarrow x', z' \rrbracket s$. By the definition of **Eva/**,

$$\mathbf{Eval}(s, p(a, b)) = \llbracket a, z \leftarrow x_0, z_0 \rrbracket s = \llbracket a, z \leftarrow x', z' \rrbracket s'.$$

Hence $\mathbf{Eval}(s, p(a, b))$ satisfies s . **Q.E.D.**

Although the soundness of the procedure call rule does not depend on the third assumption listed above (the accessibility of the procedure globals at the point of every call), the assumption is necessary to prove that **Eva/** obeys static scoping. The natural definition of **Eva/** (which we used in the soundness proof) employs dynamic scope rules. If the third assumption holds then static and dynamic scope rules are semantically equivalent.

4.2 Relative Completeness

It is also reasonably straightforward to prove that the simple procedure call rule is *relatively* complete for non-recursive programs in the sense of [Cook 1975]. Since our base logic includes a rich collection of logical primitives for describing (access) sequences, the incompleteness results of [Clarke 1976] do not apply to our version of **Hoare's** logic. We assume that the assertion language L is expressive; that is, that given an arbitrary assertion P in L and a program segment A the strongest post-condition Q of A given pre-assertion P is definable in L . To show that the rule is complete relative to the completeness of the other proof rules and the axiomatization of the extended base logic, it suffices to show that for any program segment A and post-assertion Q , the weakest liberal pre-condition P is provable. The proof proceeds by contradiction.

Assume $p'(a';b')$ is a procedure call for which the rule is not complete. Let $p(a;b)$ be the deepest procedure call in the evaluation of $p'(a';b')$ for which the simple procedure call is not complete. Let H be the declaration set at the point of the call, and let p be declared as procedure $p(\text{var } x:T_x; \text{val } y:T_y); \text{global } z; B$ in H . Let S be an arbitrary post-assertion for $p(a;b)$. We define Q' as the strongest post-condition for B given the pre-condition $x, y, z = x_i, y_i, z_i$. By assumption $H \mid P \{ B \} Q'$ is provable. We define Q to be $\exists y' Q'(y'/y)$. By the rule of consequence $H \mid P \{ B \} Q$ must be provable. in addition, $R = \forall x', z' [Q(a/x_i, b/y_i, z/z_i, x'/x, z'/z) \supset [a, z \leftarrow x', z'] S]$ is clearly a provable pre-condition of the rule.

Assume R is not the weakest liberal precondition. Then there exists a state s consistent with H such that R is false and such that either $\text{Eval}(s, p(a;b))$ is undefined or S is true for $\text{Eval}(s, p(a;b))$. Let s' be $[x, y \leftarrow a, b] s$. Either $\text{Eval}(s, B)$ is undefined or S is true for $\text{Eval}(s', B)$. In the former case, $Q(a/x_i, b/y_i, z/z_i, x'/x, z'/z)$ must be false for all x', z' since $Q(a/x_i, b/y_i, z/z_i)$ is false for all x, z . Hence R is true, generating a contradiction. In the other case $Q(a/x_i, b/y_i, z/z_i, x'/x, z'/z)$ is true only for states with x' and z' equal to the values of x and z in $\text{Eval}(s', B)$. But for such x' and z' , $\text{Eval}(s, p(a;b)) = [a, z \leftarrow x', z'] s$. Consequently, $[a, z \leftarrow x', z'] S$ is true for all states satisfying $Q(a/x_i, b/y_i, z/z_i, x'/x, z'/z)$ implying R is true. Again, we have a contradiction. **Q.E.D.**

4.3 A Sample Proof

Let's consider a simple example which most procedure call rules cannot handle. Let p be a standard integer variable swap procedure defined as follows:

```
procedure p(var x, y : integer) ;
begin
  p f e x=x_i \wedge y=y_i;
  x, y \leftarrow y, x;
  post y=x_i \wedge x=y_i;
end,
```

By the simultaneous assignment rule, we must show $x, y:\text{integer} \mid x=x_i \wedge y=y_i \supset [x, y \leftarrow y, x] y=x_i \wedge x=y_i$ to establish the declared pre and post-assertions for the swap. By the $[]$ substitution axiom (axiom 1 in 2.3.5) ,

$$[x, y \leftarrow y, x] y=x_i \wedge x=y_i \equiv x=x_i \wedge y=y_i$$

which is precisely the pre-assertion. **Q.E.D.**

Now let us consider a sample application of the procedure call rule. Assume **we** want to prove:

a:array integer of integer, i:integer | a[i]=a₀ \wedge i=i₀ { p(a[i], i) } a[i₀]=i₀ \wedge i=j₀.

Let **H** denote **{ a:array integer of integer, i:integer }**; **P'** denote the substituted pre-condition **a[i]=x_i \wedge i=y_i**; **Q'** denote the substituted post-condition **y'=x_i \wedge x'=y_i**; **R** denote **a[i]=a₀ \wedge i=i₀**; and **S** denote **a[i₀]=i₀ \wedge i=a₀**. By the simple procedure call rule, we must show

1. **H | Disjoint(<'a, i>, <'i>)**.
2. The correctness of the input-output assertions for the procedure **body**.
3. **H | V x₀.y₀ [P' \Rightarrow Q'] \Rightarrow [R \Rightarrow [a[i], i \leftarrow x', y'] S]**.

Since 1. is trivial, and we have already proved 2., it suffices to prove 3. First we transform **[a[i], i \leftarrow x', y'] S** into **[a, i \leftarrow Store(a, i, x'), y'] S = Store(a, i, x') [i₀]=i₀ \wedge y'=a₀**. Since **i=i₀** by hypothesis in **R**,

$$S' = \text{Store}(a, i_0, x') [i_0] = i_0 \wedge y' = a_0 = x' = i_0 \wedge y' = a_0.$$

By applying the equality hypothesis in **R**, we transform **x'=i₀ \wedge y'=a₀** into **x'=i \wedge y'=a[i]**, which is an immediate consequence of **P' \Rightarrow Q'** when **x_i, y_i** are instantiated as **a[i]** and **i** respectively. **Q.E.D.**

4.4 Handling Recursion

Our simple rule can be extended to handle mutually recursive procedures by generalizing **Hoare's** original approach to the problem [Hoare 1971]. However, we must impose the following additional restriction **on** our PASCAL subset to ensure the soundness of the rule:

No procedure named **p** may **be** declared within the scope of another procedure named **p**.

Our rule is not unique in this respect. Every other proposed procedure call rule (with the exception of [Apt and de Bakker 1977]) requires an equivalent restriction. The restriction is necessary because the input-output specifications for a procedure **p** **may be** assumed for any procedure call within a procedure declared in the scope of **p**.

Let **procedure p_i(var x_i:Tx_i; val y_i:Ty_i; global z_i; B_i, i= 1, 2, . . . , n** be a sequence of procedure declarations at the head of some block. Let **P_i** and **Q_i, i=1, . . . , n** **be** assertions containing **no** free program variables other than **x_i, y_i, z_i and x_j, z_j** respectively. Let **v_i** be the free logical variables in **P_i** and **Q_i**. Let **H** **be** a declaration set containing the declarations of **p₁, . . . , p_n** and let **H'** denote **H** with these declarations replaced by "forward" procedure declarations which only specify the procedures' formal parameters. Let **H'_i** denote **H'** augmented by the declarations **x:Tx, y:Ty** (prior declarations of **x** and **y** are replaced). For **i=1, . . . , n** we define **the** recursion hypothesis **I_i** as the rule:

$$\frac{\begin{array}{c} H \mid \text{Disjoint}(c^* \circ z_i^*) \\ H \mid \forall v_i [P_i(c/x_i, d/y_i) \supset Q_i(x'_i/x_i, z'_i/z_i)] \supset [\theta_i \supset [\llbracket c, z_i \leftarrow x'_i, z'_i \rrbracket] \theta_i] \end{array}}{H \mid \theta_1 \{ p_i(c; d) \} \theta_2}$$

where θ_1, θ_2, c, d and H are arbitrary. Then the recursive version of the rule has the form:

$$\frac{\begin{array}{c} H \mid \text{Disjoint}(a^* \circ z_i^*) I_1, \dots, I_n \vdash H'_j \mid P_j \{ B_j \} Q_j, j = 1, \dots, n \\ H \mid \forall v_i [P_i(a/x_i, b/y_i) \supset Q_i(x'_i/x_i, z'_i/z_i)] \supset [R \llbracket a, z_i \leftarrow x'_i, z'_i \rrbracket] S \end{array}}{H \mid R \{ p_i(a; b) \} S}$$

where $I_1, \dots, I_n \vdash H'_j \mid P_j \{ B_j \} Q_j$ means we may use the rules I_i to prove $H'_j \mid P_j \{ B_j \} Q_j$.

Unlike **Hoare's** original rule and **the** EUCLID rule, our recursive rule is relatively complete, even for programs utilizing mutual recursion. Of the rules previously proposed in the literature, our rule most closely resembles that of [Gorelick 1975]. **Gorelick** uses a more complex set of potentially mutually **recursive** procedures instead of p_1, \dots, p_n and divides the procedure call rule into two parts: a rule of modification and a rule of invariance. We originally formulated our procedure call rules in two part form, but abandoned the approach after we failed to devise a complete two-part rule. **Gorelick** achieves relative completeness **by** restricting actual **var** parameters to simple variables.

We can prove **that** the recursive version of the simple procedure call rule is sound by generalizing the argument we used for the non-recursive rule. First, we construct the sequences of procedures $p_{0i}, p_{1i}, \dots, p_k, \dots, i = 1, \dots, n$ as follows. We let p_{0i} be a non-terminating procedure with parameters identical to p_i . For $k=1, 2, \dots$, we let p_k be defined by **the** procedure $p_k(\text{var } x_i; T x_i; \text{val } y_i; T y_i); \text{global } z_i; B_i(p_{jk-1}/p_j, j=0, \dots, n)$, that is, by the same declaration as p_i except each call $p_j(c, d)$ within the body of p_i is replaced by the call $p_{k-1j}(c; d)$. Clearly, if **the** evaluation of **an** arbitrary call $p_i(a, b)$ requires less than k levels of nested calls on p_1, p_2, \dots, p_n , then the call $p_{ki}(a, b)$ is equivalent to $p_i(a, b)$. (Note that this statement does not hold if the restriction on procedure names is violated.) By the soundness of the non-recursive rule and simple induction on k , we know that the recursive rule is sound if we interpret p_j in the premises by $p_{k-1j}, j = 1, \dots, n$ and p_i in the conclusion by p_{ki} . Without **loss** of generality we **may assume** $p_i(a, b)$ terminates; otherwise, **the rule** is vacuously true. Let k be an integer greater than the maximum recursion calling depth on p_1, \dots, p_n in the evaluation of $p_i(a, b)$. By assumption, the premises are true for any interpretation of $p_j, j = 1, \dots, n$ consistent with H . Hence they must hold for p_j interpreted as p_{k-1j} , implying the conclusion of the rule holds for $p_{ki}(a, b)$. Since $p_{ki}(a, b)$ is equivalent to $p_i(a, b)$, the conclusion of the rule must be true. **Q.E.D.**

The relative completeness of **the** recursive rule can be established **by** a similar inductive generalization of **the** proof for the non-recursive rule. We **assume** L is expressive. The proof proceeds by induction on the structure of **a** program. For **every** procedure $p(\text{var } x; \text{val } y; \text{global } z)$; B in the program, we let pre and post assertions be $x, y, z = x_0, y_0, z_0$ and $\exists y' Q'(y'/y)$ respectively, where Q' is the strongest postcondition for **the** program segment B given the precondition $x, y, z = x_0, y_0, z_0$. Let p_1, \dots, p_n be a sequence of procedures declared at the head of a block B **such that** the pre and post assertions for every procedure declared within p_1, \dots, p_n are provable. We **must show** 1. The **pre/post** assertion pair for **the body** of **each** procedure p_i is provable, and 2. The weakest precondition for **any** procedure call in the **body** of B is provable. For each procedure p_i , we let P_i denote **the** pre assertion $x_i, y_i, z_i = x_{0i}, y_{0i}, z_{0i}$ and let Q_i denote the post assertion $\exists y' Q'(y'/y)$, where Q' is **the** strongest post condition of B_i given pre-condition P_i .

Let $q(c, d)$ be an arbitrary call in the body B_i of p_i . If q is internal to p_i , then the pre and post assertion of q are provable by assumption. If q is not internal to p_i , then the recursion hypothesis for q is available. In either case, by the **same** argument we used in the non-recursive case, the weakest pre-condition of $q(c, d)$, given an arbitrary post-assertion S, is provable. Hence, since the remaining rules of the logic are complete by assumption, $P_i \{ B_i \} Q_i, i = 1, \dots, n$ is provable. By applying the same argument again, we conclude that the weakest liberal pre-condition of any call **on a** procedure in the block body is provable.

By induction **on** the structure of a program, we **can** repeatedly apply the previous argument to derive that the procedure call rule is complete for calls in the body of the program. **Q.E.D.**

5. Rules for Programs with Aliasing

We **now** extend our version of **Hoare's** logic to handle aliasing. The modifications required are surprisingly minor.

Hoare's original assignment axiom has the form:

$$P(e/x) \{ x \leftarrow e \} P$$

where x is a simple variable, e is an expression (term in **the** logical language L) and P is a formula. This axiom is invalid if x is a reference parameter or an array reference, since there **may be** syntactically distinct variables in P with access sequences identical to x. While **Hoare's** substitution style axiom **can be** patched to handle array assignment (**by** viewing the assignment $a[e_1] \leftarrow e_2$ as an abbreviation for the simple assignment $a \leftarrow \text{Store}(a, e_1, e_2)$), it breaks down in the case of aliasing.

In contrast, our assignment call rule does not rely on the concept of substitution (although it collapses to that form in trivial cases). As a result, our rule is able to handle array assignment and aliasing without any modification.

5.1 Reference Parameters

In a programming language with unrestricted reference parameters like PASCAL, we interpret procedure calls as passing the access sequences (that is, abstract addresses) of the actual reference parameters to the procedure. In other words, the interpreter (*Eval*) binds a formal reference parameter to the access sequence of the corresponding actual parameter. For example, if p is a procedure with the single reference parameter x , then the procedure call $p(a)$, where a is a variable specifier, binds x to the access sequence for a and evaluates the procedure body. In a language like PASCAL, every reference to a formal reference parameter is automatically dereferenced.

If x is a formal reference parameter bound to an actual parameter a , an assignment to x in the procedure body changes the binding of a (the variable to which x is bound) ; it does not change the binding of x . The binding of the formal reference parameter x is unchanged for the duration of the call.

Consequently, we consider PASCAL's notation for referring to formal reference parameters misleading. To remedy the situation in our PASCAL dialect, we require that every reference to a formal reference parameter x in the body of the procedure have the form $x\uparrow$ instead of x . (We have taken the \uparrow operator from Pascal, where it serves as a “dereferencing” operator for pointers.) For instance, if x is a reference parameter, then the standard Pascal statement $x \leftarrow x + 1$ is (implicitly) written as $x\uparrow \leftarrow x\uparrow + 1$ in our dialect. We also require formal reference parameter declarations to have the form $x_i:\text{ref } T_i$ instead of $x_i:T_i$.

To accommodate aliasing within our logic, we must extend the set of **Hoare** assertions to include terms of the form $x\uparrow$ where x is declared in the declaration set H as $x:\text{ref } T$ for some type T . We prohibit the dereferencing operator from appearing in other contexts. The meaning of $x\uparrow$, given state s consistent with H , is $\text{Value}(s, \text{Value}(s, \langle x \rangle))$. The access sequence for $x\uparrow$ is the **Value** of x . Consequently, the access sequence term for $x\uparrow$ is simply x .

Our proof rule for assignments to dereferenced formal reference parameters is identical to our ordinary assignment rule:

$$[\![x\uparrow \leftarrow e]\!] P \{ x\uparrow \leftarrow e \} P$$

where we extend the definition of the simultaneous update $[\![v \leftarrow t]\!] a$ as follows. Let a be a term or formula in L ; let v be a sequence of variable specifiers, possibly including dereferenced formal reference parameters; and let t be a corresponding sequence of terms (not containing updates). The meaning of $[\![v \leftarrow t]\!] a$ for s is the meaning of a for $\text{Update}^*(s, v^*, t)$ where Update^* is extended to overlapping access sequences. Update^* is defined by exactly the same axioms as before, except that axiom 2 (Section 2.2) no longer requires the access sequences $\langle \alpha_1, \dots, \alpha_n \rangle$ to be disjoint. Informally, a simultaneous update $v \leftarrow t$ with overlapping variable-specifiers is performed in left-to-right order.

The soundness and relative completeness of the assignment rule stated above are an immediate consequence of the fact that

$$\mathbf{Eval}(s, xt \leftarrow e) = \mathbf{Update}(s, x, e_s)$$

where e_s is the interpretation of e under state s .

In order to reason about updated formulas containing updates to dereferenced variables, we need the following axioms about updates. Let P and Q be arbitrary formulas, u_1, \dots, u_k be arbitrary terms, and $v \leftarrow t$ be an arbitrary simultaneous update. Then:

1. $\llbracket v \leftarrow t \rrbracket (P \wedge Q) = \llbracket v \leftarrow t \rrbracket P \wedge \llbracket v \leftarrow t \rrbracket Q$
2. $\llbracket v \leftarrow t \rrbracket (P \vee Q) = \llbracket v \leftarrow t \rrbracket P \vee \llbracket v \leftarrow t \rrbracket Q$
3. $\llbracket v \leftarrow t \rrbracket (P \Rightarrow Q) = \llbracket v \leftarrow t \rrbracket P \Rightarrow \llbracket v \leftarrow t \rrbracket Q$
4. $\llbracket v \leftarrow t \rrbracket \neg P = \neg \llbracket v \leftarrow t \rrbracket P$.
5. $\llbracket v \leftarrow t \rrbracket \forall x P = \forall x \llbracket v \leftarrow t \rrbracket P$ where x not free in t .
6. $\llbracket v \leftarrow t \rrbracket \exists x P = \exists x \llbracket v \leftarrow t \rrbracket P$ where x not free in t
7. $\llbracket v \leftarrow t \rrbracket P_i(u_1, \dots, u_k) = P_i(\llbracket v \leftarrow t \rrbracket u_1, \dots, \llbracket v \leftarrow t \rrbracket u_k)$ for every predicate symbol P_i (including equality) .
8. $\llbracket v \leftarrow t \rrbracket f_i(u_1, \dots, u_k) = f_i(\llbracket v \leftarrow t \rrbracket u_1, \dots, \llbracket v \leftarrow t \rrbracket u_k)$ for every function symbol f_i .

These axioms enable us to move updates inside a formula to the point where they apply only to variable specifiers and logical variables. We also need axioms for updates to logical variables and variable specifiers. Let v_1, \dots, v_n be variable specifiers and t_1, \dots, t_n be corresponding terms. Let $\llbracket \dots \rrbracket \llbracket v_1, \dots, v_n \leftarrow t_1, \dots, t_n \rrbracket a$ be an arbitrary updated variable specifier. then:

1. $\llbracket \dots \rrbracket (v_n^* = a^*) \Rightarrow \llbracket \dots \rrbracket \llbracket v \leftarrow t \rrbracket a = \llbracket \dots \rrbracket t_n$.
2. $\llbracket \dots \rrbracket (v_n^* \circ \mathbf{Seq}(d) = \alpha^*) \Rightarrow \llbracket \dots \rrbracket \llbracket v \leftarrow t \rrbracket a = \llbracket \dots \rrbracket \mathbf{Select}(t_1, d)$.
3. $\llbracket \dots \rrbracket (v_n^* = a^* \circ \mathbf{Seq}(d)) \Rightarrow \llbracket \dots \rrbracket \llbracket v \leftarrow t \rrbracket a = \llbracket \dots \rrbracket \llbracket v_1, \dots, v_{n-1} \leftarrow t_1, \dots, t_{n-1} \rrbracket \mathbf{Store}(\alpha, d, t_n)$.

$$4. \llbracket \dots \rrbracket \text{Disjoint}(\text{Seq}(v_n^*) \bullet \text{Seq}(\alpha^*)) \supset \llbracket \dots \rrbracket \llbracket v \leftarrow t \rrbracket \alpha = \llbracket \dots \rrbracket \llbracket v_1, \dots, v_{n-1} \leftarrow t_1, \dots, t_{n-1} \rrbracket \alpha.$$

Since updates do not affect logical variables, the following axiom holds for arbitrary updated logical variable $\llbracket \dots \rrbracket x'$:

$$5. \llbracket \dots \rrbracket x' = x'.$$

The soundness of all the axioms for updates is an immediate consequence of the definition of truth for updated formulas.

We can use the axioms for updates to convert an arbitrary formula to update-free form. To accomplish this transformation, we repeatedly apply the following procedure. First, we push all updates inside the formula so that they apply only to variable specifiers and logical variables. We eliminate all updates to logical variables by applying axiom 5) above. Then for each updated variable specifier $\llbracket \dots \rrbracket \llbracket v \leftarrow t \rrbracket a$, we perform a case split on the relationship between $\llbracket \dots \rrbracket v_n^*$ and a^* and apply the appropriate reduction (axioms 1), 2), 3), or 4) above) to each case, **reducing** the complexity of the updates involved.

While the update elimination procedure is of dubious practical value (since it can exponentially increase the size of a formula), it demonstrates that our axioms for updates are complete relative to the unextended base theory.

5.2 Generalized Simultaneous Assignment Rule

Given the generalized concept of update described in the previous section, we can generalize the simultaneous assignment axiom to permit overlapping variables on the left-hand side of the statement. The new simultaneous assignment axiom is identical to the old one except that the disjointness premise is omitted. Let $v \leftarrow t$ be a simultaneous assignment statement; P be a formula; and H be a declaration set declaring all the program variables appearing in P v , or t . Then the generalized assignment rule states

$$H \mid \llbracket v \leftarrow t \rrbracket P \{ v \leftarrow t \} P.$$

The soundness and completeness of the rule are an immediate consequence of the fact that $\text{Eval}(s, v \leftarrow t) = \llbracket v \leftarrow t \rrbracket s$ and the definition of truth for statements in the logic.

5.3 Generalized procedure Cell Rule

Assume our PASCAL subset satisfies the restrictions listed in Section 3. Our generalized procedure call rule is nearly identical to the simple rule. Let p be declared as procedure $p(\mathbf{var} \ x:\mathbf{ref} \ T_x; \mathbf{val} \ y:T_y) ; \mathbf{global} \ z; B$ in the declaration set H ; let P and Q be formulas containing no free program variables other than $x, x7, y, z$ and $x, x7, z$ respectively; let v be the free logical variables in P and Q ; let x' and y' be fresh logical variables corresponding to x and y ; let R and S be formulas; and let H' denote H augmented by $x:\mathbf{ref} \ T_x, y:T_y$ and $\mathbf{Pair-Disjoint}(x, x^* \circ y^*)$ (where prior declarations of x and y are replaced). Then:

$$\frac{H' \mid P\{B\} Q \\ H \mid v[P(a^*/x, a/x\uparrow, b/y) \triangleright Q(x'/x\uparrow, z'/z)] \triangleright [R \triangleright [[a, z \uparrow x', z']]] s}{H \mid R\{p(a,b)\} s}$$

The disjointness hypothesis in H' asserts that the access sequences for the formal parameters are disjoint from the passed actual reference parameter access sequences. From this hypothesis we can deduce that the dereferenced formal reference parameters do not have any of the formal parameters as aliases. We must add an analogous hypothesis to the declaration rule given in Section 2.3.4.

5.3.1 Soundness and Relative Completeness

The soundness and relative completeness proofs for the generalized procedure call rule differ only in trivial details from the corresponding proofs for the simple rule. The only complication concerns the definition of **Eva/**. We must not let **Eval** be confused by formal parameter names. The simplest solution is to force **Eval** to rename the actual parameters conflicting with formal parameter names before evaluating the procedure body. After evaluating the procedure body, **Eval** performs the appropriate simultaneous assignment.

5.3.2 A Sample Proof Involving Aliasing

Let swap be the standard integer swap procedure defined by

```
procedure swap(var x, y ref integer) :
  begin
    pre x  $\uparrow$ -xi A y $\uparrow$ -yi;
    xt, y $\uparrow$   $\leftarrow$  y $\uparrow$ , xt;
    post y $\uparrow$ -xi A x $\uparrow$ -yi
  end, .
```

First we prove the correctness of the pre and post assertions. Let H be a declaration set including the declaration of swap. Let H_i be H augmented by the formal parameter declarations of swap and the disjointness hypothesis. By the simultaneous assignment rule, proving the pre and post assertions for swap reduces to proving the verification condition:

$$H' | x \uparrow = x_i \wedge y \uparrow = y_i \supset [x \uparrow, y \uparrow \leftarrow y \uparrow, x \uparrow] (y \uparrow = x_i \wedge x \uparrow = y_i).$$

Moving the update inside generates the equivalent assertion:

$$H' | x \uparrow = x_i \wedge y \uparrow = y_i \supset [x \uparrow, y \uparrow \leftarrow y \uparrow, x \uparrow] y \uparrow = x_i \wedge [x \uparrow, y \uparrow \leftarrow y \uparrow, x \uparrow] x \uparrow = y_i$$

which immediately reduces to:

$$H' | x \uparrow = x_i \wedge y \uparrow = y_i \supset x \uparrow = x_i \wedge [x \uparrow, y \uparrow \leftarrow y \uparrow, x \uparrow] x \uparrow = y_i$$

Since x and y are both **ref integers** we know that $H' | x = y \vee Disjoint(Seq(x) \circ Seq(y))$. In the former case $(x = y)$, $[x \uparrow, y \uparrow \leftarrow y \uparrow, x \uparrow] x \uparrow = y \uparrow$ reducing the verification condition to

$$H' | x \uparrow = x_i \wedge y \uparrow = y_i \supset x \uparrow = x_i \wedge x \uparrow = y_i$$

which is true since $x = y$. In the other case (x and y disjoint), $[x \uparrow, y \uparrow \leftarrow y \uparrow, x \uparrow] x \uparrow = y \uparrow$, reducing the verification condition to

$$H' | x \uparrow = x_i \wedge y \uparrow = y_i \supset x \uparrow = x_i \wedge y \uparrow = y_i$$

which is an obvious tautology. **Q.E.D.**

Now let us examine a sample application of the generalized procedure call rule involving **aliasing**. Let H include the declarations **a:array integer of integer, i:integer, j:integer**. Assume we want to prove:

$$H | a[i] = a_1 \wedge a[j] = a_2 \{ swap(a[i], a[j]) \} a[j] = a_1 \wedge a[i] = a_2.$$

By the generalized procedure call rule, we must show

$$H | \forall x_0 y_0 [a[i] = x_0 \wedge a[j] = y_0 \supset y' = x_0 \wedge x' = y_0] \supset [a[i] = a_1 \wedge a[j] = a_2 \supset [a[i], a[j] \leftarrow x', y']] (a[j] = a_1 \wedge a[i] = a_2).$$

Let S' denote the consequent of the final implication. Moving the updates within S' further inside yields

$$[[a[i], a[j] \leftarrow x', y']] a[j] = a_1 \wedge [[a[i], a[j] \leftarrow x', y']] a[i] = a_2$$

which reduces to

$$y' = a_1 \wedge [\![a[i], a[j] \leftarrow x', y']\!] a[i] = a_2.$$

We instantiate the logical variables x_0, y_0 in the major hypothesis as a_1 and a_2 respectively, giving us the hypothesis

$$a[i] = a_1 \wedge a[j] = a_2 \supset y' = a_1 \wedge x' = a_2.$$

Since the premise of this hypothesis is identical to the minor hypothesis, we deduce the **new** hypothesis

$$y' = a_1 \wedge x' = a_2,$$

If $i \neq j$ then S' reduces precisely to this formula. On the other hand, if $i = j$ then S' reduces to

$$y' = a_1 \wedge y' = a_1$$

which is a simple consequence of the hypotheses $i = j$, $a[i] = a_1 \wedge a[j] = a_2$, and $y' = a_1 \wedge x' = a_2$. Q.E.D.

5.3.3 Handling Recursion

The recursive form of the generalized procedure call rule is completely analogous to the recursive generalization of the simple procedure call rule. The soundness and relative completeness proofs are also nearly identical to those for the simple rule.

6. Reducing the Complexity of Proofs Involving Aliasing

Although our rules for procedures with aliasing are no more complicated than comparable rules prohibiting aliasing, they are rather cumbersome to use in practice, because they force all variable parameters to be passed by reference. Many procedures exploiting aliasing are designed to work only for a small subset of the possible aliasing configurations. If all variable parameters are passed by reference, the pre and post assertions for such a procedure must include a long list of disjointness assumptions.

We believe that a procedural programming language should provide two distinct classes of formal variable parameters: those which can have aliases and those which cannot. The explicit syntactic differentiation between these two classes greatly reduces the number of possible aliasing configurations, simplifying reasoning about updates.

To incorporate this modification into our PASCAL dialect, we establish the following new syntax for procedures:

```
procedure p(var w:ref Tw, x:Tx; val y:Ty);
  aliased global z1;
  global z2;
  B
```

where w are reference parameters (as described in Section 4.1), x are variable parameters which have no aliases within the procedure, y are standard **val** parameters, z₁ are global variables which may have aliases in the procedure and z₂ are global variables which may not.

Within the procedure code block B, an assignment to any parameter v other than a reference parameter has the standard form:

v \leftarrow e .

In contrast, all references to a reference parameter must be explicitly dereferenced. Hence, an assignment to a reference parameter w has the form:

wt \leftarrow e .

The generalized procedure call rule (without recursion) for this extension of PASCAL has the following form. Let p be declared as shown above in a declaration set H; let P and Q be formulas in L containing no program variables other than w, w?, x, y, z₁, z₂ and w, wt, x, z₁, z₂ respectively; let v be the free logical variables in P and Q; let w', x', z₁', z₂' be logical variables corresponding to wt, x, z₁, z₂ respectively; let R and S be arbitrary formulas; and let H' be H augmented by **w:ref** T_w x:T_x, y:T_y, and **Pair-Disjoint**(x, x' \bullet x' \bullet y' \bullet z₂') (with prior declarations of w, x, y deleted). Then

$$\frac{\begin{array}{c} H' \vdash P\{B\} Q \\ H \vdash v[P(a^*/w, a/w\uparrow, b/x, c/y)Q(w'/w\uparrow, x'/x, z_1'/z_1, z_2'/z_2)] \\ \underline{[R \llbracket a, b, z_1, z_2 \leftarrow w', x', z_1', z_2' \rrbracket S]} \\ H \vdash R\{p(a, b, c)\} Q \end{array}}{H \vdash R\{p(a, b, c)\} Q}$$

The soundness and relative completeness proofs for the modified rule are essentially unchanged from before.

7. Eliminating the Remaining Restrictions

Our most general procedure call rules still require the following restrictions:

1. No parameters or functions may be passed as parameters.
2. Every global variable accessed in a procedure must be accessible at the point of every call.
3. No procedure named p may be declared within the scope of a procedure p .

As [Donahue 1976] has pointed out, restriction 2 can be eliminated by making the declaration rule rename new variables within program text. A similar strategy can be used to eliminate restriction 3. In essence, this approach makes the rules rename program identifiers so that restrictions 2 and 3 hold after the renaming. We dislike the idea, however, because it modifies the text of a program (and any embedded assertions) in the course of a proof.

Fortunately, neither of these restrictions handicaps the programmer in any way. They simply force him to unambiguously name his variables and procedures. For this reason, we believe these two restrictions are a reasonable part of a practical programming language definition.

In contrast, the remaining restriction--the prohibition of procedures and functions as parameters--prevents the programmer from using an important language construct. In some application areas (such as numerical analysis), procedures and functions as parameters are nearly indispensable. We intend to extend **Hoare's** logic to handle this language construct in a subsequent paper.

Acknowledgements

We are grateful to the Stanford Verification group for helpful discussions.

References

[Apt and DeBakker 1977] Apt, K. R. and J. W. DeBakker. Semantics and Proof Theory of PASCAL Procedures, Tech. Rept., Stichting Mathematisch Centrum, Amsterdam, 1977.

[Clarke 1976] Clarke, E. M. Programming Language Constructs for Which It is Impossible to Obtain Good Hoare-like Axiom Systems", Proceedings of Fourth ACM Symposium on Principles of Programming Languages.

[Cook 1975] Cook, S. Axiomatic and Interpretive Semantics for an Algol Fragment, Tech. Rpt. 79, Dept. of Comp. Sci., Univ. of Toronto, Feb., 1975.

[Donahue 1976] Donahue, J. E. Complementary Definitions of Programming Language Semantics, Springer-Verlag, Berlin, 1976.

[Enderton 1972] Enderton, H. A Mathematical Introduction to Logic, Academic Press, New York, 1972.

[Gorelick 1975] Gorelick, G. A. A Complete Axiomatic System for Proving Assertions about Recursive and Non-recursive Programs, Tech. Rpt. 75, Dept. of Comp. Sci., Univ. of Toronto, 1975.

[Hoare 1969] Hoare, C. A. R. An Axiomatic Approach to Computer Programming, CACM 12, 10 (Oct., 1969) , pp. 332-329.

[Hoare 1971] Hoare, C. A. R. Procedures and Parameters: An Axiomatic Approach, Symp. on Semantics of Algorithmic Languages, E. Engler (ed.) , Springer-Verlag, Berlin, 1971, pp. 102-16.

[Hoare and Wirth 1973] Hoare, C. A. R. and N. Wirth. An Axiomatic Definition of the Programming Language PASCAL, Acta Informatica 1 (1971) .

[Igarashi, London, and Luckham 1975] Automatic Program Verification I: A Logical Basis and Its Implementation, Acta Informatica 4 (1975) , pp. 145-182.

[London et al 1978] London, R. L., J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell, and G. J. Popek. Proof Rules for the Programming Language EUCLID, to appear Acta Informatica.

[McCarthy 1963] J. McCarthy, "A Basis for a Mathematical Theory of Computation", in Computing Programming and Formal Systems, edited by P. Braffort and D. Hirshberg, North-Holland.

[Oppen 1975] Oppen, D. C. On Logic and Program Verification, Tech. Rpt. 82, Dept. of Comp. Sci., Univ. of Toronto, 1975.