
|

December 1982 Report No. STAN-CS-82-951

Five Paradigm Shifts in Programming Language

Design and Their Realization in Viron,
| a Dataflow Programming Environment

by

Vaughan pratt

Department of Computer Science

Stanford University

Stanford, CA 94305

__

Five Paradigm Shifts in Programming Language Oesign
and their Realization in Viron,

a Oataf low Programming Environment

Vaughan Pratt
Stanford University

Abstract developed at Stanford by the author that takes as its starting point
the philosophy of the Star environment [l.ip] but that goes

We describe five paradigm shifts in programming language considerably beyond it In its attention both to semantic
: : [ffect (foundations and realistic graphics. Wc will call both the interfacedesign, some old and some relatively new, namely I 0 and its programming language Viron, relying on context to

Entity, Serial to Parallel. Partition Types to Predicate Types. determine which is meant
Computable to Definable, and Syntactic Consistency to Semantic Co .
Consistency. Wc argue for the adoption of cach. Wc exhibit a This paper deals only with the semantics of Viron. F'or
programming language, Viron, that capitalizes on these shifts. presentation purposes we will adoptan abstract syntax in the

spirit of McCarthy’s Miisp. We belicve however that such an
‘This research was Supported by NSF grant number MCS82-05451. abstract syntax is too spartan for a comfortable and efficient user

interface. Other papers will describe syntaxes appropriate for
given applications, including a three-dimensional graphical syntax
wii suited to the Viron interface, as well as a textual syntax that

1. Background amounts to a formal approximation to English.
This is a companion paper to [Pra82]. These two papers As to novelty, the paradigm shifts vary considerably in their

started out as one paper, but when a clear division emerged individual novelty, with the effect-to-entity and serial-to-parallel
between the language proper and its theoretical foundations it paradigm shifts being the least novel. The emphasis of this paper
was decided to publish the foundations as a separate and self- is however not on the paradigms taken alone, but on their
contained thcorcticai paper, thereby removing much foundational harmonious combination in a single programming language.
clutter from the language paper that was not essential on a first
reading.

It is possible to read and understand the present paper with
only a limited understanding of the foundations. The 2. Sumrhary of the Paradigm Shifts
foundations come into play whenimplementingthe system, We give here a one-paragraph summary of each shift.
writing the manual, convincing oneself of the consistency of the .
ideas in the present paper, or establishing the soundness and/or From Effect to Entity. 1 arge objects arc made as mobile as
completeness of proof systems for proving the correctness of small, so that they can be casily created, destroyed, and moved
programs in this language. The greater the accuracy with which around as entities instead of being operated on pieccmcai as a
cach of these tasks arc to be performed. themore ciosciy must static collection of small objects.
one examine our foundations. From Serial to Parallel Constructs intended for parallel

In related work on the language side, our most visible computation arc also used to subsume both serial and data
intciiectuai creditors are Hewitt (Actors) [I Tew], Hoare (CSP) constructs, achieving a simplification of the control structures of
[Hoa]. and Dennis (VAL) [AD]. On the foundational side, they the language as well as providing a framework for organizing the
arc Kahn and McQucen (Streams) [Kah,KM] and Brock and data structures.
Ackerman (Scenarios) [BA]. Two notable contributors to the From Partition Types to Predicate Types. The partition view
foundations of concurrency arc Petri [Pet] and Miincr [Mil], of types partitions the universe into blocks constituting the atomic
whose influential work we mention here only to iiiustratc that types, so that every object has a definite type, namely the block
there is not yet onc central generally accepted model of containing it. The predicate view considers a type to be just
concurrent Processes, another predicate, with no a priori notion of rie type of an object.

‘1‘his language is the programming language for the Viron Irom Computable to Definable. Filectiveness is a trnditionai
computing cnv ironment, a graphics-inicnsive user inlerfacc being prerequisite for the admission of constructs to programming

languages. Weakening this prerequisite to mere definability
expands the language’s exprcssivcness thereby improving
communication between programmer and computer.

From Syntactic Consistency lo Semantic Consistency.
Consistency is traditionally enforced by syntactic restriction, ¢.8.
via type structure. A recently dcveiopcd alternative popularized
by Dana Scott takes the dual approach of resolving
inconsistencies via semantic expansion. as done for models of the
untyped A calculus. Wc argue that the latter approach simplifies
language structure.

We now expand on each of these paradigm shifts. CSP, which are among the better known languages offering
parallelism. In each of these languages the basic computational
paradigms are serial. Parallelism is introduced by modclling the
computing universe as a set of serial computers communicating

3. From Effect to Entity with each other. (In the case of ywider Unix concurrency and: inter-process communication, like , 1s supplied by Unix kerne

Traditionally computation has been viewed, both by calls, and 1s not part of the C language proper. However it is a
programmers and by mathematicians, as being performed for its fine example of a language in current use that in practice does
effect. The classical basic instruction is the state-modifying offer concurrency.)assignment statement. The classical model of computation is an y:
automaton (finite-state, pushdown, Turing machine, etc.) with a These examples strongly suggest that the relation between the
state or configuration transition function that describes how each two notions 1s that serial computation 1s a necessary prerequisite
state or configuration leads to its successor. to defining a notion of parallel computation.

This view of computation is gradually being superseded by a mis view of parallelism obviously does not reflect what
more entity or object oriented view. The computing universc is actually happens insidea machine. Within any “serial” computer
regarded as being populated with entities. The dynamics of the onc can observe parallelism at many levels in its ‘implementation:
universe is no longer described in terms of the state-to-state in the many electrons that flow through a wire (to go to an
transitions of automata but rather in terms of the site-to-site absurdly low level). in the many wires making up a bus, and in
transitions of entities, for which two of the more popular settings the many microprocessors that can be found in today’s large
are recursive function evaluation and dataflow architecture. mainframes, to name just some examples. For whatever reason

: : : : the programming language of a mainframe is serial, it is not
There are several forces acting to bring about this paradigm because the hardware itself is serial

shift. First, mathematics tends to emphasize entities over effects:
consider the classical mathematical model, the algebraic structure, What wc would like is a model of computation that not only
consisting of a set together with operations and relations. reflected this ubiquity of parallelism but that at the same time

Second, there is the increasing prevalence of parallelism, as subsumed the notion of serial computation, making it merelya
’ Co , LO special case of parallel computation. The chief advantage of this

nets connect computers into inherently parallel configurations, as would be in simplifying both our theoretical models of
cheap microprocessors start showing up several to a system, and computation and our programming languages. A program would
as silicon compiler> that translate algorithms into VLSI designs then be serial more as an accident than through not using parallel
become a reality. The scquencc-of-states model, well suited to constructs, just as determinism arises more by accident than by
serial computation, rapidly becomes unworkable in the presence avoidance of nondeterministic constructs
of parallelism. Hewitt MM] - i 1 ee ;

Third, there seems to be a psychological advantage to being roaming los ee ast of his message-passing
able to externalize concepts, that is, to treat them all conceptually Actors theory, Although Ome of the details differ (actors have no
as nouns instead of verbs, relations, etc. We speculate that this output), the underlvin rationale appears to be similaradvantage comes from the simplicity of the "typelessness” pub), ying PP
resulting from complete externalization. We will raise the issue of
typelessness again in more detail in a later section.

4.2. Need for a Formal Model

Comparing the situation once again with (non)dcterminism,

4. From Serial to Parallel there 1s still one missing ingredient, namely a formal semantics
that converts the prcccdenco of parallel over serial from a matter
of taste to a mathematical definition. The candidates for a model

of parallel computation that wc take at all seriously arc Petri nets

4.1. Which is the Basic Concept? [Pet]. Milner’s Calculus of Concurrent Systems (CCS) [Mii], the
oO Kahn-MacQuecn model of determinate processes [KM], the

One issue here 1s which is the more central concept, serial or Brock-Ackerman Scenarios model [BA], and our own model of
parallel computation? ‘There is an analogous question for processes [Pra82]. Among thcsc models the greatest unity, and
determinism versus nondctcrminism. For both questions there the longest history, can bc found among [KM], [BA], and [Pra82],
are ways of formalizing the question to make the answer come out which together constitute a monotonically improving sequence of
either way. For the latter question the predominant view of models (in that order). Wc consider the resulting model to supply
automata thcsc days, which is to represent them in terms of exactly the missing ingredient.
constraints on their state transitions, favors nondctcrminism. with

determinism being merely a special case of nondeterminism. The Kahn-MacQueen model defines an n-port process to be
Thus instead of dividing automata into two classes, the an n-ary relation on the set of all histories (sequences of data).
deterministic and the nondctcrministic, wctreat determinism as a This model was developed only for determinate processcs, and
property a nondecterntinistic automaton might or might not have, wasotonected by jis authors of not being rectly usable forthe linguistic awkwardness of the prefix "non" notwithstanding. nondcterminism. This suspicion was formally confirmed by an
Thispomint of view has been firmly supported by theessentially enlightening counterexample ducto Brock and Ackerman, who
universally accepted formal dclinition of “automaton” for the also proposed the necessary modification to the model to extend
past two decades. it to nondctcrminism [BA]. I'he modification was to introduce

RE C inter-hislory temporal precedence information. lhe Brock-
Our own intuition about serial versus parallel is that serial is a Ackerman model was adopted and further extended by the

special case ofparallel, rather than vice versa. Tiowever unlike present author [Pra82] to cater for process composition in a
the situation with determinism vs. nondctcrminism, there has not satisfactorily formal way, and to support an algebraic view of
been a similarly universally accepted formal definition of the process composition analogous to the algcbtaic view of serial-
notions serial” and “parallel.” This makes it much harder to program composition mandated by the structured-programming
resolve the question by appeal to a definition. movement.

One can see how hard it is to rclatc the two notions formally Besides the greater economy of subsuming the serial with the
by considering how they relate in current programming parallel, there is also theissue of irrelevant serialization forced in
languages. I ctusconsider C (under Unix), Ada, and Ifoarc’s a serial language. Thus x:-a; y: = b is a pair of assignments

2

whose order must be given even though it is clearly not needed. which is the source of parallelism in Unix. Thus it is possible to
This issue can bc met piecemeal by adding yet more constructs to introduce parallelism into the language via the library even if
the language, e.g. parallel assignment. However starting with an parallelism is not definable using just the basic language, given
inherently parallel language from the beginning solves this and that the library is permitted to step outside the basic language.

related problems just as effectively and more generally. Our actual motivation is that we want to expose parallelism to
The Viron programming language is noteworthy in having no the optimizing compiler. The state of the art of parallelism forces

explicitly serial constructs. it to be an interpreted concept, due to its having a purely
operational definition, one which admits only literal
interpretation of parallel constructs by an interpretive machine.
If a more abstract definition of parallelism is given, it becomes

4.3. Data Structures possible for an optimizing compiler to choose from a variety of

Auxiliary to the vertical integration of processes into Viron'’s equivalent iplementations Ind compiling=o BE healleI
control structures is its incorporation into the data structures as detail should b ed in the defini Y - Only
well. The denotational semantics of processes given in [Pra82) necessary detail should be retained in the definition.
imbues them with the status of object, permitting processes to be
thought of as data with the same “charter of rights” [Pop] or
“mobility” [Pra79] as integers. Cy :

Taking this development one step further, we have chosen to 5. From Partition to Predicate Types
make processes not the organic molecules of our language but Another paradigm shift has to do with the nature of types.
rather the elementary particles. That is, every datum, whether of I'he partition view of types considers “type” to bc a function from
the complexity normally associated with processes, or as simple as the universe onto a partition of that universe; each individual is
a character or an integer, is defined to be a process. In this we are mapped to the block of that partition containing that individual.
again following Hewitt [Hew], in whose development Thus type(3) = integer, type(3.14) = real, type({3,1.4]) = list,
“everything” is an actor. typc(cos) = real->real, and so on.

The main conceptual obstacle to thinking of an atom as a In contrast to the partition view, the predicate view of types
process is that atoms seem too simple to be thought of in this way. abandons the attempt to keep types disjoint, and permits each
However essentially the same argument was made for millennia individual to bc of many types. For example 3 may
excluding zcro as a legitimatenumber. Yet today zero is almost simultaneously bc of type real, integer, positive integer, integer
universally acknowledged to bc, though less than 1, no less a mod 4, mod 5, mod 6, etc. You yourself may simultaneously be a
number than 1. human, a teacher, an American, a Democrat, a Presbyterian, a

: : CL : non-smoker, and so on. There is no such thing in thc physical
Of course onc might come up withan unconvincing behavior world as TIIE type of an object, although any given context may

for numbers viewed as processes. Hewitt embeds the knowledge suggest a particular predicate as being the most appropriate
that 3 +2 = 5 and 3x2 = 6 in the actor that is the number 3, which predicate to be called the type of that object in that contex t.

. makes 3 a much more complex process than seems intuitively
necessary. The Viron idea of a number, and more generally of _ The partition view can admittedly be made to work in the
any atom. as a process is that. although the atom does output simple environments that come with today’s programming
something in response to each input, the output is independent of languages. However as the environment gets richer the partition

the valuc of the input and consists of the atom itself. view becomes progressively nore intractable. N Imagine 2a: : L oo : rogramming language in which for cvery pair ij of integers wi

The main reason for this choice is to fit in with our # there is a type J of integers in the interval from 1to v A pure
extensional view of processes, in which two processes with the partition view of types would require that the integer 3 not be one
same behavior must be the same process, If an atom was individual but many, one for each interval containing 3. This may
unresponsive all atoms would collapse to the same atom. A useful scem laughable, yet it is a logical extension of the more readily
fringe benefit of this convention is that, following our accepted idea that the real 3.0 is distinct from the integer 3. (It 1s
straightforward definition of addition, the addition of a number n noteworthy that Pascal adopts a predicatc-like approach to its
to an array of numbers results in the addition of n to cach of the treatment of the range subtype, while remaining partition-
elements of the array, as will be seen in the account below of oriented elsewhere, thereby avoiding this problem in its more
Viron. extreme forms.)

i The predicate approach to types simplifies this by having only
one individual recognizable as 3, common to all intervals

4.4. The Process Compiler containing 3. This individual can even be identified with the
individual 3.0 if one wishes to make the integers a subset of the

One might well ask why can’t the notion of process be reals, a simplifying view of the integer-real relationship which has
excluded from the programming language proper and made a much to recommend iL.

part of the subroutine library, on the principle that the Th dicate view h ai {of of
programming language only need supply a basis from which to ¢ pre hor © oy as a mn Ba 0 ria q foncxtend via the subroutine library. All process-oriented notions in modern mathematical logic. cre has been much study 0
Unix arc supplied in this way, for example. (It should be realized logica, theories Incorporating re notions of ype. Indeedthat C was developed by the developers of Unix as part of the usscll's approach to controlling the logical paradoxes of Frege s
Unix effort: thus this expulsion of the notion of process to the theory wasto introduce a Lype hicrarchy of the partition kind.
library was a consciously made decision in this case, not an However this approach was eventually superseded by the typeless
accident resulting from an inherited language.) theories of Zermelo-I‘racnkel and Bernays-Goedel. Admittedly

Co CL the Wernays-Gocdcl theory did go so far as to postulate a two-type
. A plausible motivation for putting the notion in the language hierarchy of sects and classes, but it is noteworthy that the
1S that parallelism 1S not definable 1n purely serial terms, much as “typeless” (but not predicateless) Zermelo-Fracnkel theoty is the
onc might argue that nondeterminism 1s not definable using only one that today is taken (modulo details) as the formal definition
deterministic concepts. f Iowever this argument assumes that the of sct theory, which in turn is accepted by many mathematicians
library 1s a true language extension in the sense that all its as supplying the formal basis for all of mathematics. While
functions could have been written in the language. Ihis is Zcrmelo-Iracenkel set theory may from time to time be subjected
actually not the case in the Unix cxamplc. which requires non-C to attacks, it is rarely if ever because of its typelessncss.
assembly code in its system calls in order to access the kernel,

3

The entity oriented approach that wc wish to explore will be Those fragments may grow in size and number as the supply
characterized by the "typelessness” of the predicate approach, in of algorithms improves: all that noneffectiveness does here is to
that all entities will belong to a single domain. Thus our approach prevent a complete implementation of Viron. The programmer
will have the flavor of Lisp’s typelessness, though with what we should accept such incompleteness with the same good grace that
feel is a sounder rationale than has been advanced by the Lisp the mathematician accepts it for his logical tools, which inevitably
community to date for typelessness. must be incomplete.

Making the break not only with performance but with
effectiveness removes a source of worry from the programmer

] much as having an undo key reassures the user of a word
6. From Computable to Definable processor. The programmer can get on with the job without the

It is unthinkable today to propose a noncffective model for a distraction of whether a given way of saying something will run
computing cnvironment. [low would you implement it? It is fast, or even will run at all.
unimplementable by definition. Ncverthclcss wc feel that this There is a feeling in some programming circles that the
insistence on effectiveness produces inarticulate programmers. burden of performance should be placed on the compiler. This is
Wc propose to include noncflective concepts in our models to possible up to a point, although no compiler can assume the full
simultancously enhance the expressive power of and simplify the burden, since there are always new algorithms to bc discovered.
language. Our position is that exactly this situation holds for effectiveness as

To begin with, consider the set of cven integers and the set of well as for performance. A compiler can deal with some of the
primes. These are objects that are very natural to be able to refer issues of finding an effective way to execute a program, but no
to in a program: certainly in natural language they are referred to one compiler can discover every such effective way on its own, it
all the time. llaving these objects in one’s domain is only must sometimes depend on the programmer. Just as the
nonclfective if one insists on a traditional representation of sets as impossibility of the perfect optimizer docs not imply the
bit vectors or linked lists of clements. If those two objects were all usclessness of optimizers, so does the impossibility of the perfect
there were in the domain onc bit would serve to represent each. automatic programmer not imply the uselessness of compilers

Ilowcvcer suppose we close this tiny domain under Boolean that can find effective methods in many cases.
operations. Wc now want to manipulate Roolcan combinations of
these two sets. Can this be done effectively? Yes: equality .

between expressions is decidable since it reduces trivially to the F . . idecision problem for two-variable propositional calculus, with the 7. From Syntactic to Semantic Consistency
two sets playing the role of the two variables. Four bits suffice Effectiveness is only one of the inhibitors of articulate
(exercise: and arc necessary) to represent the sixteen possible expression. The current approaches to controlling inconsistency
Boolean combinations of these two sets. constitute another. Russell's theory of types was designed to’

Now let us go a little further and add a unary operation to the avoid the inconsistencies Russell and others found in Frege’s
language that adds one to every clement in a set. Suddenly wc logical theories. The introduction of a hierarchy of types into the
can cx press infinitely many distinct subsets of the integers, even X-calculus serves a similar end.
without the evens. Nevertheless can wc still compute in. this In contrast to these syntically cautious approaches are the
language? In particular can we always decide whether two syntactically casual languages of Schocnfmkel [Sch] (cornbinatory
expressions denote the same set? Maybe, maybe not (let us know logic) and Church [Chu] (thc untyped A calculus). Ilere
if you find out), but clearly we cannot continue to add such paradoxes of the traditional kind may bc obtained at the drop of a
“reasonable” constructs to the language for long without arriving hat: for example cither language may cxpress the seemingly
at a non-cffcctive domain, one in which not even equality is nonsensical concept of a fixed point of the integer successor
decidable. function. Yet the languages arc more "user-friendly" than ones

R. Popplestone ran into this predicament when drawing up which introduce typing restrictions aimed at preventing such
his “charter of rights" for data [Pop], where his notion of datum paradoxes.Arc such languages merely syntactic curiosities devoid
went beyond just integers and boolcans. 1 le wanted every datum, of referential significance,or can they be considered to actually
including objects such as arrays and functions, to bc assignable to denote, despite the inconsistencies? Surcly they could not denote,
a variable, passable as a parameter, and returnable as the value of or they would not be inconsistent.
a procedure. Dana Scott has worked out the details of an approach to

-Ilowever he did not require that it be possible to tell whether making semantic scnsc of paradoxical and hence ostensively
two data were cqual. More generally, hc did not require that meaningless languages, which is to computation as complex
procedures behave the same with different representations of the numbers arc to electrical impedance. The idea is to augmentan
same data. Why? Because equality is undecidable for functions, otherwise normal domain with fuzzy or information-lacking
inter alia. elements. Fuzziness is represented with a partial ordering of the

domain in which x dominating y indicates that x has more
Wc consider Popplestone’s charter of rights to be information than y, which can bc rephrased without using the

substandard. Under that charter data is not abstract. A word “information” by saying that y might on closer examination
programming language should assign abstractness higher priority turn out to be x.
than cffectiveness. ‘This 1s a logical extension of the programming
rule, "Make it work before you make it fast.” The extension is to A very simple example of the shift from syntactic to semantic
treat the programming language as being primarily a descriptive consistency is provided byBoolcan circuits. A simple syntactic
tool, and only secondarily as a medium for achieving performance constraint on a circuit that guaraniees predictable static behavior
or even effectiveness. 1s that it be acyclic. This condition may bc relaxed with caution to

C yield more interesting behaviors. However if in the interests of
~~ Our approach to implementing a noneffective domain is to simplicity all conditions on circuits are dropped. we can then
implement succinctly specified decidable language fragments. connect the output of an inverter (a device realizing the unary
the key here is the existence of easily recognized decidable Boolean operation of complementation) to its input. This
fragments of undccidable languages. We have developed this provides a simple physical model of the logical paradox implicit
idea mn [Pra80] and [Pra81] for the case of program vcrilication. in the equation x = ~x.
‘The idea 1s not specific to verilication however, and can be Co

applied just as readily to cxecution in a nonelfective domain. Classically a paradox means an inconsistency, which in turn
means there is no model of the paradox - the universe should

disappear when we feed the invcrter’s output back to its input! integers (integer “bottom”).

This actually does happen, at least in the sense that the universe The main advantage of Scott’s approach is the way it can
of pure truth values no longer provides an adequate account of simplify the language, which no longer needs to be sensitive to
the circuit behavior. With the feedback loop the inverter inconsistcncics. On the other hand it does complicate the model.
functions like an amplifier. with negative feedback, with its Yet even here there is an advantage, for the model can be used to
common input and output stabilizing at a voltage somewhere permit the relocation of the implementability boundary from
between logical 0 and 1. “This intermediate voltage is not a part of syntax to semantics, a novel concept for programming languages
the O-1 Boolean universe, but it is a part of a morc detailed model but one that we believe can be used to good effect. Let us see
that admits invalid or uninformative data in addition to the how this works.
regular data. Thus if we postulate three values, 0, *, and 1, with 0 : :
and 1 considered maximally informative and * uninformative, Normally a system designer chooses an implementable
and take the response of an inverter to the inputs 0, *, 1 to be language, and as new needs arise augments the language with
respectively 1, *, 0, then we may solve x = ~x with x = *, additional implementable constructs. With Scottish models it is

CL possible to fix an absurdly over-expressive yet simple language
The key feature of this simple example is that we have moved once and for all, and to augment not the language but the

from a syntactic to a semantic solution to the problem of paradox. interpretation of the language, by increasing the information
Instead of relying on the absence of cycles or some other syntactic available to the language interpreter about the interpretations of
constraint to prevent paradoxes, Scott’s approach is instead to expressions in the language. (Intcrpretation I, mapping
expand the universe to account for and hence dispose of expressions to domain elements, is considered an augmentation of
paradoxes. interpretation J when I dominates J, i.e. I(e) dominates J(c) for all

Scott’s approach was motivated by just the sort of "user- expressions e in the language.)

friendly” syntactic sloppiness that actually arises in real As a trivial example, one could start out with a semantic
programming languages. such as the ability in Algol 60 to pass as function that mapped numerals to integers, and all other
a parameter to the function f any function including f itself. More expressions to the bottom clement of the domain. Although the
recently Saul Kripke [Kri] has made a very similar proposal to the language might have addition, that function would in effect start
philosophical community with a paradox-explaining theory of out as the cverywhcerc undefined function. Then one could add
truth that has been received with remarkable enthusiasm by the some set of computable arithmetic functions by raising from
philosophical community. Kripke’s theory of truth is founded on bottom to integers the Interpretations of all expressions
the existenceof fixpoints of monotone functionals in a complete containing only those functions and numerals, at the same time
partial order, just as with Scott’s theory. providing the necessary implementation of this increase. At some

It should be observed that the Scott-Strache) school of point one might raisc the interpretations of “set of evens” and
mathematical semantics that developed at Oxford has made two “set of primes” to the appropriate sets, also ideal clecmcents. As
distinct contributions to programming semantics: the notion of algorithms for evaluating various linguistic fragments of set
dcnotational semantics as a homomorphism from expressions to theory came to light one could implement them and so raise the

values, and the notion of the information order as a basis for a interpretations of corresponding expressions. (If desired one
fixpoint-of-monotone-functional ~~ semantics ~~ for resolving might also add heuristics for noncffcctive fragments, thercby
paradoxes. Yet little attempt is made by computer scientists to further raising some inlcrpretations, though by ill-characterized
distinguish these two contributions, and the term “dcnotational amounts for an ill-characterized subsct of the language.)

semantics” is frequently applied to both of them as a single The advantage of putting “language subsetting” in the
package, with the implication that the latter is a vital component semantics instead of in the syntax is that it decouples language
of the former. In fact onc can carry out a very comprehensive development from implementability considerations. This in turn
program of semantics without any reference to an information makes it possible to make the full language available immediately
ordering. ‘I‘his is done for example in such program logic schools for development of algorithms without waiting for full
as algorithmic logic, dynamic logic, and temporal logic, where the implementation support for those algorithms. These would
semantics is of a homomorphic character but with no dependence sometimes be noncffcctive algorithms when they referred to as-
on ordered domains. It 1s also done in [Pra82], the foundations on yetundefined functions, but they still would serve the useful
which the semantics of Viron arc built. purpose of specifying problems that could then be rewritten

When paradoxes emerge however in response to lax syntax, manually in an cffective sublanguagc.

Scott’s information order becomesa key ingredient of a successful A language as powerful as this can be built up until it
"semantics. subsumes any given requirements language. From this point of

In the commonest account of Scott’s theory (not Scott’s own view implementation reduces to translation within the language to
account howcvcr). based on complete partial orders (cpo’s, partial achieve a raising of the interpretation (meaning) of the translated
orders in which every directed set has a sup), the maximal expression. The raising happens because, for example, some
elements of the cpo can bc considered the “normal” or “ideal” noneffective function or concept (c.g. quantification) is translated
elcmcnts. the objects wc consider 10 normally populate the to a more clfcctive form. The definition of correctness of an
universe. The other clements arc approximations to the ideal implementation is that it dominate the expression it was
clements, in the same sense as intervals with rational endpoints on translated from (where the ordering between expressions 1s just
the real line are approximations to reals. In the cpo account, that induced bythe ordering on theinterpretations of those
unlike in Scott’s account, there are no overspecified clements expressions, i.e. for expressions ¢ andf, e<f when I(¢)XI()).

containing more information than the ideal clements. If one views an automatic programmer as a function mapping
The simple expressions of the language, c.g. the numerals, expressions to expressions in this language then the automatic

arithmetic cxpressions over numerals, etc., arc considered to programmcr is correct just when it 1s monotonic.

denote ideal clements. Tlowever some of the more complex This one-language view of the relation between requirements
expressions will only denote approximations. In particular the and implementation is appealingly simple. Yet it fits naturally
paradox ical = expressions are ~~ guaranteed to denote into the real world of requirements and implementations, which
approximations: no matter how closely youinspect a paradoxical typically form a hierarchy in which implementations turn into
element you cannot tell what ideal clement it should denote. By rcquircments as one programs from top to bottom. The
withholding information in this way, the model prevents you homogeneity of our requirements and implementations simplifies
from arriving at a contradiction. lor cxamplc an expression this dual view of requircments/programs by expressing them all
denoting a fixed point of the successor function will denote an in a common language.
approximation to integers, usually one that approximates all

5

8. Lisp as a Benchmark A link is to be thought of not in the information theoretic
Lisp is a good benchmark against which to measure progress sense of a channel having capacity, or affecting its messages, but

in language design. Despite its age (approaching the quarter rather merely as an arbitrary boundary between two processes. A
century mark) it still ranks as one of the primary sources of datum flowing between two processes must at some me cross
insight into the principles of programming language design. that boundary: this is called an net event. It either happens or

docs not happen: there is no probability, distortion, delay, or
Lisp, at least pure Lisp, emphasizes entity over effect. Lisp queuing associated with the event. Imperfections in the net must

treats its complex data, lists and (to an extent) functions, as always be associated with processes. A transmission link that
objects to bc moved around the computing environment with the accumulates, permutes or distorts messages must be modelled as a
samc mobility as integers, putting demands on the storage process in our nets. The question of whether a link has a finite
management algorithms beyond what suffices for a domain of say queue, an infinite queue, or no queue, is translated to the
integers. ~~ Furthermore Lisp emphasizes the homogeneity or question as to what buffering mechanisms a process provides at
typelessness of the predicate approach to typing. each of its input and output ports. This in turn is captured

However pure Lisp does not gracefully handle the process- abstractly in the “reliability” of a process - finite buffers will
oriented notions of state. memory, coroutine, or concurrency, reveal themselves through the possibility of intperfcct behavior.

concepts that are at best feebly captured in a domain of Formally. a net event is a link-datum pair, interpreted as the
recursively defined functions and functionals on a basis of lists traversing of that link by that datum. A net trace is a partially
and atonts. It is usual to think of these as only recently being ordered multiset of net events, interpreted as a possible
demanded, but we arc of the opinion that their need has always computation, with the order specifying which events necessarily
been present, and that only the lack of the necessary concepts has preceded which other events in time. Necessary temporal
prevented the Lisp designers and users from recognizing these precedence is a primitive notion in this theory. A ner behavior is a
nocds as process-orenied needs long ago. We believe thal the set of net traces. These three notions, net cvent, net trace, and net
impurities of Lisp - PROG. SETQ, GOTO, RPLACA, RPLACD, behavior, constitute the internal view of a process.
ctc. - arose in response to such needs, and met them by reverting : : :
from the entity paradigm to the effect paradigm, where it was In the external view, a process event 1s a port-datum pair, a
already understood intuitively how to implement process oriented process trace 18 a partially ordered multisct of process events, and
notions. The price for this step backwards was the loss of a process behavior is a set of process traces. ~ (The tight
mathematical meaning for the concepts of 1 isp, to the extent that correspondence between the internal and external views of a
being effect-oriented leads to clumsier definitions than being process should bc noted.)
entity-oriented. There are two connections to be made between the internal

The similarity between pure Lisp and Viron is that both arc and external views of a process. Network traces need to be
entity oriented. ~The difference is that Viron entities are consistent with the behavior of the constituent processes of the
specilically intended to model the notions of state, memory, net, achicved by requiring that the restriction of each net trace to
coroutines, and concurrency. any constituent (i.e. non-exterior) process of the net be a process

trace of that process. And the process behavior imp!cmentcd by a
net is obtained as the restriction of the net behavior to the exterior

process, with I and O interchanged. In both cases "restricaon”
- involves a renaming of links to ports, selection of the relevant

9. Foundations events, and corresponding restriction of the partial order; details
As stated in the introduction, this is the second paper of a are in [Pra82].

series whose first paper [Pra82] described the ‘mathematical We adopt an extensional view of processes, identifying them
foundations for a notion of process. We repeat here the bare with their process behavior, just as onc identifies a function with
definitions. its graph (sct of ordered pairs). Thus wc ntay abbreviate “process

There are two views of processes, internal and external. The behavior implemented by a net” to "process implemented by a
internal view is the morc detailed one, and depends on the notion net.”

of a ner of processes, without regard for what actual data flows A network! of n processes numbered 1 through n defines an
between them. All processes have two countable sets of input and n-ary operation mapping cach n-tuple of processes to the process
OUIpUT POTS. holla and 0,,0,.0,, all but finitcly many of implemented by that network having those n processes aswhich will normally go unused. C1 his arrangement avoids the :] : . :

: ce : constituents. The ner-definable operations arc those operations on
encumbrance of a syntactic classification of processes according to definable in thi A net alecbra is anv set of
their port structure.) The net consists of zero or more disjoint PTOCCSSCS oy a © oo > oki ble © 2 5 any
communication [links cach connecting one output port to one Processes closed under the: NE-ACHNADIC OpCrations.
input port; each port is connected to at most one link. A nct can
be studied in its own right, or as a means of implementing a
process. in which casc certain of its processes are associated with . i
ports of the implemented process. 10. The Programming Language Viron

In [Pra82] cach port-associated process was assumed to use The goal of Viron is to bc maximally uscful with a minimum
only onc of its own pot1s. One minor improvement wc make here of machincry.
lo thatmodeclis to collect alt the port-associalcd processes of a net
into a singlc process. called the exterior process of the net. Port 1.
of this process corresponds to port 0. of the implemented process!
in the sense that data sent by the nét to 1. will appear as output 10.1. At the interface
from port 0. of the process implemented by this net. Dually data In the word-object dichotomy, the concept of “language”
arriving at fort 1. of the implemented processes cnters the net of scems to belong as much to the word as to the object it names. In
the implementation of that process via port 0, of the net’s exterior this paper however wc shall play down the syntactic part of Viron,
process. leaving that to other papers. and focus instead on Viron’s domain

To ask how the exterior process of net N is implemented is to of discourse.
ask what network the process implemented by N is embedded in.
‘This viewpoint reflects a certain symmetry between the exterior -

and erior of processes that sharpens the role of the process as There is a distinction made in [Pra82] between simple general nets. We
network interface. have since decided to consider only simple nets.

0

In the interests of brevity and readability, and in keeping with notion of “set of characters” is not sufficiently universal to justify
the introductory nature of this paper, the description of Viron will its inclusion in Viron as a primitive.)

remain at an informal level. A more rigorous treatment of the Arithmetic functions: the rational functions (addition,
language would entail the use of a formal description language. It subtraction, multiplication, division) are provided. Division is a
Is our intent to use Viron to describe itself formally, just as an partial function in the sense that it absorbs its two arguments
informal description of ZF set theory may be formalized in the without response when the divisor is zero.
language of ZI. (One reason for not using ZF instead of Viron is : : : :
that they have quite different inconsistency-avoidance The arithmetic functions are defined not only on integers but
mechanisms. Viron evades inconsistency by being noncommittal, on all functions. (Recall that an integer is an atom and hence a
cautiously raising its definitions as far as its algorithms permit, function.) The sum of two functions is coordinatewise addition
whereas ZI sets itself up with fingers crossed as a fixed target that (on the intersection of the domains of the two functions), and
either is or is not consistent.) similarly for the other functions. It can be scen that this is

Co CL consistent with the normal behavior of addition on integers; thus
The Viron universe 1s simply a set of processes, ranging in 2+ 3 =5 either for the usual reason or because as functions the

complexity from simple atoms through functional objects such as two constant functions whose values arc respectively 2 and 3 sum
application and composition to large and/or complex systems. to the constant function whose value is 5. Taking this further, it
The Viron user interacts with processes: he manipulates them, can be seen that the sum of a list and an integer is the result of
watches them, talks to them, listens to them, and discourses on adding that integer to the elements of the list, since the integer
them (with an occasional break for coffee). No -one of these can be viewed as a constant function, with a domain that is a
activities is intended to be the dominant one, nor is this list of superset of the domain of the list (an initial segment of the
what one can do with processes intended to be complete. positive integers). This is a happy circumstance, as it coincides

Abstract programming languages generally start out with one with what programmers generally mcan by the sum ofa list and
or another basic combining primitive. One popular such an integer, e.g. as in APL.

primitive is application; the domain of discourse of such a n-dimensional Array: a function with domain a contiguous
language 1s called a combinafory algebra, and the language itself is rectangular subspace of Z".
characterized as being applicative. All other combining operators,) :

or combinators, are provided as elements of the combinatoty List: a I-dimensional array starting at 1. (This agrees with the
algebra. Church’s h-calculus [Chu] provides a familiar example definition of “list” on p.43 of Macl.ane and Birkhoff [Mac], and
of a combinatory algebra; the set of proofs of propositional makes no attempt to relate lists to pointers. Making the pointer
calculus, with modus ponens as the analogue of application, implementation of lists visible to the user, despite 1ts obvious
provides another. advantages in terms of control, makes the list concept unduly

The informal interface between Viron and its user takes the complicated.) _y Cr : :
place of application in an applicative language. The precise Filter: a restriction of the identity function to a partial
definition of the processes themselves makes it possible to function.
provide a formal definition of any given mode of user interaction Set: a one-input two-output process whose two outputs in

on demand. Manipulation of processes may be formalized in effect implement two filters with complementary domains, i.e. a
terms of whatever combinators are supplied by the manipulation steering mechanism. As such a set is not a function only in that it
language - composition when processes can be assembled into a has two asynchronous outputs (as opposed to one output
net, application when date can be input to processes, etc. synchronously yiclding a pair).

Watching a process execute can be described formally in terms of Predicate: a set.
viewing a trace. Talking to a process is the same as inputting data i
to a process, while listening to onc is the converse - output from a Record: a function with domain a finite set of symbols.
process is sent to the user. Discourse on processes characterizes a Memory cell: a process that when sent any value on its second
user-Viron talk-listen loop since all transactions are themselves input outputs the most recent value scen on its first. (Cells are
processes. defined more formally in [Pra82].) It is a nontrivial example of a

The fact that all data and computing agents arc processes process that is not a function.
need not be pointed out to the beginner, who will encounter Onc may link n processes into a nct with the help of various
numbers, lists, functions, and so on well before the general notion n-ary functions for that purpose. ‘or example there is a binary
of a process makes its appearance. I Iowcver since this paper is for function Sequence(a,b), which yields a process implemented by a
a more sophisticated audience wc can afford to make the basic net that connects its input 1 to a’s input 1, a’s output 1 to b’s input

© process representation explicit. 1, and b’s output 1 to output 1 of Sequence(a,b). (This is made

The least likely candidates for representation as processes are more formal using the definition of process composition in
atomic data such as integers and characters. Somewhat more [Pra82])
plausible are functions, which amount to memorylcss processes. The quaternary function Fork(ab,c,d) yields a process
We have chosen to represent n-ary functions as processes that implemented by a net that connects its input 1 to a’s input 1, a’s
send onc datum to output 1 when one datum has been consumed output I to b’s input 1, a’s output 2 to ¢’s input 1, b’s output 1 to
at each of the first n inputs, the output being the desired function d’s input 1, ¢’s output 1 to d’s input 2, and d’s output | to output 1
of the consumed inputs. of I ‘ork{a,b,c,d).

‘The ternary function Loop(a,b,c) connects its input 1 to that
of a, a’s output 1 to b’s input 1, b’s output 1 to ¢’s input 1, b’s
output 2 to output l of Loop(a,b,c), and ¢’s output 1 to a’s input

10.2. Basic Data 9.

Having cnsured that functions arc processes, tomake an atom The process Merge passes all data received on inputs 1 and 2
a process it suffices to make it a function, which we do by straight through to output 1, merging them subject to no
defining the atom b to be theconstant function b satisfying b(x) particular rule.
= b for all x. (Type circularity is no problem here since we are The ab bini . ful
not using a conventional type hierarchy of functions and ¢ above process-combining operations 1orm a Uusciul,
functionals.) though surcly incomplete, basis for parallel programming.

i llowever they can be scen to casily subsume the conventional
Atoms: Wc take as the atoms of Viron thesct 7 of integers. serial constructs as well, if wc consider “flow of control” in a

(It is tempting to have other atoms such as characters, but the serial machine to mean the flow of the entire state of the machine

7

as a single giant datum through a net. Thus “begin a; b end” may 11.2. From Partition to Predicate Types
be written as Sequence(a,b), “if p then a else b" as The role of types in conventional programming languages is
Fork(p.a.b,Merge), and “while p do a” as Loop(Merge,p.a), on the one hand to make clearer to the reader what the program
where the predicate p is as defined above (a set, 1.e. a pair of does, and on the other to tell the compiler what data
filters). representation and type of operations to use in the translation. In

There is no explicit notion of type declaration in Viron. Viron, filters, which arise naturally in Viron as simple process
ITowever one can always insert a filter into a data stream to objects, are used to achieve both of these ends. This takes much
achieve the effect of a declaration, which it does by blocking any of the mystery out of types, and at the same time provides a more
object not of that type. If type error reporting is desired, this may flexible approach to types in that any Viron-definable predicate
be accomplished by using a set instead of a filter and routing the may be used as a type.
false output to a suitable error handler at run time. Compile time
type error reporting amounts to testing at compile time whether it
is possible for any errors to reach the error handler. (As usual
with compile time computation, such a test may need to be 11.3. From Serial to Parallel

conservative, sometimes predicting errors when none can happen, The net-definable operations provide all the needed control
but never overlooking a possible error.) structures. This makes Viron an easy language to teach - once the

Recursion is introduced into our model at the semantic level notion of a net is in place, a variety of control structures, whether
via the notion of least fixed point. (It is noteworthy that in our serial or parallel, can bc introduced simply by exhibiting the
semantics the notion of minimality, whether of fixed points or appropriate net.

anything else, is not used in the definition of Loop and hence of In Viron every datum, regardless of its complexity, is a
while.”) Operationally, this becomes the usual substitution of process. Thus adoption of parallelism over serialism permits a

the process definition for the recursive use (invocation) of that uniform treatment of data, whether atomic, structured, or active.
process.

The notion of a passing a parameter to a function corresponds
in Viron to the notion of inputting data to a process. In this sense
only call by value is provided. Call by reference and call by name 11.4. From Effectiveness to Definability

arc avoided as pine too unpredictable: bo difficult to prove a One result of replacing effectiveness by definability is that itprogram correct when nearby programs hold pointers to objects makes sense to think of Viron as a requirements language as well
of that program. Call by need should be treated as an as a programming language. In this respect an implementation of
implementation issue. ~ The effects of these parameter-passing Viron can be viewed as either a compiler/interpreter of Viron or
disciplines are best handled by passing objects of higher type by an inference engine. The boundary between execution and
value. inference is not a sharp one, and we feel is best characterized in

terms of how much optimization is performed. Code motion,
where an operation that the program shows as executing n times

. . . 1s actually only executed once thanks to the optimizer, 1s clearl

11. Impact of the Paradigm Shifts on Viron an exeeution-ielated notion. Induction, where dn operation that
We now give a more detailed discussion of the impact of the is shown as executing over all natural numbers is reduced to one

paradigm shifts on the structure of the language. Much of the step, is clearly part of infercncing. Yet the difference between
impact should already bc apparent given the discussion of the these two "optimizations" is really only quantitative, if we accept
paradigm shifts and the nature of the language. Thus this section infinity as a quantity. In between, wc have in logic the notion of
is just a short Viron-specific supplement to the main discussion of arguing by cascs, which is indistinguishable from a program set
the shifts. up to deal with each of those cases.

Another consequence of decemphasizing effectiveness is that it
changes the status of lazy cvaluation. Normally lazy evaluation is
thought of as part of the operational or interpretive semantics of

11.1. From Effect to Entity the language, giving it the extra power needed to compute with

Viron is in one sense an applicative language. Every infinite objects without going into an infinite loop trying to
communication path is brought out into the open, instead of generate the object all at once. In Viron lazy evaluation
beifig hidden by references to shared variables. Applicative disappears as a language concept, resurfacing if at all as an
languages arc normally inherently entity oriented. Ilowever in implementation concept. The Viron user is not meant to be
another sense Viron is effect-oriented, in that data cntering a aware (other than via performance) of whether lazy evaluation or
process can have an effect on that process. Yet the typical effect some other method is used to deal with such infinite objects as the
is to alter the set and/or arrangement of entities existing inside set of all primes. It should be possible to interchange such
the process. methods and have no effect on the semantics of any Viron

Thus Yiron is at once entity oriented, like an applicative progtati.
language. and cffect oriented. like an imperative language.

By making every concept an object, and by having processes

that can take processesas their input, we getthe effectof a 11.5. From Syntactic to Semantic Consistency
language of higher type. This provides a mathematically In Viron it i : h : battractive way of getting expressive power that in other languages _In Viron it is unnecessary to restrict how expressions may be
either cannot be attained or is strained for with a family of built up and where data may bc sent. Onc consequence of this is
esoteric parameter-passing mechanisms. that a single least fixed point operator is possible in Viron, rather

than a fixed point operator at each type as would be required in a
more traditionally cautious language. Viron is to the untyped A-
calculus as a cautious language would be to the typed X-calculus.

i

12. Conclusion

Wc have proposed several changes to the way in which we
view our programming languages, only some of which are
presently advocated by others. These changes are not all obvious
ones 10 make. Nevcrthcless wc believe that they are all changes
for the better. We believe our arguments defending them to be
sound. Thus the changes certainly should not be rejected without
first disposing of our arguments.

13. Bibliography
[AD] Ackerman, W.B. and J.B. Dennis, A Value-Oriented

Algorithmic Language, MIT LCS TR-218, June 13, 1979.

[BA] Brock, J.D. and W.B. Ackerman, Scenarios: A Model of
Non-Determinate Computation. In Lecture Notes in Computer
Science, 107: Formalization of Programming Concepts, J. Diaz
and I. Ramos, Eds., Springer-Verlag, New York, 1981.

[Chu] Church, A., The Calculi of Lambda-conversion.
Princeton University Press, 1941.

[I lew] Hewitt, C. and 11.G. Baker, Laws for Communicating
Parallel Processes, IFIP 77, 987-992, North-I Tolland, Amsterdam,
1977.

[IToa] Hoare, C.A.R., Communicating Sequential Processes,
CACM, 21. 8, 666-672, August, 1978,

[Kah] Kahn, G., The Semantics of a Simple Language for
Parallel Programming, [IFIP 74, North-[lolland, Amsterdam,
1974.

[KM] Kahn, G. and D.B. MacQueen, Coroutines and
Networks of Parallel Processes, [IFIP 77, 993-998, North-I Tolland,
Amsterdam, 1977.

[Kri] Kripke. S., Outline of a Theory of Truth, J. of Phil., 690-
716, 1975.

[Lip] Star Graphics: An Object-Oricntcd Implementation,
SIGGRAPLH-82 Conference Proceedings, 115-124, ACM, July
1982.

[Mac] Macl ane, S., and G. Birkhoff, Algebra, Macmillan,
NY, 1967.

[Mil] Milner, R., A Calculus of Communicating Systems,
Springer-Verlag Lecture Notes in Computer Science, 92, 1980.

[Mor] Morris, 1.B., Types arc Not Sets; Ist Annual ACM
Sy mposium on f’rinciplcs of f’rogramming Languages, Boston,

] MA, October 1973.
[Pet] Petri, CA., Introduction to General Net Theory,

Springer-Verlag Lecture Notes in Computer Science, 1981.

[Pop] Popplestone,R., The Design Philosophy of POP-II,
Machine Intelligence 3, Edinburgh University Press, 1968.

[Pra79] Pratt. V.R.. A Mathematician’s View of Lisp, Byte
. Magazine, August 1979,p. 162

[Pra80] Pratt, V.R.. On Specifying Verifiers, 7th Annual ACM
Symposium on Principles of f’rogramming 1 anguagcs, Jan. 1980.

[Pragl] Pratt, V.R.. ProgramI ogic Without Binding is
Decidable, 8th Annual ACM Symposium on Principles o f
f’rogramming I anguages. Jan. 1981.

[Pra82] Pratt. V.R.. On the Composition of Processes, 9th
Annual ACM Symposium on f’rinciplcs of f’rogramming
Languages, Albuquerque. NM, Jan. 1982.

[Sch] Schoenfinkel, M, Ueber die Bausteine der

Mathematischen Logik, Math, Ann. 92, 305-316, 1924. English
translation in From Frege to Goedel, Harvard University Press,
1967.

