
SHOULD TABLES BE SORTED?

by

Andrew Chi-Chih Yao

STAN-CS-79-753

July 1979

DEPARTMENT OF COMPUTER SCIENCE

School of Humanities and Sciences

STANFORD UNIVERSITY

Per

i\ B Fy - /3

— ———

i

¥/Should Tables Be Sorted?

Andrew Chi-Chih Yao

Computer Science Department

Stanford University
Stanford, California 94305

Abstract.

We examine optimality questions in the following information

retrieval problem: Given a set S of n keys, store them so that

queries of the form "Is xe S ?" can be answered quickly. It 1s shown

that, 1n a rather general model including all the commonly-used schemes,

f1g(n+tl)] proyes to the table are needed in the worst case, provided

the key space 1s sufficiently large. The effects of smaller key space

and arbitrary encoding are also explored.

Key Words and Phrases: Information retrieval, lower bound, optimality,

query, Ramsey's theorem, search strategy,

sorted table.

CR Categories: 3.74, 4.34, 5.25, 5.31.

— This research was supported in part by National Science Foundation under

grant MCS-77-05313.

1

—

1. Introduction.

Given a set S of n distinct keys from a key space M = {1,2,...,m} ,

a basic information retrieval problem 1s to store S so that membership

queries "Is J in S ?" can be answered quickly, Two commonly used

schemes are the sorted table and the hash table. In the first case,

a query can be answered in [1lg(n+l)] probes by means of a binary

search. ~/ The hash table scheme has a good average-case cost, but requires

O(n) probes 1n the worst case for typical hashing schemes. Looking through

various alternative methods, one gets the feeling that ~ log n probes

must be necessary in the worst case, 1f the key space M is large and

we only use about minimal storage space. Our purpose is to study the

truth of this statement. The question is nontrivial, as the existence

of hashing suggests the possibility of schemes drastically different

from, and perhaps superior to, the sorted table.

Before presenting technical results, let us try to put the subject

of this paper in perspective. In the literature, efficient methods have

been devised to perform various primitives in data manipulations [1][7].

For example, a sequence ofn "DELETE", "INSERT", "MIN" instructions

can be performed in O(n log n) time. However, lower bounds to the

complexity of these problems are lacking, except in rather restricted

models (for example, [8] [14] [16]). Since efficient data structures

may utilize the full power of a random access machine (e.g. [19]), it

1s of great interest to study the complexity problems in more general

models, 1.e., those equipped with some address-computing capabilities,

This paper 1s one step in that direction, by studying perhaps the simplest

5 lg denotes logarithm with base 2.

2

of such data structuring problems. Hopefully, one can derive interesting

results for other problems in similar frameworks. (For related study

regarding bitwise-random-access-machines, see [5],[6],[9].)

a

2. The_Wisdom of Using Sorted Tables.

In this section we show that for large key space, Tlg(n+1)]

probes are required to answer the membership problem in a rather general

model. This model encompasses all common schemes such as hashing, sorted

tables, and linked list structures. For clarity, we first prove the

result in a simplified model. The general result will be given 1n

Theorem 1'.

The Basic Model.

Let the key space be M = {1,2,...,m} . We are interested in storing

n distinct keys of M into a table of size n . A table structure 7T

specifies how any particular set of n keys are to be placed in the

table T . A search strategy corresponding to T specifies, for

any given key K , how to perform a series of probes T(i,) = 7, T(i,) = 5 eee

into the table T , until one can claim whether K is in T or not. The

search strategy is fully adaptive, in the sense that each probing location

can depend on K and on all the previous probing results. The cost

c(T,/)of a (table structure, search strategy) pair is measured by the

number of probes needed in the worst case. The complexity f(n,m) is

the minimum cost achievable by any such pair. Clearly f(n,m) < [lg(n+l)] .

To get some feeling on possible improvements over the sorted table

scheme, and on the ultimate limitation, we look at the simple case n = 2 ,

m=53%. It 1s easy to see that 2 probes are needed to decide whether

K= 2 1s in T 1f a sorted table 1s used. However, the "cyclic" table

in Figure 1 allows us to answer any query in just 1 probe, as the first

entry of T determines the entire table. Note that these are the only two

non-isomorphic table structures (up to the renaming of keys and table

locations) for this case.

L

—

sorted table

1,2} —>

(2,5) —>

(1,3) —>

2 probes

cvelic table

1,2} —>

(2:3) —>

13) —>

1 probe

Figure 1. The sorted table 1s not optimal for n=2 , m=3 .

—

Thus, sorted table is not optimal for n = 2 , m =3 . We shall

now show, however, that sorted table 1s optimal as soon as n = 2 ,

m = 4 (hence for all n=2, m>L4).

Any table structure for n = 2 , m = 4 can be uniquely represented

as a directed graph on four labelled vertices {1,2,3,4) . We draw an

edge i = J if the pair f{i,j} is stored as Jt jl . For example,
the graph 1n Figure 2 represents a table structure with {1,4} stored

as | OJ , and {2,1} as 1] 2] , etc. For any three vertices
in the graph, the edges between them may or may not form a directed cycle.

It 1s not hard to show that, for any such graph on four vertices, there

exist three vertices among which the edges are acyclic. In Figure 2,

{1,3,4} is such a set of three vertices. If we consider the set of

keys corresponding to these vertices as a subspace with m =% , we find

that we are storing these keys as a "permuted" sorted table, 1.e., 1it

differ; from the sorted table only in a new ordering 3 <1< 4 of the

elements (Figure 3). But this means that any searching strategy for this

table structure must make 2 probes in the worst case. This proves that

£(2,4) > 2 , hence the sorted table is optimal for n = 2 , m > 4 |

The preceding statement generalizes to any fixed n . That 1s, the

sorted table scheme 1s optimal for any fixed n , provided that the key

space 1s large enough.

Theorem 1. For every n , there exists an N(n) such that

f(n, m) = lg(n+l) 1 for all m > N(n) .

Proof. We need the following lemma, which can be proved by an adversary

argument.

6

a

A

2 IN
7

Figure 2. A typical table structure for n =2 , m=14,

Figure 3. The "permuted" sorted table corresponding to

{1,3,4} from Figure 2.

Lemma 1. If a table structure stores the keys of a table in sorted

| order (or according to some fixed permutation), then [1lg(ntl)] probes

are needed in the worst case by any search strategy, provided that

m >2n-1 and n > 2.

Proof of Lemma 1. We will construct an adversary strategy to show that

[1g(ntl)] probes are required to search for the key value K = n of

the space {1,2,...,m} . The construction is by induction on n . For

n=2 and m > 3% , it 1s easy to see that 2 probes are required. Let

ny > . Assume the induction hypothesis to be true for all n < ny

we will prove it for n = Ny, Mm > on,-1 and K = ny . By symmetry,

assume that the first probe position p satisfies p < [no/21] . The

adversary answers T(p) = p | Then the key ny may be 1n any position

i where [ny/27 +1 <1i<n,. In fact, T([ny/27+1) through (ng)

1s a sorted table of size n'-= Lny/2] which may contain any subset

of {[n,/21+1, (n,/21+2, . . .,m}, and hence in particular any subset

of the key space M' = {(n,/21+1, [0 /21+2, Co .ym-[n /27] . The
size m' of M' satisfies

m' = m=-2[n,/2] > (2n,-1) — 2ln,/27

> 2|ny/2]-1

= 2n' -1 ,

and the desired key ny has relative value K' = no /2] = n' in
the key space M' . By the induction hypothesis, [lg(n'+1l)1 more

probes will be required. Hence the total number of probes 1s at least

1+ [1lg(n'+1)] = 1+ [1lg(Lny/2 +1) > [lg(ny+l) | . This completes

the induction step. O

8

To prove Theorem 1, the idea is to show that, if m is large enough,

then for any table structure T , there 1s a set So of 2n-1 keys with

the following property: given any n-key subset A C 5 , the table

structure always arranges the keys of A according to same fixed

permutation. Lemma 1 will then imply the [1lg(n+l)7 bound.

To this end, let us partition ¢g, the family of n-key subsets

of M, into n! parts as follows. For each A = {J1 <p <u < J teas

let Ty be the table formed under T . We assign A to the group

collection {oiiiE1s . eri) 1s a permutation of (1,2, ‘ 2°00
forms a partition of @ .

Claim. If m 1s sufficiently large, then there exists a set of 2n-1

keys So c {1,2,...,m} such that, for all n-key subsets Aa - 8, , we

have Ac¢ JESY Loyeeesd) , where (isdn eeusd) 1s a fixed permutation.

By our earlier discussion, this would imply Theorem 1. It remains to

prove the claim. We make use of the following famous combinatorial

theorem (see, e.g. [3]).

Ramsey's Theorem. For any k, r, t , there exists a finite number R(k,r,t)

such that the following 1s true. Tet S = {1,2,¢0.,m} with m > R(k,r,t) .

If we divide the family of all r-element subsets of S into t parts,

then at least one part contains all the r-element subsets of some k

elements of S .

Cur claim follows from Ramsey's Theorem, by choosing r=n, t = n!

and k = 2n-1 . This proves Theorem 1 with N(n) = R(2n-1, n, n!) . C]

Generalization. As mentioned at the beginning of this section, .

| Theorem 1 holds under more general conditions. In the general setting,
| a table may contain "pointers" and duplicated keys. Formally, we have

a universe M of m keys, a set P of p special symbols (pointers),

and an array T containing gq cells. Let S cM be any subset of n

keys. We store S 1n T where each cell may contain any element in

the set SUP . Each key in S may appear several times or none at all.

A rule for determining the above assignment 1s a table structure 7 .

Defining search strategies ./ as before, we measure the cost c(T,)

by the number of probes to answer the membership query in the worst case.

The complexity f(n, myp,q) 1s the minimum cost achievable by such a pair.

Theorem 1'. For any n, p, q , there exists an N(n,p,q) such that

f(n,myp,q) = [lg(n+l)]] for all m > N(n, p,q) .

*Proof. As the proof 1s very similar to that of Theorem 1, we shall only

sketch it. Clearly, we need only prove that f(n,m,p,q)> [1lg(n+l)]

for all large m .

Let T be any table structure. To each n-key subset S , we assign

a g-tuple (i15dps eerily) with 1< i, < n+p , where i, = k if T[7z]
contains the k-th smallest key in S and 1, = n+j if T[4] contains

the j -th pointer. This partitions the family of all n-key subsets into

(n+p)? classes. If m > R(en-1, n, (n+p)?) then by Ramsey's theorem,

there exists a set So of 2n-1 keys all whose n-key subsets are in

the same class. By definition, all tables for n-key subsets S C So

contain identical pointers in each location, and hence tables are

distinguished only by the keys stored in the tables. Now, in these

| 10

tables, the set of locations containing a given key depends only on

the relative ranking of the key in the n-key subset. Therefore,

from the viewpoint of search strategies, these are sorted tables (with

possible missing keys). By Iemma 1, it takes [lg(n+l)7] probes in

the worst case. As T 1s arbitrary, this proves the theorem.

We may further allow the set S to have non-unique representations

as a table (as 1s the case of hash tables, search trees), since this

obviously will not improve the worst-case cost. Thus, the present model

allows for the use of linked lists, search trees, and all common hashing

techniques, etc.

11

ol

3. When Is One Probe Sufficient'?

The numbers N(n) 1n Theorem 1 are extremely large even for

moderate n . Thus the result 1s not too useful in practical terms.

It is of interest to understand f(n,m) for smaller m , We therefore

ask the following equivalent question: Given n, k , what 1s the maximum

m such that f(n,m) = k ? Call this number g(n,k) . Hence if, and

only if, there are more than g(n,k) possible keys, then we have to use

more than k probes in the worst case. The determination of g(n,k)

1s difficult, but we can determine it in one special case.

$ if n=2,Theorem 2. g(n,1) =
2n=-2 if n>2.

Proof. We shall give a proof for the lower bound to g(n,1l) , by

exhibiting a l-probe table structure for the asserted number of keys.

The other part of the proof, i.e., that no table structure can achieve

a l-probe search for a larger key space, involves lengthy case analysis

and will be left to Appendix A.

For the case n=2 , m=3%, the "cyclic" table discussed earlier

has an obvious l-probe search strategy. Now, letn > 2 andm = 2n-2 ,

we describe a table structure allowing a l-probe search strategy.

Consider the situation as m people sharing an apartment building

withn rooms. We need a method so that, no matter which n people

appear at the same time, we can assign them in such a way that it 1is

possible to determine if person j 1s here by looking up the occupant

of one particular room (dependent on j),.

12

|

| We shall use K. to stand for the person j (1 <_] < m) . Let

us call K. and K the tenants of room j , for 1 < Jj < n-2 ;

Ey 1s the lower tenant and Ks: the upper tenant. For room n-1 ,

Ko_1 1s a lower tenant, and for roomn , K. 1s a lower tenant, There

are no upper tenants for these two special rooms, (See Figure 4.)

When a group of n people show up, we make the assignment by the

following steps.

(1) If room Jj (1 < Jj <n-2) has only one tenant present, assign that

tenant to the room.

(i1) If a room j (1 < j <n-2) has both tenants present, let the

upper tenant go to a room which has no tenants here.

(111) Those people left unassigned are either tenants whose upper tenants

are also here, or are keys Ko_17 XK, . We assign them so that they

do not occupy the rooms of which they are tenants (e.g., a cyclic

shift will do).

The last step can always be accomplished, for we can argue that if there

1s at least one person left in (111), then there are at least two. Indeed,

either (a) assume neither K, 1 nor K, , 1s present, then at least two

rooms Jj (1 < j < n-2) have both tenants present, or (b) assume exactly

one of R17 K 1s present, then there must be another J (1 < J <n-2)

with both tenants present, or (c) both K, 1 and K are present.

For example, assume in Figure 5, the group{1,2,3,6,7,9,10,12} show up.

Steps (1), (11), (iii) are illustrated.

To answer 1if Ky 1s in the table, we look at the room of which it
1s a tenant.

15

tenants 9 10 11 12 13 14

1 2 3 4 5 6 7 8

room 1 2 3 4 5 o 7

Figure L. The association between tenants and rooms in the proof

of Theorem 2.

9g 10 12

1 2 3 ST

step (1) |
HEE

step (11) |
HE EREE

step wi |
BREE EERE

Figure 5. An illustration of steps (i) - @ii) in the

assignment.

14

(a) If K. 1s there, then it 1s in the table.

(b) If an upper tenant of some other room is there, then A, 1s not
in the table.

(c) If a lower tenant of some other room is there, then K, is in
the table.

It 1s straightforward to verify the correctness of the answers. This

proves g(n,1) > 2n-2 forn > 2 .

It remains to prove the upper bounds for g(n,l) . We have shown

g(2,1)< 4 in Section 2. The proof of g(n,l)< 2n-2 for n > 3

will be left to Appendix A. 0

Remark. It 1s somewhat surprising that the l-probe schemes used in

the above proof are optimal, as they look quite arbitrary. In particular,

why do we need two special rooms n-1 and n ? Figure 6 shows that the

scheme fails 1f we have only one special room (and 2n-l1 keys). The

arrival of keys 1,2,...,n-1,ntl will make the accomodation impossible.

15

| ¢ 10 11 12 13 14 15

OJOJOXCLONCIOI

| Figure 6. Failure of the l-probe scheme with 2n-1 keys.

16

HB

4, Searching in Two Probes.

How strong is Theorem 1'? It appears to be a robust result,

considering 1ts generality. However, the following surprising result

demonstrates that it depends heavily on the fact that keys outside of

the set S may not be present in the table.

Theorem 3. There exists a number N'(n) such that, if m > N'(n) ,

then by adding 1 extra cell 1n a sorted table, the search can always

be accomplished in 2 probes. (The content in the extra cell 1s allowed

to be any integer between 1 and m .)

Proof. We define a concept called "k-separating systems?. Let

M= {1,2,...,m} and n > 0 an integer. An n-separator F = (AA, TLN

- 1s an ordered n-tuple of subsets AC M which are mutually disjoint.

An n-separating system for M 1s a family of n-separators such that,

for any n elements xX, < X, <. . .< Xn of M , there exists (not

necessarily unique) a member F = (A +3 reeesh) cF% with x. ER. for

i=12,.0.,0 . Let us use p(x Xs 0ensx) to denote this F . For
n

ye UA. , use J(F,y) to denote the j with yeA. ,
5=1 J J

We now show how to design a 2-probe structure with the help of

an n-separating system % for M. Let F = {FpsFps ees] . For

each n-tuple a = (x; <x, <ul < x) drawn from M , let

Fi (a) = (XX 5 00 er X) . For the moment assume that Fr= 4 <m .
We organize the table as shown in Figure 7.

) To test 1f a number yeM is in the table, one first probes at

cell 0 to find 1(a) , then makes a second probe at position TE; (a)? ¥)]
The number y 1s 1n the table 1f and only 1f it 1s in this location.

LT

u

sorted table

—

i(a) X X X1 2 3 n

cell O 1 2 3 n

Figure 7. A 2 -probe table.

18

Reason: Let Fs (a) = (ApsAgseees A) ; if yv is in the table, then y eA,

with j = I(F5 (g)7Y) , and hence must be in the J -th cell. It remains to
examine the condition that f <m . We need the following combinatorial

lemma.

Lemma 2. There exists an n-—-separating system % for S with

7] < 1 (1g m)?L :

Proof. See Appendix B.

2

It follows from the lemma that, if 0 (1g my" <m , then the

2-probe scheme works. The condition is satisfied if m > N'(n) = ,16n°
This proves Theorem 3. J

Bob Tarjan [private communication] has improved the bound N' (n)

in Theorem 3 to exp(c n log n) by a somewhat different construction.

In the proof of Theorem 3, the table structure used has a "directory"

at cell 0 . To retrieve a key vy , one consults the directory to probe

a cell which would contain Jj if and only if y is in the table.

(Tarjan's construction also follows this pattern.) It 1s of interest

to find tight bounds on m , n for such table structures (call them

canonical 2 -probe structures) to exist. Define a primitive n-separating

system F for M = {1,2,...,m} to be a family of n-separators such

that, for any n distinct elements SERN ETTER of M , there exists

a member F = (BiB sees A) € § with each A, containing exactly one x. .
Let b(myn) be the minimum size of such a primitive n-separating system.

It can be shown that m >b(mn) is a necessary and sufficient condition

for a canonical 2-probe structure to exist, Ron Graham [private communication]

showed that asymptotically b(m,n) < Jn = log m by a nonconstructive

argument, which implies the existence of a canonical 2-probe structure

whenever m > exp (cn) for some constant c¢ > 0 .

19

C

5 . Conclusions.

We have discussed the complexity of the "membership" retrieval

problem. The main conclusions are, roughly, when the wordsize 1s large,

sorted tables are optimal structures if only the addressing -power of

a random-access machine can be used, but far from optimal once arbitrary

encoding of the information 1s allowed in the table. These results are

mainly of theoretical interest, although Theorem 3 suggests that there

may be fast retrieval schemes in more practical situations. The Ramsey

type technique used in the proof of Theorem1 may have wider applications.

Ron Rivest [private communication] has used it to prove a conjecture

concerning [12]. Below we mention some subjects for future research.

We have proved the optimality of sorted tables 1n a rather general

framework (Theorem 1'). It would be nice if the threshold value N(n)

can be substantially lowered. Also the exact determination of quantities

such as g(n,2) poses challenging mathematical questions.

When arbitrary encoding 1s allowed, we obtained a rather curious

result (Theorem 3). In either of the extreme cases m~ n and m > ,160° ’
one needs at most 2 probes to decide if an item is in a table. In the

former case the addressing power, and in the latter case, the encoding

power contribute to fast retrieval. It would be interesting to study

the problem for intermediate values of m . Tarjan and Yao [18] have

shown that, when m grows at most polynomially in n , one can retrieve

in O(l) -probes with a O(n) -cell table. The question 1s still open

for other ranges of m , say, m = Nn Another direction of research
1s to study the effect of restricting the decoding procedures.

20

A main theme of this paper 1s to discuss the membership problem in

a word-length-independent framework (by letting m - «o), We list some

open problems of prime importance in this framework, which are indirectly

related to the membership problem.

(1) It 1s easy to construct similar models for more complex data

manipulation problems such as executing a sequence of "INSERT", "DELETE",

"MIN" . We conjecture that, unlike the membership problem, non-constant

lower bounds exist even 1f arbitrary encoding 1s allowed.

(2) The Post-Office Problem [4] [13]: Consider n points Va Var seesV

on an mym lattice (with m - «), Can we encode them in cn cells so

that, given any point on the lattice, one can find the nearest Vv. in

O(l) probes? In fact, this problem 1s unresolved even in the one-

dimensional case.

(3) Sorting Networks: In the usual Boolean networks for sorting n

inputs in {0,1} , it is known [10] that one need only use O(n) gates

As Vs. If we consider gates that are functions from MxM to M ,

can one build a sorting network for n inputs from M , with O(n) gates

as m = » ? In general, the study of such networks for function

computation would be interesting, See Vilfan [20] for some discussions

on the formula size wvproblems,

21

A Bibliographic Note. The complexity of the membership problem was first

raised in Minsky and Papert [9, pp. 215-221], where it was called the

exact match problem. The model was formulated on a bitwise-access machine,

with the complexity defined as the average number of bits needed to be

examined for a random table. This model, especially the n = 1 case,

was further examined by Elias and Flower [6], but the problem has not

been solved completely even for this special case, Wordwise-access models

were used in several recent papers. Sprugnoli's work [15] dealt with

efficient hash functions, and is closely related to the materials in

Section 4 of the present paper. Tarjan [17] showed that tables of size

O(n) and retrieval time O(log n) can be achieved, 1f m 1s at most

polynomial in n ; the retrieval time was improved to O(l) by Tarjan

and Yao [18]. Also see Bentley, et. al. [2] and Munro and Suwanda [11]

for other recent studies on related problems.

Acknowledgement. I wish to thank Bob Tarjan for many helpful comments,

which led me to include Theorem l1' in the paper.

22

Appendix A. Proof of Optimality in Theorem 2.

In this appendix we complete the proof of Theorem 2 by showing that

g(n,1) <2n-2 for n > 3% . For convenience, the inductive proof will be

organized in the following way. We shall first prove that, for any n > 3

and m = 2n-1 , a table structure allowing a l-probe search induces

a l-probe table structure for n' = n-1 and m' = 2n'-1 . Then we

shall demonstrate that, for n = 3 and m = 2n-1 =5 , there cannot be

any l-probe table structure. This immediately implies g(n,1) < 2n-1

for all n > 3% , completing the proof.

Suppose there 1s a l-probe table structure T for n,m = 2n-1 where

n>3. Forl<j<2n-1l, let L be the location to examine when

key J 1s to be retrieved. Clearly, some location will be Ls for at
least two distinct j . Without loss of generality, assume that

ly = L = 1 , i.e., the content in T[1l] determines whether key 1

and/or key 2 are in the table. For i = 1,2 , let Y, denote the set
of keys j such that T[1l] = Jj implies the presence of key i in the

table, and let N, = {125 000m}-¥, . Certainly, T[1] ¢ N. if and only

if key 1 is not in the table. Note that le¥, and 2eX, , We
distinguish 4 possibilities:

Case I. 2e¥y , le¥, ;

Case II. cell) , lel, ;

Case III. 2eX¥y 3 lel, ;

Case IV. ee Ny ’ eX, ‘

We shall show that these cases either are impossible or imply the existence

of a l-probe table structure for n'=n-1 gnd m' = 2n'-1 . The

following simple fact 1s relevant.

25

Fact 1. | > n-1 for i = 1, 2 .

Proof. Otherwise, let Yi c Y,-{i} with |¥4 | =n . The table T

storing Yi will have T[lle¥, , contradicting the absence of key i . [J

Lemma, Al, Case I 1s impossible.

Proof. By Fact 1, JARD! > n-1 . Let KX 9XpseeesX 1&0, . Then the

set {LX 5X00 x 4] cannot be satisfactorily arranged in a table T .

A key Xo in cell 1 would imply the absence of key 1 , and key 1
in cell 1 would imply the presence of key 2 . J

Lemma AZ, Case II 1s impossible.

Proof. By Fact 1, jy | >_n-1 . Let RIFE SEL EN, Then the

set 11,2, X53 X05 eees XA} cannot be arranged in a table T . A key x.
or 2 in cell 1 would imply the absence of key 1 , and key 1 in

cell 1 would imply the absence of key 2 .

Lemma A3. Case III and Case IV both imply the existence of a l-probe

table structure for n'= n-1 and n'= 2n'-1 .

Proof. We need only prove the lemma for Case III; Case IV merely switches

the roles of keys 1 and 2 in Case 11I.

Claim 1. N,| = n-1 .

Proof. By Fact 1, IN, | > n-1 . Suppose | > n-1, let

LyXisXsseeesX 5 €N, . Then there 1s no way to accomodate {22K 5K ever X 1}

in a table T . A key x. in cell 1 would imply the absence of key 2 ,
and key 2 in cell 1 would imply the presence of key 1 , We conclude

that |N,| = n-1 . O
24

a

Because of Claim 1, we can write N, = {1,3,4,.. .,n} and

1, = {2, n+l, nt2, . . . ,2n-1} , renaming the keys in (354; ...,2n-1}

1f necessary.

Claim 2. Y; = {1,2} .

Proof. Otherwise, let {1,2,x} c Yq . If xe (3,L4,.. .>n} , then we

cannot arrange the set {x, ntl, nt2, 2n-1} in T , since T[1] = x

would imply the presence of key 1 and T{l] = n+j would imply the

presence of key 2 . If xef{ntl,nt2, . . . , 2n-1l} , then we cannot

arrange the set {X,2,3, 000,10} in T by a similar reasoning. OJ

It follows from Claim 2 that Ny, = (3,4,.. .,2n-13 .

Claim 3. In a table T formed from an n-key subset {LyX Xs eeasX 1 ,

where 3 £ 2 for all j , key 1 always appears in cell 1 .
| -

Proof. Otherwise, T[1l] = x. for some j , implying the absence of
key 1 . O

Claim 4. For 3 <j <en-l, I, £1,

Proof. By Claim 3, any n-key subset §, with le SN 2 ¢ 5, will have
key 1 in cell 1 . Therefore, the key stored in T[1l] cannot decide

if jes Od

Consider the set of tables for storing all the n-key subsets

{1, SEE NITE SP with Xs 4 2 for all j . Because of Claims 3 and &,
cell 1 always contains key 1 , and if we eliminate cell 1 from

all these tables, we are left with a l-probe table structure for all the

(n-1) -key subsets of {3,4,...,2n-1} . This proves Lemma A3. [J

25

We have campleted the first part of the proof for g(n,1) < 2n-2.

Namely, the existence of a l-probe table structure for n,m= 2n-1

(n >3) implies the existence of such a structure for n'= n-1 ,

m' = 2n'-1 .

It remains to prove that no l-probe table structure exists for

n=53,m=>5, Assume that such a structure exists, we proceed to

| demonstrate a contradiction, By the preceding analysis, we can assume

that 4; =, =1, lz 2)s Le £1, v, = {12}, N = (3,4,51 ,

YT, = {2,4,5} , and N, = {1,3} .

As the naming of keys 4 and 5 is still arbitrary, we can assume

that the tables storing sets {1,3,4} , {1,3,5} ; {L, 4,5} are as shown

in Figure Al. (Note that key 1 has to be in cell 1 , and the remaining

have to be in a cyclic order.) Next consider how the table structure

arranges S = {2,3,4] and {2,3,5} . Keys 2 and3 cannot be in

cell 1 because T[l] = 2 would imply 1e8 and because T[1l] =3

would imply 2 ¢ S Thus the arrangements can only be:

{2,3,4} - either (a) (4,2,3) ,

or (b) (453,2)

and

{2,3,56} =~ either (a)' (5,2,3) ,

or (b)' (5,3,2) ,

where (i,j,k) means that cells 1, 2, 3 contain keys i, Jj, k ,

respectively. There are four possibilities, namely (a) x (a)',

(a) x (0), (b) x (a)";, and (Db) , (b)'

26

test for

keys 1, 2

{1,3, 4} — 1 3 },

f1,3,5} - 1 5 3

Figure Al. A partial configuration for the l-probe table

structure.

test for

keys 1, 2

1 3 L

1 L 5

1 p) >

4 3 2

p 2 bp

Figure AZ. Our knowledge about the table structure after

taking Claim 5 into consideration.

27

Claim 5. only (b) x (a)' may be possible,

| Proof. If (a) x (a)! or (b) x (b)' , then one cannot test in one probe

whether key 4 is in the table (recall that £1). If (a) x (b)',

again one cannot test in one probe whether key 4 is in the table —-

if fy, = 2 then the tables (1,3,4) and (5,3,2) cannot be distinguished,

and if £) = 3 then (1,5,3) and (L,2,3) cannot be distinguished,

Therefore, the table structure must contain the tables shown in Figure A2,[J

How is the set {3,4,5} arranged as a table? One cannot put key b

or 5 into cell 1 since that would imply the presence of key 2 , Also,

the arrangement as (3,L,5) would make it impossible to test for key 3

(since there is a (1,4,5)). Thus, it has to be arranged as (3,5,4).

We now assert that Ls = 2 and {), =3% , To test for key 5 at

cell3 cannot distinguish (1,3,4) and (3,5,4) , and to test for

key 4 at cell 2 cannot distinguish (1,5,3) and (3,5,4) . our

knowledge about the l-probe table structure thus far 1s summarized in

Figure A3.

To fill in the slots for {1,2,4} and {1,2,5} , we note that key 2

has to be put into cell 1 since both keys 1 and 2 are here. The

only possibility for {1,2,5} is (2,5,1) ; the alternative (2,1,5)

would jeopardize the test for key 4 , since (1,4,5) is already there.

This also means that T[3] = 1 implies the absence of key L , It

follows that {1,2,4} has to be arranged as (2,1,4) . The known part

of the table structure is shown in Figure Ak,

However, there 1s now no way to test for key 3! If we probe at

cell 2 , the two tables (3,5,4) and (2,5,1) cannot be distinguished;

23

test for test for test for

keys 1,2 key 5 key 4

1 3 L

1 Ly 5

1 p 3

in 3 2

p 2 5

3 5 L

Figure A3. More knowledge about the table structure.

test for test for test for

keys 1, 2 key 5 key L

1 3 L

1 i 5

1 5 3

L 3 2

5 2 3

3 5 L

2 p) 1

2 1 L

Figure Ak. Adding (2,5,1) and (2,1,4) to the

structure.

29

if we probe at cell 3 , the tables (1,3,4) and (2,1,4) will look

| the same. This contradicts the definition of a table structure allowing

a l-probe search strategy.

We have thus proved that no l-probe table structure can exist for

n=3%, m=5. This completes the proof for g(n,1l) < 2n-1 (n > 3)

and hence Theorem 2. O

30

Appendix B. Proof of Lemma 2,

Let m > k > 2 and S = {1,2,...,m} . We shall construct a
K° k-1

k-separating system % for S , such that |%| <4" (lg m) :

We agree that the O-separating system is § , and the l-separating

system for any Tis {T}. The system % will be recursively constructed,

in the lexicographic order of (k,m) . Divide S consecutively into k

almost equal blocks 8;,8,5...58, with 15; | =m = | (m+i-1)/k| . We

shall define % as the union of the following families of k-separators,

to be described in a moment: ¢ , and Bsns e.e,n) , where 0 < n, < k

are integers satisfying 2 n =k .
i

Let F., = (As908555 Co. ship) be a k-separator for the set §, ,

1 <i<k. The direct sum FOF, ®...0F, 1s the k-separator

(As Ags eens hy) , where As = U, As 5 . Let t > 0 and, for each
1<i<k, Fi = {Fiqees Fil be a family of k-separators

for Ss . Define the direct sum FFD... @F, to be the family

of k-separators for S , & = {FpF yee, FY , where

F,. =F, .®F..®@...0F,. for 1 <j<t. We now construct as: 13 ® 0; ® @ Kj < JS a

follows. Let Fs (1 <i <k) be a k-separating system for Se ,
Xx

constructed recursively. For each j , add arbitrary k-separators

into Fs so that the resulting family 7; has t = max F | elements.
i

1 — 1 ? 1

We now define ¢g = FOF... 0F) . For each Xy < X, < . . .< x ,

there 1s clearly a k-separator F = (Apshgseeeshy) ed that "separates"

the x's (i.e., such that x, € As for all j), if all x, are in the

same block Ss .
*

¥ We agree that Fs = 0 if k > |S; | . Also note that, when k > |S. | ,
any k-separator (As hs anes) for 8; must have some A = 0 .

31

3

For each (n,n, ...,n) that satisfies 0 < n, < k and 2m, = k,

the family of separators B(ny,ns.. 0) 1s constructed as follows. The

family B(nysnys...,n,) is empty, if there is some i such that n, > m. .

Otherwise, for each 1 < 1 < k , let Fs bean n. -separating system

for Ss , recursively constructed. Denote by B(ny>n,, : coy) the family

of all k-separators of the form

B= (pps Bypreeeshyy shopseeeshon sees) » where each

"RAL For any x, <x,< . . . <x in S such
that exactly n. of the x's are in S. for each 1 , clearly there

is some k-separator in Blny ty. @ NRE) that separates the x 's.

Let F = 7u(U Brynn ony) . Then % 1s a k—-separating!

n,'s

system for S , as implied by the properties of ¢g and JB stated above.

Let £ (0) denote the size of § constructed this way, Then, by

definition,

k

f, (m) _ max {f, ((m/k7), £, Lm/k |) + 2 1 f£, (wm) ;
O<n, <k 1=1 1

for m >k >2 . (BL)

We adopted in (Bl) the convention that fom) =1, and f_ (m,) = 0
i

if n. >m.. .
1 1

Fact 2. For each k > 2, f,(m) 1s a non-decreasing function of m ,

Proof. Using (Bl), one can prove it by induction on (k,m) ,

lexicographically.

32

| a

We shall now prove, by induction on k , the following formula:

K° k-1
f, (m) < 4° (1g m) for m>k >1 . (B2)

The formula is obviously true for k =1 . Let k >1 , we shall prove

(B2), assuming that it is true for all smaller values of k . First we

prove the following fact.

t
Fact 3. For m = k , where tT > 1 is an integer, we have

2 k-1
k 1

£, (m) < 4 (3 lgm) :

Proof. Using Bl), Fact 2, and the induction hypothesis, we have

2

z'ng z (n;-1) «
f, (m) < f, (m/k) + 27 u (1g m) . (B?)

O<n, <k for all 1

In (B3), the summations y' are over those 1 with n, 4 0 . The second

term in (B3) 1s at most

ok-1 \, (k-1)5+1 kD < Ko-kt2 2
4 (1g m) 4 (lg m)

k-1 —

Thus, (B3) implies

x/ 0We interpret O° to be 1.

55

ne 1 k-2
£, (m) < f, (m/k) + 4 (1 lg n)

2 k-2
2 k (1

< f, (m/k) + 2.4 (3 1g n)
< 46 0 0

2 k-2
Kf 1

2 k-1

< uf (% 1g n) u

t-1 t 1 qdFor general m , let Kk <m<k where t > 2 . By Facts and 3,

2 k-1
kf 1 t

=~ 1g k

2

< FE (1g mF

This completes the inductive proof for (B2), and hence Lemma 2. =

34

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974,

[2] J. Bentley, D. Detig, L. Guibas, and J. Saxe, "An Optimal Data

Structure for Minimal-Storage Dynamic Member Searching," unpublished

manuscript.

[3] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

[L] D, Dobkin and R. J. Lipton, "Multidimensional Search Problems,"

stam J. on Computing 5(1976),181-186.

[5] P. Elias, "Efficient Storage and Retrieval by Content and Address

of Static Files," Journal ACM 21 (197k), 246-260.

[6] P. Elias and R. A. Flower, "The Complexity of Same Simple Retrieval

Problems," Journal ACM 22 (1975), 367-379.

[7] D. E. Knuth, The Art of Computer Programming, Vol. 1, Fundamental

Algorithms, Addison-Wesley, Reading, Mass., 1968,

[8] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley, Reading, Mass., 1973,

[9] M. Minsky and S. Paper-t, Perceptrons, MIT Press, Cambridge, Mass,,

1969,

[10] D. E. Muller and F. P. Preparata, "Bounds to Complexities of Networks

for Sorting and Switching," Journal ACM 22 (1975), 195-201.

[11] J. I. Munro and H. Suwanda, "Implicit Data Structures," Proc, 1ll-th

Annual ACM Symp. on Theory of Computing, Atlanta, Georgia, 1979,

108-117.

[12] R. L. Rivest, "Optimal Arrangement of Keys in a Hash Table,"

Journal ACM 25 (1978), 200-209.

[13] M. I. Shamos, "Geometric Complexity," Proc. 7th Annual ACM Symp. on

Theory of Computing, Albuquerque, N.M., 1975, 224-233.

[14] L. Snyder, "On Uniquely Representable Data Structures," Proc. 18th

Annual IEEE Symp. on Foundations of Computer Science, Providence, R.I.,

1977, 1lhe-1h6,

[15] R. Sprugnoli, "Perfect Hashing Functions: A Single Probe Retrieving

Method for Static Files," Communications acm 20 (1977),841-849,

[16] R. E. Tarjan, "A Class of Algorithms which Require Nonlinear Time

to Maintain Disjoint Sets," J. Compter Syst. Sci, 18 (1979), 110-127,

55

[17] R. E. Tarjan, "Storing a Sparse Table," Stanford Computer Science

Department Report STAN-CS-78-683, December 1978. (This is a

preliminary version of [18].)

[18] R. E. Tarjan and A. C. Yao, "Storing a Sparse Table," Communications

ACM, submitted.

[19] P. Van Emde Boas, R. Kaas, and E. Zijlstra, "Design and Implementation

of an Efficient Priority Queue," Math. Sys. Theory 10 (1977), 99-127.

[20] B. Vilfan, "Lower Bounds for the Size of Expressions for Certain

Functions in d-ary Logic," Theoretical Computer Science 2 (1976),

249-269.

36

