December 1982 Report No. STAN-CS-82-951

Five Paradigm Shifts in Programming Language
Design and Their Realization in Viron,
a Dataflow Programming Environment

by

Vaughan prate

Department of Computer Science

Stanford University
Stanford, CA 94305

Five Paradigm Shifts in Programming Language Oesign
and their Realization in Viron,
a Oataf low Programming Environment

Vaughan Pratt
Stanford University

Abstract

We describe five paradigm shifts in programming language
design, some old and some relatively new, namely [ffect to
Entity, Serial to Parallel. Partition Types to Predicate Types.
Computable to Definable, and Syntactic Consistency to Semantic
Consistency. Wc argue for the adoption of cach. Wc exhibit a
programming language, Viron, that capitalizes on these shifts.

“This research was supported by NSF grant number MCS82-05451.

1. Background

This is a companion paper to [Pra82]. These two papers
started out as one paper, but when a clear division emerged
between the language proper and its theoretical foundations it
was decided to publish the foundations as a separate and self-
contained thcorcticai paper, thereby removing much foundational
clutter from the language paper that was not essential on a first
reading.

It is possible to read and understand the present paper with
only a limited understanding of the foundations. The
foundations come into play whenimplementing the system,
writing the manual, convincing oneself of the consistency of the
idcas in the present paper, or establishing the soundness and/or
completencss of proof systems for proving the correctness of
programs in this language. The greater the accuracy with which
cach of these tasks arc to be performed. the more ciosciy must
one examine our foundations.

In related work on the language side, our most visible
intciiectuai creditors are Hewilt (Actors) [I Iew], Hoare (CSP)
[Hoa], and Dennis (VAL) [AD)]. On the foundational side, they
arc Kahn and McQucen (Streams) [Kah,KM] and Brock and
Ackerman (Scenarios) [BA]. Two notable contributors to the
foundations of concurrency arc Petri [Pet] and Miincr [Mil],
whose influential work we mention here only to iiiustratc that
there is not yet onc central generally accepted model of
concurrent Processes.

‘1*his language is the programming language for the Viron
computing cnv ironment, a graphics-intensive user inlcrface being

developed at Stanford by the author that takes as its starting point
the philosophy of the Star environment [Lip] but that goes
considerably beyond it in its attention both to semantic
foundations and realistic graphics. Wc will call both the interface
and its programming language Viron, relying on context to
determine which is meant.

This paper deals only with the semantics of Viron. For
presentation purposes we will adopt an abstract syntax in the
spirit of McCarthy’s Miisp. We belicve however that such an
abstract syntax is too spartan for a comfortable and efficient user
interface. Other papers will describe syntaxes appropriate for
given applications, including a three-dimensional graphical syntax
wecii suited to the Viron interface, as well as a textual syntax that
amounts to a formal approximation to English.

As to novelty, the paradigm shifts vary considerably in their
individual novelty, with the effect-to-entity and serial-to-parallel
paradigm shifts being the least novel. The emphasis of this paper
is however not on the paradigms taken alone, but on their
harmonious combination in a single programming language.

2. Sumrhary of the Paradigm Shifts
Woc give here a one-paragraph summary of each shift.

From Effect to Fntity. 1 arge objects arc made as mobile as
small, so that they can bc casily created, destroyed, and moved
around as entities instead of being operated on piecemcai as a
static collection of small objects.

From Serial to Parallel. Constructs intended for parallel
computation arc also used to subsume both serial and data
constructs, achieving a simplification of the control structures of
the language as well as providing a framework for organizing the
data structures.

From Partition Types to Predicate Types. The partition view
of types partitions the universe into blocks constituting the atomic
types, so that every object has a definite type, namely the block
containing it. The predicate view considers a type to be just
another predicatce, with no a priori notion of the type of an object.

From Computable to Definable. Effectiveness is a trnditionai
prerequisite for the admission of constructs to programming
languages. Weakening this prercquisite to mere definability
expands the language’s exprcssivencss thercby improving
communication between programmer and computer.

From Syntactic Consistency lo Semantic Consistency.
Consistency is traditionally enforced by syntactic restriction, ¢.g.
via type structure. A recently dcveioped alternative popularized
by Dana Scott takes the dual approach of resolving
inconsistencies via semantic expansion. as done for models of the
untyped A calculus. We arguc that the latter approach simplifies
language structure.

We now expand on each of these paradigm shifts.

3. From Effect to Entity

Traditionally computation has been viewed, both by
programmers and by mathematicians, as being performed for its
effect. The classical basic instruction is the state-modifying
assignment statement. The classical model of computation is an
automaton (finite-state, pushdown, Turing machine, etc.) with a
state or configuration transition function that describes how each
state or configuration leads to its successor.

This view of computation is gradually being superseded by a
more entity or object oriented view. The computing universc is
regarded as being populated with entities. The dynamics of the
universe is no Jonger described in terms of the state-to-state
transitions of automata but rather in terms of the site-to-site
transitions of entities, for which two of the more popular settings
are recursive function evaluation and dataflow architecture.

There are several forces acting to bring about this paradigm
shift. IYirst, mathematics tends to emphasize entities over cffects:
consider the classical mathematical model, the algebraic structure,
consisting of a set together with operations and relations.

Second, there is the increasing prevalence of parallelism, as
nets connect computers into inhcrently parallel configurations, as
cheap microprocessors start showing up several to a system, and
as silicon compilers that translate algorithms into VLSI designs
become a reality. 'The scquencc-of-states model, well suited to
serial computation, rapidly becomes unworkable in the presence
of parallelism.

Third, there seems to be a psychological advantage to being
able to externalize concepts, that is, to treat them all conceptually
as nouns instead of verbs, relations, etc. We speculate that this
advantage comes from the simplicity of the “typelessness"”
resulting from complete externalization. We will raise the issue of
typelessness again in more detail in a later section.

4. From Serial to Parallel

4.1. Which is the Basic Concept?

One issue here is which is the more central concept, serial or
parallel computation? ‘There is an analogous question for
determinism versus nondctcrminism. For both questions there
are ways of formalizing the question to make the answer come out
either way. For the latter question the predominant view of
automata thcsc days, which is to represent them in terms of
constraints on their state transitions, favors nondctcrminism. with
determinism being merely a special case of nondeterminism.
Thus instcad of dividing automata into two classes, the
deterministic and the nondctcrministic, W treat determinism as a
property a’ nondcterministic automaton might or might not have,
the linguistic awkwardness of the prefix "non” notwithstanding.
‘Thispoint of view has been firmly supported by theessentially
universally accepted formal dclinition of “automaton” for the
past two decades.

Our own intuition about serial versus parallel is that serial is a
special casc of parallel, rather than vice versa. Ifowever unlike
the situation with determinism vs. nondctcrminism, there has not
beena similarly universally accepted formal definition of the
notions “serial” and "parallcl.” This makes it much harder to
resolve the question by appeal to a definition.

One can sce how hard it is to rclatc the two notions formally
by considering how they rclatc in current programming
languages. I ctusconsider C (under Unix), Ada, and Ifoarc’s

CSP, which are among the better known languages offering
parallelism. In each of these languages the basic computational
paradigms are serial. Parallelism is introduced by modclling the
computing universe as a set of serial computers communicating
with each other. (In the case of C under Unix concurrency and
inter-process communication, like 170, is supplied by Unix kernel
calls, and is not part of the C language proper. However it is a
fine example of a language in current use that in practice does
offer concurrency.)

These examples strongly suggest that the relation between the
two notions is that serial computation is a necessary prerequisite
to defining a notion of parallel computation.

mis view of parallelism obviously does not reflect what
actually happens inside a machine. Within any “serial” computer
onc can obscrve parallelism at many levels in its implementation:
in the many electrons that flow through a wire (to go to an
absurdly low level). in the many wires making up a bus, and in
the many microprocessors that can be found in today’s large
mainframes, to name just some examples. For whatever reason
the programming language of a mainframe is serial, it is not
because the hardware itself is serial.

What wc would like is a model of computation that not only
reflected this ubiquity of parallelism but that at the same time
subsumed the notion of serial computation, making it merely a
special case of parallel computation. The chicf advantage of this
would be in simplifying both our theoretical models of
computation and our programming languages. A program would
then be serial more as an accident than through not using parallel
constructs, just asdeterminism arises more by accident than by
avoidance of nondcterministic constructs.

Ilewitt [{Tew] has advocated just this simplification of
programming languages, in the form of his mcssagc-passing
Actors theory. Although some of the details differ (actors have no
output), the underlying rationale appears to bc similar.

4.2. Need for a Formal Model

Comparing the situation once again with (non)determinism,
there is still one missing ingredient, namely a formal semantics
that converts the prcccdenco of parallel over serial from a matter
of taste to a mathematical definition. The candidates for a model
of parallel computation that we take at all seriously arc Petri nets
[Pet]. Milner’s Calculus of Concurrent Systems (C’CS) [Mii], the
Kahn-MacQuecn model of dcterminate processes [KM], the
Brock-Ackerman Scenarios model[BA], and our own model of
processes [Pra82]. Among thcsc models the greatest unity, and
the longest history, can be found among [KM], [BA], and [Pra82],
which togcther constitute a monotonically improving sequence of
models (in that order). Wc consider the resulting model to supply
exactly the missing ingredient.

The Kahn-MacQueen model defines an n-port process to be
an n-ary rclation on the set of all histories (sequences of data).
This model was developed only for determinate proccsscs, and
was suspected by its authors of not being directly usable for
nondctcrminism. This suspicion was formally conflimicd by an
cnlightening, counterexample due to Brock and Ackerman, who
also proposed the necessary modification to the model to extend
it to nondctcrminism [BA]. The modification was to introduce
inter-hislory temporal precedence information. The Brock-
Ackerman model was adopted and further extended by the
present author [Pra82] to cater for process composition in a
satisfactorily formal way, and to support an algecbraic view of
process composition analogous to the algcbtaic view of serial-
program composition mandated by the structured-programming
movement.

Besides the greater economy of subsuming the serial with the
parallel, there is also theissue of irrclevant serialization forced in
ascrial language. Thus x:-a; y: = b is a pair of assignments

whose order must be given even though it is clearly not needed.
This issue can bc met piecemeal by adding yet more constructs to
the language, e.g. parallel assignment. However starting with an
inherently parallel language from the beginning solves this and
related problems just as effectively and more generally.

The Viron programming language is noteworthy in having no
explicitly serial constructs.

4.3. Data Structures

Auxiliary to the vertical integration of processes into Viron’s
control structures is its incorporation into the data structures as
well. The denotational semantics of processes given in [Pra82]
imbues them with the status of object, permitting processes to be
thought of as data with the same “charter of rights” [Pop] or
“mobility” [Pra79] as integers.

Taking this development one step further, we have chosen to
make processes not the organic molccules of our language but
rather the elementary particles. That is, every datum, whether of
the complexity normally associated with processes, or as simple as
a character or an integer, is defined to be a process. In this we are
again following Hewitt [Hlew], in whose development
“everything” is an actor.

The main conceptual obstacle to thinking of an atom as a
process is that atoms seem too simple to be thought of in this way.
However essentially the same argument was made for millennia
excluding zcro as a legitimatenumber. Yet today zero is almost
universally acknowledged to bc, though less than 1, no less a
number than 1.

Of course onc might come up with an unconvincing behavior
for numbers viewed as processes. Hewitt embeds the knowledge
that 3 + 2 = 5 and 3x2 = 6 in the actor that is the number 3, which
makes 3 a much more complex process than seems intuitively
nccessary. The Viron idea of a number, and more generally of
any atom. as a process is that. although the atom does output
something in response to each input, the output is independent of
the value of the input and consists of the atom itself.

The main reason for this choice is to fit in with our
extensional view of processes, in which two processes with the
same behavior must be the same process, If an atom was
unresponsive all atoms would collapse to the same atom. A useful
fringe benefit of this convention is that, following our
straightforward definition of addition, the addition of a number n
to an array of numbers results in the addition of n to cach of the
elements of the array, as will be seen in the account below of
Viron.

4.4. The Process Compiler

One might well ask why can’t the notion of process be
excluded from the programming language proper and made a
part of the subroutine library, on the principle that the
programming language only need supply a basis from which to
extend via the subroutine library. Allprocess-oriented notions in
Unix arc supplied in this way, for example. (It should be realized
that C was developed by the developers of Unix as part of the
Unix effort: thus this expulsion of the notion of process to the
library was a consciously made decision in this case, not an
accident resulting from an inherited language.)

A plausible motivation for putting the notion in the language
is that parallelism is not definable in purely serial terms, much as
onc might argue that nondeterminism is not definable using only
deterministic concepts. f Iowever this argument assumes that the
library is a true language extension in thcsense that all its
functions could have been written in the language. ‘Ihis is
actually not the case in the Unix cxamplc. which requires non-C
assembly codc in its system calls in order to access the kernel,

which is the source of parallelism in Unix. Thus it is possible to
introduce parallelism into the language via the library cven if
parallelism is not definable using just the basic language, given
that the library is permitted to step outside the basic language.

Our actual motivation is that we want to expose parallelism to
the ‘optimizing compiler. The state of the art of parallelism forces
it to be an interpreted concept, due to its having a purely
operational definition, one which admits only literal
interpretation of parallel constructs by an interpretive machine.
If a more abstract definition of parallelism is given, it becomes
possible for an optimizing compiler to choose from a variety of
equivalent implementations in compiling a given parallel
construct. The dclinition should be maximally abstract: only
necessary detail should be retained in the definition.

5. From Partition to Predicate Types

Another paradigm shift has to do with the nature of types.
‘The partition view of types considers “type” to bc a function from
the universe onto a partition of that univcrsc; each individual is
mapped to the block of that partition containing that individual.
Thus type(3) = integer, type(3.14) = real, type({3,1,4}) = list,
typc(cos) = real->real, and so on.

In contrast to the partition view, the predicate view of types
abandons the attempt to keep types disjoint, and permits each
individual to bc of many types. For example 3 may
simultaneously bc of type real, integer, positive integer, integer
mod 4, mod 5, mod 6, etc. You yourself may simultaneously be a
human, a teacher, an American, a Democrat, a Presbyterian, a
non-smoker, and so on. There is no such thing in thc physical
world as TIIE type of an object, although any given context may
suggest a particular predicate as being the most appropriate
predicate to be called the type of that object in that contex t.

The partition view can admittedly be made to work in the
simple environments that come with today’s programming
languages. Howcever as the environment gets richer the partition
view becomes progressively more intractable. Imagine a
programming language in which for every pair ij of integers with
i<j there is a type i..j of integers in the interval from i to j. A pure
partition view of types would require that the integer 3 not be one
individual but many, one for each interval containing 3. This may
scem laughable, yet it is a logical extension of the more readily
accepted idea that the real 3.0 is distinct from the integer 3. (It is
noteworthy that Pascal adopts a predicatc-like approach to its
treatment of therange subtype, while remaining partition-
oriented elsewhcre, thereby avoiding this problem in its more
extreme forms.)

The predicate approach to types simplifies this by having only
one individual recognizable as 3, common to all intervals
containing 3. This individual can even be identified with the
individual 3.0 if one wishes to make thc integers a subset of the
reals, a simplifying view of the integer-real relationship which has
much to recommend it.

The predicate view has a certain amount of support from
modern mathematical logic. There has been much study of
logical thcorics incorporating various notions of type. Indced
Russell’s approach to controlling the logical paradoxes of Frege's
theory was to introduce a type hicrarchy of the partition kind.
However this approach was eventually superseded by the typeless
theories of Zermelo-I‘racnkel and Bernays-Goedel. Admittedly
the Wernays-Gocdcl theory did go so far as to postulate a two-type
hierarchy of sets and classes, but it is noteworthy that the
“typeless” (but not predicateless) Zermelo-Fracenkel theoty is the
one that today is taken (modulo details) as the formal definition
of set theory, which in turn is accepted by many mathematicians
as supplying the formal basis for all of mathematics. While
Zermelo-I'racnkel set theory may from time to time be subjected
to attacks, it is rarcly if ever because of its typclessncss.

The entity oriented approach that wc wish to explore will be
characterized by the “typelessness” of the predicate approach, in
that all entities will belong to a single domain. Thus our approach
will have the flavor of Lisp’s typelessness, though with what we
feel is a sounder rationale than has been advanced by the Lisp
community to date for typelessness.

6. From Computable to Definable

It is unthinkable today to propose a noneffective model for a
computing cnvironment. flow would you implement it? It is
unimplementable by definition. Ncverthcless wc feel that this
insistence on effectiveness produces inarticulate programmers.
Wc propose to include noncffective concepts in our models to
simultancously enhance the expressive power of and simplify the
language.

To begin with, consider the set of even integers and the set of
primes. These are objects that are very natural to be able to refer
to in a program: certainly in natural language they are referred to
all the time.llaving these objects in one’s domain is only
noncffective if onc insists on a traditional representation of scts as
bit vectors or linked lists of clcments. If those two objects were all
there were in the domain one bit would serve to represent each.

Ilowcver suppose we close this tiny domain under Boolean
opcerations. Wc now want to manipulate Roolcan combinations of

these two sets. Can this be done effectively? Yes: equality .

between expressions is decidable since it reduces trivially to the
decision problem for two-variable propositional calculus, with the
two scts playing the role of the two variables. Four bits suffice
(cxercise: and arc necessary) to represent the sixteen possible
Boolean combinations of these two sets.

Now let us go a little further and add a unary operation to the
language that adds onc to cvery element in a set. Suddenly wc
can cxpress infinitely many distinct subsets of the integers, even
without the evens. Ncvertheless can wc still compute in. this
language? In particular can we always dccide whether two
expressions denote the same set? Maybe, maybe not (let us know
if you find out), but clearly we cannot continue to add such
“reasonable” constructs to the language for long without arriving
at a non-cffcctive domain, onc in which not cven equality is
decidable.

R. Popplestone ran into this predicament when drawing up
his “charter of rights” for data [Pop], where his notion of datum
went beyond just integers and boolcans. 1 le wanted every datum,
including objects such as arrays and functions, to bc assignable to
a variable, passable as a parameter, and rcturnable as the value of
a procedure.

-ITowever he did not require that it be possible to tell whether
two data were cqual. More generally, hc did not require that
procedures behave the same with different representations of the
same data. Why? Because equality is undecidable for functions,
inter alia.

W c consider Popplestone’s charter of rights to be
substandard. Under that charter data is not abstract. A
programming language should assign abstractness higher priority
than cffectiveness. 'This is a logical extension of the programming
rule, "Make it work before you make it fast.” ‘The extension is to
treat the programming language as being primarily a descriptive
tool, and only secondarily as a medium for achieving performance
or cven effectiveness.

Our approach to implementing a noneffective domain is to
implement succinctly specified decidable language fragments.
‘The key here is the cxistence of easily recognized decidable
fragments of undecidable languages. We have developed this
idcan [Pra80] and [Pra81] for the casc of program vcrilication.
‘Theidea is not specific to vcrilication howcver, and can be
applied just as readily to cxecution in a noneffective domain.

Those fragments may grow in size and number as the supply
of algorithms improves: all that noneffectiveness does here is to
prevent a complete implementation of Viron. The programmer
should accept such incompleteness with the same good grace that
the mathematician accepts it for his logical tools, which inevitably
must be incomplete.

Making the break not only with performance but with
effectiveness removes a source of worry from the programmer
much as having an undo key reassures the user of a word
processor. The programmer can get on with the job without the
distraction of whether a given way of saying something will run
fast, or even will run at all.

There is a feeling in some programming circles that the
burden of performance should be placed on the compiler. This is
possible up to a point, although no compiler can assume the full
burden, since there are always new algorithms to be discovered.
Our position is that exactly this situation holds for effectiveness as
well as for performance. A compiler can deal with some of the
issues of finding an effective way to execute a program, but no
one compiler can discover every such effective way on its own, it
must sometimes depend on the programmer. Just as the
impossibility of the perfect optimizer docs not imply the
usclessncss of optimizers, so does the impossibility of the perfect
automatic programmer not imply the uselessness of compilers
that can find effective methods in many cases.

7. From Syntactic to Semantic Consistency

Effectiveness is only one of the inhibitors of articulate
expression. The current approaches to controlling inconsistency
constitute another. Russcll’s theory of types was designed to’
avoid the inconsistencies Russell and others found in Frege’s
logical theories. ‘Thc introduction of a hierarchy of types into the
X-calculus serves a similar end.

In contrast to these syntically cautious approaches are the
syntactically casual languages of Schocnfmkel [Sch] (cornbinatory
logic) and Church [Chu] (thc untyped A calculus). Ilere
paradoxes of the traditional kind may bc obtained at the drop of a
hat: for example cither language may cxpress the seemingly
nonsensical concept of a fixed point of the integer successor
function. Yet the languages arc more "user-fricndly” than ones
which introduce typing restrictions aimed at preventing such
paradoxes. Arc such languages merely syntactic curiosities devoid
of referential significance, or can they be considered to actually
dcnotc, despite the inconsistencies? Surcly they could not denote,
or they would not be inconsistent.

Dana Scott has worked out the details of an approach to
making semantic scnse of paradoxical and hence ostensively
meaningless languages, which is to computation as complex
numbers arc to electrical impedance. The idea is to augment an
otherwise normal domain with fuzzy or information-lacking
elements. Fuzziness is represented with a partial ordering of the
domain in which x dominating y indicates that x has more
information than y, which can bc rephrased without using the
word “information” by saying that y might on closer examination
turn out to be x.

A very simple example of the shift from syntactic to semantic
consistency is provided byBoolcan circuits. A simple syntactic
constraint on a circuit that guarantees predictable static behavior
is that it bc acyclic. This condition may be relaxed with caution to
yield more interesting behaviors. Ilowever if in the interests of
simplicity all conditions on circuits are dropped. we can then
connect the output of an inverter (a devicerealizing the unary
Boolean operation of complementation) to its input. This
provides a simple physical model of the logical paradox implicit
in the equation x = ~X.

Classically a paradox means an inconsistency, which in turn
means there is no modecl of the paradox - the universe should

disappear when we feed the inverter’s output back to its input!
‘This actually does happen, at least in the sense that the universe
of pure truth valucs no longer provides an adequate account of
the circuit behavior. With the feedback loop the inverter
functions like an amplifier. with negative feedback, with its
common input and output stabilizing at a voltage somewhere
between logical 0 and 1. ‘T'his intermediate voltage is not a part of
the O-1 Boolcan universe, but it is a part of a more detailed model
that admits invalid or uninformative data in addition to the
regular data. Thus if we postulate three values, 0, *, and 1, with 0
and 1 considered maximally informative and * uninformative,
and take the response of an inverter to the inputs 0, *, 1 to be
respectively 1, *, 0, then we may solve x = ~x with x =*,

The key feature of this simple cxample is that we have moved
from a syntactic to a semantic solution to the problem of paradox.
Instead of relying on the absence of cycles or some other syntactic
constraint to prevent paradoxes, Scott’s approach is instead to
expand the universe to account for and hence dispose of
paradoxes.

Scott’s approach was motivated by just the sort of "user-
friendly” syntactic sloppiness that actually arises in real
programming languages. such as the ability in Algol 60 to pass as
a parameter to the function f any function including f itself. More
recently Saul Kripke [Kri] has made a very similar proposal to the
philosophical community with a paradox-explaining theory of
truth that has been received with remarkable enthusiasm by the
philosophical community. Kripke’s theory of truth is founded on
the cxistence of fixpoints of moenotonce functionals in a complete
partial order, just as with Scott’s theory.

It should be observed that the Scott-Strache) school of
mathematical semantics that developed at Oxford has made two
distinct contributions to programming semantics: the notion of
dcnotational semantics as a homomorphism from expressions to
values, and the notion of the information order as a basis for a
fixpoint-of-monotone-functional ~ semantics ~ for resolving
paradoxes. Yetlittle attempt is made by computer scientists to
distinguish these two contributions, and the term “dcnotational
semantics” is frequently applied to both of them as a single
package, with the implication that the latter is a vital component
of the former. In fact onc can carry out a very comprehensive
program of semantics without any rcfcrence to an information
ordering. ‘1‘his is done for example in such program logic schools
as algorithmic logic, dynamic logic, and temporal logic, where the
semantics is of a homomorphic character but with no dependence
on ordercd domains. It is also done in [Pra82], the foundations on
which the semantics of Viron arc built.

When paradoxes emerge however in response to lax syntax,
Scott’s information order becomes a keyingredient of a successful
semantics.

In the commonest account of Scott’s theory (not Scott’s own
account howcvcer). based on complete partial orders (cpo’s, partial
orders in which every directed set has a sup), the maximal
elements of the cpo can bc considered the “normal” or “ideal”
elcments. the objects wc consider (0 normally populate the
universe. ‘Theother clements arc approximations (o the ideal
clements, in the same sense as intervals with rational endpoints on
the real line are approximations to reals. In the cpo account,
unlike in Scott’s account, there are no overspecified clemcents
containing more information than the idcal clements.

The simple expressions of the language, c.g. the numerals,
arithmetic cxpressions over numerals, etc., arc considered to
denote ideal clements. Ilowcver some of the more complex
expressions will only dcnotc approximations. In particular the
paradox ical expressions are guaranteed to denote
approximations: no matter how closelyyouinspect a paradoxical
element you cannot tell what ideal clement it should denote. By
withholding information in this way, the modclprevents you
from arriving at a contradiction. l‘or cxamplc an cxpression
denoting a fixed point of the successor function will denote an
approximation to intcgers, usually one that approximates all

integers (integer “bottom”).

The main advantage of Scott’s approach is the way it can
simplify the language, which no longer needs to be sensitive to
inconsistcncics. On the other hand it does complicate the model.
Yet even here there is an advantage, for the model can be used to
permit the relocation of the implementability boundary from
syntax to semantics, a novel concept for programming languages
but one that we believe can be used to good effect. Let us see
how this works.

Normally a system designer chooses an implementable
language, and as new needs arisc augments the language with
additional implementable constructs. With Scottish models it is
possible to fix an absurdly over-expressive yct simple language
once and for all, and to augment not the language but the
interpretation of the language, by increasing the information
available to the language interpreter about the interpretations of
expressions in the language. (Intcrprectation I, mapping
expressions to domain elements, is considered an augmentation of
interpretation J when I dominates J, i.e. I(e) dominates J(c) for all
expressions e in the language.)

As a trivial example, one could start out with a semantic
function that mapped numerals to integers, and all other
cxpressions to the bottom clement of the domain. Although the
language might have addition, that function would in effect start
out as the cverywherc undefined function. Thenone could add
some set of computable arithmetic functions by raising from
bottom to integers the Interpretations of all expressions
containing only those functions and numerals, at the same time
providing the necessary implementation of this increase. At some
point one might raisc the interpretations of “set of evens” and
“set of primes” to the appropriate sets, also ideal clements. As
algorithms for evaluating various linguistic fragments of set
theory camc to light one could implement them and so raise the
interpretations of corresponding expressions. (If desired one
might also add heuristics for noncffective fragments, thercby
further raising some inlcrpretations, though by ill-characterized
amounts for an ill-characterized subsct of the language.)

The advantage of putting “language subsetting” in the
semantics instcad of in the syntax is that it decouples language
development from implementability considerations. This in turn
makes it possible to make the full language available immediately
for development of algorithms without waiting for full
implementation support for those algorithms. ‘These would
sometimes bc noncffcctive algorithms when they rcferred to as-
yetundefined functions, but they still would serve the uscful
purpose of specifying problems that could then be rewritten
manually in an cffective sublanguagc.

A language as powerful as this can be built up until it
subsumes any given requirements language. From this point of
view implementation reduces to translation within the language to
achieve a raising of the interpretation (meaning) of the translated
expression. The raising happens because, for example, some
noncflective function or concept (¢.g. quantification) is translated
to a more cffective form. The definition of corrcctness of an
implementation is that it dominate the expression it was
translated from (whcre the ordering between expressions is just
that induced bythe ordering on theinterpretations of those
expressions, i.c. for expressions ¢ and f, e<f when I(e)<I(D)).

If one views an automatic programmer as a function mapping
expressions to expressions i this language then the automatic
programmcr is correct just when it is monotonic.

This one-language view of the relation between requircments
and implementation is appealingly simple. Yet it fits naturally
into the real world of requirements and implementations, which
typically form a hierarchy in which implementations turn into
rcquircments as one programs from top to bottom. The
homogeneity of our requirements and implementations simplifics
this dual view of requircments/programs by expressing them all
. in a common language.

8. Lisp as a Benchmark

Lisp is a good benchmark against which to measure progress
in language design. Despite its age (approaching the quarter
century mark) it still ranks as one of the primary sources of
insight into the principles of programming language design.

Lisp, at least pure Lisp, emphasizes entity over effect. Lisp
treats its complex data, lists and (to an extent) functions, as
objects to bc moved around the computing environment with the
same¢ mobility as integers, putting demands on the storage
management algorithms beyond what suffices for a domain of say
integers. Furthermore Lisp emphasizes the homogeneity or
typelessness of the predicate approach to typing.

However pure Lisp does not gracefully handle the process-
oriented notions of state. memory, coroutine, or concurrency,
concepts that are at best feebly captured in a domain of
recursively defined functions and functionals on a basis of lists
and atonts. It is usual to think of these as only recently being
demanded, but we arc of the opinion that their need has always
been present, and that only the lack of the necessary concepts has
prevented the Lisp designers and users from recognizing these
needs as process-oriented needs long ago. Wc believe that the
impurities of Lisp - PROG,SETQ, GOTO, RPLACA, RPLACD,
ctc. - arose in response to such needs, and met them by reverting
from the entity paradigm to the effect paradigm, where it was
already understood intuitively how to implement process oriented
notions. The price for Lhis step backwards was the loss of
mathematical meaning for the concepts of I .isp, to the extent that
being effect-oriented leads to clumsier definitions than being
entity-oriented.

The similarity between pure Lisp and Viron is that both arc
entity oriented. The difference is that Viron entities are
spccilically intended to model the notions of state, memory,
coroutines, and concurrency.

9. Foundations

As stated in the introduction, this is the second paper of a
series whose first paper [Pra82) described the mathematical
foundations for a notion of process. We rcpeat here the bare
definitions.

There are two views of processes, internal and external. The
internal view is the morc dctailed one, and depends on the notion
of a ner of processes, without regard for what actual data flows
between them. All processcs have two countable sets of inpur and
output ports. 1,.1,1, .. and 0,,0,0, ..., all but finitcly many of
which will nor’méfry' go unused.'(Z‘I‘his'arrangement avoids the
encumbrance of a syntactic classification of processes according to
their port structure.) The net consists of zero or more disjoint
communication [links cach connecting one output port to one
input port; each port is connected to at most one link. A nct can
be studied in its own right, or as a means of implementing a
process. in which case certain of its processes are associated with
ports of the implemented process.

In [Pra82] cach port-associated process was assumed to use
only onc of its own poi1s. One minor improvement wc make here
lo thatmodecls to collect all the port-associaled proccsscs of a net
into a single process. called the exrerior process of the net. Port 1.
of this process corresponds to port 0. of the implemented process!
in the sense that data scnt by the ntt to 1. will appear as output
from port 0. of the process implecmented vy this net. Dually data
arriving at fort 1. of the implemented processes cnters the net of
the implementatibn of that process via port O, of the net’s exterior
process. !

To ask how the exterior process of net N is implemented is to
ask what network the process implemented by N is embedded in.
‘This viewpoint reflects a certain symmetry between the exterior
and interior of processes that sharpens the role of the process as
network interface.

(o)

A link is to be thought of not in the information theoretic
sense of a channel having capacity, or affecting its messages, but
rather merely as an arbitrary boundary between two processes. A
datum flowing between two processes must at some time cross
that boundary: this is called an net event. It either happens or
does not happen: there is no probability, distortion, delay, or
queuing associated with the event. Imperfections in the net must
always be associated with processes. A transmission link that
accumulates, permutes or distorts messages must be modelled as a
process in our nets. The question of whether a link has a finite
queue, an infinite qucue, or no queue, is translated to the
question as to what buffering mechanisms a process provides at
each of its input and output ports. This in turn is captured
abstractly in the "reliability” of a process - finite buffers will
reveal themsclves through the possibility of intperfect behavior.

Formally. a net event is a link-datum pair, interpreted as the
traversing of that link by that datum. A nef trace is a partially
ordered multiset of net events, interpreted as a possible
computation, with the order specifying which cvents necessarily
preceded which other events in time. Necessary temporal
precedence is a primitive notion in this theory. A ner behavior is a
set of net traces. These three notions, net cvent, net trace, and net
behavior, constitute the internal view of a process.

In the external view, a process event is a port-datum pair, a
process trace is a partially ordered multisct of process events, and
a process behavior is a set of process traces. (The tight
correspondence between the internal and external views of a
process should bc noted.)

There are two connections to be made between the internal
and external views of a process. Network traces need to be
consistent with the behavior of the constituent processes of the
net, achieved by requiring that the restriction of each net trace to
any constituent (i.e. non-exterior) process of the net be a process
trace of that process. And the process behavior imp!cmentcd by a
net is obtained as the restriction of the net behavior to the exterior
process, with | and O interchanged. In both cases "restricdon”
involves a renaming of links to ports, sclcclion of the relevant
evenls, and corresponding restriction of the partial order; details
are in [Pra82).

We adopt an extensional view of processes, identifying them
with their process behavior, just as onc identifics a function with
its graph (sct of ordered pairs). Thus wc ntay abbreviate “process
behavior implemented by a net” to "process implemented by a
net.”

A network! of n processes numbered 1 through n defines an
n-ary opcration mapping cach n-tuple of processes to the process
implemented by that network having those n processes as
constituents. The ner-definable operations arc those operations on
proccsscs definable in this way. A ner algebra is any set of
processes closed under the net-definable operations.

10. The Programming Language Viron

The goal of Viron is to bc maximally uscful with a minimum
of machincry.

10.1. At the interface

In the word-object dichotomy, the concept of “language”
scems to belong as much to the word as to the object it names. In
this paper however wc shall play down the syntactic part of Viron,
leaving that to other papers. and focus instead on Viron’s domain
of discourse.

YThere is a distinction made in |Pra82] between simple
have since decided to consider only simple nets.

general nets. We

In the interests of brevity and readability, and in keeping with
the introductory nature of this paper, the description of Viron will
remain at an informal level. A more rigorous treatment of the
language would entail the use of a formal description language. It
is our intent to use Viron to describe itself formally, just as an
informal description of ZF set theory may be formalized in the
language of ZI*. (One reason for not using ZF instead of Viron is
that they have quite different inconsistency-avoidance
mechanisms. Viron evades inconsistency by being noncommittal,
cautiously raising its definitions as far as its algorithms permit,
whereas ZIF scts itself up with fingers crossed as a fixed target that
either is or is not consistent.)

The Viron universe is simply a set of processes, ranging in
complexity from simple atoms through functional objects such as
application and composition to large and/or complex systems.
The Viron user interacts with processes: he manipulates them,
watches them, talks to them, listens to them, and discourses on
them (with an occasional break for coffee). No -one of these
activities is intended to be the dominant one, nor is this list of
what one can do with processes intended to be complete.

Abstract programming languages generally start out with one
or another basic combining primitive. One popular such
primitive is application; the domain of discourse of such a
language is called a combinatory algebra, and the language itself is
characterized as being applicative. All other combining operators,
or combinators, are provided as elements of the combinatoty
algebra. Church’s h-calculus [Chu] provides a familiar example
of a combinatory algebra; the set of proofs of propositional
calculus, with modus ponens as the analogue of application,
provides another.

The informal interface between Viron and its user takes the
place of application in an applicative language. The precise
definition of the processcs themselves makes it possible to
provide a formal definition of any given mode of user interaction
on demand. Manipulation of processes may be formalized in
terms of whatever combinators are supplied by the manipulation
language - composition when processes can be assembled into a
net, application when date can be input to processes, etc.
Watching a process execute can be described formally in terms of
viewing a trace. Talking to a process is the same as inputting data
to a process, while listening to onc is the converse - output from a
process is sent to the user. Discourse on processes characterizes a
user-Viron talk-listen loop since all transactions are themselves
processes.

The fact that all data and computing agents arc proccsses
neced not be pointed out to the beginner, who will encounter
numbers, lists, functions, and so on well before the general notion
of a process makes its appearance. I Iowcver since this paper is for
a more sophisticated audience wc can afford to make the basic
process representation explicit.

The least likely candidates for representation as processes are
atomic data such as integers and characters. Somewhat more
plausible are functions, which amount to memorylcss processes.
We have chosen to represent n-ary functions as processes that
send one datum to output 1 when one datum has been consumed
at each of the first n inputs, the output being the desired function
of the consumed inputs.

10.2. Basic Data

Having cnsured that functions arc processes, to make an atom
a process it suffices to make it a function, which we do by
defining the atom b to be the constant function b satisfying b(x)
= Db for all x. (Type circularity is no problem here since we are
not using a conventional type hierarchy of functions and
functionals.)

Atoms: Wc take as the atoms of Viron theset 7 of integers.
(It is tempting to have other atoms such as characters, but the

notion of “set of characters” is not sufficiently universal to justify
its inclusion in Viron as a primitive.)

Arithmetic functions: the rational functions (addition,
subtraction, multiplication, division) are provided. Division is a
partial function in the sense that it absorbs its two arguments
without response when the divisor is zero.

The arithmetic functions are defined not only on integers but
on all functions. (Recall that an integer is an atom and hence a
function.) The sum of two functions is coordinatewise addition
(on the intersection of the domains of the two functions), and
similarly for the other functions. It can be scen that this is
consistent with the normal behavior of addition on integers; thus
2+ 3 =5 either for the usual reason or because as functions the
two constant functions whose values arc respectively 2 and 3 sum
to the constant function whose value is 5. Taking this further, it
can be seen that the sum of a list and an integer is the result of
adding that integer to the elements of the list, since the integer
can be viewed as a constant function, with a domain that is a
superset of the domain of the list (an initial segment of the
positive integers). This is a happy circumstance, as it coincides
with what programmers generally mean by the sum of a list and
an integer, e.g. as in APL.

n-dimensional Array: a function with domain a contiguous
rectangular subspace of Z".

List: a 1-dimensional array starting at 1. (This agrecs with the
definition of “list” on p.43 of Macl.ane and Birkhoff [Mac], and
makes no attempt to relate lists to pointers. Making the pointer
implementation of lists visible to the user, despite its obvious
advantages in terms of control, makes the list concept unduly
complicated.)

Filter: a restriction of the identity function to a partial
function.

Set: a one-input two-output process whose two outputs in
effect implement two filters with complementary domains, i.e. a
steering mechanism. As such a set is not a function only in that it
has two asynchronous outputs (as opposed to one output
synchronously yiclding a pair).

Predicate: a set.
Record: a function with domain a finite set of symbols.

Memory cell: a process that when sent any value on its second
input outputs the most recent value scen on its first. (Cells are
defined more formally in [Pra82}.) It is a nontrivial example of a
process that is not a function.

Onc may link n processes into a nct with the help of various
n-ary functions for that purpose. I‘or example there is a binary
function Sequence(a,b), which yields a process implemented by a
net that connects its input 1 to a’s input 1, a’s output 1 to b’s input
1, and b’s output 1 to output 1 of Sequence(a,b). (This is made
more formal using the definition of process composition in
[Pra82).)

The quaternary function Fork(a.b,c.d) yields a process
implemented by a net that connects its input 1to a’s input 1, a’s
output I to b’s input 1, a’s output 2 to ¢’s input 1, b’s output 1 to
d’s input 1, ¢’s output 1 to d’s input 2, and d’s output | to output 1
of I ‘ork(a,b,c,d).

‘The ternary function[.oop(a,b,c) connects its input 1 to that
of a, a’s output 1 to b’s input 1, b’s output 1 to ¢’s input L, b’s
output 2 to output | of Loop(a,b.c), and ¢’s output 1 to a’s input
2

The process Merge passes all data received on inputs 1 and 2
straight through to output 1, merging them subject to no
particular rule.

The above process-combining operations form a useful,
though surcly incomplete, basis for parallel programming.
lTowever they can be scen to casily subsume the conventional
scrial constructs as well, if wc consider “flow of control” in a
serial machine to mean the flow of the entire state of the machine

as a single giant datum through a net. Thus “begin a; b end” may
be written as Sequence(a,b), “if p then a else b" as
Fork(p.a,b,Merge), and “while p do a” as Loop(Merge,p,a),
where the predicate p is as defined above (a set, i.e. a pair of
filters).

There is no explicit notion of type declaration in Viron.
Iowever one can always insert a filter into a data stream to
achieve the effect of a declaration, which it does by blocking any
object not of that type. If type error reporting is desired, this may
be accomplished by using a set instead of a filter and routing the
false output to a suitable error handler at run time. Compile time
type error reporting amounts to testing at compile time whether it
is possible for any errors to reach the error handler. (As usual
with compile time computation, such a test may need to be
conservative, sometimes predicting errors when none can happen,
but never overlooking a possible error.)

Recursion is introduced into our model at the semantic level
via the notion of least fixed point. (It is noteworthy that in our
semantics the notion of minimality, whether of fixed points or
anything else, is not used in the definition of Loop and hence of
“while.”) Operationally, this becomes the usual substitution of
the process definition for the recursive use (invocation) of that
process.

The notion of a passing a parameter to a function corresponds
in Viron to the notion of inputting data to a process. In this sense
only call by value is provided. Call by reference and call by name
arc avoided as being too unpredictable: it is difficult to prove a
program correct when nearby programs hold pointers to objects
of that program. Call by need should be treated as an
implementation issue. The effects of these parameter-passing
disciplines are best handled by passing objects of higher type by
value.

11. Impact of the Paradigm Shifts on Viron

We now give a more detailed discussion of the impact of the
paradigm shifts on the structure of the language. Much of the
impact should already bc apparent given the discussion of the
paradigm shifts and the nature of the language. Thus this section
is just a short Viron-specific supplement to the main discussion of
the shifts.

11 .1. From Effect to Entity

Viron is in one sense an applicative language. Every
communication path is brought out into the open, instead of
beifig hidden by references to shared variables. Applicative
languages arc normally inherently entity oriented. Ilowever in
another sense Viron is effect-oriented, in that data cntering a
process can have an effect on that process. Yet the typical effect
is to alter the set and/or arrangement of entities existing inside
the process.

Thus Yiron is at once entity oriented, like an applicative
language. and cffect oriented. like an imperative language.

By making cvery concept an object, and by having processes
that can take processesas their input, we getthe effect of a
language of higher type. This provides a mathematically
attractive way of getting expressive power that in other languages
either cannot be attained or is strained for with a family of
csoteric parameter-passing mechanisms.

11.2. From Partition to Predicate Types

The role of types in conventional programming languages is
on the one hand to make clearer to the rcader what the program
does, and on the other to tell the compiler what data
representation and typc of operations to use in the translation. In
Viron, filters, which arise naturally in Viron as simple process
objects, are used to achieve both of these ends. This takes much
of the mystery out of types, and at the same time provides a more
flexible approach to types in that any Viron-definable predicate
may be used as a type.

11.3. From Serial to Parallel

The net-definable operations provide all the needed control
structures. This makes Viron an easy language to teach - once the
notion of a net is in place, a variety of control structures, whether
serial or parallel, can bc introduced simply by exhibiting the
appropriate net.

In Viron every datum, regardless of its complexity, is a
process. Thus adoption of parallelism over serialism permits a
uniform treatment of data, whether atomic, structured, or active.

11.4. From Effectiveness to Definability

One result of replacing effectiveness by definability is that it
makes sense to think of Viron as a requirements language as well
as a programming language. In this respect an implementation of
Viron can be viewed as either a compiler/interpreter of Viron or
an inference engine. The boundary between execution and
inference is not a sharp one, and we feel is best characterized in
terms of how much optimization is performed. Code motion,
where an operation that the program shows as executing n times
is actually only exccuted once thanks to the optimizer, is clearly
an execution-related notion. Induction, where dn operation that
is shown as executing over all natural numbers is reduced to one
step, is clearly part of infercncing. Yet the difference between
these two "optimizations"” is really only quantitative, if we accept
infinity as a quantity. In between, wc have in logic the notion of
arguing by cascs, which is indistinguishable from a program set
up to deal with each of those cases.

Another consequence of deemphasizing effectiveness is that it
changes the status of lazy evaluation. Normally lazy evaluation is
thought of as part of the operational or interpretive semantics of
the language, giving it the extra power nceded to compute with
infinite objects without going into an infinite loop trying to
generate the object all at once. In Viron lazy evaluation
disappears as a ‘language concept, resurfacing if at all as an
implementation concept. The Viron user is not meant to be
aware (other than via performance) of whether lazy evaluation or
some other method is used to deal with such infinite objects as the
set of all primes. It should be possible to interchange such
methods and have no effect on the semantics of any Viron
program.

11.5. From Syntactic to Semantic Consistency

In Viron it is unnecessary to restrict how expressions may be
built up and where data may bc sent. One consequence of this is
that a single lcast fixed point operator is possible in Viron, rather
than a fixed point operator at each type as would be required in a
more traditionally cautious language. Viron is to the untyped A-
calculus as a cautious language would be to the typed X-calculus.

12. Conclusion

Wc have proposed several changes to the way in which we
view our programming languages, only some of which are
presently advocated by others. These changes are not all obvious
ones 10 make. Nevcrthcless wc believe that they are all changes
for the better. We believe our arguments defending them to be
sound. Thus the changes certainly should not be rejected without
first disposing of our arguments.

13. Bibliography
[AD] Ackerman, W.B. and J.B. Dennis, A Value-Oriented
Algorithmic Language, MIT LCS TR-218, June 13, 1979.

[BA]Brock, J.D. and W.B. Ackerman, Scenarios: A Model of
Non-Determinate Computation. In Lecture Notes in Computer
Science, 107: TFormalization of Programming Concepts, J. Diaz
and I. Ramos, Eds., Springer-Vcerlag, New York, 1981.

[Chu] Church, A., The Calculi of Lambda-conversion.
Princeton University Press, 1941.

[Ilew] Hewitt, C. and 11.G. Baker, Laws for Communicating
Parallel Processes, IFIP 77, 987-992, North-I Iolland, Amsterdam,
1977.

[IToa]Hoare, C.A.R., Communicating Sequential Processes,
CACM, 21. 8, 666-672, August, 1978,

[Kah] Kahn, G., The Semantics of a Simple Language for
Parallel Programming, I['IP 74, North-IIolland, Amsterdam,
1974.

[KM] Kahn, G. and D.B.MacQueen, Coroutines and
Networks of Parallel Processes, IIFIP 77, 993-998, North-I Iolland,
Amsterdam, 1977.

[Kri] Kripke. S., Outline of a Theory of Truth, J. of Phil., 690-
716, 1975.

[Lip] Star Graphics: An Object-Oricntcd Implementation,
SIGGRAPLI-82 Conference Proceedings, 115-124, ACM, July
1982.

[Mac] Maclane, S., and G. Birkhoff, Algebra, Macmillan,
NY, 1967.

[Mil] Milner, R., A Calculus of Communicating Systems,
Springer-Verlag Lecture Notes in Computer Science, 92, 1980.

[Mor] Morris, 1.B., Types arc Not Sets; Ist Annual ACM
Sy mposium on f’rinciplcs of f’rogramming Languages, Boston,
MA, October 1973.

[Pet] Petri, CA., Introduction to Genceral Net Theory,
Springer-Verlag Lecture Notes in Computer Scicnee, 1981.

[Pop] Popplestone,R., The Design Philosophy of POP-II,
Machine Intelligence 3, Edinburgh University Press, 1968.

[Pra79] Pratt. V.R.. A Mathematician’s View of Lisp, Byte
Magazine, August 1979, p. 162

[Pra80] Pratt, V.R.. On Specifying Verifiers, 7th Annual ACM
Symposium on Principles of f’rogramming I anguagcs, Jan. 1980.

[Pra81] Pratt, V.R.. Program I ogic Without Binding is
Decidable, 8th Annual ACM Symposium on Principles o f
f’rogramming I anguages, Jan. 1981.

[Pra82] Pratt. V.R.. On the Composition of Processes, 9th

Annual ACM Symposium on f’rinciplcs of f’rogramming
Languages, Albuquerque. NM, Jan. 1982.

[Sch] Schoenfinkel, M, Ueber dic Bausteine der
Mathematischen Logik, Math. Ann. 92, 305-316, 1924. English

translation in From Frege to Goedel,Harvard University Press,
1967.

