
|

Stanford Verification Group September 1978
Report No. 12

Computer Science Department
Report No. STAN-CS-79-740

THE LOGIC OF ALIASING

by

Robert Cartwright and Derek Oppen

Research sponsored by

National Science Foundation

COMPUTER SCIENCE DEPARTMENT

Stanford University

THE LOGIC OF ALIASING

Robert Cartwright

Computer Science Department

Cornell University, Ithaca, N.Y. 14853

Derek Oppen

Computer Science Department

St anford University, St anford, Ca. 94305

Abstract

We give a new version of Hoare’s logic which correctly handles programs with aliased variables.

The central proof rules of the logic (procedure call and assignment) are proved sound and complete.

An earlier version of this paper appeared in the Proceedings of the Fifth ACM

Symposium on Principles of Programming Languages, 1978. This research has been

partially supported by National Science Foundation Grants MCS76- 14293 and

MCS76-000327.

1. introduction

One of the most discredited features common to many programming languages 1s aliasing,

the ability for a piece of storage to have more than one name in a program. Since changing the

value of one variable explicitly may cause the values of other variables to be changed implicitly, it 1s

widely argued that aliasing makes writing, debugging and understanding programs more difficult.

The major technical argument against aliasing is that it makes devising intelligible proof rules

for reasoning about programs more difficult -- that programming languages which admit aliasing

cannot be satisfactorily axiomatized. The problem is most acute for assignment rules and procedure

call rules. None of the assignment or procedure call rules published to date admit aliasing (see, for

example, [Hoare 1969), [Hoare and Wirth 1973], [Cook 1975], [Gorelick 1975], [Igarashi, London

and Luckham 1975], [Donahue 1976), [London et al 1978)).

Although prohibition of aliasing is the most severe limitation imposed by existing proof rules,

all place additional restrictions on procedures and procedure calls*. For instance, the most

comprehensive procedure call rule proposed to date (for EUCLID by [London et al 19783) must:

1. Prohibit aliasing in procedure calls.

2. Disallow passing procedures and functions as parameters.

3. Require that value parameters be read-only (that is, constant parameters).

4. Prohibit declaring a procedure within a procedure of the same name.

5. Require that global variables accessed by a procedure be accessible at every point of call.

Our purpose in this paper is to develop a new version of Hoare’s logic which handles

unrestricted aliasing. We therefore concentrate on rules for assignment and for procedure calls. The

proof rules we give are no more complex than existing rules of comparable scope which prohibit

aliasing. The tradeoff 1s that proofs are more tedious when aliasing 1s actually used.

First we give a simple simultaneous assignment rule (similar to that given by [Gries 19771)

and then a simple procedure call rule (patterned after [lioare 1971 J along lines very similar to the

EUCLID rule by [London et al 19781) for calls where no aliasing 1s present. Next, we propose

generalized assignment and procedure call rules for contexts where aliasing 1s permitted. Both

generalized rules collapse to the corresponding simple rules if no aliasing is present.

*[Apt and de Bakker 1977} have proposed procedure call and assignment rules which eliminate all of these

restrictions. except 2. However, their proof rules violate a fundamental principle of Hoare’s logic: that proof

rules not modify program text. Their procedure call rule rewrites the entire procedure body, destroying the

direct relationship between asserted programs and the structure of proofs in Hoare's logic. Further. the

Apt-deBakker rules force the correctness of a procedure to be re-established for every syntactically distinct call.

2

All the rules that we propose in this paper are proved sound and relatively complete (in the

sense of Cook). Although this may seem a tedious and unnecessary exercise, we feel that it 1s

essential to give formal justifications for proof rules. The semantics of procedure calls in “real”

programming languages such as Pascal are so complicated that none of the proposed

axiomatizations for such languages in Hoare’s logic ((Hoare and Wirth 1973], [London et al 1978])

1s sound. We too found errors in our first attempts at axiomatizing aliasing, and we found these

errors only when trying to formally justify our axiomatization.

The rules we give in this paper are somewhat more formally stated than 1s common in the

literature. Since we wished to prove our rules sound, we had to state explicitly what assumptions our

rules require. Consequently, our rules will appear longer and more complicated than most of the

rules of comparable scope in the literature.

2. Mat hemat ical Foundat ions

Before we can formulate and justify our proof rules, we must establish the mathematical

foundations for our version of Hoare’s logic. We introduce three sets of definitions.

2.15t ate Vectors and Access Sequences

From an informal viewpoint, a state vector 1s a sequence of bindings of program variables

to data values, and procedure names to procedure bodies (as in a LISP association list). An access

sequence 1s a canonical name for an entry 1n a state vector. For example, the access sequence for

the variable x is <"x> (since x typically means the value of the variable x, we use the notation ‘x to

refer to the variable itself). The access sequence for the array element afl] is <"a,1>. An access

sequence can be considered an abstract address.

More formally, we let D denote the set of data values that program variables may assume, and

let I and I’ denote the set of program identifiers a, b, c, . . ., and quoted program identifiers ‘a, ‘b, ‘c,

..., respectively. We let B denote the set of procedure bodies. A variable-specifier 1s any legal

left-hand side of an assignment statement. A simple variable is a variable-specifier consisting of a

single identifier. For example, a[x] and x are both variable-specifiers; x is a simple variable, but
a[x] is not.

For the sake of simplicity, we limit our attention to a subset of PASCAL restricting the set of

variable-specifiers to simple variables and singly subscripted arrays. We assume the data value

domain for our PASCAL dialect has the form { je U D,}u {ke,U (D;»D,)} where the sets D,
j € J, are disjoint sets of primitive data objects (for example,” integers, characters, booleans) and

(D, - D,) denotes the set of mappings (arrays) from D, into D,. We call each set D, and (D, > D,) a
type. These restrictions are made only for explanatory purposes. All of our results generalize to

arbitrary PASCAL data domains. ‘

We define the access sequence corresponding to the simple variable v as the singleton

sequence <’v>. For a variable-specifier of the form ale] (where a is an array and e is an expression),

the access sequence is <a, ey> where € € D is the value of e. We define two access sequences to be
disjoint if and only if neither 1s an itial segment of the other.

Let H be a finite set of variable declarations v : T, (where v is a program identifier and T

is a type) and procedure declarations procedure p(a0) ; B, (where p 1s a program identifier, a 1s a
sequence of var and value parameter declarations and B is the remainder of the procedure body).
We call H a declaration set. A state vector s consistent with H 1s a mapping from I

(identifiers) mto D (data values) u B (procedure bodies) such that each variable v declared in H is

bound to a data value of type T,, and each procedure p 1s bound to the body procedure play);
Bb _.

Pp

Typically, we are only interested in a finite restriction of the state vector s -- specifically the

bindings of the variables and procedure names declared in H. In this case, we can think of s as a

finite sequence of ordered pairs (x, d) where x 1s a program identifier declared in H and d 1s its

binding.

We let A and S denote the set of access sequences and the set of state vectors respectively.

2.2 Value and Update Functions

We introduce two functions Value and Update to access and modify states, analogous to the

array access and update functions defined by [McCarthy 19631. Value maps a state vector s and an

access sequence a into the binding of a in s. Update maps a state vector s, an access sequence a, and

a value d into the state vector §', where §' is identical to s except that the entry within s’ specified by
a has the new value d.

In more formal terms, Value 1s a mapping form S x A into D u B and Update is a mapping

from S x A x (Du B) into S satisfying the following axioms:

1. Value(Update(s, a, ¢), a) =e for arbitrary state vector §, access sequence a, and value e,

provided the entry specified by a exists in s.

2. Value(Updates, a, e), «,) = Values, o,) if a, and a, are disjoint access sequences and
the entries specified by o, and «, exist in s.

3. Let Select be the standard array access function mapping (D, - D)) xD, into D, for all i, j.
Then Value(Update(s, <'v>, d) , <'v, e>) = Select(d, e) for arbitrary state vector s, identifier v,

: array value d, and data value e, provided ¢ 1s in the domain of d.

4. Let Store be the standard array update function mapping (D,- D)) xD, x D, into (D. =

4

-

D)) for all i, j. Then Value (Update(s, <'v,e>,d) , <'v>) = Store(Value(s, <'v>), e, d) for arbitrary
state vector s, identifier v, and data values d and e, provided e and d belong to’ the domain and

range of Value (s, <'v>) respectively.

We extend Value and Update to apply to sequences of disjoint access sequences as follows:

1. Value®(s, <aERE « >) = <Value(s, « {) ,... Values, «)> for arbitrary state vector s and
access sequences a, ... provided the entries specified by «,..., a exist ins.

2. Update’ (s, LIT ed <d,, A d >) = Update(. . . Updates, op, d,) . . » an, d) for
arbitrary access sequences a, ...,o and values d,, .., d_ provided the specified updates are
well-defined.

3. Let a {r+ +n an be disjoint access sequences such that Oy Cy oo Oy have the form <'v,e>,

Il, .2,... k, where ‘v is an identifier; and e, is a data value. Let fits aps +» Kj i be the
remaining access sequences, and let d denote Value(s<’v>) . Then Update {s, <a freon <dy

b 4

d >) = Update (s, <q, a. jee ink" <Store(. . .Store(d, e dj) Ce El d.) dj a. dink)
provided the specified updates are well-defined.

The final axiom above merely collects updates to various elements of the same array and

combines them into a single update of the entire array. We can use this axiom to convert an

arbitrary sequence of disjoint updates to an equivalent set of simple updates (that 1s, updates of

simple variables rather than array elements). For example,

Upd at el s, <<a, I>, , <a, 4, <>, <l, 2, 3, 4) = Update's, <<'a>, <'b>, <'c>>,
<Store(Store(Value (<‘a>, 5), |, 1), 4,3), 2, 4.

We denote the set of sequences of access sequences by A*.

2.3 Definition of Truth

In this section, we define the syntax and meaning of statements in our version of Hoare’s logic

2.3.1 The Base Logic

We assume we are given a base first order theory (L, M) (for the program data domain),

consisting of a logical language L with equality and a model M for L, with the following properties:

1. The domain of the model M includes D (data values), I’ (quoted identifiers), A (access

sequences), A* (sequences over A), and B (procedure bodies).

2. The variables of L include two disjoint sets: I (programming language identifiers) and V, a

9

set of logical variables which may not appear within programs.

3. The logic includes the binary function ® and the unary function Seq. The e operator

concatenates two sequences; that is, Ug - u > ® Vi Ce v.,> = <u, ce u Vis cea V > Seq
maps a data object d (specifically a quoted identifier, a data value, or an access sequence) into the

singleton sequence <d>. With the functions e and Seq, we can construct arbitrary members of A
and A*.

4. The logic includes all the primitive functions of programming language including array

access and update functions Select and Store. We let ale), where a is an identifier and e is a term,

abbreviate the term Select(a, e) .

5. The logic includes a characteristic predicate Pr for each data type T in D. We will use the
familiar notation x : T to abbreviate P,(X).

6. The logic includes the predicates Disjoint and Pair=Disjoint with domains A* and A* x

A* respectively. Disjoint (<aren « >) 1s true if and only if access sequences «. and o, are disjoint
for all 1, j such that 1 # j Pair-disjoint (<a,, A a >), <B,, A 8,>) 1s true if and only if o. and
p1 are disjoint for all 1, j.

Given an arbitrary variable specifier v, we can construct a term v* in L such that the
meaning of v’ is the access sequence for v. If v is a simple variable x, then v* is simply Seq(’x) . If
v is an array element ale), then v* is Seq('a) Seqg(e) . We will frequently employ this construction
in our proof rules.

2.3.2 Extended Terms and Formulas

For the sake of clarity, we prohibit formulas of L from using program identifiers as bound

(quantified) variables. In addition, to conveniently handle updates to the state vector, we extend the

logical language L to include updated formulas and terms. We define an extended formula

(term) of L as follows. An extended formula (term) has a recursive definition identical to that of

an ordinary formula (term) [Enderton 1972) except that there is an additional mechanism (called an

update) for building new formulas and terms from existing ones. Given an extended formula (term)

a, the form [[v «t] a is also an extended formula (term) , where v is a sequence of disjoint

variable-specifiers and t is a corresponding sequence of ordinary (not updated) terms in L. We will

call [vet] a simultaneous update. Henceforth, we will simply use the term formula (term) to

refer to an extended formula (extended term) .

2.3.3 Hoare Assertions and Statements

Let Q be an arbitrary formula in L and let x,,..., x_ be the program identifiers which occur
in Q Let H be a declaration set including declarations for x, .. , Xn. A Hoare assert/on has the

) form

HQ.

Let A be a program segment and P and Q be formulas in L. Let H be a declaration set

including declarations for all the free program variables and procedure names in A, P, and Q. A
Hoare statement has the form

HIP{A}Q

We define the meaning of Hoare assertions and statements as follows. Let H | Q be an

arbitrary Hoare assertion. The definition of truth for H | Qis identical to the standard first-order

definition of truth for Q [Enderton 1972] except:

1. H| Qis vacuously true for states inconsistent with H.

} 2. The meaning of the updated formula (term) [[v « t J] a for state s is the meaning of the
formula (term) a for state Update®(s, v*, t) where v* denotes the sequence of access sequences

corresponding to v and t denotes the interpretation of t under state s.

Let H]P { A} Q be an arbitrary Hoare statement and let Eval be an interpreter (a partial

function) mapping states x program-segments into states. Then H | P { A } Qis true if and only if
for all states s either

1. H|P 1s false for s.

2. Eval(s, a) 1s undefined.

3. Q is true for Evals, A) .

2.3.4 Standard Proof Rules

The standard simple Hoare proof rules have obvious analogs in our version of the logic. The

most fundamental rules -- consequences, composition, and substitution -- have the following form:

1. Conseq uence H|P>Q,HIQ{A}R,H|R>S

P{A}S

2. Composition HIP{A}JQHI|Q{B}R

H|P{ A;B}R

7]

i

3. Substitution HIP{A}Q

H | P(t/x) { A} Qft/x)

where Xx is a logical variable and Qft/x) denotes Q with every free occurrence of x replaced by t

(renaming bound variables) .

The other standard rules which we will take as given are:

4. Declaration H(x'Ix, pp) u { xT,p:B } | P(X'/x){ A } Q(x'/x)

H | P{ begin xT;p:B; A end } Q

where xT and p:B are sequences of variable and procedure declarations, and x’ and p’ are

sequences of fresh program variables and procedure names corresponding to x and p.

2.3.5 Reasoning about Updated Formulas

In order to prove Hoare assertions volving updated formulas, we need special axioms about

updates. For disjoint updates modifying entire formulas, the following axioms (derived from the

) corresponding axioms for Update®) are sufficient:

- l. [x«t] Q=Q{t/x) where x is a sequence of distinct simple variables, and Q is a

‘formula containing no updates.

2. Let vy... v, be disjoint variable specifiers where vy, . . Vv; have the form ale], 1=0,

..» kK, where a 1s a particular array identifier. Let Vip 0 Vink be the remaining
variable-specifiers. Let v' denote the sequence of variable-specifiers a, Vit Vink and let t’
denote the sequence of terms <Store(. . . Storea, e;,t.).. et.) tyre bin Then

[vetlQslvet]Q

Given an arbitrary disjoint simultaneous update v « t, we can eliminate the update [vet J]

from a formula of the form [[v « t J] Q where Q is update free by using axiom 2 to eliminate all

assignments to array elements and then applying axiom 1. We can similarly eliminate all updates

from a formula of the form [[... J] v +t] Q where Q is update free by repeatedly applying the

same simplification procedure.

8

3. Simple Simultaneous Assignment

Given the concept of simultaneous updates within formulas, it 1s easy to give a simple

simultaneous assignment rule. Let v « t be a simultaneous assignment to disjoint variables v, let v

be the access sequence terms in L corresponding to v, and let P be an arbitrary formula in L. The
rule 1s as follows.

H | Disjoint{v®)
H|[v « t]JP{v « t}P

The soundness and relative completeness of this rule follows immediately from the definition

of meaning of statements in the logic and the definition of simultaneous assignment.

4. Simple Procedure Call Rule

In this section we assume that our PASCAL subset:

1. Prohibits aliasing in procedure calls.

2. Disallows passing procedures and functions as parameters.

3. Requires that the global variables accessed by a procedure be explicitly declared at the head

of the procedure and that these variables be accessible at the point of every call.

Under these assumptions, it 1s straightforward to formulate a procedure call rule by treating

procedure calls as simultaneous assignments to the variables passed to the procedure. The assigned

values are any values consistent with the input-output assertions for the procedure.

Let p be declared as procedure p(var xT; val y:T); global 2; B 1n the declaration set H.
B may not access any global variables other than z. Let H be H augmented by the declarations xT
and y:T, (prior declarations of x and y are replaced) . Let P and Q be formulas containing no free
program variables other than x,y, z and x, z respectively. Let v be the free logical fariables of P

and Q, and let x’ and 2’ be fresh logical variables corresponding to x and z. Then the

(non-recursive) simple procedure call rule has the following form:

H | Disjoint{a® & z*) HH |P{B}Q
H | Vv[P(a/x, bly) > Q(x'/x,2'/2)]>[R>o[a, z« x, 2’]] S]

HIR{p(ab)}S

9

It is important to note that the free logical variables x’ and 2’ in the third premise are

implicitly universally quantified. The rule forces R of a, z« x’, 2’ J] S to be true for arbitrary x’

and 2’ consistent with Yv[P(a/x, b/y) > Q(x'/x, 2’/z)]. In contrast, the EUCLID procedure call rule

explicitly omits the corresponding quantifier -- permitting false deductions. Like the EUCLID rule,

our rule generalizes Hoare’s original rule [Hoare 1971] to apply to a richer programming language.

The main difference is between our rule and its predecessors (Hoare’s original rule and the

| EUCLID rule) is that our rule precisely states the assumptions left implicit by the earlier rules.

| 4.1 Soundness

| If Eva/is properly defined, it is easy to prove the soundness of the simple procedure call rule.
Let s be an arbitrary state, consistent with H such that H | R is true for s and Eval(s, p(a;b)) is

defined. We must show s is true for Eval(s,p(a;b)). Let be [xX’, 2’ « X0 Zg J s where Xp» 2g AIC
the. output values of x and z in the call p(a;b) (that is, the values of x and z in the state Eval [[x,

y«a,b]s,b)). Since s’ satisfies both Yv[P(a/x, bly) > Q(x’/x, Z'/z)] and R in the second premise,

s’ must also satisfy [[a,z « x’, 2’] s. By the definition of Eva,

Eval(s, p(a, b))= [[a, z2exuZols=[azex,2]s.

| Hence Eval(s, p(a, b)) satisfies s. Q.E.D.

| Although the soundness of the procedure call rule does not depend on the third assumption
listed above (the accessibility of the procedure globals at the point of every call), the assumption is

necessary to prove that Eval obeys static scoping. The natural definition of Eval (which we used in

the soundness proof) employs dynamic scope rules. If the third assumption holds then static and

dynamic scope rules are semantically equivalent.

| 4.2 Relative Completeness

It 1s also reasonably straightforward to prove that the simple procedure call rule is relatively

complete for non-recursive programs in the sense of [Cook 1975). Since our base logic includes a

rich collection of logical primitives for describing (access) sequences, the incompleteness results of

| [Clarke 19761 do not apply to our version of Hoare’s logic. We assume that the assertion language L

1s expressive; that 1s, that given an arbitrary assertion P in L and a program segment A the

strongest post-condition Q of A given pre-assertion P 1s definable in L. To show that the rule is

complete relative to the completeness of the other proof rules and the axiomatitation of the extended

base logic, it suffces to show that for any program segment A and post-assertion Q, the weakest

liberal pre-condition P is provable. The proof proceeds by contradiction.

10

Assume p’(a’;b’) is a procedure call for which the rule is not complete. Let p(a;b) be the

deepest procedure call in the evaluation of p'(a’b’) for which the simple procedure call is not

complete. Let H be the declaration set at the point of the call, and let p be declared as procedure

p(var xT; val y:T) ; global z; B in H. Let S be an arbitrary post-assertion for p(a;b). We define
Q as the strongest post-condition for B given the pre-condition Xx, y, z = x, ¥,, z.. By assumption
H | P{B }Q’ is provable. We define Q to be 3y’QXy’/y) . By the rule of consequence H | P { B }

Q must be provable. in addition, R =Vx’, 2’'[Qfa/x, bly., 2/z, xix 212) 2[a, zx, 22] S])is
clearly a provable pre-condition of the rule.

Assume R is not the weakest liberal precondition. Then there exists a state s consistent with H

such that R 1s false and such that either Eval(s, p(a;b)) is undefined or S is true for Evak(s, p(a;b)).

Let s'be [Xx, y «a, b]s. Either Eval(s, B) is undefined or Qis true for Eval(s’, B) . In the former

case, Qfa/x,, bly, z/z,, x’[x, 2'/z) must be false for all x’, z' since Qfa/x., bly:, z/z.) is false for all x,
z. Hence R 1s true, generating a contradiction. In the other case Qfa/x., bly, z/z, X'/x, 2’/z) is true
only for states with x’ and z’ equal to the values of x and z in Eval(s’, B) . But for such x’ and 7’,

Eval(s, p(ab)) = [[a,z« x, 2’] s. Consequently, [[a, z «x, 2’ J S is true for all states satisfying

Qfa/x, bly, z/z, Xx, z'/z) implying R is true. Again, we have a contradiction. Q.E.D.

4.3 A Sample Proof

Let’s consider a simple example which most procedure call rules cannot handle. Let p be a

standard integer variable swap procedure defined as follows:

procedure p(var x,y : integer) ;

begin

pfe x=Xx A y=y;:
X, y «YX

post y=x. A x=y,
end,

By the simultaneous assignment rule, we must show X, y:integer | X=X Ay=Y. 2 Cx yty, x]
y=X, AX=y; to establish the declared pre and post-assertions for the swap. By the [[J] substitution
axiom (axiom 1 in 2.3.5),

i X,V « y, X 1 y=X, A X=Y, E X=X A y=Y,

which 1s precisely the pre-assertion. Q.E.D.

11

Now let us consider a sample application of the procedure call rule. Assume we want to prove:

a:array integer of integer, i:integer | alil=a, A i=ig{ p(ali), i) } aligl=ig A=jo.

Let H denote {a:array integer of integer, i:integer}; P° denote the substituted

pre-condition alil=x.i=y; Q’ denote the substituted post-condition y'=%;AX’=y;; R denote alil=a,
A i=iy; and S denote aligl=igni=ay. By the simple procedure call rule, we must show

1. H | Disjoint{<’a, i>, <'i>) .

2. The correctness of the mput-output assertions for the procedure body.

3. HIVxyyo [PP 2 Q)>[Ro[aliliex’, y’ JS)

Since 1. is trivial, and we have already proved 2, it suffices to prove 3. First we transform [[

alilie x,y J] Sinto [a, i+ Store(a, i, x’), y’ JS =Store(a, i, x’) [igl=ig a y'=ay Since i=iy by
hypothesis in R,

S’ = Store(a, ig: x’) lig] = ig A y'=a, E X'=ly A y=a,.

By applying the equality hypothesis in R, we transform X’=iy =a, into x’=iay’=alil, which
is an immediate consequence of P’ 2 Q’ when X.Y; are instantiated as ali] and 1 respectively. Q.E.D.

4.4 Handling Recursion

Our simple rule can be extended to handle mutually recursive procedures by generalizing

Hoare’s original approach to the problem {Hoare 1971). However, we must impose the following
additional restriction on our PASCAL subset to ensure the soundness of the rule:

No procedure named p may be declared within the scope of another procedure named p.

Our rule 1s not unique 1n this respect. Every other proposed procedure call rule (with the

exception of [Apt and de Bakker 1977) requires an equivalent restriction. The restriction is

necessary because the input-output specifications for a procedure p may be assumed for any

procedure call within a procedure declared in the scope of p.

Let procedure p,(var x: Tx; val y;: Ty; global zi B, i= 1,2,..., n be a sequence of
procedure declarations at the head of some block. Let P, and Q,,i=1,..., n be assertions containing

no free program variables other than x,y,z and x, z. respectively. Let v, be the free logical
: variables in P; and Q. Let H be a declaration set containing the declarations of py,...p_ and let

H’ denote H with these declarations replaced by “forward” procedure declarations which only specify

i the procedures’ formal parameters. Let H' denote H’ augmented by the declarations x:TxX, y:Ty
(prior declarations of x and y are replaced) . For i=l, ..., n we define the recursion hypothesis I. as
the rule:

12

H | Disjoint(c’ o z")
H | Yv.[P.(e/x, dly) > Q(x'Ix, 212)]2(0.5[c, 2 « x, 2.] ©]

H | 0, { p,(c:d) } 6,

where ©1 6, c,d and H are arbitrary. Then the recursive version of the rule has the form:

H | Disjoint(a” © 2") 1,,...] FH |P{B.}Q,j=1...n
H | Yv.[P.(a/x., bly.) > Q(x//x, 22] > [R L az ex’, z’']S]

H | R{pab) }$

where 11, I,,.. , I_F H’ Pi B, } Q means we may use the rules I, to prove Hp {B,}Q.

Unlike Hoare’s original rule and the EUCLID rule, our recursive rule is relatively complete,

even for programs utilizing mutual recursion. Of the rules previously proposed in the literature, our

rule most closely resembles that of [Gorelick 19751. Gorelick uses a more complex set of potentially

mutually re«firsive procedures instead of pprem Py and divides the procedure call rule into two
parts: a rule of modification and a rule of invariance. We originally formulated our procedure call

rules in two part form, but abandoned the approach after we failed to devise a complete two-part

rule. Gorelick achieves relative completeness by restricting actual var parameters to simple variables.

We can prove that the recursive version of the simple procedure call rule 1s sound by

generalizing the argument we used for the non-recursive rule. First, we construct the sequences of

procedures Poi Pj - «Pp + + i= 1,...,n as follows. We let Poi be a non-terminating procedure
with parameters identical to p.. For k-1, 2, ..., we let p, be defined by the procedure p(var x.:Tx;

val Y;: Ty.) ; global z; Bi(Pj-1/Pj j=0,...,, n), that is, by the same declaration as p, except each call
pile, d) within the body of p, 1s replaced by the call Pk-1;(C ; d) . Clearly, if the evaluation of an
arbitrary call p;(a, b) requires less than k levels of nested calls on P:Po- Py then the call Pia,
b) is equivalent to p.(a, b) . (Note that this statement does not hold if the restriction on procedure
names 1s violated.) By the soundness of the non-recursive rule and simple induction on k, we know

that the recursive rule is sound if we interpret P; in the premises by Pi-1j j=1,...nandp;in the
conclusion by Py Without loss of generality we may assume pa, b) terminates; otherwise, the rule 1s
vacuously true. Let k be an integer greater than the maximum recursion calling depth on py,...p,

in the evaluation of pila, b) . By assumption, the premises are true for any interpretation of Pj j=1,
. ., 1 consistent with H. Hence they must hold for P; interpreted as p,_1j implying the conclusion
of the rule holds for P.i(8 b) . Since pila, b) is equivalent to P(a, b) , the conclusion of the rule
must be true. Q.E.D.

13

| The relative completeness of the recursive rule can be established by a similar inductive
generalization of the proof for the non-recursive rule. We assume L 1s expressive. The proof

proceeds by induction on the structure of @ program. For every procedure p(var x; val y; global z);

B in the program, we let pre and post assertions be X,Y, z= Xq, ¥ 2g and Jy’ Q'(y'ly) respectively,
where Q’ is the strongest postcondition for the program segment B given the precondition x,y,z =

Xo Yor Zo: Let Ppre.n P, be a sequence of procedures declared at the head of a block B such that
the pre and post assertions for every procedure declared within Pp. Pyare provable. We must
show 1. The pre/post assertion pair for the body of each procedure p;is provable, and 2. The
weakest precondition for any procedure call in the body of B is provable. For each procedure p;,, we
let P; denote the pre assertion X,Y 2, = Xq. Yous Zo and let Q denote the post assertion 3y’
QX(y'ly), where Q’ is the strongest post condition of B, given pre-condition Py

Let q(c, d) be an arbitrary call in the body B, of p.. If q is internal to p,, then the pre and
post assertion of q are provable by assumption. If q is not internal to p,, then the recursion
hypothesis for q 1s available. In either case, by the same argument we used in the non-recursive

case, the weakest pre-condition of q(e, d) , given an arbitrary post-assertion S, is provable. Hence,

since the remaining rules of the logic are complete by assumption, P.{B.}Q.,i=1,... n is provable.
By applying the same argument again, we conclude that the weakest liberal pre-condition of any call

on a procedure in the block body is provable.

By induction on the structure of a program, we can repeatedly apply the previous argument to

derive that the procedure call rule 1s complete for calls in the body of the program. Q.E.D.

5. Rules for Programs with Aliasing

We now extend our version of Hoare’s logic to handle aliasing. The modifications required

are surprisingly minor.

Hoare’s original assignment axiom has the form:

Pe/x){x ee} P

where X 1s a simple variable, e is an expression (term in the logical language L) and P 1s a formula.

This axiom 1s invalid if x 1s a reference parameter or an array reference, since there may be

syntactically distinct variables in P with access sequences identical to x. While Hoare’s substitution

style axiom can be patched to handle array assignment (by viewing the assignment ale,] «e, as an
abbreviation for the simple assignment a « Store(a,eTt e,)) it breaks down 1n the case of aliasing.

In contrast, our assignment call rule does not rely on the concept of substitution (although it

collapses to that form in trivial cases) . As a result, our rule is able to handle array assignment and

aliasing without any modification.

14

5.1 Reference Parameters

In a programming language with unrestricted reference parameters like PASCAL, we

interpret procedure calls as passing the access sequences (that is, abstract addresses) of the actual

reference parameters to the procedure. In other words, the interpreter (Eval) binds a formal

reference parameter to the access sequence of the corresponding actual parameter. For example, if p

1s a procedure with the single reference parameter x, then the procedure call p(a) , where a 1s a

variable specifier, binds x to the access sequence for a and evaluates the procedure body. In a

language like PASCAL, every reference to a formal reference parameter is automatically

dereferenced.

If x 1s a formal reference parameter bound to an actual parameter a, an assignment to X In

the procedure body changes the binding of a (the variable to which x is bound) ; it does not change

the binding of x. The binding of the formal reference parameter x is unchanged for the duration of

the call.

Consequently, we consider PASCAL’s notation for referring to formal reference parameters

misleading. To remedy the situation in our PASCAL dialect, we require that every reference to a

formal reference parameter x in the body of the procedure have the form xT instead of x. (We have

taken the T operator from Pascal, where it serves as a “dereferencing” operator for pointers.) For

instance, if x 1s a reference parameter, then the standard Pascal statement x « x + 1 1s (implicitly)

written as XT « xT + 1 in our dialect. We also require formal reference parameter declarations to

have the form xref T, instead of XT.

To accommodate aliasing within our logic, we must extend the set of Hoare assertions to

include terms of the form xT where x 1s declared in the declaration set H as x:ref T for some type

T. We prohibit the dereferencing operator from appearing in other contexts. The meaning of xT,

given state s consistent with H, is Value(s, Value(s, <'x>)) . The access sequence for x1 is the Value

of x. Consequently, the access sequence term for xT 1s simply x.

Our proof rule for assignments to dereferenced formal reference parameters is identical to our

ordinary assignment rule:

Ifxtece]]P{xtee}P

where we extend the definition of the simultaneous update [[v «t]] a as follows. Let a be a term or

formula in L; let v be a sequence of variable specifiers, possibly including dereferenced formal

reference parameters; and let t be a corresponding sequence of terms (not containing updates). The

meaning of [v «tJ a for s is the meaning of a for Update*(s, v',t) where Update* is extended to
overlapping access sequences. Update’ is defined by exactly the same axioms as before, except that

axiom 2) (Section 2.2) no longer requires the access sequences <a, .., a >to bedisjoint. Informally,
a simultaneous update v «t with overlapping variable-specifiers 1s performed in left-to-right order.

15

The soundness and relative completeness of the assignment rule stated above are an

immediate consequence of the fact that

Eval(s, xt « e) = Updates, x, e.)

where e, 1s the interpretation of e¢ under state s.

In order to reason about updated formulas containing updates to dereferenced variables, we

need the following axioms about updates. Let P and Q be arbitrary formulas, up,..u, be arbitrary
terms, and v «t be an arbitrary simultaneous update. Then:

LIvetI(PAQ =e[vet]PAlvet]Q

2[vet](PvQel[vet]J]Pvvet] Q

SIvet]J](PoQ)s[vet]Po[VeT]Q.

4 [vet] -Pa-[[vet]P.

5. [vet] ¥YxPe YX[[vet JP where x not free in t.

6.[vet] 3IxP=3x[vet] P where x not free in t

7.0 v «tJPu,...u)=P({[Vet]u,.., [vetIu) for every predicate symbol P,
(including equality) .

8. Lvetlffu,.. ,u)=fl[vet] ug, ..., [vetuy) for every function symbol f,

These axioms enable us to move updates inside a formula to the point where they apply only

to variable specifiers and logical variables. We also need axioms for updates to logical variables and

variable specifiers. Let v TERE be variable specifiers and t Poe ty be corresponding terms. Let
C...]1[Vine oa Veto ont J] a be an arbitrary updated variable specifier. then:

LE...D(v, =a%) of. JCvttJa=L...J¢.

2.0...7 (v * eSeqid)=c)o[...JIvet]a=[.. .] Select(t,, d) :

3.0... Iv *- a* eSeq(d) >... JLvetDa=L...JLvy...v yet. ut]
Store{q, d, t).

16

4. [...] Disjoint(Seq(v*) e seq’No>... ICvetTa=D... DLV, uv, «t;
aut Da

Since updates do not affect logical variables, the following axiom holds for arbitrary updated

logical variable [[... J x’:

5.0...]x" =x".

The soundness of all the axioms for updates is an immediate consequence of the definition of

truth for updated formulas.

We can use the axioms for updates to convert an arbitrary formula to update-free form. To

accomplish this transformation, we repeatedly apply the following procedure. First, we push all

updates inside the formula so that they apply only to variable specifiers and logical variables. We

eliminate all updates to logical variables by applying axiom 5) above. Then for each updated

variable specifier [[... JE v« tJ] a, we perform a case split on the relationship between [[... J

v and a* and apply the appropriate reduction (axioms 1), 2) , 3), or 4) above) to each case,

reducing the complexity of the updates involved.

While the update elimination procedure is of dubious practical value (since it can

exponentially increase the size of a formula) , it demonstrates that our axioms for updates are

complete relative to the unextended base theory.

5.2 Generalized Simultaneous Assignment Rule

Given the generalized concept of update described in the previous section, we can generalize

the simultaneous assignment axiom to permit overlapping variables on the left-hand side of the

statement. The new simultaneous assignment axiom 1s identical to the old one except that the

disjointness premise 1s omitted. Let v t t be a simultaneous assignment statement; P be a formula;

and H be a declaration set declaring all the program variables appearing in P v, or t Then the

generalized assignment rule states

~~ HI[vet]P{vet}P.

The soundness and completeness of the rule are an immediate consequence of the fact that

Eval(s,v «t)=[[vtt]s and the definition of truth for statements in the logic.

17

5.3 Generalized procedure Cell Rule

Assume our PASCAL subset satisfies the restrictions listed in Section 3. Our generalized

procedure call rule is nearly identical to the simple rule. Let p be declared as procedure p(var x:ref

T ;val y:T,) ; global 2; B in the declaration set H; let P and Q be formulas containing no free
program variables other than x, x7, y, z and x, x7, z respectively; let v be the free logical variables

in P and Q; let x’ and y’ be fresh logical variables corresponding to x and y; let R and S be

formulas; and let H” denote H augmented by x:ref T, y:T,, and Palr-Disjoint{x, x’ e y*) (where
prior declarations of x and y are replaced). Then:

H | P{B}Q

H | v[P(a'/x, a/xT, bly) > Q(xIx1,2/12)]>[R>[a, zt x, 2’]s)
H [R{ p(ab) } 5

The disjointness hypothesis in H’ asserts that the access sequences for the formal parameters

are disjoint from the passed actual reference parameter access sequences. From this hypothesis we

can deduce that the dereferenced formal reference parameters do not have any of the formal

parameters as aliases. We must add an analogous hypothesis to the declaration rule given in Section
2.3.4.

5.3.1 Soundness and Relative Completeness

The soundness and relative completeness proofs for the generalized procedure call rule differ

only in trivial details from the corresponding proofs for the simple rule. The only complication

concerns the definition of Eva/. We must not let Eval be confused by formal parameter names. The

simplest solution 1s to force Eval to rename the actual parameters conflicting wih formal parameter

names before evaluating the procedure body. After evaluating the procedure body, Eval performs

the appropriate simultaneous assignment.

5.3.2 A Sample Proof Involving Aliasing

Let swap be the standard integer swap procedure defined by

procedure swap(var x,y ref integer) :

begin

pre xXt-xA yT=y.i
xt, yt « yT, xt;

post yT=x, A xT=y.
end, .

18

First we prove the correctness of the pre and post assertions. Let H be a declaration set

including the declaration of swap. Let H, be H augmented by the formal parameter declarations of
swap and the disjointness hypothesis. By the simultaneous assignment rule, proving the pre and post

assertions for swap reduces to proving the verification condition:

H’ |xT=x. A yt=y2 [xT, yt «y%, Xt J(yt=x, A xT=y,) .

Moving the update inside generates the equivalent assertion:

I | xT=x; A yT=y.2 [xT, y? « yt, xT Jyt=x, A [xT, yt « yt, xT Jxtey,

which immediately reduces to:

CH | xT=x, AyT=y, 2 xT=x. A [xT, yT€yT, Xt 1 x1=y,

Since x and y are both ref integers we know that H’ |x=y v Disjoint(Seq(x) Seq(y)) . In

the former case (x-y) , [xT, yt « yT, xt J] xt-xt reducing the verification condition to

H’ |xT=x; A yt=y, > xT=x, A xT=y.

which is true since x=y. In the other case (x and y disjoint), [xT, yT « yt, xt J xT=y1, reducing the
verification condition to

H’ |xT=X; A yT=y. > xT=x. A yT=y,

which is an obvious tautology. Q.E.D.

Now let us examine a sample application of the generalized procedure call rule involving

aliasing. Let H include the declarations a:array integer of integer, i:integer, jinteger. Assume

we want to prove:

H |alil=a A a[jl=a,{ swap(ali}, a[j}) } aljl=a, a alil=a, .

By the generalized procedure call rule, we must show

H | Vxgyplalil=xy a aljl=yy > y'=xg a X'=yy) > [alil=a; a aljl=a, > [ali], aj] « x’, y’]
(aljl=a, a ali)=a,)]J

Let S° denote the consequent of the final implication. Moving the updates within §’ further

inside yields

[ali) aljl ex’, y J aljl=a, all ali} aljlt x’, vy’] alil=a,

19

which reduces to

y=a; a [ali) aljl « x’, y’ J alil=a,.

We instantiate the logical variables x, ¥5 in the major hypothesis as al and a2 respectively,
giving us the hypothesis

alil=a, a aljl=a, > y'=a, A X’=a,.

Since the premise of this hypothesis 1s identical to the minor hypothesis, we deduce the new

hypothesis

If i#j then S* reduces precisely to this formula On the other hand, if 1-j then S’ reduces to

y=a, a y=a

which is a simple consequence of the hypotheses i-j, alil~aaaljl=a,, and y'=aax’=a,. QED.

5.3.3 Handling Recursion

The recursive form of the generalized procedure call rule 1s completely analogous to the

recursive generalization of the simple procedure call rule. The soundness and relative completeness

proofs are also nearly identical to those for the simple rule.

6. Reducing the Complexity of Proofs Involving Aliasing

Although our rules for procedures with aliasing are no more complicated than comparable

rules prohibiting aliasing, they are rather cumbersome to use in practice, because they force all

variable parameters to be passed by reference. Many procedures exploiting aliasing are designed to

work only for a small subset of the possible aliasing configurations. If all variable parameters are

passed by reference, the pre and post assertions for such a procedure must include a long list of

disjointness assumptions.

. We believe that a procedural programming language should provide two distinct classes of

| formal variable parameters: those which can have aliases and those which cannot. The explicit
i syntactic differentiation between these two classes greatly reduces the number of possible aliasing

configurations, simplifying reasoning about updates.

20

To mcorporate this modification into our PASCAL dialect, we establish the following new

syntax for procedures:

procedure p(var w.ref T , xT ;val yT,) ;
aliased global z1
global Z,;
B

where w are reference parameters (as described in Section 4.1) , x are variable parameters which

have no aliases within the procedure, y are standard val parameters, z, are global variables which
may have aliases in the procedure and z, are global variables which may not.

Within the procedure code block B, an assignment to any parameter v other than a reference

parameter has the standard form:

Vee.

In contrast, all references to a reference parameter must be explicitly dereferenced. Hence, an

assignment to a reference parameter w has the form:

wWtee.

The generalized procedure call rule (without recursion) for this extension of PASCAL has the

following form. Let p be declared as shown above in a declaration set H; let P and Q be formulas in

L containing no program variables other than w, w?, x,¥,2,, 2, and w, wt, Xx, Z2,.2, respectively;
let v be the free logical variables in P and Q; let w’, x’, z TL 2, be logical variables corresponding to
wt, x, 2,,2, respectively; let R and S be arbitrary formulas; and let H’ be H augmented by w:ref

T, xT, y:T,, and Pair-Disjoint{x, x*ex*e vy ® z,’) (with prior declarations of w, x,y
deleted). Then

H'IP{B}Q,

H | viP(a'/w, a/w1, b/x, c/y)Q(wW/wT, X/x, zz), 2,12,)]
[R[a, b, zy, 2, wx,2, 2, 1 S1

HI R{p(a,bec)} Q

The soundness and relative completeness proofs for the modified rule are essentially

unchanged from before.

21

7. Eliminating the Remaining Restrictions

Our most general procedure call rules still require the following restrictions:

1. No parameters or functions may be passed as parameters.

2. Every global variable accessed in a procedure must be accessible at the point of every call.

3. No procedure named p may be declared within the scope of a procedure p.

As [Donahue 19761 has pointed out, restriction 2 can be eliminated by making the declaration

rule rename new variables within program text. A similar strategy can be used to eliminate

restriction 3. In essence, this approach makes the rules rename program identifiers so that

restrictions 2 and 3 hold after the renaming. We dislike the idea, however, because it modifies the

text of @ program (and any embedded assertions) in the course of a proof.

Fortunately, neither of these restrictions handicaps the programmer in any way. They simply

force him to unabiguously name his variables and procedures. For this reason, we believe these two

restrictions are a reasonable part of a practical programming language definition.

In contrast, the remaining restriction--the prohibition of procedures and functions as

parameters--prevents the programmer from using an important language construct. In some

application areas (such as numerical analysis), procedures and functions as parameters are nearly

indispensable. We intend to extend Hoare'’s logic to handle this language construct in a subsequent

paper.

Acknowledgements

We are grateful to the Stanford Verification group for helpful discussions.

22

References

» [Apt and DeBakker 1977] Apt, K. R. and J. W. DeBakker. Semantics and Proof Theory of

PASCAL Procedures, Tech. Rept., Stichting Mathematsch Centrum, Amsterdam, 1977.

[Clarke 1976) Clarke, E. M. Programming Language Constructs for Which It is Impossible to

Obtain Good Hoare-like Axiom Systems”, Proceedings of Fourth ACM Symposium on Principles of

Programming Languages.

[Cook 19751 Cook, S. Axiomatic and Interpretive Semantics for an Algol Fragment, Tech. Rpt. 79,

Dept. of Comp. Sci., Univ. of Toronto, Feb., 1975.

[Donahue 1976] Donahue, J. E. Complementary Definitions of Programming Language Semantics,

Springer-Verlag, Berlin, 1976.

[Enderton1972] Enderton, H. A Mathematical Introduction to Logic, Academic Press, New York,
1972.

[Gorelick 1975] Gorelick, G. A. A Complete Axiomatic System for Proving Assertions about

Recursive and Non-recursive Programs, Tech. Rpt. 75, Dept. of Comp. Sci., Univ. of Toronto, 1975.
TE

[Hoare 19691 Hoare, C. A. R. An Axiomatic Approach to Computer Programming, CACM 12, 10

i (Oct., 1969) , pp. 332-3209.

[(Hoare1971) Hoare, C. A. R. Procedures and Parameters: An Axiomatic Approach, Symp. on

Semantics of Algorithmic Languages, E. Engler (ed.) , Springer-Verlag, Berlin, 1971, pp. 102-1 16.

[Hoare and Wirth 1973) Hoare, C. A. R. and N. Wirth. An Axiomatic Definition of the

Programming Language PASCAL, Acta Informatica 1 (1971) .

[Igarashi, London, and Luckham 1975] Automatic Program Verification I: A Logical Basis and Its

Implementation, Acta Informatica 4 (1975) , pp. 145-182.

[London et al 19781 London, R. L., J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell, and

G. J. Popek. Proof Rules for the Programming Language EUCLID, to appear Acta Informatica.

[McCarthy 1963] J. McCarthy, “A Basis for a Mathematical Theory of Computation”, in Computing

| v Programming and Formal Systems, edited by P. Braffort and D. Hirshberg, North-Holland.

[Oppen 1975] Oppen, D. C. On Logic and Program Verification, Tech. Rpt. 82, Dept. of Comp.

Sci., Univ. of Toronto, 1975.

23

