g1 FILE COFY

December 1981 Report. No. STAN-CS-81-891
Also mumbered:

HPP-81-19 ‘ @
AD A113479

The Role of the Critic in Learning Systems

b

T.G. Di_etterich
B. G. Buchanan

N A
. vy ,-'j'i;"',..~'

PWPRIVTET O

ht 38 PP
RS SELENLE

Department of Computer Science

Stanford University
Stanford, CA 94305

The Role of the Critic in Learning Systems

T. G. Dietterich and B. G. Buchanan
Stanford University
Stanford, California 94305

Abstract

Buchanan, Mitchell, Smith, and Johnson [Buchanan 78a] described a general model of Jearning systems that
included a component called the Critic. The task of the Critic was described as threefold: evaluation of the
past actions of the performance element of the lcarning system, localization of credit and blame o particular
portions of that perforinance element, and recommendation of possible improvements and modifications in
the performance element. This article analyzes these three tasks in detail and surveys the methods that have
been employed in existing leaming systems to accomplish them. The principle method used to evaluate the
performance element is to develop a global performance siandard by (a) consulting an external source of
knowlcdge. (b) consulting an internal source of knowledge. or (c) conducting decp search. Credit and blame
have been localized by (a) asking an cxternal knowledge source to do the Jocalization, (b) factoring the global
performance standard to produce a local performance standard, and (c) conducting contrclied experiments on
the performance clement. Recommendations have becn communicated te thic learning element using (a)
local training instances, (b) correlation coefficients, and (c) partially-instantiated schamn’\

This rescarch was supported in pant by the Advanced Research Projects Agency of the US Department of
Defense under contract MDA 903-80-C-0107mdbyme5d1kmbcueﬂ)_oll Rescarch Laboratory.

N1
10
13

th rn
Justis

»y.

Distys
Mthug

""'l{»on Po

f——
J01ime

|

Table of Contents

1. Introduction
2. Threc tasks of the Critic

2.1. Evaluation

2.2. Localization of responsibility

2.3. Recommending changes in the Performance Element
3. Methods for obtaining a Global Performance Standard

3.1. Knowledge sources cxternal to the Critic

3.2. Knowledge sources intzmal to the Critic

13, Scarch

4. Methods for assigning credit and blame—obtaining a Laca] Performance Standard

4.1. Knowledge sources external to the Critic
4.2. Factoring the global performance standard
4.3, Conducting controlled experiments

5. Methods for developing recommendations

6. Summary

7. Acknowledgments

BOBlBomowuuacaunmnnn e~

List of Figures
Figure 1-1: A model of learning systems (after [Buchanan 78a]).
Figure 2-1: Global and local performance standards in LEX.
Figure 2-2: Credit assignment in LEX,
Figure 4-1: Disgram of the factoring and credit-assignment process.
Figure 4-2: Samucl’s three-level signature table scheme.,

DS ea—

1. Introduction

A model of learning systems has been described [Buchanan 78a] that atiempts to capture the key
components that must be included in any leaming system. That modcl (shown below in Figure 1-1) is
centered around the Performance Element—the component whose behavior the learning system is attempting
to improve. The Performance Element (PE) responds to stimuli from the environment, and the purpose of
learning is to make the responses better, in some sense. The Blackboard (BB) provides a common means of
communication among the elements and ensures that all elements have access to changes made by the others.
The Instance Selector (IS) selects suitable (sometimes random) training instances from the environment to
present to the Performance Element. The Critic (CR) in this model evaluates the responses of the PE by
comparing them against some standard of performance to determine how well the PE has done. In addition
to this global evaluation, the Critic determines which parts of the PE are responsible for good and bad
behavior. And, in this model, the Critic then recommends to the Learning Element (LE) what should be
done to reinforce good behavior or improve bad behavior, but not precisely how to do it. Finally, the whole
learning system operates within a conceptual framework, called the World Model (WM), that contzins the
vocabulary, assumptions, and methods that define the operation of the system.

WM World Mode!
Periormance Leaming
Element PE LE Element
B8 Blackboard
instance Critic
Selector] CR

Figure 1-1: A mode) of lcarning systems (aftcr [Buchanan 78a]).

The present paper attempts (0 extend this model by analyzing, in detail, the role of the Critic in existing
learning systems. According the model, the Critic has three basic tasks: (a) to evaluate the cucrent
performance of the PE, (b) to localize responsibility for good and bad performance 10 particular parts of the
PE, and (c) to make recommcendations %0 the LE regarding desirable changes in the PE. The Critic can be
viewed a3 an expert system that performs fauk disgnosis and repeir (similar 0 systems sch a8

MYCIN {Shortliffe 76) and DART [Bennctt 81]). These sysiems evaluate the performance of some complex
system (in this casc, the PE), localize the causes of detected faults, and recommend repairs. The remainder of
this paper discusses these three tasks in detail and then surveys the methods that have been employed in
existing learning systems to accomplish them. Finally, our observations are summarized, and the implications
for the design of future learning systems arc assessed.

The reader is warned that many of the examples cited in this paper are necessarily brief, since the purpose
of the paper is not to present existing work, but to describe and analyze the methods that have been employed
to perform the Critic’s three tasks. Readcrs desiring a fuller survey of the learning systems mentioned in this
paper are encouraged to consult the article ‘Learning and Inductive Inference’ (Chapter X1V (in Volume 3) of
the Handbook of Artificial Intelligence {Cohen ss]).

2. Three tasks of the Critic

2.1. Evaluation

The first and most obvious function of the Critic is to evaluate the actions of the PE. This is usually
accomplished by developing a performance standard, that is, some sort of index against which the PEs
behavior can be compared. For example, in the Meta-DENDRAL sysiem [Buchanan 78b), the PE's task is to
simulate the operation of a mass spectrometer. The simulator accepts a molecular structure as input and
produces a simulated mass spectrum as output. Meta-DENDRAL'’s Critic employs an external performance
standard in the form of an actual spectrum measured by a mass spectrometer. The subprogram INTSUM

compares the simulated spectrum with the actual spectrum, and the differences serve to guide the search for
new simulation rules.

The Critic, in its role as an evaluator, can be viewed in broad terms as the fest portion of a generate-and-test
method. The learning clement is the generator. It proposes modifications in the PE, and the Critic tests these
modifications by evaluating the actions of the PE on particular training instances. Every learning system can
thus be viewed as learning by trial and ervor (usually heuristically-guided trial and error). It is through the PE
and the Critic that the hypothceses developed by the LE arc tested empirically.

2.2, Localization of responsibility

The second task of the Critic—to localize responsibility for good and bad behavior to particular portions of
the PE—was first pointed out by Minsky [Minsky 63), wherc he callcd it the credir-assignment problem. The
credit-assignment problem arises whenever the PE has compasite structure and only a global performance
siandard is available. By compotite structure, we mean that the decisions of the PE arc determined by some

composite decision-making process. The PE, for example, may cvaluate a complex expression or apply a
series of rules to arrive at a decision. In order for the LE to improve individual subcxpressions or individual

rules, the Critic must Jocalize credit and blame for overall performance to these particular subexpressions or
rules,

For cxample, consider the learning problem addressed by Mitchell's LEX system [Mitchell 81). LEX solves
symbolic integration problems. This performance task has composite structure: In order to solve an integral,
LEX must apply a sequence of integration operators. Furthermore, LEX has only a global performance
siandard; it knows it has solved the problein when it has succeeded in removing the integral sign from the
expression being integrated. Once LEX has found a sequence of operators that solves the problem, it must
apportion credit and blame among the individual operators in that sequence and among operators in any
other unsuccessful sequences that it investigated,

The credit-assignment process can be viewed as the process of converting a global performance standard
into a local perfonnance siandard. The local performance standard indicates what the proper outcome of each

move (or each subdecision) should have been. Once a local standard is obtained, credit assignment is
straightforward.

LEX must break its global performance standard, which indicates how good an entire solution path is, into
a local performance standard that indicates how good each step (each spplication of an integration operator)
is. The exact global performance stancard used by LEX is the length of the shortest known solution path, as
measured by computation time and space. The local performance standard for each solution siep is the length
of the shortest known path from the starting state of that siep t0 a solution state. These various performance
standards are shown in Figure 2-1.

Once LEX has developed the local performance standard for each step, it can complete the credit-
assignment process by evaluating every siep in its tree of solution paths and partial paths, A step is judged o
be a good decision if it leads (o 2 solution whose path length is lcss than 1.15 times the Jocal performance
standard for that step. Otherwise, the step is judged 10 be a bad step. This has the effect of creditiag all sseps
on the best known path (and on any other paths that have nearly the same length as the best known path).
Blame is assigned (0 any step that leads from & state on the shorest path 10 2 state 80t 0n the shortest path.
All other decisions remain unevaluated (see Figure 2-2).

It is important (0 observe that tue credit-assignment problem only arises whea the units of knowledge
being lcarned constitute small subcomponents of the PE. There would be no credit-assigament problems in
LEX if, instead of trying 10 Jearn heuristics for individual intcgration opesasors, LEX simply memorined

Global Performance Standard

N N\ \
B —) 2 —) 88— U —) 5 —> Known
Problem
| J
[J
L J
Local Performance Standards
Figure 2-1: Global and local performance standards in LEX,
Best
81 —) 2 —i3 @ —t> u —) g —2) g Known
nhial . Solulion
=\
AN N
14 s €N 810
- 4 - Other
Known
Solutions
81— 512 — 513 —) S —) 816
+ Good Decision
= Bed Decision

Figere 2-2: Credit assignment in LEX.

complicte operator sequences. Exactly this kind of learning is performed by STRIPS [Fikes 72 Furthermore,
onc can imagine creating 3 icaming system in which a scrics of crodit-assignment problems must be solved.
Such a system could have, for example, a layered performance clement in which the overall decision wes
made by a sct of production rules, and cach production rule depended in tern on evaluating some complex
expression. The first credit-assignment problem would be 10 develop a focal performance standard for each
production rule. This would be followed by a second credit-assignment process in which a local performence
standard would be computed for each subexpression that makes up cach production rule. In summary, the
difficukty of the credit-amignment problem depends on the level of analysis carried out by e LE. As the

relative size of the "learnable unit” of knowledge becomes smaller, the credit-assignment problem becomes
more difficult.

2.3. Recommending changes in the Performance Element

Once global ard local performance standards have been obtained and, thus, the causes of poor
performiance have been isolated, the Critic must recommend to the LE how the PE should be modified.
These recommendations can be thought of as verbs such as generalize, specialize, and replace, along with some
information that indicates what should be modified.

In systems that learn from cxamples, the recommendation is usually to generalize or specialize a particular
rule or concept in order to make it consistent with some new training instances. In LEX, for example, the
final output of the Critic is a set of instances of the proper (and improper) application of integration
operators, glcaned from the trace of the problem solving process. These training instances are supplied to the

learning element along with instructions to generalize or specialize the heuristics that reccommended the use of
those integration operators.

In other learning systems, the recommendations may take the form of fairly specific instructions for how to
modify the knowledge base. In Sussman's HACKER [Sussman 75), for example, the Critic provides a
partially filled-in schema describing a Conniver demon (or, more correctly, an “if-added method™). The
learning clement must fully instantiate this demon and install i in the knowledge base. The schema includes
instructions for how to generalize certain parts of the demon, as well,

The dividing line between the Critic and the LE is not always clear. In many learning systems, there is no
scparate recommendation phase. Instead, the LE directly employs the local performance standard to modify
the PE. In systems that discover single concepts from training instances (such as Winston [Winston 70}
Mitchell [Mitchell 78], Michalski (Michalski 78], and Hayes-Roth [Hayes-Roth 78]), the information provided
by the training instances and their correct classifications suffices to guide the LE. Mitchell's version space
algorithm [Mitchell 78], for example, applies a marching process directly to the training instances themselves
in order o decide how the current concept description should be modified. The performance standard
desermines the nature of the change: Positive training instances lead 1o generalization, and negative instances
Jead 0 specialization, of the concept description.

3. Methods for obtaining a Glgbal Performance Standard

Now that we have reviewed each of the three tasks of the critic, we turn our attention to the methcds that
have been used in existing systems to accomplish these tasks. Several methods have been employed for
finding a global performance standard. These can be grouped into three general categorics: knowledge
sources external to the Critic, knowledge sources within the Critic, and scarch.

3.1. Knowledge sources external to the Critic

The first method of obtaining the global performance standard is to ask the outside world to provide one.
We have aiready mentioned Meta-DENDRAL's use of an actual mass spectrum as a standard of performance
for its mass spectrometer simulator. Many programs that learn concepts from examples expect the training
instances to be correctly classified in the input. Winston's [Winston 70] ARCH learning system, for example,
relies on the teacher to indicate for each training instance whether that instance is an "arch” or a "near miss.”

Another system that employs an external performance standard is Samuel’s checkers program [Samuel
63, Samuel 67]. One configuration of the checkers program uses an outside knowledge source in the form of
"book moves"—moves taken from recorded checkers matches between masters. Samuel's program atiempts
10 learn an evaluation function that computes the worth of a gi* :n board position. The program learns by
following book games, first applying its current evaluation function in order 1o select a move and then
comparing the sclected maove with the global performance standard—the book move.

Davis’ TEIRESIAS program [Davis 76] provides another example of a system that turns to an expert for
performance feedback. TEIRESIAS provides knowledge acquisition and debugging support for EMYCIN-
based expert systems. The EMYCIN system serves as the performance element. It is presented with cases,
which it processes by applying the rules in its knowledge base. When the consultation is completed,
TEIRESIAS steps in and asks the expert wheth: the PE's conclusions are correct. At this point, the expert
responds with a simple YES or NO. If the answer is NO, TEIRESIAS assists the expert in actually locating
and repairing the problem (typically a missing or incorrect rule). The expert's ycs/no answer serves as the
global performance standard.

The technique of obtaining the global performance standard by consulting some source of knowledge
extcrnal to the program is most uscful in situations where the PE is attemptir.j 1o model or mimic the
behavior of a physical system or 2 human expert. In such cases, if the physical system is opaque or the human
expert is unable to introspect well, the only information available to the leaming System is the overall
hrhaving of the unknown svstem. This global behavior can serve as the global performance standard.

3.2. Knowledge sources internal o the Critic

A second approach (o obtaining a global performance standard is to employ some source of knowledge
inside the Critic. Waterman's poker player [Watcrman 70}, in its implicit training mode, is a good example of
such a system. The performance task of the poker player is to decide what bets th make during a round of
play of draw poker. This is a composite task, since a sequence of decisions must be made. At the end of each
round of play, Waterman's Critic invokes an internal knowledge source to produce the global performance
standard. The knowledge source is a rule-based system containing an axiomatization of the rules of draw
poker along with rules describing how bets accumulate and how betting behavior is related to the quality of
the players’ hands. It contains definitions of the four basic actions available to the PE (CALL, DROP, BET

HIGH, and BET LOW). The rule describing the CALL action, for example, is represented as

ACTION(CALL) & HIGHER(YOURHAND, OPPHAND) =>
ADD(LASTBET, POT) & ADD(POT, YOURSCORE).

(1.e., if you call and your hand is superior. then you win the pot as augmented by your last bet.)

To evaluate a round of play, the Critic first determines the truth values of certain predicates such as
GOOD(OPPHAND) and HIGHER(OPPHAND, YOURHAND) and then tries to prove the statement
MAXIMIZE(YOURSCORE) by backward chaining through the rule base. The resuling proof indicates
whether the PE could have won more money than it did.

Internal sources of knowledge are useful in domains where it is possible to encode some—but not all—of
the knowledge needed to guide the performance element. For poker, it is easy 0 provide the basic rules of
the game to the program. Unforwnately, the PE needs to know more than just the rules in order to play well.
Consequently, the only use of the poker rule basc in Waterman's system is to provide the Critic with a global
performance standard.

An interesting characteristic of poker—and of many other task domains such as medicine, law, and
politics—is that cxpertisc consists of knowing in advance what actions should be taken. It is relatively easy to
tell retrospectively what the performance elewnent should have done. In these task domains, if the knowledge
required for retrospective analysis can be incorporaed into the learning sysiem, then it can provide a global
performance standard for the PE.

3.3. Search

In most problem nlving tasks, deeper searches provide more information about the best solution. In LEX,
forexampk.deeperandwidcrmmdsmmnwmaﬁnmwuhml As we have seen
sbove, LEX uscs this fact 10 obuin the global performance standard. LEX chooscs the path length of the
shortest known solution and uses & as an upper bound on the lengths of other paths. During problem solving

and credit assignment, whenever a path exceeds the upper bound, it is dropped from further consideration.

Samuel’s checkers player—in an alternate configuration that does not employ "book moves"—uses deep
search to obtain its global performance standard. Recall that Samuel’s system is attempting to learn an
evaluation function for board positions. One way to determine the quality of a board position is to search
decper into future game positions, apply the same evaluation function to the tip positions, and compute the
mini-max backed-up valuc. Since the backed-up value based on a decp scarch is more accurate than the value

calculated directly from the board position in question, it can serve as a global performance standard for the
evaluation function.

In summary then, there are three basic approaches to finding a global performance standard. In domains
where a physical system or an expert is being modeled, thc external environment can provide the
performance standard in the form of the actual behavior of the physical sysiem or the expert. In domains
where retrospective analysis is easy, the knowledge required for such retrospective analysis can provide the
standard. Finally, in domains where dceper searches produce more information, simple scarch can provide a
global performance standard.

4. Methods for assigning credit and blame—obtaining a Local Performance
Standard
Once we have an overall performance standard, how can we localize credit and blame to individual
decisions? Threc basic methods can be discerned. Onc approach is to side step the problem by consulting
some knowledge source outside the program, a sccond approach is 10 factor the global performance standard
into a local performance standard, 2nd the third approach is to conduct controlicd experiments by varying
some subcomponent of the PE and observing the resulting changes in the global behavior of the PE.

4.1. Knowledge saurces external to the Tritic

Of course it is possible to finesse the credit-assignment problem compiletely by simply asking the external
world to provide a move-by-move performance standard. In one configuration of Waterman's poker learner,
for cxample, a human expert provides feedback afier cach bet decision. TEIRESIAS also rclies on the human
expert to examine the performance trace and localize the point at which the PE went wrong. This approach is
useful in situations where an expert is available who can successfully criticize particular cases. The particular
cases serve o focus the expert’s attention and trigger his or her memory. This is an important aspect of the
standard knowlcdge cngineering methodology [Davis 76

Another situation in which the external world provides the local performance standard is program

debugging. When a programmer is testing a program (i.c., a PE), he or she must have some idea what the
proper outputs of the program should be—that is, the programmer must know the global performance
standard. When one of the outputs is incorrect, interactive dcbugging tools, such as the INTERLISP BREAK
package, enable the programmer to inspect intermediate states within the program. However, the
programmer must also have some idea what the correct internal states should be—that is, the programmer
must figure out what the local performance standard is. Some programming language features, such as run-
time type checking and run-time correctness assertions, allow the programmer to partially specify the local
performance standard so that the programming system can automatically compare it with the actual behavior
of the program.

4.2, Factoring the global performance standard

A second approach to solving the credit-assignment problem is to factor the global performance standard
into local standards that correspond to the subparts or subdecisions of the PE. This approach relies on
discovering some substructure within the global performance standard. In Meta-DENDRAL, for example,
the global performance standard—the actual mass spectrum for a molecule—is factored into its individual
lines. This factoring takes advantage of the fact that the global performance standard has some
substructure—it is made up of spectral lines. Gf course not any factorization will work. The spectral lines
must correspond somehow to the PE subcomponents that the Critic is altempting to evaluate. In Meta-
DENDRAL, the subcomponents of interest within the PE are cleavage rules that predict, for a given
molecular bond cr sct of bonds, whether those bonds will break. Each spectral line corresponds 10 some
combination of one 10 three individual cleavages.

In Mcta-DENDRAL, the credit-assignment process is carried out by the subprogram INTSUM, which is a
transparent version of the PE (the mass spectrometer simulstor). When INTSUM is given a molecule, it
simulates the cleavage process and produces a simulated spectrum. More importantly, bowever, each line in
the simulated spectrum is annotated with a rocord of which cleavages led to the creation of that line. Thus,
the correspondence between spectral lines and PE subcomponents is computed. Now credit assigament is
trivial. If the simulated line masches an actual line, then the cleavages that “caused™ the simulated line are
credived. Ovherwise, if the simulated line does not macch a real line, the cleavages are blamed.

Meta-DENDRAL starts the leaming process with a “half-order theory™ of the mass spectrometer. This
half-order theory can be thought of as a small set of very general cleavage rules that state that just about every
bond in the molecule will break, with a few exceptions (cg.. double bonds, triple bonds, bonds ia aromatic
rings, and bonds incident (o the same atom). The learning process improves the half-order theory by
specializing it w prodict more precisely whea bonds will beesk,

10

Figure 4-1 provides a schematic diagram of the process of factoring the global performance standard,
comparing it to the intermediate decisions of the PE, and assigning credit and blame to various
subcomponents of the PE.

CR:
PE “
Factoring
4
inferonces
N\

8)

Figwme 41: Diagram of the factoring and credit-assignment process.

A scond system that successfully factors the global performance standard is Sussman's HACKER
system [Sussman 75} HACKER is a blocks-world planner; given an initial blocks configurastion and a desired
configuration, ik must devclop a soquence of opcrations (a plan) that will achieve the given goal. HACKER
employs an internal knowledge source—a blocks world simulator—as its global performance standard. Once
the PE (the planner) has developed a plan, the simulator siulates it 10 see if the plan will in fact attain the
goal.

The simulator can be fiactored 10 obtain a local performance standard. The simulation is conducted one
m-.muummmﬁum?um-&mumwnu Ia

11

fact, the simulator detects three kinds of errors: illegal actions, violated expectations, and unaesthetic actions.
Ilicgal actions are actions, such as picking up a whole stack of blocks, that are illegal in the blocks world.
Violated expectations are precisely that—steps whose intended effects were not achicved. Unaesthetic actions
are actions in which the program moves the same block two tmes in succession with no intervening action.
Once onc of these errors is detected, HACKER proceeds immediately to develop a bug demon that will detect
the probiem and patch around it in future plans. HACKER does not conduct further credit-assignment to
determine which of its planning methods was at fault. Planning methods—such as the method that states that
conjunctive goals can be achieved independently—are never modified; badly formed plans are just pached
prior to execution.

In order for HACKER's credit-assignment strategy 10 work, it is very important that the PE provide a
detailed trace of its planning process. This trace lists the subgoals that each plan step is expected to achieve.
The simulator compares these cxpectations with the simulated execution of the plan and localizes blame
accordingly.

Waterman's poker player [Waterman 70] is a third system that factors the global performance standard.
Recall that the Critic attempts to prove the statement MAXIMIZE(YOURSCORE) using an axiom system that
encodes the rules of poker and some knowledge about how bets accumulate. The proof provides a global
performance standard; it indicates whether or not the performance element could have improved its winnings
during the round of play. In addition, the proof provides a local performance standard. It discovers the
sequence of bet decisions that would have led to the best score for the program.

The description of the axiom system given above is slightly inaccurate. It gives the impression that only
one proof is conducted for each round of play. In fact, a scparate proof of the MAXINIZE(YOURSCORE)
siatement is conducted for eack bet decision in the round. Waterman has analyzed, in advance, all of the ways
in which previous bet decisions can influence subscquent bet decisions. His analysis is incorporated into the
axiom system using a few predicates such as LASTBETOPP(BET HIGH), which says that the opponent’s last
bet was high. For each bet decision, the truth values of such “connective™ predicates are desermined by
examining previous bets, and then the axiom system is invoked 10 see if the current bet was appropriste. In

esscnce, Waterman has manually factored the performance standerd 30 that i can be applicd 10 individual bet
decisions.

The three systems just described—Meta-DENDRAL, HACKER, snd Waterman's poker player—all obtain
their Jocal performance standards by factoring the globel performance standard. Meta-DENDRAL factors
the spectrum into is individual lines, HACKER factors the overall simulation of the plaa’s exocution into the
simulation of each plan sicp, and Watermaa faceors the proof for the whole round of play into individual

12

proofs for each bet decision.

4.3. Conducting controlied experiments

The third approach to solving the credit-assignment problem is to modify some iubcomponcm of the PE
and observe how the global performance changes. This is the technique employed by computer engineers
when they attempt to localize a fault by swapping a single printed-circuit board and then observing the overall
behavior of the system to see if the problem goes away. It is a powerful technique, but it only provides
unambiguous information if the global performance of the PE actually changes. If changing a subcomponent
has no effect, it is difficult to distinguish the case in which the subcomponent is unimportant from the case in
which the component is vital, but a second problem in the PE is masking the effects of the component change.

Three existing lcarning systems can be viewed as performing controlied experiments in order to localize PE
faults. One system is Samuel’s checkers player, which attempts to learn the coefficients of a polynomial
evaluation function. In order to assign credit and blame to individual coefficicnts, Samuel computes the
pairwise correlation between the value of each checkers board feature and the global performance standard.
Features whose changes corrclate positively with the global performance standard are given positive
coefficients, and features that vary inversely with the global performance standard are given negative
coefTicients.

This approach to solving the credit-assignment problem makes an independence assumption: It assumes
that credit and blame can be allocated to each part of the PE independently. For the polynomial evaluation
function, this makes sense because the use of the polynomial itself is based on the premise that the ovenall
value of a checkers move can be obtained by computing a weighted sum of various board features. Samuel's
rescarch has shown, however, that the linear polynomial fails to capture much of the knowledge employed by
checkers masters because of this independence assumption. Hence, the pairwise correlation approach,
although adequate for the polynomial representation, may not be adequate in general.

The second system that employs coatrolled experiments is Samuel’s signature table checkers system. This
system uses a signature table. insiead of a polynomial, 1o sepresent the cvaluation function. A signature isble
is an n-dimensional array of cells. Each dimension corresponds to some numcrical checkers board feature,
such as the number of kirgs or the number of open squares in the back row. The features are measured and
then used i mdex into the signature table 10 obtain the corresponding cell. The cell contains a aumerical
rating of that board position. Thus, in principle, the signature table can represent a different rating for each
distinct board position, and hence, the independence assumption is not necded. Samuel's experiments with

13

for this rcason.

Unfortunately, a single signature table for Samuel's 24 checkers board features would be prohibitively large
(roughly 1012 cells). Instead, Samucl employs a three-level trec of smaller tables as shown in Figure 4-2. The
PE first determines the values of the 24 board features. These values are used to index into the first set of
signamn_nblestoobuinncwvalues. Each of these first-level values is then used to index into the second-
level tables where the celis contain values that in turn serve as indexes for the final third-level table. The celis
in the third-level table provide the actual evaluaion of the board position.

First Level Tables

—

- Second Level Tables

-

-

Third Level Table
Checher —
Board —
—— Soerd

Fealures Evaluation

-

el

—

Figure 4-2: Samuel’s three-level signature tabic scheme,

We can think of this three-level set of tables a5 a three-level production system in which the results of the
first-level inferences are testod ia the condition parts of the second-icvel production rules. The second-level
rules produce values that serve 10 rigger third-level rules. Credit amignment for signature tables is
accomplished by computing 8 correlstion coefficicat for each cell in cach tabie, in a fshion similsr © that

14

used for the polynomial evaluation functisn. Each cell is associated with two tallics, called A and D, which
are inidally zero. At each board position during a game, the program is faced with a set of alternative moves,
one of which is indicated by the performance standard. to be the best move. Each possit'e move can be
mapped to one cell in each signature table. A 1 is added to the 1D tally of each cell whosc corresponding move
is not the correct move, and a total of n (where n is the number of incorrect alternatives) is added to the A
1otal of each cell correponding to the correct move, From the A and D totals, a correlation coefficient C = (A
-~ D)/(A + D) is computed and used to update the contents of the cells in the signature tables.

This tally method effectivcly credits the entire inference tree corresponding to the correct move and blames
all alternative trees. This is not a problem for the first-level cells, since it is always clear which cells
correspond to the best board position. However, for the second- and third-level tables, the cells
corresponding to the best move are not necessarily those cells selected by the first-level tables—especially
during the early phases of learning when the first-level tables still contain incorrect values. Samuel's system
credits them anyway and relies on a huge number of training instances (approximately 250,000 moves) to
correct eventually any errors introduced by this procedure. Samuel also found it necessary to apply
interpolation procedures to the signature tables during the early phases of learning, since, at that point, most
cells in the first-level tables were empty. Thus, the pairwise correlation method of assigning credit and blame
is not entirely adequate for signature wbles cither, but the large number of training instances gradually
corrects any errors introduced through this credit-assignment process.

Finally, the third system that conducts controlled experiments is LEX. As we have seen above, LEX
evaluates alternative operator applications by investigating the subtrees rooted at each of the alternatives. The
move that leads to the shortest subtree is credited, and all moves leading to significantly larger subtrees are
blamed. This method works well as long as the subtrees are carcfully investigated. Unfortunately, during the
early stiages of leamning, the performance element is easily overwhelmed by combinatorial explosion and,
hence, cannot fully investigate these subtrees. Even more troublesome is the behavior of the performance
element when it has learned an overly specific heuristic. Such a heuristic causes it to ignore an operator even
when that operator should be applied. This Jeads the PE to overlook possible solutions and hence, resulting
in incomplete investigation of the alternative subtrees.

We have examined three existing systems that cmploy some form of contralled experimentation 0 localize
credit and blame: Samuel’s polynomial system, Samuel’s signature table system, and Mitchell's LEX system.
In general, controlled experimentation—that is, systematic variation of a single subcomponent of the PE—is a
powerful method. There are some difficulties however. First, ¥ is necessary (0 assume some independence
among the fauks within the PE. If mukiiple inicrdependent problems exist, then one fauk can mask another
and varying s single componcat will not secessarily lead 10 sny change in systom performance.

15

A sccond difficulty is that, in some performance clements, adequate controls may not be available. In
order to create a controlled experiment, it must be possible to vary some aspect of the performance element
while keeping all other parts fixed. This is not possible in LEX, for example, where choosing 2 different
integration operator leads to a different search tree, which must be thoroughly investigated in order to permit
accurate comparisons. This is a kind of factoring of the performance element into nearly independent
subcomponents. Such factoring is similar to the factoring of the global performance standard.

A question for future research is to try to understand exactly when the PE or the glohal performance
standard can be properly factored and to develop factorization methods. This is equivalent to the deeper
Question of what structures are ultimately learnable. Do there exist systems that are so complex that they
cannot be sufficienily faciored to allow learning to occur? One speculation is that a lask that cannot be
factored can still be learned at a more abstract level of analysis. Suppose, for example, that adequate controls
were not available in LEX to evaluate individual applications of integration opcrators. It would still be
possible to expand the level of analysis and simply memorize entire scquences of operators. In tightly
coupled interdependent systems, there may be no useful detailed level of analysis. The heuristics describing
when a particular operator should be applied would necessarily become extremely complex and lengthy in
order to capture all of the interdependencies in such a system!. Thus, the credit-assignment problem may be
solvable in all cases either by successfully factoring the global performance standard, by factoring the PE and
conducting controlled experiments, or by changing the level of analysis to learn larger units of knowledge.

5. Methods for developing recommendations

Once the problems have been localized to individual decisions within the PE, the PE must be modified so
that these problems do not recur. There are many ways that a performance element can be repaired. In
production systems, for example, the antecedents of the production rules can be generalized or specialized,
the consequents of the rules can be altered to perform different actions, new rules can be added, and conflict-
resolution strategies can be modificd. In concept-learning systems, the definition of the concept can be
generalized, specialized, or completely changed. Sometimes a decision must be made about + ‘hether to repair
the problem directly or create a demon to detect the problem in the future and patch around it.

The final task of the Critic is to figure out what kind of change should be made, rather than to actually
make the modifications itself. In order to accomplish this, the Critic must have some way of mapping kinds of
faults into kinds of repair. This mapping has been fairly straightforward in existing Jearning systems. la LEX,

‘mm.ua-—au;umumuumnmum»m-m
simpler imterasl structuse (¢.3.. 33 Prolomsic astronemy was supersaded by Copernican astensmy).

16

for example, if an integration operator was applied in a situation when it should not have been, then the
solution is to specialize the heuristic attached to that operator so that it will no longer recommend its use in

such situations. Conversely, if an integration operator should have becn applied, but was not, then the
solution is to gencralize the associated heuristic. -

For HACKER, the mapping between kinds of faults and proposed fixes is more indirect. This is because
the basic cause of all of HACKER's errors is its "linearity assumption”—that conjunctive goals can be
pursued completely independently. Rather than modifying this assumption, HACKER’s solution is to patch
around it. Consequently, when a fault is detected, HACKER must decide which particular kind of patch
should be applied. This is accomplished by examining the subgoal structure of the failed plan step and
matching this structure against a set of subgoal interaction schemata. The matching schema has an associated
skeletal demon that, when fully instantiated and installed in the knowledge base, will detect future instances
of the problem and fix them prior to the exccution of the plan.

In addition to indicating what kind of rcpair should be undcrtaken by the learning clement, the Critic
usually provides the LE with additional information to guide the modifications. In systems that learn from
examples, the Critic provides local training instances to the LE. A local training instance is an instance of the
use of a particular rule along with the local performance standard for that rule application. This is to be
distinguished from a global training instance, which has the form of a global problem situation paired with 8
global performance standard. In Meta-DENDRAL, for example, a global training instance has the form of a
known molccular structure and its associated actual mass spectrum. The local training instances are
comprised of individual bond cleavages and the corresponding spectral lines that they produce. It is these
Jocal training instances that are generalized by the LE to develop gencral cleavage rules.

In LEX, the global training instance is the initial integration problem coupled with the global performance
standard (i.c.. the shortest known solution path length). The local training instances are the positive (or
negative) cxamples of the correct (or incorrect) application of integration rules. These local instances are
processed by the candidate-elimination algorithm [Mitchell 78] to develop integration heuristics.

Instead of local training instances, Samuci's checkers Critic provides a sct of corrclation cocfficients o the
LE. As we saw above, the corrclation cocfficients indicate how the individual features in the evaluation
function are correlated with the global performance siandard. These correlation coefficients are rescaled by
the LE and then substituted for the previous weights in the evaluation polynomial.

Finally, as we mentioncd above, HACKER's Critic provides the LE with a partially-filled-in bug demon
mmm'mmmmmmm‘mmmmmhhwu

17

complete the instantiation process and tells which parts of the demon should be generalized.

In summary, the task of deciding what kind of changes should be recommended to the LE is fairly
straightforward. In existing systems, the recommendations have been communicated to the LE using local
training instances, correlation cocfficients, and skeletal demons.

6. Summary

In this paper, we have reviewed the three tasks of the Critic: obtaining a global performance standard,
converting it into a local performance standard, and recoramending to the learning element how the PE
should be improved. For each of these tasks, we have attempted to list the methads that have been employed
in existing learning systems to accomplish them, Global performance standards have been obtained by asking
the cxternal environment to supply them, by consulting some internal source of knowledge, and by
conducting decper searches. Local performance standards have been obtained by asking exteral sources, by
factoring the global performance standard in some way, and by conducting controlled experiments. Finally,
recommended changes have been communicated to the LE in the form of verbs such as generalize, specialize,

or replace along with information such as local training instances, correlation cocfficients, and skeletal bug
demons. ’

One of the most interesting results of this analysis is the conclusion that the credit-assignment problem may
be solvable in most learning situations. If a system can be factored, then controlled experiments can be
conducted to localize faults. If a system resists factoring, then the level of analysis can, and should, be
modified to learn larger units of knowledge. A disadvantage of leaming these larger units of knowledge is
that many more of them will need to be learned. However, in complex sysiems i is likely that nc simple
eencralimionscanbefoundatmelcvelofindividualmla.andhemmemmmhnmu
to learn larger units of knowledge.

Another result of this analysis is the observation that the Critic requires a model of the internal operation of
the PE and some understanding of the semantics of the PE's knowlcdge base. Credit and blame canact be
localized to individual rules in the knowledge base unless the Critic has access to and cun understand those

rules. Similarly, recommendations for change require at icast some understanding of how the PE interprets
the knowledge base.

Thirdly, the Critic must have access 10 a trace of the internal decision-making process of the PE. Without

this additional information, & is impossible 10 comparc the PE's inicrnal decisions with the local performance
standard.

Finally, this paper has analyzed the Critic as if it were a separate expert system with its own knowledge
base. We have attempted to catalog the kinds of knowledge that such an expert system would need and the
kinds of methods it would apply. However, most of this knowledge is still not well formulated. Making it
explicit is a neoessary part of the rescarch needed to provide knowledge acquisition tools for expert systems.

7. Acknowledgments

The authors wish to thank the Advanced Research Projects Agency of the US Department of Defense and
the Slumberger-Doll Rescarch Laboratory for supporting this research. Thanks also go 1o Charles P, Paulson
and James S. Bennett for comments on early drafts of this péper.

[Benncu 81)

{Buchanan 78a)
{Buchanan 78b)

[Cohen s3]

[Davis 76}

[Fikes 72)
[Hayes-Roth 78]

[Michalski 78)
[Minsky 63]
[Mitchell 78)

Mitchell 81}

19

References

Bennett, J. S., Hollander, C.R.
DART: An expert system for computer fault diagnosis.
In Proceedings of IJCAI-81. Vancouver, Canada, August, 1981,

Buchanan, B. G., Mitchell, T. M., Smith, R. G. and Johnson, C. R. Jr.
Models of learning systems.

Encyclopedia of Computer Science and Technology 11, 1978.

Also Stanford report STAN-CS-79-692.

Buchanan, B. G. and Mitchell, T. M.
Modecl-directed lcarning of production rules.

In Waterman, D. A. and Hayes-Roth, F. (editors), Pattern- Direcied Inference Systems, .
Academic Press, New York, 1978.

Cohen, P. and Feigenbaum, E. A.
The Handbook of Artificial Inielligence.
Tioga, Palo Alto, CA, In press,

Davis, R.

Applications of meta-level knowledge 1o the construction, maintainance, and use of large
knowledge bases.

Technical Report STAN CS-76-552, Stanford University, June, 1976.

Fikes, R. E., Hart, P. E. and Nilsson, N. 1.
Learning and exccuting gencralized robot plans.
Artificial Intelligence 3:251-288, 1972

Hayes-Roth, F. and McDermott, J.
An Interference Matching Technique for Inducing Abstractions,
Communications of the ACM 2)(5):401-410, 1978,

Michalski, R. S.
Patiern recognition as knowledge- guided induction.

Technical Report Report #927, Depariment of Computer Science, University of Illinois at
Urbana, 1978.

Minsky, M.

Steps Toward Artificial Intelligence.

In Feigenbaum. E. A. and Feldman, J. (editors), Computers and Thought, pages 406-450.
McGraw-Hill, New York, 1963,

Mitchell, T. M.

Version Spaces: An approach 1o concept learning.
PhD thesis, Stanford University, December, 1978,
also Stanford CS report STAN-CS-73-711, HPP-79-2.

Mitchell, T. M., Utgoff, P. E., Nudel, B., and Banerji, R. B,
Lcaming Problem-Solving Heuristics Through Practice.
In Proceedings of I)C Al-81. Vancouves, Canade, August, 1981.

{Samuel 63]

[Samuel 67}

[Shontliffe 76)

[Sussman 75)

[Waterman 70]

[Winsion 70}

Samuel, A. L.

Somc studics in machine lcarning using the game of checkers.

In Feigenbaum, E. A. and Feldman, J. (editors), Computers and Thought, pages 71-108.
McGraw-Hill, New York, 1963.

Samuel, A. L.

Some studies in machine lcarning using the game of checkers Il - recent progress.
1BM Journal of Research and Development 11(6):601-617, 1967,

Shortliffe, E. H.
Computer Based Medical Consultations: MYCIN.
American Elscvier, New York, 1976,

Sussman, G. J.
A Computer Model of Skill Acguisition.
American Elsevier, New York, 1975,

Waterman, D. A.
Generalization learning techniques for automating the learning of heuristics.
Antificial Intelligence 1(1/2):121-170, 1970.

Winston, P. H.
Learning structural descriptions from examples.
Technical Report MIT Al-TR-231, MIT, Cambridge, Mass., September, 1970.

