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Introduction

Very recently a new method has been developed (see

[3], C51, [6]) for finding lower bounds on the maximum

number of codewords possible in a code of minimum distance d

and length n. This method has led in turn to a number of

interesting questions 1n graph theory and additive number

theory. In this brief survey we summarize some of these

developments.

Background

By a code C of length n over a finite field

F'= GF (g) we mean a subset of pr i1.e., a set of n—-tuples

with entries in F. The most common choice for F is GF(2),

and we restrict ourselves to this case for the remainder of

] the paper (although the same techniques apply to all finite

fields). In this case C 1s called a binary code.

The minimum distance of C 1s defined to be

min d(x,y)
X#Y

where x = (X15 esx) and y=(yq,...5¥,) range over all

pairs of codewords (= elements of C) and d(x,y)is the

Hamming distance between x and y given by
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d(x,y) = [{kix Ay}.

The weight of a codewordx, denoted by w(x), is defined to

be its distance from 0 = (0,0,...,0) (which may not be in C).

Two basic quantities studied extensively in coding

theory are:

A(n,d) = max{|C|: C is a binary code of length n and

minimum distance 4d}

and

And.) = max{|C|: C is a binary code of length n and
minimum distance d with all codewords of

weight wl.

(For a fuller treatment of these topics the reader 1is

referred to [11].)

Jllany upper bounds and some lower bounds for both

A(n,d) and A(n,d,w) are available in the literature. For

) a survey of these the reader is referred to [1] and [5]. In

Tables 1 and 2 we give some small values of these functions.

Since A(n-1,2¢8-1) = A(n,26)we only list values of A(n,d)

for d even.

We should point out that the function A(n,d,w) has

been studied under another guise 1n extremal set theory by

Erdos, Hanani, Kalbfleisch, Schénheim, and others (see [4])

in the following context. For given integers t, k, v, let
|

D(t,k,v) denote the maximum number of k-element subsets of



nd 4 6 o) 10
6 4 2 1 1

/ 8 2 1 1

0 16 2 2 1

9 20 4 2 1

10 40 6 2 2

| 72-79 12 y 2

12 144-153 24 4 2

A(n,d)

Table 1

nw 2 3 4 5 6 7

4 2 1 1 0 0 0

5 2 2 1 1 0 0

6 3 4 3 1 1 0

7 3 I / 3 1 1

8 4 8 14 8 4 1

9 4 12 18 18 12 4

10 5 13 30 36 50 13

11] 5 17 35 66 66 35
12 6 20 51 74-84 132 73-84

Aln,4,w)

Table 2

a v—-element set S such that every t-element subset of S 1is

contained in at most one of the k-element subsets. In fact,

1t 1s easy to see that

D(t,k,v) = A(v,2k-2t+2,k).

We also note for future use that if w(x) = w(y

then d(x,y) must be even. Hence
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A(n,28-1,w) = A(n,28,w).

Bounds on A(n,d,w)

While our primary ¢oncern will be with lower

bounds on A(n,d,w) we mention here for purposes of comparison

one of the best upper bounds known (due to S. M. Johnson [9],

[10]1). It is

n W

Aln,26,w) < (pest) yobrr)

From this it follows that, for fixed § and w,

W-0+1

(1) A(n,26,w) < (L+o(1)) LO=EB= a5 ps a,

Of particular interest 1s the special case § = 2, when the

upper bound becomes

(2) Aln,b,w) < — (2)> — h-w+l \w/°

. The following three theorems were given in [5].

Theorem 1.

(3) An, tw) > = (1)0 — nn \w/’

Proof: Let Fo denote the set of (,) binary codewords of

length n and welght w and let Zz denote the integers modulo

n. Consider the map T:F > VA given by



(4) T(x) = » i (mod n)
X.=1
i

for x = (xy,..05x) € F For 0 <i < n-1, let C. be the

code 711). Of course all codewords of Cs have weight w.
Ye claim that the distance between any two distinct codewords

of C. is at least 4. For suppose not, 1.e., suppose

Xx, yeCiy Xx #§, with d(x,y) < 4. Thus d(x,y) = 2. This
implies that x and y agree in all but two components, say

the r-th and s-th components where x, = 1, vy, = 0 and

Ry = 0, y,. = 1. But

T(x) = T(y) = 1 so that

T(x) =a tr=1 (mod n),

T(y) = at s=1i (mod n)

for some a¢ ZL This 1s 1mpossible since r and s are

distinct integers between 1 and n.

Since

n

Cl Foe HC | = (4)

for at least one j we have

1 /n

ed 2 (4)

and the theorem 1s proved.

lJote that this theorem 1s not completely construc-

tive since we are unable to specify which j 1t 1s which has
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IC; | large. A computer search of small cases indicates that
any J 1s probably satisfactory asymptotically, 1.e.,

jc; l/1c,] > 1

for all 1, J as n » =,

The preceding proof 1s based on a method given by

B. Bose and T. R. N. Rao in [3] in which they prove the

slightly weaker bound

1 n

n,m) 2 Ar (7).

The case of general § is considered in the next

result.

Theorem 2. Let gq > n be a prime power. Then

1 n

A(n,26,w) > —t (7)
a

Proof: The proof has a similar structure to that of

Theorem 1. Let us label the elements of GF (gq) by

: WsWyse ee Wy q- Define a map

TF" 5 GR(q)°t
n

by

T(x) = (T(x), T(x) 5000, Ty 1(x))

where
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|

x,=1

I, (x) = > WyWs
1<]

Ky =%,=1

T5(x) = > www
1<j<k

X, =X.=X_ =1
1 J k

for x = (xy,...,x). For each (8-1)-tuple
- _ S-1
Vv = (Viseea,ve 1) e GF(q) let

Thus, for some v,

1 n

or Br) br).
|

We claim that C= has distance 26. Suppose not, 1.e., suppose

there exist x, y e Cz, X # y, with d(X,y) = 2y £ 26-2. Thus

there are 26 distinct coordinates SERRE RAVE SS EREEELN such
that

£, x ox TR, TY, To... TY =0,
1° Y 1 y

X = = X = y = . . . * y = 1
5S; + = 5. ry 7



and x; =y, for all other i. Since T(x) = T(y), the first

§ elementary symmetric function Gis 0 < j < 6-1,of

tw, ses } and {wg sere sw agree. Thus the polynomial
1 y 1 Y

x - ox + 0, x7 -. + (-1) Yo,

has all the w., and w, as roots. This 1s impossible since

in any field + polynomial of degree m cannot have more than
m roots. This proves the theorem.

Another Construction

Let us call an n-element subset S CZ, an

S. -set of size n and modulus m if all the sums

°1, + 51, + ... + ®1,

with ip <1, <n. . . < 1, are distinct modulo m. These sets
have been studied in the combinatorial literature (see [7])

and can also be used to obtaln good lower bounds on

Aln,28,w).

; Theorem 3. If there exists an Ss 1 -set of size n and modulus
m then

A(n,28,w) > = (1).

The proof 1s similar to that of Theorem 2 but using

the map



T:F + %
W m

given by

T(x) = > s, (mod m).
..=1
i

As before, the codes are Cs ms T(1), one of which must have
as many codewords as the average = (7)

From known results for S, -sets it follows that 1f

d > n-1 is_a prime power and § >3 then

a-1 /n

q -1

Harmonious Graphs

Note that if S 1s an 5, -set of size n and modulus

m then

n

(6) m > (0)

For the remainder of the paper, we restrict ourselves to the

case t = 2. Equation (6) then becomes

Oo! =(6) m > (5)-

Equality can be achieved in (¢') for small n by the

fol Towing examples.
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S= {0,1} for n =2, m= 1,

s = {0,1,2} for n = 3,m =3,

S= {0,1,2,4}for n = 4,m = 6.

However these are the only values of n for which equality

can occur.

We can translate this situation into the following

equivalent form. S 1s an S, set of size n and modulus (7) |

1 ff 1t 1s possible to label the vertices of Ks the complete |
graph on n vertices, with the elements of S so that if each

edge of K_ 1s assigned the sum modulo (7) of the two values
assigned to its endpoints, then all edge values are distinct

(and so represent a complete residue system modulo (5)
In Figure 1 we show the labelled complete graphs correspond-

ing to the three extremal sets S given above.

Owe
SO 4 3

Omn® Oa®
K K {
2 3 8)

Figure 1

This interpretation prompts the following definition (see

[6] for further information):

Definition. A graph G with e edges 1s called harmonious

if it is possible to label the vertices.of G with distinct
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values from Z so that every elenent of Z. occurs uniquely

as an edge sum of G.

For example, we show 1n Figure 2 a harmonious

graph with 7 vertices and 17 edges. It turns out (see [6])

that this 1s the maximum number of edges a harmonious graph

on 7 vertices can have. (0)

RENAa \AV
AN ;
(DG

A Harmonious Graph with7 Nodes and 17 Edges

Figure 2

In Figure 3 we give the connected graphs on at

most 5 vertices which are not harmonious.

Nonharmonious Graphs,

Figure 3
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A curious geometrical interpretation can be given

to the condition that a graph G be harmonious. Let Po

denote a fixed regular e-gon embedded in the plane. Then G

1s harmonious 1ff the vertices of G can be embedded into the

vertices of Po so that no two edges of the embedded copy of

G are parallel. This follows from the observation that if

the vertices of P_ are labelled cyclically by O,1,...,e-1,

then the direction of the chord joining 1 and J depends only

on 1 + j (mod e).

A related concept which has appeared frequently

in the graph theory literature 1s that of a graceful graph

(see [2]). A graph G with e edges is said to be graceful

if it is possible to assign distinct values from {0,1,...,e}

to the vertices of G so that the absolute values of the edge

differences are all distinct (and therefore all values in

{1,2,...,e} occur uniquely). In Figure 4 we list the

connected graphs on 5 vertices which are not graceful.

7

7 Bg
Nongraceful Graphs

Figure 4

While it can be observed that Figures 3 and 4

contain two common graphs, 1n general the concepts of beilng
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graceful and being harmonious are rather independent. For

example, cycles of length n have the following properties:

n (mod 4) harmonious graceful

0 no yes
1 yes no
2. no no

3 yes yes

Similarly, complete bipartite graphs, which are

known to be graceful, are never harmonious. This result has

a remarkably short proof.

Theorem 4. Kp is not harmonious.

Proof. Suppose a harmonious labelling of Ko exists. This

1s equivalent to a direct sum decomposition of Z = A @ B

where A and B are disjoint subsets of Zo with |A| = r,
IBl = s. Since all a + b (modulo rs),a € A, Be B, are

distinct then so are all differences a - b (modulo rs). But

there are |A||B| = rs differences. Hence 0 = a - b must

occur exactly once and therefore A and B are not disjoint. []

We extract an interesting corollary from the proof.

Corollary. If Z =A ® B then [A] = 1.

In fact most graphs are neither harmonious nor

. graceful. Ilore precisely, it can be shown using the

probability method (see [6]) that the fraction of all graphs

on n vertices which are harmonious (or graceful) tends to

0 exponentially with n.

Let us define H(n) to be the maximum number of

edges a harmonious graph on n vertices dan have (with G(n)

1h



defined similarly for graceful graphs). In Table 3 we list

some of the known values.

n H(n) G(n)

2 1 1

3 3 3
4 6 6

5 9 9
6 13 13
7 17 17

8 214 23
9 30 29

10 36 36

Table 3

Asymptotically it can be shown [6] that

It 1s especially annoying that we cannot prove that

H(n) < (%- on? for some ¢€ > 0. The lower bound depends
on recent results of HEmmerer and Hofmeister[7] who showed

that 1t 1s possible to select n nonnegative integers

a; << a,c< ~<a, such that all integers up to 5 ne can
be represented as a. + a.
Some Questions

(1) A well known conjecture of Ringel and Kotzig

asserts that all trees (= acyclic connected graphs) are

graceful. We make the corresponding conjecture that all trees

are harmonious, where we have to modify the definition

slightly so as to allow one vertex label to be repeated.

This 1s true for all trees with at most'nine vertices.
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(2) Is there a polynomial-time algorithm to

determine if G 1s harmonious? We conjecture that there is

not.

(3) Is H(n) ~ cn 2? Is ¢c< 1/2? We think that

the answer to both questions 1s in the affirmative.

(4) How large must m be for an S, -set of size n

and modulus m to exist? For t = 2, it is known that the

answer is (1+0(1))n°. We conjecturethat m > (1+0(1))n’.
(5) What is the value of A(n,d,w)? From our

results it follows that (1+o(1)) n't A(n,28 ,w) <
w-38+1 wio— C7 -

(1+0(1)) fe=L)in” 7 The upper bound is known to be
correct if w = 4and§ = 2 or 3. Is it always correct?
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