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Abstract

Buchanan, Mitchell, Smith. and Johnson [Buchanan 78a] described a general model of learning systems that
included a component called the Critic. The task of the Critic was described as threefold:  ewaluation of the
past actions of the performance element of the learning system, localization ofcredit and blame to particular
portions of that perforinance element, and recommendation of possible improvements and modifications in
the performance element. This article analyzes these three tasks in detail and surveys the methods that have

been employed in existing learning systems to accomplish them. The principle method used to evaluate the
performance element is to develop a global performance standard by (a) consulting an external source of
knowledge. (b) consulting an internal source of knowledge. or (c) conducting decp search. Credit and blame
have been localized by (a) asking an external knowledge source to do the localization, (b) factoring the global
performance standard to produce a local performance standard, and (c) conducting contrclied experiments on
the performance ckkment. Recommendations have been communicated te tic learning element using (a)

local training instances, (b) correlation coefficients, and (c) partially-instantiated schemata,

This research was supported in part by the Advanced Research Projects Agency of the US Department of
Defense under contract MDA 903-80-C-0107 and by the Schiumberger-Doll Research Laboratory.
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1. Introduction

A model of learning systems has been described (Buchanan 78a] that aticmpts to capture the key

components that must be included in any learning system. That model (shown below in Figure 1-1) is

centered around the Performance Element—the component whose behavior the learning system is attempting

to improve. The Performance Element (PE) responds to stimuli from the environment, and the purpose of

learning is to make the responses better, in some sense. The Blackboard (BB) provides a common means of

communication among the elements and ensures that all elements have access to changes made by the others.

The Instance Selector (IS) selects suitable (sometimes random) training instances from the environment to

present to the Performance Element. The Critic (CR) in this model evaluates the responses of the PE by

comparing them against some standard of performance to determine how well the PE has done. In addition

to this global evaluation, the Critic determines which parts of the PE are responsible for good and bad

behavior. And, in this model, the Critic then recommends to the Learning Element (LE) what should be

done to reinforce good behavior or improve bad behavior, but not precisely how to do it. Finally, the whole

learning system operates within a conceptual framework, called the World Model (WM), that conteins the

vocabulary, assumptions, and methods that define the operation of the system.

WM World Model

Performance Leeming

= [= o] =

msInstance Critic

B BE

Figure 1-1: A mode] of learning systems (after [Buchanan 78a).

The present paper attempts to extend this model by analyzing, in detail, the role of the Critic in existing

learning systems. According the model, the Critic has three basic tasks: (a) to evaluate the current

performance of the PE, (b) to localize responsibility for good and bad performance 10 particular parts of the

PE, and (¢) to make recommendations 0 the LE regarding desirable changes in the PE. The Criticcan be

viewed a3 an expert system that performs fault diagnosis and repeir (similar 0 systems such as
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MYCIN {Shortliffe 76] and DART [Bennett 81]). These systems evaluate the performance of some complex

system (in this case, the PE), localize the causes of detected faults, and recommend repairs. The remainder of

this paper discusses these three tasks in detail and then surveys the methods that have been employed in

existing learning systems to accomplish them. Finally, our observations are summarized, and the implications

for the design of future learning systems arc assessed.

The reader is warned that many of the examples cited in this paper are necessarily brief, since the purpose

of the paper is not to present existing work, but to describe and analyze the methods that have been employed

to perform the Critic's three tasks. Readers desiring a fuller survey of the learning systems mentioned in this

paper are encouraged to consult the article ‘Leaming and Inductive Inference’ (Chapter XIV (in Volume 3) of
the Handbook ofArtificial Intelligence {Cohen ss]).

2. Three tasks of the Critic

2. 1. tvaluation

The first and most obvious function of the Critic is to evaluate the actions of the PE. This is usually

accomplished by developing a performance standard, that is, some sort of index against which the PEs

behavior can be compared. For example, in the Meta-DENDRAL system [Buchanan 78b), the PEs task is to

simulate the operation of a mass spectrometer. The simulator accepts a molecular structure as input and

produces a simulated mass spectrum as output. Meta-DENDRAL's Critic employs an external performance

standardin the form of an actual spectrum measuredby a mass spectrometer. The subprogram INTSUM

comparesthe simulated spectrum with the actual spectrum, and the differences serve to guide the search for

new simulation rules,

The Critic, in its role as an evaluator, can be viewed in broad terms as the fest portion of a generate-and-test
method. The learning clement is the generator. It proposes modifications in the PE, and the Critic texts these

modificationsby evaluatingthe actions of the PE on particulartraining instances. Every learningsystem can

thusbe viewed as learning bytrial and error (usually heuristically-guided trial and error). It is through the PE

and the Critic that the hypotheses developed by the LE arc tested empirically.

2.2. Localization of responsibility

The second task of the Critic—to localize responsibility for good and bad behavior to particular portions of

the PE—was first pointed out by Minsky [Minsky 63). where he called it the credir-assignment problem. The

credit-assignment problem arises whenever the PE has composite structure and only a global performance
siandardis available. By composite structure,we mean that the decisionsof the PE are determinedby some
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composite decision-making process. The PE, for example, may evaluate a complex expression or apply a

series of rules to arrive at a decision. In order for the LE to improve individual subexpressions or individual

rules, the Critic must localize credit and blame for overall performance to these particular subexpressions or

rules.

For cxample, consider the learning problem addressed by Mitchell's LEX system (Mitchell 81). LEX solves

symbolic integration problems. This performance task has composite structure: In order to solve an integral,

LEX must apply a sequence of integration operators. Furthermore, LEX has only a global performance

standard; it knows it has solved the problein when it has succeeded in removing the integral sign from the

expression being integrated. Once LEX has found a sequence of operators that solves the problem, it must

apportion credit and blame among the individual operators in that sequence and among operators in any

other unsuccessful sequences that it investigated.

The credit-assignment process can be viewed as the process of converting a global performance standard

into a localperfonnance siandard. The local performance standard indicates what the proper outcome ofeach

move (or each subdecision)should have been. Once a local standard is obtained, credit assignment is

straightforward.

LEX must break its global performance standard, which indicates how good an entire solution path is, into

a local performance standard that indicateshow good each step (each applicationof an integration operator)

is. The exact global performance standard used by LEX is the length of the shortestknown solution path, as

measured by computationtime and space. The local performance standard for each solutionstep is the length

of the shortest known path from the starting state of that step to a solution state. These various performance

standards are shown in Figure 2-1.

Once LEX has developed the local performance standard for each step, it can complete the credit

assignment process by evaluating every step in its tree of solution paths and partialpaths. A step is judgedto

be a good decision if it leads to a solution whose path length is lcs than 1.15 times the Jocal performance

standardfor that step. Otherwise, the step is judged 0 be a bad step. This has the effect of crediting all seeps

on the best known path (and on any other paths that have nearly the samc length as the best known path).
Blame is assigned (0 any step that leads from a state on the shortestpath 0 2 state aot oa the shortest path.

All other decisions remain unevaluated (see Figure 2-2).

It is important (0 observe that the credit-assignment problem only arises whea the units of knowledge

being lcarncd constitute small subcomponentsof the PE. There would be no credit-assigamentproblems in

LEX if, instead of trying 10 Jeam heuristics for individual integration operators, LEX simply memorised
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Figure 2-1: Global and local performance standards in LEX,
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Figure 2-2. Credit assignmentin LEX.

complicte operator sequences. Exactly this kind of learning is performed by STRIPS [Fikes 72]. Furthermore,

onc can imagine creating a icaring system in which a serics of crodit-assignment problems must be solved.

Such a system could have, for example, a layered performance clement in which the overall decision wes

made by a set of production rules, and cach production rule depended in tern on evaluating some complex

expression. The first credit-assignment problem would be io develop a local performance standard for each

production rule. This would be followed by a second credit-assignment process in which a local performance

standard would be computed for each subexpression that makes up cach production rule. Ia summary,the

difficulty of the credit-amignment problem depends om the level of analysis carried out by the LE. As the
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relative size of the "learnable unit” of knowledge becomes smaller, the credit-assignment problem becomes
more difficult.

2.3. Recommending changes in the Performance Element

Once global ard local performance standards have been obtained and, thus, the causes of poor

perforniance have been isolated, the Critic must recommend to the LE how the PE should be modified.

These recommendations can be thought of as verbs such as generalize, specialize, and replace, alongwith some
information that indicates what should be modified.

In systems that learn from cxamples, the recommendationis usually to generalize or specialize a particular

rule or concept in order to make it consistent with some new training instances. In LEX, for example, the

final output of the Critic is a set of instances of the proper (and improper) application of integration

operators, glcaned from the trace of the problem solving process. These training instances are supplied to the

learning element along with instructions to generalize or specialize the heuristics that recommended the use of

those integration operators.

In other learning systems, the recommendations may take the form of fairly specific instructions for how to

modify the knowledge base. In Sussman's HACKER [Sussman 75), for example, the Critic provides a

partially filled-in schema describing a Conniver demon (or, more correctly, an “if-added method”). The

learning clement must fully instantiate this demon and install i in the knowledge base. The schema includes

instructions for how to generalize certain partsof thedemon, as well,

The dividing line between the Critic and the LE is not always clear. In many learning systems, there is no

scparate recommendationphase. Instead, the LE directly employs the local performance standard to modify

the PE. In systems that discover single concepts from training instances (such as Winston [Winston 70)

Mitchell [Mitchell 78). Michalski [Michalski 78], and Hayes-Roth [Hayes-Roth 78)), the information provided

by the training instances and their correct classifications suffices to guide the LE. Mitchell's version space

algorithm [Mitchell 78], for example, appliesa matching process directly to the training instances themselves

in order to decide how the current concept description should be modified. The performance standard

deverminesthe nature of the change: Positive training instances lead to generalization, and negative instances

Jead 10 specialization, of the concept description.
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3. Methods for obtaining a Global Performance Standard

Now that we have reviewed each of the three tasks of the critic, we turn our attention to the methods that

have been used in existing systems to accomplish these tasks. Several methods have been employed for :

finding a global performance standard. These can be grouped into three general categories: knowledge

sources external to the Critic, knowledge sources within the Critic, and search.

3.1. Knowledge sources external to the Critic

The first method of obtaining the global performance standard is to ask the outside world to provide one.

We have already mentioned Meta-DENDRAL's use of an actual mass spectrum as a standard ofperformance

for its mass spectrometer simulator. Many programs that learn concepts from examples expect the training

instances to be correctly classified in the input. Winston's [Winston 70) ARCH learning system, for example,

relies on the teacher to indicate for each training instance whether that instance is an “arch” or a "near miss.”

Another system that employs an external performance standard is Samuel's checkers program [Samuel

63, Samuel 67]. One configuration of the checkers program uses an outside knowledge source in the form of

"book moves" —moves taken from recorded checkers matches between masters. Samuel's program attempts
to learn an evaluation function that computes the worth of a gi* :n board position. The program learns by

following book games, first applying its current evaluation function in order to select a move and then

comparing the selected move with the global performance standard-—the book move.

Davis’ TEIRESIAS program [Davis 76] provides another example of a system that turns to an expert for

performance feedback. TEIRESIAS provides knowledge acquisition and debugging support for EMYCIN-

based expert systems. The EMYCIN system serves as the performance element. It is presented with cases,

which it processes by applying the rules in its knowledge base. When the consultation is completed,

TEIRESIAS steps in and asks the expert wheth=: the PE’s conclusions are correct. At this point, the expert

responds with a simple YES or NO. If the answer is NO, TEIRESIAS assists the expert in actually locating

and repairing the problem (typically a missing or incorrect rule). The expert's yes/no answer serves as the

global performance standard.

The technique of obtaining the global performance standard by consulting some source of knowledge

exicrnal to the program is most useful in situations where the PE is attempting to model or mimic the

behaviorof a physical system or 2a human expert. In such cases,if the physical system isopaqueor the human

expert is unable to introspect well, the only information available to the learning system is the overall

hrhavinr ofthe unknown system. This global behavior can serve as the global performance standard.
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3.2. Knowledge sources internal to the Critic

A second approach to obtaining a global performance standard is to employ some source of knowledge
inside the Critic. Waterman's poker player [Waterman 70), in its implicit training mode, is a good example of

such a system. The performance task of the poker player is to decide what bets tn make during a round of

play ofdraw poker. This is a composite task, since a sequence ofdecisions must be made. At the end ofeach
round of play, Waterman's Critic invokes an internal knowledge source to produce the global performance
standard. The knowledge source is a rule-based system containing an axiomatization of the rules of draw

poker along with rules describing how bets accumulate and how betting behavior is related to the quality of
the players’ hands. It contains definitions of the four basic actions available to the PE (CALL, DROP, BET
HIGH, and BET LOW). The rule describing the CALL action, for example, is represented as

ACTION(CALL) & HIGHER(YOURHAND, OPPHAND) =>
ADD(LASTBET, POT) & ADD(POT, YOURSCORE).

(l.e., if you call and your hand is superior, then you win the pot as augmented by your last bet.)

To evaluate a round of play, the Critic first determines the truth values of certain predicates such as

GOOD(OPPHAND) and HIGHER(OPPHAND, YOURHAND) and then tries to prove the statement
MAXIMIZE(YOURSCORE) by backward chaining through the rule base. The resulting proof indicates
whether the PE could have won more money than it did.

Internal sources of knowledge are useful in domains where it is possible 0 encode some—but not all—of
the knowledge needed to guide the performance element For poker, it is easy (© provide the basic rules of
the game to the program. Unfortunately, the PE needs to know more than just the rules in order to play well.
Consequently, the only use of the poker rule basc in Waterman's system is 0 provide the Critic with a global
performance standard.

An interesting characteristic of poker—and of many other task domains such as medicine, law, and

politics—is that expertise consists of knowing in advance what actions should be taken. It is relatively easy 0
tell retrospectively what the performance eleinent should have done. In these task domains, if the knowledge
required for retrospective analysis can be incorporated into the learning system, then i can providea global
performance standard for the PE.

3.3. Search

In most problem snlving tasks, deeper searches provide more informationabout the best solution. In LEX,
for example, deeper and wider search leads (0 several alternative solutions 10 the integral. As we have seen
sbove, LEX uses this fact to obtain the global performance standard. LEX chooses the path length of the
shortest known solution and uscs i as an upper bound on the lengths of other paths. During problem solving
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and credit assignment, whenever a path exceeds the upper bound, it is dropped from further consideration.

Samuel's checkers player—in an alternate configuration that does not employ "book moves"—uses deep

search to obtain its global performance standard. Recall that Samuel's sysiem is attempting to learn an

evaluation function for board positions. One way to determine the quality of a board position is 10 search

deeper into future game positions, apply the same evaluation function to the tip positions, and compule the

mini-max backed-up valu¢. Since the backed-up value based on a decp search is more accurate than the value

calculated directly from the board position in question, it can serve as a global performance standard for the

evaluation function.

In summary then, there are three basic approaches to finding a global performance standard. In domains

where a physical system or an expert is being modeled, the external environment can provide the

performance standard in the form of the actual behavior of the physical system or the expert. In domains

where retrospective analysis is easy, the knowledge required for such retrospective analysis can provide the

standard. Finally, in domains where deeper searches produce more information, simple search can provide a

global performance standard.

4. Methods for assigning credit and blame—obtaining a Local Performance

Standard

Once we have an overall performance standard, how can we localize credit and blame to individual

decisions? Threc basic methods can be discerned. Onc approach is to side step the problem by consulting

some knowledge source outside the program, a second approach is 10 factor the global performance standard

into a local performance standard, and the third approach is to conduct controlled experiments by varying

some subcomponent of the PE and observing the resulting changes in the global behavior ofthe PE.

4.1. Knowledge sources external to the Critic

Ofcourse it is possible to finesse the credit-assignment problem completely by simply asking the external

world to provide a move-by-move performance standard. In one configuration ofWaterman's poker learner,

for example, a human expert provides feedback aficr cach bet decision. TEIRESIAS also relies on the human

expert to examine the performance trace and localize the point at which the PE went wrong. This approach is

useful in situations where an expert is available who can successfully criticize particular cases. The particular

cases serve to focus the expert's attention and trigger his or her memory. This is an importantaspect of the

Another situation in which the external world provides the local performance standard is program
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debugging. When a programmer is testing a program (i.e., a PE), he or she must have some idea what the

proper outputs of the program should be—that is, the programmer must know the global performance

standard. When one ofthe outputs is incorrect, interactive debugging tools, such as the INTERLISP BREAK

package, enable the programmer to inspect intermediate states within the program. However, the

programmermust also have some idea whatthe correct internal states should be—that is, the programmer

must figure out what the local performance standard is. Some programming language features, such as run-

time type checking and run-time correctness assertions, allow the programmer to partially specify the local

performance standardso that the programmingsystem can automatically compareit with the actual behavior

of the program.

4.2. Factoring the global performance standard

A second approach to solving the credit-assignment problem is to factor the global performance standard

into local standards that correspond to the subparts or subdecisions of the PE. This approach relies on

discovering some substructure within the global performance standard. In Meta-DENDRAL, for example,

the global performance standard—the actual mass spectrum for a molecule—is factored into its individual

lines. This factoring takes advantage of the fact that the global performance standard has some

substructure—it is made up of spectral lines. Gf course not any factorization will work. The spectral lines

must correspond somehow to the PE subcomponents that the Critic is altempting to evaluate. In Meta-

DENDRAL, the subcomponents of interest within the PE are cleavage rules that predict, for a given

molecular bond cr sct of bonds, whether those bonds will break. Each spectral line corresponds0 some

combination ofone to three individual cleavages.

InMcta-DENDRAL,the credit-assignment process is carried out by the subprogram INTSUM, which is 2

transparent version of the PE (the mass spectrometer simulator). When INTSUM is given a molecule, it

simulates the Cleavage process and produces a simulated spectrum. More importantly,however, each line in

the simulated spectrum is annotated with a record of which cleavages led to the creation of that ine. Thus,

the correspondence between spectral lines and PE subcomponents is computed. Now credit assignmentis

trivial. If the simulated line marches an actual line, then the cleavages that “caused” the simulated line are

credited. Orherwise, if the simulated line does not maich a real ine, the cleavages are blamed.

Meta-DENDRALstarts the learning process with a “half-order theory” of the mass spectrometers. This

half-order theory can be thought of as a small set of very general cleavage rules that stase that just about every

bond in the molecule will break, with a few exceptions (c.g., double bonds, triple bonds, bonds ia aromatic

rings, and bonds incident to the same atom). The learning process improves the half-order theory by

specializing it to predict more precisely whea boads will break.
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Figure 4-1 provides a schematic diagram of the process of factoring the global performance standard,

comparing it 0 the intermediate decisions of the PE, and assigning credit and blame to various

subcomponentsof the PE.

inllial Problem Giobel Performance Standard

CR:

Supporting__ _ _ > Performance Trace Local Performance Standard
inferonces

CR:

Credit

Assignment

Figme 41: Diagram of the factoring and credit-assignmentprocess.

A second system that successfully factors the global performance standard is Sussman's HACKER

system [Sussman 75} HACKER is a blocks-world planner; given an initial blocks configuration and a desired

configuration, it must develop a soquence of operations (a plan) that will achieve the given goal. HACKER

employs an internal knowledge source—a blocks world simulator—as its global performance standard. Once

the PE (the planner) has developed a plan, the simuismor simulates it 10 see if the plan will in fact attain the

onl, |

The simulator can be factored 10 obtain a local performance standard. The simulationis conducted one

SIcp 81 8 time; after each step, the state of the world can be compared with what the PE expected it 10 be. Ia
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fact, the simulator detects three kinds of errors: illegal actions, violated expectations, and unaesthetic actions.

Illegal actions are actions, such as picking up a whole stack of blocks, that are illegal in the blocks world

Violated expectations are precisely that—steps whose intended effects were not achieved. Unaesthetic actions

are actions in which the program moves the same block two times in succession with no intervening action.

Once onc oftheseerrorsis detected, HACKER proceeds immediatelyto develop a bug demon that will detect

the problem and patch around it in future plans. HACKER does not conduct further credit-assignment to

determine which of its planning methodswasat fault. Planning methods—suchas themethodthat states that

conjunctive goals can be achieved independently—are never modified; badly formed plans are just patched

priorto execution.

In order for HACKER’s credit-assignment strategy to work, it is very important that the PE provide a

detailed trace of its planning process. This trace lists the subgoals that each plan step is expected to achieve.

The simulator compares these expectations with the simulated execution of the plan and localizes blame

accordingly.

Waterman's poker player [Waterman 70) is a third system that factors the global performance standard.

Recall that the Critic attempts to prove the statement NAXIMIZE( YOURSCORE ) using an axiom system that

encodes the rules of poker and some knowledge about how bets accumulate. The proof providesa global

performance standard; it indicates whether or not the performance element could have improved its winnings

during the round of play. In addition, the proof provides a local performance standard. It discoversthe

sequence of bet decisions that would have led to the best score for the program.

The description of the axiom system given above is slightly inaccurate. It gives the impressionthat only

one proof is conducted for each round of play. In fact, a separate proof of the MAXINIZE( YOURSCORE)

statement is conducted for each bet decision in the round. Waterman has analyzed, in advance, all of the ways

in which previous bet decisions can influence subsequent bet decisions. His analysis is incorporatedinto the

axiom system using a few predicates such as LASTBETOPP(BET H1GH), which says that the opponent's last

betwas high. For each bet decision, the truth values of such “connective” predicates are determined by

examining previous bets, and then the axiom system is invoked 10 see if the current bet was appropriate. Ia

essence, Waterman has manually factored the performance standerd 30 that it can be applied 10 individual bet

decisions.

The three systems just described—Meta-DENDRAL,HACKER, and Waterman's poker player—all obtain

their local performance standards by factoring the global performance standard. Meta-DENDRAL factors

the spectrum into ts individual tines, HACKER factors the overall simulation of the plan's caccution into the

simulation of each plan scp, and Watermaa factors the proof for the whole round of play into individual
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proofs for each bet decision.

4.3. Conducting controlled experiments

The third approach to solving the credit-assignment problem is to modify some subcomponent of the PE
and observe how the global performance changes. This is the technique empioyed by computer engineers

when they attempt to localize a fault by swapping a single printed-circuit board and then observing the overall

behavior of the system to see if the problem goes away. It is a powerful technique, but it only provides

unambiguous information if the global performance of the PE actually changes. Ifchanging a subcomponent

has no effect, it is difficult to distinguish the case in which the subcomponent is unimportant from the case in

which the component is vital, but a second problem in the PE is masking the effects of the component change.

Three existing lcarning systems can be viewed as performing controlled experiments in order to localize PE

faults. One system is Samuel's checkers player, which attempts to learn the coefficients of a polynomial

evaluation function. In order to assign credit and blame to individual coefficients, Samuel computes the

pairwise correlation between the value of each checkers board feature and the global performance standard.

Features whose changes correlate positively with the global performance standard are given positive
coefficients, and features that vary inversely with the global performance standard are given negative

coefficients.

This approach to solving the credit-assignment problem makes an independence assumption: It assumes

that credit and blame can be allocated to each part of the PE independently. For the polynomial evaluation
function, this makes sense because the use of the polynomial itselfis based on the premisethat the ovenll

value of a checkers move can be obtained by computing a weighted sum of various board features. Samuel's

rescarchhas shown, however, that the linear polynomial failsto capture much of the knowledge employedby

checkers masters because of this independence assumption. Hence, the pairwise correlation approach,

although adequate for the polynomial representation, may not be adequatein general.

The second system that employs controlled experiments is Samuel’s signature table checkers system. This

system uses a signaturetable, instead of a polynomial, to scpresentthe evaluation function. A signature isble

is an n-dimensionalarray of cells. Each dimension corresponds to some numerical checkers board feature,

suchas the number of kings or the number of open squaresin the back row. The featuresare measured and

then use? iv dex into the signature ble 10 obtain the corresponding cell. The cell containsa numerical

rating of that board position. Thus, in principle, the signature table can represent a different rating for each |
distinct board position, and hence, the independence assumption is not needed. Samuel's experiments with

signature tabics indicated that they did indeed perform better than simple polynomial evaluation functions
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for this reason.

Unfortunately, a single signature table for Samuel's 24 checkers board features would be prohibitively large

(roughly 1012 cells). Instead, Samuel employs a three-level tree of smaller tables as shown in Figure 4-2. The
PE first determines the values of the 24 board features. These values are used to index into the first set of

signature tables to obtain new values. Each of these first-level values is then used to index into the second-
level tables where the cells contain values that in turn serve as indexes for the final third-level table. The cells

in the third-level table provide the actual evaluation of the board position.

First Level Tables

Second Level Tables

Third Level Table

Checker
Fine

Boerd Sosd

Feshures : / Evaluation
Figure 42: Samuel's three-level signature table scheme,

We can think of this three-level set of tables as a three-level production system in which the results of the

first-level inferences are tested in the condition parts of the second-level production rules. The second-level |

rules produce values that serve 0 trigger thisd-level rules. Credit assignmentfor sigaature tables is

accomplishod by computing 8 correlation coefficient for each cell in cach tbie, in a fubion similar © that
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used for the polynomial evaluation function. Each cell is associated with two tallies, called A and D, which

are initially zero. At each board position during a game, the program is faced with a set of alternative moves,

one of which is indicated by the performance standard to be the best move. Each possit'e move can be

mapped to one cell in each signature table. A 1 is added to the ID tally ofeach cell whose corresponding move

is not the correct move, and a total of n (where n is the number of incorrect alternatives) is added to the A

total ofeach cell correponding to the correct move, From the A and D totals, a correlation coefficient C = (A

— D)/(A + D) is computed and used to update the contents of the cells in the signature tables.

This tally method effectively credits the entire inference tree corresponding to the correct move and blames

all alternative trees. This is not a problem for the first-level cells, since it is always clear which cells

correspond to the best board position. However, for the second- and third-level tables, the cells

corresponding to the best move are not necessarily those cells selected by the first-level tables—especially

during the early phases of learning when the first-level tables still contain incorrect values. Samuel's system

credits them anyway and relies on a huge number of training instances (approximately 250,000 moves) to

correct eventually any errors introduced by this procedure. Samuel also found it necessary to apply

interpolation procedures to the signature tables during the early phases of learning, since, at that point, most

cells in the first-level tables were empty. Thus, the pairwise correlation method of assigning credit and blame

is not entirely adequate for signature tables either, but the large number of training instances gradually

corrects any errors introduced through this credit-assignment process.

Finally, the third system that conducts controlled experiments is LEX. As we have seen above, LEX

evaluates alternative operator applications by investigating the subtrees rooted at each ofthe alternatives. The

move that leads to the shortest subtree is credited, and all moves leading to significantly larger subtrees are

blamed. This method works well as long as the subtrees are carefully investigated. Unfortunately,during the

carly stages of leaming, the performance clement is easily overwhelmed by combinatorial explosion and,

hence, cannot fully investigatethese subtrees. Even more troublesome is the behavior of the performance

element when it has learned an overly specific heuristic. Such a heuristic causes it to ignore an operator even

when that operator should be applied. This leads the PE to overlook possible solutions and hence, resulting

in incomplete investigation ofthe alternative subtrees.

We have examined three existing systems that cmploy some form of controlled experimentation0 localize

creditand blame: Samuel's polynomial system, Samuels signature table system, and Mitchell's LEX system.

In general, controlled experimentation—thatis, systematic variation of a single subcomponentof the PR—is a

powerful method. Thereare some difficulties however. First, it is necessary to assume some independence

among the fauks within the PE. If mukiple inicrdependent problems exist, then one fauk can mask another

and varying a single component will not secessarily lead 10 any change in system performance.
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A sccond difficulty is that, in some performance clements, adequate controls may not be available. In

order to create a controlled experiment, it must be possible to vary some aspect of the performance clement

while keeping all other parts fixed. This is not possible in LEX, for example, where choosing 2 different

integration operator leads to a different search tree, which must be thoroughly investigated in order to permit

accurate comparisons. This is a kind of factoring of the performance element into nearly independent

subcomponents. Such factoring is similar to the factoring ofthe global performance standard.

A question for future research is to try to understand exactly when the PE or the glohal performance

standard can be properly factored and to develop factorization methods. This is equivalent to the deeper

question of what structures are ultimately learnable. Do there exist systems that are so complex that they

cannot be sufficienily factored to allow learning to occur? One speculation is that a task that cannot be

factored can still be learned at a more abstract level of analysis. Suppose, for example, that adequate controls

were not available in LEX to evaluate individual applications of integration operators. It would still be

possible to expand the level of analysis and simply memorize entire sequences of operators. In tightly

coupled interdependent systems, there may be no useful detailed level of analysis. The heuristics describing

when a particular operator should be applied would necessarily become extremely complex and lengthy in

order to capture all of the interdependencies in such a system! Thus, the credit-assignment problem may be
solvable in all cases either by successfully factoring the global performance standard, by factoring the PE and

conducting controlled experiments, or by changing the level of analysis to learn larger units ofknowledge.

5. Methods for developing recommendations

Once the problemshave been localized to individual decisions within the PE, the PE must be modified so

that these problemsdo not recur. Thereare many ways that a performance elementcan be repaired. In

production systems, for example, the antecedentsof the production rules can be generalizedor specialized,

the consequentsof the rules can be altered to perform different actions, new rules can be added, and conflict-

resolution strategiescan be modified. In concept-learning systems, the definition of the conceptcan be

generalized, specialized, or completely changed. Sometimes a decision must be made about + ‘hether(0 repair

the problem directly or create a demon to detect the problemin the future and pach around it.

The final task of the Critic is to figure out what kind of change should be made, rather than to actually

make the modificationsitself. In order to accomplish this, the Critic must have some way of mapping kinds of

faults into kinds of repair. This mapping has been fairly straightforward in existing learning systems. In LEX,

INotice, however. that this argument does not address the possibility that the entire task esuld be seformulated 10 reves] 8 sch
simpler interns] structuse (¢.3.. 38 Prolomeic astronomy was superseded by Copernican sstensmy).
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for example, if an integration operator was applied in a situation when it should not have been, then the

solution is to specialize the heuristic attached to that operator so that it will no longer recommend its use in

such situations. Conversely, if an integration operator should have been applied, but was not, then the

solution is to gencralize the associated heuristic. : |

For HACKER, the mapping between kinds of faults and proposed fixes is more indirect. This is because

the basic cause of all of HACKER's errors is its “linearity assumption™—that conjunctive goals can be

pursued completely independently. Rather than modifying this assumption, HACKER's solution is to patch

around it. Consequently, when a fault is detected, HACKER must decide which particular kind of patch
should be applied. This is accomplished by examining the subgoal structure of the failed plan step and
matching this structure against a set of subgoal interaction schemata. The matching schema has an associated
skeletal demon that, when fully instantiated and installed in the knowledge base, will detect future instances

ofthe problem and fix them prior to the execution of the plan.

In addition to indicating what kind of repair should be undertaken by the learning clement, the Critic

usually provides the LE with additional information to guide the modifications. In systems that learn from

© examples, the Critic provides local training instances to the LE. A local training instance is an instance ofthe

use of a particular rule along with the local performance standard for that rule application. This is to be

distinguished from a global training instance, which has the form of a global problem situation paired with a

global performance standard. In Meta-DENDRAL, for example, a global training instance has the form ofa
known molecular structure and its associated actual mass spectrum. The local training instances are

comprised of individual bond cleavages and the corresponding spectral lines that they produce. It is these

local training instances that are generalized by the LE to develop gencral cleavage rules.

In LEX, the global training instance is the initial integration problem coupled with the global performance

standard (i.c.. the shortest known solution path length). The local training instances are the positive (or

negative) cxamples of the correct (or incorrect) application of integration rules. These local instances are

processed by the candidate-elimination algorithm [Mitchell 78] to develop integration heuristics.

Instead of local training instances, Samuel's checkers Critic provides a sct of correlation cocfficients to the

LE. As we saw above. the correlation coefficients indicate how the individual features in the evaluation

function are correlated with the global performancestandard. These correlation coefficients are rescaled by

the LE and then substituted for the previous weights in the evaluation polynomial.

Finally, as we mentioned above, HACKER's Critic provides the LE with a partialty-filled-in bug demon

that will detect and correct bugs in future plans. The skeletal demon provides instructions for bow ©
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complete the instantiation process and tells which parts of the demon should be generalized.

In summary, the task of deciding what kind of changes should be recommended 10 the LE is fairly

straightforward. In existing systems, the recommendations have been communicated to the LE using local

training instances, correlation cocfficients, and skeletal demons.

6. Summary

In this paper, we have reviewed the three tasks of the Critic: obtaining a global performance standard,

converting it into a local performance standard, and recornmending to the learning element how the PE

should be improved. For each of these tasks, we have attempted to list the methods that have been employed

in existing learning systems to accomplish them. Global performance standards have been obtained by asking

the external environment to supply them, by consulting some internal source of knowledge, and by

conducting decper searches. Local performance standards have been obtained by asking external sources, by

factoring the global performance standard in some way, and by conducting controlled experiments. Finally,
recommended changes have been communicated to the LE in the form of verbs such as generalize, specialize,

or replace along with information such as local training instances, correlation coefficients, and skeletal bug

demons.

One of the most interesting results of this analysisis the conclusion that the credit-assignmentproblem may

be solvablein most learning situations. If a system can be factored, then controlled experiments can be

conductedto localize faults. If a system resists factoring, then the level of analysis can, and should, be

modified to learn larger units of knowledge. A disadvantage of learning these larger units of knowledge is

that many more of them will need to be learned. However, in complex systems it is likely that nc simple

gencralizationscan be found at the level of individual rules, and hence, the learning system has no choice but

to learn larger units ofknowledge.

Another result of this analysis is the observation that the Critic requires a model of the internal operation of

the PE and some understanding of the semantics of the PE’s knowicdge base. Credit and blame cannot be

localized to individual rulesin the knowledge base unless the Critic has access to and can understand those

rules. Similarly, recommendations for change requireat least some understandingof how the PE interprets

the knowledge base.

Thirdly, the Critic must have access 10 a trace of the internal decision-making process of the PE. Without

this additional information, i is impossible 10 compare the PEs inicrnal decisions with the local performance

standard.
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Finally, this paper has analyzed the Critic as if it were a separate expert system with its own knowledge

base. We have attempted to catalog the kinds of knowledge that such an expert system would need and the

kinds of methods it would apply. However, mostof this knowledge is still not well formulated. Making it

explicit is a necessary part of the research needed to provide knowledge acquisition tools for expert systems.
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