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Abstract.

A fundamental quantity which arises in the sorting of n numbers

8.58,900058 1s Pra,< a. | P) , the probability that a, < a. assuming
1°72 n 1 J 1 J

that all linear extensions of the partial order P are equally likely. In

this paper we establish various properties of Pr (a, < a. | P) and related

quantities, In particular, it is shown that Pra, < bs | P') > Pr(a, < b | P)
if the partial order ©P consists of two disjoint linearly ordered sets

A= fa; <a, <...<a}l, B={b <b, <...<Db 3 and
P' = PU {any relations of the form a, < ob, + These inequalities have

applications in determining the complexity of certain sorting-like

computations.
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1. Introduction.

Many algorithms for sorting n numbers {ayr205 00058} proceed

by using binary comparisons a. a to build successively stronger partial

orders P on {a ] until a linear order emerges (see, e.g. Knuth [3]).

A Tundamental quantity in deciding the expected efficiency of such

algorithms is Pr(a; < a. | P) , the probability that the result of

ay LF 1s a < a. when all linear orders consistent with P are
equally likely. In this paper we prove some intuitive but nontrivial

properties of Pr(a; < 2s P) and related quantities. These results are
important, for example, in establishing the complexity of selecting

the k-th largest number [7].

We begin with a motivating example. Suppose that tennis skill can

be represented by a number, so that player x will lose to player y in

a tennis match if x < y . Imagine a contest between two Teams

A = {agra . ak and B = {bobs . bP } where within each team the

players are already ranked as aq < an Cee < a, and by < ob, < vee < b .

If the first match of the contest is between aq and by , what is the

probability p that aq will win? Supposing that the two teams have

never met before, it 1s reasonable to assume that all relative rankings

among players of AJB are equally likely, provided they are consistent

with a; <a, <...<a and by <b, <...<D It is easy to show

by a simple calculation that p = m/(mtn) . Consider now a different

situation when the two teams did compete before with results

a, < by 8 <b, y eee By <b, ; ln other words, the team B
1 1 2 2 t t

players always won. Let p' be the probability for aq < oy assuming

that all orderings of elements in AUB consistent with the known
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constraints are equally likely. One would certainly expect that p' > p ,

as the additional information indicates that the players on team B are

better than those on team A . However, the proof of this does not seem

to be so trivial. The purpose of this paper is to establish several

general theorems concerning such monotone properties,

We now give a It that p' > Pp in the preceding example. It

establishes the result even when A and B are themselves only partially

ordered, provided that aq and by are the unique minimum elements in

A and B , respectively. Let us denote by P' the partial order

obtained by adding the relations {as < b- ’ a. < boo ceva, < B, }
1 1 2 2 t t

to P= AUB. We will show that Pr(a; <b | P') / Pr(by < ay | P') > m/n,

from which it follows that Pra < by | 2) > m/ (mtn) = Pr(a, < by | P).

Consider the sets S of all (mtn-1): possible sequences
0 (m-1)!(n-1

of O's and 1's with one element "underlined", where

(1) the sequence is of length mtn , with m O's and n 1's,

(ii) the first character is O ,

(iii) one of the 1's is underlined,

Define the set Sq similarly but with first character 1 and with one

of the O's underlined. We get a 1-1 correspondence between Sq and

54 by complementing both the first character and the underlined character.

If x € 55 corresponds to Xx, € Sq , then x < x in the partial order <
defined on (0,1) -sequences as follows: Say that x < y if we can

transform x into y by one or more replacements of ' O1L' by ' 10 '; or,

equivalently, x <y if x and y have the same number of 0 's, and

Wi The proof given here is due to D. Knuth.
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for all k the position of the k-th 0 of x is no further to the

K right than the k-th O of y .) List all the pairs of the correspondence

J as Ky <= £90 Yo <= Yq eo XH e

For a partial order Q on a set X , we say that a 1-1 mapping

] Ne X - {1,2,...,n} is a linear extension of Q if A(x) < A(y) whenever

| x<y in Q . Let A be a linear extension of P' which places
E

elements of A into the positions where x has a O , and elements

| of B into the positions where Xq has a 1 . The correspondence Xy © Xy

naturally associates to No a. linear extension Mo of P' in which

: the relative order of the a. and also the relative order of the Ly are
both unchanged. We therefore obtain a list of inequalities

N(x) < N(x,) , N(y,) < N(y,) , +... , where N(x, ) denotes the number

of all linear extensions No defined above. (For some Xs N(x)

may be 0 .) Summing all the inequalities gives

me (# of linear extensions of P'y (by < 2)

< ne (# of linear extensions of P' {J (a, < b,) ,
; - in A

| which is what we wanted to show,

The preceding example suggests the following conjecture. Let

: be a partial order on X which contradicts no relation of the form

| LE < a, (see Figure 1).
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Figure 1. A partial order ©P generated by

AUBU ta, < bys as < Db, ]

P contains no relation of the form Lb, < a, .



Conjecture. If P' is a partial order obtained from P by adding

relations of the form a, <b, , then Pr(E | P') > Pr(E | P) , where

E is any event of the form (a, <P. Jaa, <b, )A...A(a, <b. ).
1 9 To Jo Tt Jt

In this paper we shall prove several results related to this conjecture,

which in particular implies the conjecture for the case when both A and B

are linear ordered under P (see Corollary 2 to Theorem 1), The general

conjecture, however, remains unresolved,
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2. A Monotonicity Theorem,

In this section we shall prove a theorem which implies an important

special case of the Conjecture, namely, the case when A and B are each

linearly ordered under P , In fact in this case the Conjecture is true

even 1f P includes relations of both of the types 8s < D, and ob, < a,

Let A = fa; <a, <...<a land B={b <b, <...<D } be

linear orders. Let A denote the set of all linear extensions of P = AUB .

A cross-relation between A and B is a set Zc (AxB)U(BxA) ,

interpreted as a set of comparisons a; < bs and ob < g For a cross-

relation 7 , we define 7 = Nepr Mx) < My) for all (x,y) e€ Z} .

It will be convenient to represent each Ne 7 as a lattice path N

in 7° starting from the origin and terminating at the point (n,m)

(see Figure 2). The interpretation is as follows: As we step along ©

starting from (0,0) , if the k-th step increases the A (or B )

coordinate from i-1 to 1 thenA maps 2s (or b,, respectively)

to k . Thus, in Figure 2, Mag) = 1 , Moo) = 2 , Mb,) = 3 ,

(a) = L , ete.

Let us consider the geometrical implications of a constraint of

the form May) < Mb) . By definition, as we go along A from (0,0)
to (n,m) , N must achieve an A-value of i before it achieves a

B~-value of J . But this means exactly that A must not pass through

the (closed) vertical line segment joining (j,i) to (j,0) . In

general, a set X © AxB represents a set of vertical "barriers" of

this type which for any Ne X » The corresponding lattice path \ 1s

prohibited fram crossing (Figure 3). Of course, a set Y C BxA corresponds

to a set of horizontal barriers in a similar way, with CHES cY being
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Figure 2.

8



A

(3,1)

0 (350) B

Figure 3. A vertical barrier corresponding to the

condition (ay) < Mb) .
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represented by the line segment joining (0,1) to (j,i) . We will

also refer to such vertical and horizontal barriers as X -barriers

and y -barriers, For a cross-relation Zz < (AxB)U (BxA) , we define

Ze = ZN (AxB) and Zy = ZN (BxA) . Thus Z, and Z, are the

vertical and the horizontal barriers determined by Z , respectively.

Let Z and W be two cross-relations between A and B . We

say Z 1s more A -selective than W if both Wy, C_ Zy and Zu C W, .
(For example, a set of x -barriers is always more A -selective than a

set of y -barriers.) Intuitively, one would think that in this case

linear extensions of Z should have a greater probability for ranking

A's elements below B 's., Let Z' and W' be another pair of cross-

relations with Z' being more A -selective than W' . The basic result

we prove 1s the following:

Theorem 1. znz'|«\wnw'| > |z'nw|-|znw'| .

Pr(z' | Z Pr(z' | W .

Corollary 1. Briw 12) Rly Ww) when the denominators are not zero.

Corollary 1 follows immediately from Theorem 1. It asserts that the

ratio Pr(z')/Pr(W') is larger when conditioned on Z than when conditioned

on W .

Corollary 2. Pr(V | 2) > Pr(V | Ww) for any V with Vv, © Z, . In

particular, Pr(X | z) > Pr(X | W) for any X © Ax3B .

This follows from Corollary 1 by letting Z' = V , and choosing W!

| SE L—

so that Wy = f and W,= V, .
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Proof of Theorem 1, We will construct a 1-1 mapping of

(Z' NW) x (ZnW') into (Znz') x (WAW') . Suppose AeZ' NW and

AN! ce Zn . Let A 5 N' be the corresponding lattice paths, and let

{sy NEERTEN be the set of lattice points common to AN and A! ,

We assume that the s, are labelled so that s, = (0,0) , s.. = (n,m)
N

and as we move along from 84 to S. » We reach S. before Sip1

Consider the pair of path segments Msgs S541) (defined to be the
. 5 . . XN!portion of AN between (and including) Ss and Si41 ) and (85985,7) .

We will call the closed region bounded by these two segments an olive,

provided that the region is non-degenerate (i.e., As,» Si41) and

A! (85 S:41) do not coincide). Let 015055 44.50, be the set of olives

formed by N and N' . The upper path segment bounding Op we denote
+ - - -—

by Oy ; the lower we denote by Op . Note that, given AUA' , the

path A can be determined by specifying which 0. contribute 0;

to A and consequently, which 0, contribute 0, to A .

We want to show that for each he 2' NW with MN €ZNW , we can

associate a unique pe ZNZ with 5' eww . In fact, and

will be constructed from the path segments of A and A! SO that

Up’ = NUN" © The rule for obtaining 5 (and consequently ') is

as follows:

Tet " be the same as N except that whenever an olive Ok

is intersected by a barrier of Z or W , we let Oy €p .
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In the example illustrated in Figure 1k, Op, is penetrated (from below)

by an x -barrier in Z-W , and 0), is penetrated (from the left) by a
yv -barrier in W-Z , Note that A always contains the lower boundaries

Op of the penetrated olives Op ] To obtain |, , we substitute 0, ’ 0,
for O_ , Op in the path N

To show that Seznz and that the complementary path WNW

we need only verify that , and ' clear their respective sets of

barriers in Z| Z' and WyUW' respectively in that section.

Suppose 0, is penetrated (from below) by an x -barrier in Z-W , |
such as the 0, in Figure 4, Then A contains Op and AN! contains oy .

We want to argue that Op must clear Z and Z' , while Op must clear

W and W' . First of all, if Op clears W' then it clears Wy and

hence Z; . Secondly, o, clears 7, since 0, clears Z7' . It

follows that oy clears both Z and 7Z' as desired, The fact that

Oy clears W and W' can be shown in the same way.

Similarly, if 0, is penetrated by a y -barrier in W-Z , such as

the Oy, in Figure 4, then assigning N (0 u and Op to o' will
enable  , .' to clear their respective barriers.

The mapping (Ny AT) —» (psu') is 1-1 , since the path N can be

reconstructed from |, by substituting Op for oy in those olives Op
penetrated by a barrier of Z or W . This completes the proof of

Theorem 1. [J
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Figure Lk, (Olives which are penetrated by an x -barrier in

Z-W and a YY -barrier in W-Z.
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5. Extension to Disjunctions of Partial Orders.

In this section we will consider pairs of cross relations (Z,W)

on A=fa <a, <...<a}and B={b; <b, <...<b}, when Z

consists of just x-barriers and W consists of Just y -barriers. However,

we now incorporate the concept of a disjunction of a set of cross-

relations. For a disjunction z =U Zy where Zs - (AxB)U(BxA) ,
[

we let z denote U Z, . Suppose x = U Xs and Y = U Y. where
i i j 9

x: © AxB and 1 C BxA, with y =U X: and Y' = : Ts defined
similarly. The analogue of Theorem 1 is the following:

meoren2. [ini [und > kolo) LY

As in the case of Theorem 1, here we can also derive as corollaries

that Prix 1x') > Prix [y) , that is, the ratio Pr(y /Pr 4) is
pr(y Ix’) Pry ly’)

larger when conditioned on ” than when conditioned on Y' . For

the special case that y = y' = 0 , we obtain

Prix | x') > Pr(x) - (1)

Proof of Theorem 2. As in the proof of Theorem 1, we will show that

for each Nex Nl with A! ey’ ny’ y We can assoclate a unique

Lex Ny' with yu e §ny' . Furthermore, |; and ' will be constructed

from A and A by interchanging certain path segments. We may assume

without loss of generality that no X. ’ Xi ’ 1s sy Or Yl have a barrier

which penetrates both AN and A'

We could of course write this as Ix Nx lyny' > |x Ny| Ix Ny |
to make it resemble Theorem 1 more.
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| Let 015055 «+4504 be the set of olives formed by A and A! .
Thus A corresponds to a subset P < {1,2,...,t} = T such that A

+, : Cs So fe
contains Op iff keP , and with this association corresponds to

the subset Q = T-P = p© . For a given olive Op s there may be various

barriers which intersect it. For each Xs , let G. denote the set

{ke T: a barrier from Xs intersects 0, } . Similarly, define G; for Xi ,

H. for Y. and H! for Y! . Observe that
i i i i

Ney Aff eX, for some i

iff P o Gy for some 1

iff Pe [4] = upper ideal in oT generated by
& = {GysGps . .

where the meaning of the last statement is as follows.

Definition. For a finite set T , let of denote the collection

of all subsets of T partially ordered by set inclusion (i.e., © <0D

iff ¢ > D ). An upper ideal in oT is a subset UY C oT such that if

S cy then any element S' higher in the partial order (i.e., Sc 8' )

mist also be in 4 . Similarly, a lower ideal g ¢ 2° has the property

that if Se £ and 8' € § , then 8' e ¢ .

As above, we have

Ney iff Ne, for some J
. c

iff F< Hy for some J

: Cc : T
iff Pe [vw I = lower ideal in 2° generated by

Cc Cc .C
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Now, what we are trying to show is that for each Ney Ny with

A! 2% ny' we can associate a unique Lex Ny with p' cyny' .

Translating this into the language of ideals, we want:

For each Pe [8], [7], with P°e (1, n°]; there can

be associated a unique Qe | sl NE with Q € 1 nC, .

We claim that, in fact, we will be able to find such a mapping for

: x T
arbitrary upper ideals U , U' and lower ideals £, £' 1n 2°

In other words, there is a 1-1 mapping (P,P°) - (QQ) Such that
C 1

if Peung and Po eu'ng' then Qeunu' and Q e gNg' . Further,

we will restrict the mapping so that

Pc aq . (2)

If (2) holds then

Pey = Qeu since U 1s an upper ideal,

PC ¢ go= Q cf since ¢' 1s a lower ideal.

Thus, we want

Peung Qe U'

C = C
P eu ng Q ef withP Cc Q .

We claim even further that we can find the required mapping for the more

general domain

Pes Qe u'

= C
Pe uy Sep withP cq .

Cc :

But notice that if y' 1s an upper ideal then u' is a lower ideal. Thus,

the condition
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Peg Qeu'

C = C
P™ eu Q ef withP Cc Q

becomes

' C Cc .
PefNU =W = Q €W withP C Q

where jy , being the intersection of two lower ideals, is also a lower

ideal. Of course,

: Cc

Pcq iff PQ =p .

Thus, the theorem will be proved if we show the following result, which

is actually of independent interest:

For an arbitrary lower ideal Ww in ot » there is always a

permutation mw: Ww ~ Ww such that for all wew , wnn(w) = p.

For each xel , let d(x) denote the set {wew: xNw= Pp} . By

Hall's Theorem [2], it is enough to show that

UU ax) | > |
XE

for all << Ww . In fact, for o# cc Ww , let d (x) denote d(x) nisl .
What we will actually show is the stronger assertion

[Ua] 2 2
X € of

T .

for any yc 2° . So, Suppose of = {S150 0) Sy with SH T . Thus,

y € U a (x) iff ye [] and yNx = @ for some xed,
X € of

iff y C S. for some i and yN8., = ¢ for some Jj ,

iff yc By 5, for some 1, J.

Therefore, if we can in fact show that there are always at least k
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different sets of the form 5-85 then (6) will follow. However, this
| is exactly the result of Marica and Schbnheim [4]. Hence (3) holds and

the theorem follows. [OO

Theorem 2 can be generalized slightly by allowing the partial order

(P, <) underlying " , y , " 5 y' to be more than just AUB , i.e.,

P may itself include relations of the form 2s < D, and [2% < a, -
In this case, all such relations can also be interpreted as barriers

which cannot be crossed by a linear extension o of P . Since both

paths N and AN' avoid all these barriers then so will any path

. 5» w' constructed from their path segments.

We should point out that if we weaken the hypotheses on the structure

of (P, <) even slightly then formula (2) (and even (1)) can fail.

To see this, consider the following partial order (P, <) on the set

{a),8,,0,5b,, c} as shown in Figure 5.

Choose X = X; = (LLY, X' = XJ = {(2,2)} , and all other

Xs 3 x: ; ee 5 ye to be P . An easy enumeration yields

Ih =8 » |x|=3 = [x], [xnx' | = 1 .

Thus,

which violates (1). Therefore, the assumption that P can be covered by

two linear orders seems to be essential for the general validity of

formula (2).
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Figure 5, An example violating formulas (1) and (2).
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L. Conclusions.

We end with some remarks on the Conjecture Pr(E | P') > Pr(E P)

which is left open in this paper. By Corollary 2 to Theorem 1, we know

that Pr(E | P' US) > Pr(E | PysS) for any

S = tes < 2, < ER a3 3 Py < by < A © . It is tempting to
try to prove the Conjecture by making use of the facts

Pr(E | P) = 2 Pr(s | P).Pr(E | PyS) and Pr(E | P') = 2 Pr(s | P') . Pr(E | P' ys) .S

However, as warned by Simpson's paradox [6], such a direct inference is not

possible, and the validity of the Conjecture must depend on deeper properties

of partial orders. A different type of monotonicity property for distributive

lattices, usually called the FKG inequalities, has been treated in the

literature [1],[5]. These may well be relevant to the eventual resolution

of our problem.
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