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Abstract.

A fundamental quantity which arises in the sorting of n numbers
31585300058 IS Pr(ai < aj| P) , the probability that a; < %. assuming
that all linear extensions of the partial order P are equally likely., In
this paper we establish various properties of Pr(ai < aj ‘ P) and related
quantities. In particular, it is shown that Pr(a; < bj| P') > Pr(a, < bjl P),
if the partial order P consists of two disjoint linearly ordered sets

A= {al <a,<.,..< am} s B = {bl < b2 <..0.< bn} and

2
P' = PU {any relations of the form &, < bl} *  These inequalities have

applications in determining the complexity of certain sorting-like

computations.
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1. Introduction.

Many algorithms for sorting n numbers {al,ag,...,an} proceed
by using binary comparisons a; i a'j to build successively stronger partial
orders P on {ai} until a linear order emerges (see, e.g. Knuth [3]).
A fundamental quantity in deciding the expected efficiency of such
algorithms is Pr(ai < 2, .| P) , the probability that the result of
ay :aJ. is &y < a:J when all linear orders consistent with P are
equally likely, 1In this paper we prove some intuitive but nontrivial
properties of Pr(ai < aj | P) and related quantities. These results are
important, for example, in establishing the complexity of selecting
the k-th largest number [7].

We begin with a motivating example., Suppose that tennis skill can
be represented by a number, so that player x will lose to player y in
a tennis match if x < y . Imagine a contest between two teams
A = {3‘1’3’2" . .,am}- and B = {bl,bg,. . .,bn} where within each team the
players are already ranked as a. < a, < ..., < a, and b. < b, < ... < b .,

1 2 1 2 n

If the first match of the contest is between al and bl , what is the

probability p that aq will win? Supposing that the two teams have

never met before, it is reasonable to assume that all relative rankings
among players of AUB are equally likely, provided they are consistent
with anl<a2\...<am a.ndbl

by a simple calculation that p = m/(mtn) . Consider now a different

<b2<"'<bn’ It is easy to show

situation when the two teams did compete before with results

a; <b, ;a. <b, ,...5a, <Db, ; in other words, the team B
109 2 J2 v g

rlayers always won. Let p' be the probability for al < bl assuming

that all orderings of elements in AUB consistent with the known



constraints are equally likely., One would certainly expect that p' > p ,
as the additional information indicates that the players on team B are
better than those on team A . However, the proof of this does not seem
to be so trivial. The purpose of this paper is to establish several
general theorems concerning such monotone properties,

We now give a pr‘oofjy that p' > p in the preceding example. It
establishes the result even when A and B are themselves only partially
ordered, provided that aq and bl are the unique minimum elements in

A and B, respectively. Let us denote by P' the partial order

obtained by adding the relations {ai <b.,a.<Db.,ee., a, <b, }
1 J1 e J2 t 9t

to P = AyUB . We will show that Pr(a; < b, | ') /Pr(by < a) | ') > m/n,

from which it follows that Pr(a.l < by | P') > m/(mtn) = Pr(al < by | P).

. (m+n-1)!
Consider the sets §) of all vy iy

of O's and 1's with one element "underlined", where

possible sequences

(1) the sequence is of length mtn , with m O's and n 1's,
(ii) the first character is O ,

(iii) one of the 1's is underlined.

Define the set Sl similarly but with first character 1 and with one

of the O's underlined. We get a 1-1 correspondence between SO and

S. by complementing both the first character and the underlined character.

1

If xoe SO corresponds to xl 1

defined on (0,1) -sequences as follows: Say that x < y if we can

€S, , then X < X in the partial order <

transform x into y by one or more replacements of ' O1' by ' 10 '; or,

equivalently, x<y if x and y have the same number of O 's, and

*
X/ The proof given here is due to D. Knuth.



for all k the position of the k-th 0 of x is no further +to - the
right than the k-th O of y .) List all the pairs of the correspondence
as XO(_) liyoeyl’oggo

For a partial order Q on a set X , we say that a 1-1 mapping

At X - {1,25...,n) is a linear extension of Q if AN(x) < A(y) whenever

x<y in Q. Let A be a linear extension of P' which places

elements of A into the positions where X has a O , and elements
of B into the positions where Xy has a 1 . The correspondence Xy @ Xy

naturally associates to >\x a linear extension Xx of P' in which
1 0

the relative order of the ay and also the relative order of the bJ. are
both unchanged., We therefore obtain a list of inequalities
N(xl) < N(xo) s N(yl) < N(yo) s+ . ., Where N(xi) denotes the number
of all linear extensions A defined above. (For some X s N(xi)
i

may be O .) Suming all the inequalities gives

me (# of linear extensions of P'y (bl < ay)

< ne+(# of linear extensions of P' U (a, < b;) ,
- b L

which is what we wanted to show,

The preceding example suggests the following conjecture. Let
A = {al,a2,.o-,am} ) B - {bl,be’c-n)bn} bl X = ALJB 5] al’ld (P,<)
be a partial order on X which contradicts no relation of the form

bj < a (see Figure 1).



Figure 1. A partial order P generated by

AUBY {a2 < bl’ a5 < bh} :

P contains no relation of the form bj < ai .



Conjecture. If P' dis a partial order obtained from P by adding
relations of the form a <b, , then Pr(E | P') > Pr(E | P) , vwhere

E is any event of the form (ai < bj

. )/\(ai <bj)/\.../\(ai <b.).

1 2 2 t It
In this paper we shall prove several results related to this conjecture,

which in particular implies the conjecture for the case when both A and B

are linear ordered under P (see Corollary 2 to Theorem 1), The general

conjecture, however, remains unresolved.



2. A Monotonicity Theorenm.

In this section we shall prove a theorem which implies an important
special case of the Conjecture, namely, the case when A and B are each
linearly ordered under P . 1In fact in this case the Conjecture is true

even if P includes relations of both of the types ay < bj and bk < a, .

LetA:{al<a <...<am}andB={bl<b <...<bn} be

2 2

linear orders., Let A denote the set of all linear extensions of P = AUB .

A cross-relation between A and B is a set Zc (AxB)U(BxA) ,

interpreted as a set of comparisons ai < bj and bk < a/Z . For a crosgs-
relation 7 , we define 7 = {Mep: Mx) < My) for all (x,y) € 23 .

It will be convenient to represent each Ke% as a lattice path n
in ZZ2 starting from the origin and terminating at the point (n,m)
(see Figure 2), The interpretation is as follows: As we step along A
starting from (0,0) , if the k-th step increases the A (or B )
coordinate from i-l1 to i thenM™ maps ay (or b, , respectively)
to k . Thus, in Figure 2, ?\-(al) =1, 7\(bl) =2 , k(bg) =3,

Ma,) = b, ete.

o)
Let us consider the geometrical implications of a constraint of
the form ?\-(ai) < %.(bj) . By definition, as we go along N from (0,0)
to (n,m) , N must achieve an A-value of i before it achieves a
B~value of j . But this means exactly that A must not pass through
the (closed) vertical line segment joining (Jj,i) to (3,0) . In
general, a set X < AxB represents a set of vertical "barriers" of
this type which for any Ke;( » The corresponding lattice path x is

prohibited fram crossing (Figure 3). Of course, a set Y C BxA corresponds

to a set of horizontal barriers in a similar way, with (bj’ai) eY being



o (n,m)

Figure 2.

wd



0 (3,0) B

Figure 3. A vertical barrier corresponding to the
condition ?\.(ai) < K(bj) .



represented by the line segment joining (0,i) to (j,i) . We will
also refer to such vertical and horizontal barriers as x -barriers
and y -barriers. For a cross-relation 7Z (AxB)U (BxA) , we define
Zy = zn(AxB)and Zy = ZN(ByxA) . Thus Z, and 7, are the
vertical and the horizontal barriers determined by Z , respectively.
Let Z and W be two cross-relations between A and B . We
say Z is more A -selective than W if both WX c_ZX and ZY c WY .
(For example, a set of x -barriers is always more A -selective than a
set of y -barriers.) Intuitively, one would think that in this case
linear extensions of Z should have a greater probability for ranking
A's elements below B 's. Let Z' and W' be another pair of cross-
relations with Z' Dbeing more A -selective than W' . The basic result

we prove 1is the following:

Theorem 1. |znZ'|-[WnW' | > |z'nw|-|znw| .

Pr{z' | Z Pr(z' | W .
Corollary 1. P—rg-ﬁ—*——z—;» Z Ir6i W) when the denominators are not zero.

Corollary 1 follows immediately from Theorem 1, It asserts that the
ratio Pr(z')/Pr(W') is larger when conditioned on Z than when conditioned

on W .

Corollary 2, Pr(V | Z) > Pr(V | W) for any V with Vy € Z, . In

particular, Pr(X | z) > Pr(X | W) for any X ¢ AxB .

This follows from Corollary 1 by letting Z' = V , and choosing W'

so that W! = p and W.'Y= v

X Y °

10



Proof of Theorem 1. We will construct a 1-1 mapping of

(z' nW) x (ZAW') into (én%')x(%nfw) . Suppose AeZ' NW and

NeznW . Iet A, X' be the corresponding lattice paths, and let
{sl, Spreees sr} be the set of lattice points common to N and A' .

We assume that the s, are labelled so that s; = (0,0) , s. =
and as we move along A from sl to S, » we reach Si before s,

Consider the pair of path segments X(si, S5 defined to be the

)

portion of A between (and including) s; and s, .4 ) and X'(si,s

We will call the closed region bounded by these two segments an olive,

provided that the region is non-degenerate (i.e., k(si,s and

i+1)
M85 854q)

(n, m)

i+l .

i+l) ‘

do not coincide). Iet ol,og,...,ot be the set of olives

formed by A and N' . The upper path segment bounding O, we denote

k
+ - - -
by O, ; the lower we denote by Oy - Note that, given AUA' , the

- +
path AN can be determined by specifying which Oi contribute Oi

to A and consequently, which Oj contribute 05 to AN .

We want to show that for each A e AZ' nAw with X e%nAW' , we can
associate a unique ;eAznAz' with ' eﬁnfh' . In fact, _, and '
will be constructed from the path segments of ~ and A1 SO that
;u;' = NUR' . The rule for obtaining ; (and consequently u' ) is

as follows:

Let L-L be the same as n except that whenever an olive Ok

+ -
is intersected by a barrier of Z or W, we let Okep, .

11



In the example illustrated in Figure L4, O, is penetrated (from Dbelow)

by an x-barrier in Z-W , and Oh is penetrated (from the left) by a

v -barrier in W-Z . Note that A always contains the lower boundaries

+

Ok of the penetrated olives Ok To obtain , , we substitute O; P Oh

for 0y , Oy in the path n

~ A ~

To show that J,e ZNZ' and that the complementary path ;,' eY:JﬂW'
we need only verify that f,, and |I' clear their respective sets of
barriers in zZy 2' and WyUW' respectively in that section.

Suppose Ok is penetrated (from below) by an x -barrier in Z-W ,

, - - +
such as the O, din Figure 4, Then A\ contains 0, and N'  contains O

2 -
We want to argue that O; must clear Z and Z' , while O;{ must clear
W oand W' . First of all, if O] clears W' then it clears W, and
+ -
A\ 1 3 1
hence ZY . Secondly, Ok clears ZX since Ok clears 2z' . It
follows that O; clears both Z and 7' as desired., The fact that
0 clears W and W' can be shown in the same way.

‘k
Similarly, if O is penetrated by a y ~barrier in W-Z , such as

k
+

k

enable ; 5 ;' to clear their respective barriers.

the 0y in Figure 4, then assigning O to L and 01; to ' will

The mapping (MA') - (usp') is 1-1 , since the path A can be

+
for O in those olives O

reconstructed from ; by substituting Ok Kk k

penetrated by a barrier of Z or W . This completes the proof of

Theorem 1, O

12



Figure 4,

Olives which are penetrated by an x -barrier in

Z-W and a Yy -barrier in W-Z.
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3. Extension to Disjunctions of Partial Orders.

In this section we will consider pairs of cross relations (Z,W)

on A={a <a,<...<ealandB={b <D <...<bn},whenZ

2
consists of just x-barriers and W consists of just y -barriers. However,
we now incorporate the concept of a disjunction of a set of cross-

relations. For a disjunction 2z =U Z, where 7, C (AxB)U(BxA) ,
i

we let z denote U %i . Suppose x = U Xi and Y = U ’x:j where
i i J

X, € AxB and Y. € BxA, with y' = y X! and y' = y Y. defined

1= Jd - i 2 3 dJ

similarly. The analogue of Theorem 1 is the following:
' ~ ~ ~ ~ ~ ~ ~ ~ *
Theorem 2. |xnx'| [uny'| > |xnyl [x' ny'| 2

As in the case of Theorem 1, here we can also derive as corollaries

that P_r(_;\g__l_?_\(;)‘ > P_rga.LL}\A'_l , that is, the ratio Pr(;( /Pr ]:}) is
Pr(y [x') — Er(yly")
larger when conditioned on ;(' than when conditioned on y' . For

the special case that y = y' = ¢ , we obtain

Pr(y | x') > Pr(x) - (1)

Proof of Theorem 2. As in the proof of Theorem 1, we will show that

for each Ke;(m; with A e;(' nf&‘ , we can associate a unique
;e;(n;‘(' with | ¢ ]}ﬂfé' . Furthermore, _ and ' will be constructed
from A and A by interchanging certain path segments. We may assume

without loss of generality that no Xi s X:!L ’ YJ. s Or Y3 have a barrier

which penetrates both = and A' ,

We could of course write this as l;n;‘ l Ifgﬂfg'| > |;(' nﬁl |;(ﬂ{3'|

to make it resemble Theorem 1 more.

1k



Let 01’02"”’013 be the set of olives formed by A and X .

Thus A corresponds to a subset P < {1,2,...,t} = T such that ~

contains O; iff keP , and with this association A' corresponds to

the subset Q = T-P = P° . For a given olive Ok » there may be various

barriers which intersect it. For each Xi , let Gi denote the set
{keT: a barrier from Xi intersects Ok} . Similarly, define Gi for X:!L

H. for Y. and H! for Y! . Observe that
i i i i

~

A -

Nex iff XeXi for some i

iff P o Gi for some 1

iff Pe [.&]U = upper ideal in 2T generated by

& = {G 5Gns e s .} .
where the meaning of the last statement is as follows.

Definition. For a finite set T , let ET denote the collection
of all subsets of T partially ordered by set inclusion (i.e., ©C <D

iff ¢ o D ). An upper ideal in 2T is a subset u cC 2T such that if

S ey then any element S' higher in the partial order (i.e., S < 8')

T

must also be in 4y . Similarly, a lower ideal £ c 2 has the property

thatifse_r,a.ndS'gS,thenS'e,s:.

As above, we have
?: € Y iff A ‘;{ . for some J
'} €Yy J
. c .
iff Pc Hj for some J

iff Pe [g[c] = lower ideal in 2T generated by

L

c c _.C
?’[ = {Hl,He’ooo} .

15



Now, what we are trying to show is that for each ;\e;(ﬂf& with
A e;(' m:}' we can associate a unique ;exﬂ;(' with ;' eyny' .

Translating this into the language of ideals, we want:

For each Pe [.&]Um[gzc]L with P%e [y]Un[z/'c]L there can

be associated a wunique Qe [ .&]Uﬂ[,&‘]u with Qc € [NC]LO[N'C]L .

We claim that, in fact, we will be able to find such a mapping for
. . T
arbitrary upper ideals U , U' and lower ideals £, £' 1n 27 .
In other words, there is a 1-1 mapping (P,PC) - (Q Qc) such that
c 1

if Peung and PPeu'ng' then Qeunu' and Q@ e gNg' . Further,
we will restrict the mapping so that

Pcq . (2)
If (2) holds then

Pey = Qelu since U is an upper ideal,
PCe g = Qc eg' since g¢' 1is a lower ideal.
Thus, we want

Peung Qe U

PP eu ng ) with P c Q .

We claim even further that we can find the required mapping for the more

general domain

Pe s Qe U
p—-3
C c .
P ey Q e with P € Q .

But notice that if u' 1s an upper ideal then u'c is a lower ideal. Thus,

the condition

16



Peg Qe

ey Q@ el with P c Q

becomes
1 C c .
PefNU =W = Q €W with P c Q

where |y , being the intersection of two lower ideals, is also a lower

ideal. Of course,

Pcq iff PAQ=p

Thus, the theorem will be proved if we show the following result, which

is actually of independent interest:

For an arbitrary lower ideal W in 2T » there is always a

permutation m: W - W sSuch that for all wew , wnn(w) = P.

For each xelp, let d(x) denote the set f{wew: xNw= p} . By

Hall's Theorem [2], it is enough to show that

U ax) | > |/
X e/

for all < W . In fact, for o/ < W , let dJ(x) denote 4a(x) n[,}]L .
What we will actually show is the stronger assertion

U 4a,(x) J 2
kgg )| > | (2)

for any » c 2T . So, suppose = {Sl,..., Sk} with Si c T . Thus,

vy € U dJ(x) iff ye [,J]L and yNx = P for some xedf ,
X e
iff yc Si for some i and yﬂS_.J: $ for some j ,

iff y < Si-SJ. for some 1, j .
Therefore, if we can in fact show that there are always at least k

17



different sets of the form Si-Sj then (6) will follow. However, this
is exactly the result of Marica and Schtnheim [4]. Hence (3) holds and

the theorem follows. O

Theorem 2 can be generalized slightly by allowing the partial order
(P, <) underlying ;( s f} s ;(' s fé' to be more than just AUB , i.e.,
P may itself include relations of the form ai < bg and bk < a, -
In this case, all such relations can also be interpreted as barriers
which cannot be crossed by a linear extension 5 of P . Since both
paths A and AN' avoid all these barriers then so will any path
J, B @' constructed from their path segments.

We should point out that if we weaken the hypotheses on the structure
of (P, <) even slightly then formula (2) (and even (1)) can fail.
To see this, consider the following partial order (P, <) on the set
{al’ag’bl’bg’ c} as shown in Figure 5.

Choose X = X = ((LLY, X' = X:'L = {(2,2)} , and all other

Xi ) Xj.'_ , ‘_6_. , ':5'. to be P . An easy enumeration yields

b =8 5 X =3 =1 |, |knX | = 1 .

Thus,

which violates (1). Therefore, the assumption that P can be covered by
two linear orders seems to be essential for the general validity of

formula (2).

18
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Figure 5, An example violating formulas (1) and (2).
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k.  Conclusions.

We end with some remarks on the Conjecture Pr(E | P') > Pr(E | P)
which is left open in this paper. By Corollary 2 to Theorem 1, we know
that Pr(E | P' yS) > Pr(E | Pys) for any

S=fa, <a, <...<a, ;b. <b. <...<Db. }. Itis tempting to
1 2 moo 1 2 In

try to prove the Conjecture by making use of the facts

Pr(E|P) = 2 Pr(s | P).Pr(E | Pys) and Pr(E | P') = L Pr(s | P') . Pr(E | P' US) .
S S

However, as warned by Simpson's paradox [6], such a direct inference is not
possible, and the validity of the Conjecture must depend on deeper properties
of partial orders. A different type of monotonicity property for distributive
lattices, usually called the FKG inequalities, has been treated in the
literature [1],[5]. These may well be relevant to the eventual resolution

of our problem.
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