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Artificial Intelligence: Cognition as Computation?

Avron Barr

Py
The ability and compulsion to know are as characteristic ¢f our human nature as arc our physical posture

and our languages. Knowledge and intelligence, as scientific concepts, arc used to describe how an organism's

cxperience appears to mediate its behavior. This report discusses the relation between artificial intelligence

(Al) research in computer science and the approaches of other disciplines that study the nature of intelligence,

cognition, and mind. The state of Al after 25 years of work in the ficld is reviewed, as are the views of its

practitioners about its relation to cognate disciplines. The report concludes with a discussion ofsome possible

effects on our scientific work of emerging commercial applications of Al technology, that is, machines that

can know and can take part in human cognitive activities. CoER

Artificial Intelligence

Artificial intelligence is the part of computer science concerned with creating and studying computer

programs that exhibit behavioral characteristics we identify as intelligent in hum:n bchavior—knowing,

reasoning, lcaming, problem solving, language ur.derstanding, and so on. Since the field's emergence in the

mid-1950s. Al researchers have developed dozens of programs and programming techniques that support

some sort of “intclligent” behavior. Although there are many attitudes expressed by rescarchers in the field,

most of these people are motivated in their work on intelligent computer programs by the thought that this

work may lead to a new understanding ofmind:

Al has also embraced the larger scientific goal ofconstruciing an information-processing theory of
intelligence. If such a science of intelligence could be developed. it could guide the design of
intelligent machines as well as explicate intelligent behavior as it occurs in humans and other

animals. (Nilsson, 1980, p. 2)

Lyo appear in The Study of Information: Intedisciplinery Messages odiedby Fricz Machiup and Usa Mansfield,and publishedby
Joha Wiley and Soms, New York, 1963.
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Whether or not it leads to a beiter understanding of the mind, there is every evidence that current work

in Al will lcad to a new iatelligent technology that may have dramatic cffects on our society. Experimental Al

systems have alrcady generated interest and enthusiasm in industry and are being developed commercially.

These experimental sysicms include programs that—

e solve some hard problems in chemistry, biology, geology, ¢ngincering, and medicine at human-
expert levels of performance;

e manipulate robotic devices to perform some useful sensory-motor tasks; and

e answer questions posed in restricted dialects of English (French, Japanese, eic.).

Useful Al programs will pl. v an important part in the evolution of the role of computers in our lives—a role

that has changed, in our lifetimes, from remote to commonplace and that, if current expectations about

computing cost and power are correct, is likely to evolve further from useful to essential.

The Origins ofArtificial Intelligence

Scientific ficlds emerge as the concerns of scientists congeal around various phenomena. Sciences
arc not defined, they are recognized. (Newell, 1973a, p. 1)

The intellectual currents of the times help direct scientists to the study of certain phenomena. For the )

evolution of Al, the two most important forces in the intellectual environment of the 1930s and 1940s were

mathematical logic, which had been under rapid development since the end of the 19th century, and new

ideas about computation. The logical systems of Frege, Whitehead and Russell, Tarski, and others showed

that some aspects of rcasoning couid bc formalized in a relatively simple framework:

The fundamental contribution was to demonstrate by example that the manipulation of symbols
(at least some manipulation of some symbols) could be described in terms of specific, concrete
processes quite as readily as could the manipulation of pine boards in a carpenter shop. . . . Formal

logic, if it showed nothing clse. showed that idcas—at least some ideas—could be represented by
symbols, and that these symbols could be altered in meaningful ways by precisely defined
processes. (Newell and Simon, 1972, p. 877)

Mathematical logic continues to be an active arca of investigation in Al, in part because general-purpose,

logico-deductive systems have been successfully implemented on computers. But cven before the advent of

computers, the mathematical formalization of logical reasoning shaped people's conception of the relation

| between computation and intelligence.

1dcas about the nature of computation, due to Church, Turing, and others, provided the link between the

notion of formalization of reasoning and the computing machines about to be invented. What was essential in
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this work was the abstract conception of computation as symbol! processing. The first computers were

numerical calculators that did not appear to embody much intelligence at all. But before these machines were

even designed, Church and ‘l'uring had seen that numbers were an inessential aspect of computation—they

were just onc way of interpreting the internal states of the machine:

In their striving to handle symbols rigorously and objcctively—as objects—Ilogicians became more

and more explicit in describing the processing system that was supposed to manipulate the

symbols. In 1936, Alan Turing. an English logician, described the processor. now known as the
Turing machine, that is regarded as the culmination of this drive toward formalization. (Newell

and Simon, 1972, p. 878) ,

The model of a Turing machine contains within it the notions both of what can be computed and
of universal machines—computers that can do anything that can be done by any machine.

(Newell and Simon, 1976, p. 117)

Turing, who has been called the father of Al, not only invented a simple, universal, and nonnumerical model

of computation but also argucd directly for the possibility that computational mechanisms could behave in a

way that would be perceived as intelligent:

Thought was still wholly intangible and incffable until modern formal logic interpreted it as the
manipulation of formal tokens. And it scemed still to inhabit mainly the heaven of Platonic ideals,
or the cqually obscure spaces of the human mind, until computers taughr us how symbols could be
processed by machines. A.M. Turing . . . made his great contributions at the mid-century
crossroads of these developments that led from modern logic to the computer. (Newell and
Simon, 1976, p. 125)

As Allen Newell and Herbert Simon point out in the “Historical Epilogue” to their classic work Human |

Problem Solving (1972), there were other strong intellectual currents from several directions that converged in

the middle of this century in the people who founded the science of artificial intelligence. The concepts of

cybemnctics and self-organizing systems of Wicner, McCulloch, and others dealt with the macroscopic

behavior of “locally simple” systems. The cyberneticians influenced many fields because their thinking

spanned many ficlds, linking idcas about the workings of the nervous system with information theory and

control theory, as well as with logic and computation. Their ideas were part of the zeitgeist, but in many cases

the cybemneticians influenced carly workers in Al more dircctly—as their teachers.

What eventually connected these diverse ideas was, of course, the development of the computing

machines themselves, conceived by Babbage and guided in this century by Turing, von Neumann, and others.

It was not long after the machines became available that people began to try to write programs to solve

puzzles, play chess, and translate texts from one language to another—the first Al programs.
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What was it about computers that triggered the development of Al? Many ideas about computing

relevant to Al emerged in the carly designs—idecas about memories and processors, about systems and

control, and about levels of languages and programs. But the single attribute of the new machines that

brought about the emergence of the new science was their inherent potential for complexity, encouraging (in

several ficlds) the development of new and more direct ways of describing complex processes—in terms of

complicated data structures and procedures with hundreds of different steps:

Problem solving behaviors, even in the relatively well-structured task environments that we have
used in our rescarch, have generally been regarded as highly complex forms of human

behavior—so complex that for a whole generation they were usually avoided in the psychological
laboratory in favor of behaviors that seemed to be simple. ©. . The appearance of the modern
computer at the end of World War Il gave us and other rescarchers the courage to return to

complex cognitive performances as our source of data . . . a device capable of symbol-
manipulating behavior at levels of complexity and generality unprecedented for man-made
mechanisms. . . . This was part of the general insight of cybernetics, delayed by ten years and
applied to discrete symbolic behavior rather than to continuous feedback systems. (Newell and
Simon, 1972, pp. 869-870)

Computers, Complexity, and Intelligence

As Pamela McCorduck notes in her entertaining historical study of Al Machines Who Think (1979), there

has been a longstanding connection between the idea of complex mechanical devices and intelligence.

Starting with the fabulously intricate clocks and mechanical automata of past centuries, people have made an

intuitive link between the compl-xity of a machine's operation and some aspects of their own mental life.

Over the last few centusics, new technologies have resulted in a dramatic increase in the complexity we can

achieve in the things we build. Modern computer systems arc more complex by several orders of magnitude

than anythir.,g humans have built before.

The first work on computers in this century focused on the numerical computations that had previously

been performed collaboratively by teams of hundreds of clerks, organized so that cach did one small

subcalculationand passed the results on to the clerk at the next desk. Not long after the dramatic success of

the first digital computers with these claborate calculations, people began to explore the possibility of more

generally intelligent mechanical bchavior—could machines play chess, prove theorems, or translate

languages? They could, but not very well. The computer performs its calculations following the step-by-step

instructions i is given—the method raust be specified in complete detail. Most computer scientists are

conceriied with designing new algorithms, new languages, and new machines for performing tasks like solving
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equations and alphabetizing lists—tasks that people perform using methods they can cxplicate. Howeve:,
people cannot specify how they decide which move to make in a game of chess or how they determine that

two seritences “mean the same thing.”

The realization that the detailed steps of almost all intelligent human activity were unknown marked the

beginning of artificial intelligence as a separate part of computer science. Al researchers investigate different

kinds of computation, and different ways of describing computation, in an attempt not just to create

intelligent artifacts but also to und :rstand what intelligence is. A basic tenet of Al is that human intellectual

capacity will best be described in the same terms as the ones researchers invent to describe their programs.

However, they are just beginning to learn enough about those programs to know how to describe them

scientifically—in terms of concepts that illuminate their nature and differentiate among fundamental

categories. These ideas about computation have been developed in programs that perform many different

tasks, somctimes at the level of human performance, often at a much lower level. Most of these methods are

obviously not the same as the ones that pcople use to peiform the tasks—some ofthem might be.

The Status ofArtificial Intelligence

Many intelligent activities besides numerical cakulation and information retrieval have been carried on

by programs. Many key aspects of thought—Ilike recognizing people's faces and reasoning by analogy—are

still puzzles; they are performed 50 unconsciously b: people that adequate computational mechanisms have
not been postulated. Some of the successes, as well as some of the failures, have come as surprises. We will

list here some of the aspects of intelligence investigated in Al rescarch 2nd try to give an indication of the

stage ofprogress.

There is an important philosophical point here that will be sidestzpped. Doing arithmetic or learning the

capitals of all the countries of the world, for example, are certainly activitics that indicate intelligence in.

humans. The issue here is whethera computer system that can perform these tasks can be said to know or

understand anything. This point has been discussed at length (sce, ¢g., Scarle, 1980, and appended

commentary) and will be avoided here by describing the behaviors themselves as intelligent, without
commitment as to how to describe the machines that produce them.

Problem solving. The first big “successes” in Al were programs that could solve puzzics and play games.

Techniques such as looking ahead several moves and dividing difficult problems into easier subproblems
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cvolved, respectively, into the fundamental Af techniques of search and problem reduction. Today's programs

play championship-level checkers and backgammon, as well as very good chess. Another problem-solving

program, the one that does symbolic evaluation of mathematical functions, performs very well and is being

used widely by scientists and engineers. Some programs can cven improve their own performance with

experience. |

As discussed below, the open questions in this area involve abilities that human players exhibit but
cannot articulate, such as the chess master’s ability to see the board configuration in terms of meaningful

patterns. Another basic open question involves the original conceptualization of a problem, called in Al the

choice ofproblem representation. Humans often solve a problem by finding a way of thinking about it that
makes the solution casy; Al programs, so far, must be told how to think about the problems they solve (i.e.

the space in which to search for the solution).

Logical reasoning. Closely related to problem and puzzle solving was early work on logical deduction.

Programs were developed that could “prove™ assertions by manipulating a data base of facts, each represented

| by discrete data-structures just as they are represented by formulas in mathematical logic. These methods,

unlike many other Al techniques, could be shown to be complete and consistent. That is, given a sect of facts,

the programs theoretically could prove all theorems that followed from the facts, and only those theorems.

Logical reasoning has b~.n one of the most persistently investigated subareas of Al research. Of particular

interest are the problems of finding ways of focusing on only the relevant facts from a large data base and of

keeping track of the justifications for beliefs and updating them when new information arrives.

Programming. Although perhaps not an obviously important aspect of human cognition, programming

itself is an important area ofresearch in Al. Work in this area, called aromaticprogramming has investigated

systems that can write computer programs from a variety of descriptions of their purpose, such as examples of

input/output pairs, high-level language descriptions, and cven English-language descriptions of algorithms.

Progress has been limited to a few, fully worked-out examples. Autom.atic-programming research may result

not only in semiautomated systems for software development but also in Al programs that learn (i.e., modify

their behavior) by modifying their own code. Related work in the theory ofprograms is fundamental to alt Al

research.

Language. The domain oflanguage vnderstanding was also investigated by carly Al researchers and has

consistently attracted interest. Programs havc been written that retrieve information from a data base in
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response to questions posed in English, that translate sentences from one language to another, that follow

instructions or paraphrase statements given in English, and that acquire knowledge by rcading textual

maicrial and building an internal data base. Some programs have even achicved limited success in

interpreting instructions that are spoken into a microphone rather than typed into the computer. Although
these language systems are not nearly so good as people are at any of these tasks, they are adequate for some

applications. Early successes with programs that answeredsimple queries and followed simple directions, and

carly failures at machine-transiation attempts, have resulted in a sweeping change in the whole Al approach to

language. The principal themes of current language-understanding research are the importance of vast

amounts of knowledge about the subject being discussed and the role of expectations, based on the subject

matter and the conversational situation, in interpreting sentences. The state of the art of practical language

programs is represented by useful “front ends” to a variety of sofiware systems. These programs accept input

only in some restricted form; they cannot handle some of the nuances of English grammar and are useful for

interpreting sentences only within: a relatively limited domain of discourse. Although there has been very

. limited success at translating Al results in language and specch-understanding programs into ideas about the

nature of human language processing the realization of the importance in language understanding of

extensive background knowledge, and of the contextual setting and intentions of the speakers, has changed

our notion of what language or a theory oflanguage might be.

Learning. Certainly one of the most significant aspects of human intelligence is our ability to learn.

However, this is an example of cognitive behavior that is so poorly understood that very little progress has

been made in accomplishing it in Al systems. Although there have been several interesting attempts at this,

including programs that learn from examples, from their own performance, or from advice from others, Al

systems do not exhibit noticeable learning.

Robotics and vision. One area of Al rescarch that is receiving increasing aticntion involves programs that

manipulate robot devices. Research in this ficld has looked at everything from the optimal movement of

robot arms to methods of planning a sequence of actions to achicve a robot's goals. Some robots “soe”

through a TV camera that transmits an array of information back to the computer. The processing of visual

information is another very active, and very difficult, area of Al rescarch. Programs have been developed that

can recognize objects and shadows in visual scenes, and even identify small changes from one picture to the

next,for example, for aerial reconnaissance. The truce potentialof this rescarch, however, is that it deals with

artificial intelligences in perceived and manipulable environments similar to our own.



8

Systems and languages. In addition to work directly aimed at achieving intelligence, the development of

new tools has always been an important aspect of Al research. Some of tac most important contributions of

Al to the world of computing have been in the form of spin-offs. Computer-systems ideas like time-sharing,

| list processing. and interactive debugging were developed in the Al research environment. Specialized

programming languages and systems, with teatures designed to facilitate deduction, robot manipulation,

cognitive modeling, and so on, have often been rich sources of new ideas. Most recent among these has been

the many knowledge-representation languages. These are computer languages for encoding knowledge as

data structures and reasoning methods as procedures, developed over the last hive years to explore a variety of

idcas about how to build rcasoning programs. Terry Winograd's 1979 article “lscyond Programming

' anguages” discusses some of his ideas about the future ofcomputing, inspired in part by his research on Al.

I'xgert systems Finally, the area of “expert,” or “knowledge-based.” systems has recently emerged as a

likely arca for uscful applications of Al techniques (Fcigenbaum, 1977). Typically, the user interacts with an

expert system in a form of consultation dialogue, just as he (or she) would interact with a human expert in a

particular area: explaining his problem, performing suggested tests, and asking questions about proposed

solutions. Current experimental systems have performed very well in consultation tasks like chemical and

geological data analysis, computer-system configuration, completion of income tax forms, and even medical

diagnosis. Expert systems can be viewed as intermediaries between human experts, who interact with the

systems in knowledge-acquisition mode, and human users, who interact with the systems in consullation mode.

Furthermore, much research in this area of Al has focused on providing these systems with the ability to
explain their reasoning, both to make the consultation morc acceptable to the user and to help the human

expert locate the cause of errors in the system's reasoning when they occur.

Because its imminent commercial applications are indicative of important changes in the field, much of

the ensuing discussion of the role of Al in the study of mind will refer to the expert-systems research. That

these systems .

e “represent” vast amounts ofknowledge obtained from human experts,

e are used as /ools to solve difficult problems using this knowledge,

o can be viewed as intermediaries between human problem solvers,

o must explain their “thought processes” in terms that people can understand, and

e arc worth a lot of money to people with real problems
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are the essential points that will be truc of all of Al someday, in fact, of computers in general, and will change

the role that Al research plays in the scientific study of thought.

Open problems. Although there have been much activity and progress in the 25-year history of Al, some

very central aspects of cognition have not yet been achieved by computer programs. Our abilities to reason

about others’ beliefs, to know the limits of our knowledge, to visualize things, to be “reminded” of relevant

cvents, to learn, to reason by analogy, and to make plausible inferences, realize when they are wrong, and

know how to recover from them are not at all understood.

It is a fact that these and many otherfundamental cognitive capabilities may remain problematic for seme

time. But it is also a fact that computer programs have successfully achieved a level of performance on a

range of “intelligent” behaviors unmatched by anything other than the human brain. Al's failure to provide

some scemingly simple cognitive capabilities in computer programs becomes, in the view of Al to be

presented in this paper, part of the set of phenomena to be explained by the new science.

Al and the Study of Mind

Al research in problem solving, language processing, and so forth has produced some impressive and

uscful computer systems. It has also influenced, and been influenced by, research in many other fields.

What, then, is the relation between Al and the other disciplines that study the various aspects of mind, for

example, psychology, linguistics, philosophy, and sociology?

Al certainly has a unique method—designing and lesting computer programs—and a unique

goal—making those programs seem intelligent. It has been argued from time to time that these attributes

make Al independent of the other disciplines:

Artificial Intelligence was an attempt to build intelligerit machines without any prejudice toward
making the system simple, biological, or humanoid. (Minsky, 1968, p. 7) |

But one does not start from scratch in building the first program to accomplish some intelligent behavior: the

idcas about Low that program is to work must come from somewhere. Furthermore, most Al researchers are

interested in understanding the human mind and actively seck hints about its nature in their experiments with

their programs.

The interest within Al in the results and open problems of other disciplines has been fully reciprocated

by intercst in and application of Al rescarch activity among rescarchers in other fields. Many experimental
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and theoretical insights in psychology and linguistics. at least, have been sparked by Al techniques and results.

Furthermore, this flow is likely to increase dramatically in the future; its source is the variety of new

phenomena displayed by Al systems—the number, quality, utility, and level of activity of which will soon

dramatically increase. Rut first let us examine what kind of interactions have taken place between Al and the

other disciplines. |

The Language ofComputation

As we defined it at the outset, Al is a branch of computer science. Its practitioners are trained in the

various subfields of computer science: formal computing theory, algorithm design, hardware and operating-

systems architecture, programming languages, and programming. ‘The study of cach of these subarcas has

produced a language of its own, indicating our understanding of ihe important known phenomena of

computing. The underlying assumption of our rescarch is that this language (which involves concepts like

process. procedure. interpreter. bottom-up ana top-down processing, object-oriented programming, and

trigger) and the experience with computation that it embodies will, in turn, assist us in understanding the

various phenomena of mind.

Before we go on to discuss the utility of these computational concepts, it should be stated that, in fact, our

understanding of computation itself is quite limited. Von Neumann (1958) dreamed of an “information

theory™ of the nature of thinking:

The body of experience which has grown up around the planning, evaiuating, and coding of

complicated logical and mathematical automata will be the focus of much of this information
theory. . . . It would be very satisfactory if one could talk about a “theory” of such automata.

Regrettably, what at this moment exists—and to what I must appcal—can as yct be described only

as an imperfectly articulated and hardly formalized “body ofexperience.” (p. 2)

And ten years later, in their superb treatise on perceptronlike automata, Minsky and Papert (1969) lament:

We know shamefully litle about our computers and their computations. . . . We know very little,
for instance, about how much comautation a job should require. . . . The immaturity shown by our
inability to answer questions of this kind is exhibited cven in the language used to formulate the
questions. Word pairs such as “parallel” vs. “serial,” “local™ vs. “global,” and “digital” vs.
“analog” arc used as if they referred to well-defined technical concepts. Even when this is true,

the technical mcaning varies from uscr to user and context to context. But usually they are treated
so looscly that the species of computing machine defined by them belongs to mythology rather
than science. (pp. 1-2)

There is still no adequate theory of computation for understanding the nature and scope of symbolic

processes, but there is rapidly accumulating experience with computation of all sorts—uscful new concepts

emerge continually.
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The Computational Metaphor

The discipline most closely related to Al is cognitive psychology. These two disciplines decal primarily

with the same kinds of behaviors—pcerception, memory, problem solving. And they are siblings: Modern

| cognitive psychology emerged from its behavior-oriented precursors in conjunction with the rise of Al. That

there might be a relation between the new field of Al and the traditional interests of psychologists was evident

from the beginning:

Our fundamental concern was to discover whether the cybernciic ideas have any relevance for

psychology. ‘The men who have pioncered in this arca have been remarkably innocent of
psychology. . . . ‘There must be some way to phrase the new ideas so that they can contribute to and
profit from the science of behavior that psychologists have created. (Miller, Galanter, and

Pribram, 1960, p. 3)

What in fact happened was that the existence of computing served as an inspiration to traditional

psychologists to begin to theorize in terms of internal, cognitive mechanisms. Use of the concepts of

computation as metaphors for the processes of the mind strongly influenced the form of modern theories of

cognitive psychology—for cxample, theories expressed in terms of memories and retrieval processes:

Computers accept information, manipulate symbols, store items in “memory” and retrieve them

again, classify inputs, recognize patierns. and so on. Whether they do these things just like people
was less important than that they do them at all. ‘The coming of the computer provided a

much-needed reassurance that cognitive processes were real. (Neisser, 1976, p. 5)

The metaphorical use of the language of computation in describing mental processes was found to be, at

least for a time, quite fertile ground for sprouting psychological theories.

During a period of concept formation, we must be well aware of the metaphorical nature of our
concepts. However, during a period in which the concepts can accommodate most of our
questions about a given subject matter, we can afford to ignore their metaphorical origins and
confuse our description ofreality with that reality. (Arbib, 1972, p. 11)

When pioncering work by Newell. Shaw, and Simon and by other rescarch croups showed that

“programming up” their intuitions about how humans solve puzzles, find theorems, and so on was adequate

to get impressive results, the link between the study of human problem-solving and Al rescarch was firmly

cstablished.

Consider, for example, computer programs that play chess. Current programs are quite proficient—the

best experimental systems play at the human “expert” level, but not as well as human chess “masters.” The

programs work by scarching through a space of possible moves, that is, considering the aliernative moves and

their consequences several steps ahead in the game, just as human players do. These programs, even some of
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the carlicst versions, could search through thousands of moves in the time it takes humaa players to consider

only a dozen or so alicrnatives. ‘The theory of optimal search. developed as a mathematical formalism

(parallcling, as a matter of fact, much of the work on optimal decision theory in operations rescarch)

constitutes some of the core ideas of Al.

‘The reason that computers cannot beat the best human players is that looking ahead is not all there 1s Ww

chess. Since there are too many possible moves to scarch exhaustively, even on the fastest imaginable

compilers, alternative moves (board positions) must be evaluated without knowing for sure which inove will

lead to a winning game, and this is onc of those skills that human chess experts cannot make cxplicit.

Psychological studies have shown that chess masters have learned to see thousands of meaningful

corfigurations of picces when they look at chess positions, which presumably helps them decide on the best

move, but no one has yet suggested how to design a computer program that can identify these configurations.

For the lack of theory or intuitions about human perception and learning. Al progress on computer chess

has virtually stopped. but it is Quite possible that new insights into a very general problem were gained. ‘The

computer programs had pointed up. more clearly than ever, what would be useful for a cognitive system to

learn to sce. It takes many years for chess experts to develop their expertise—their ability to “understand” the

game in terms of such concepts and patterns that they cannot explain casily, if at all. ‘The general problem is

ofcourse, to determine what it is about our experience that we apply to future problem solving: What kind of

knowledge do we glean from our experience? The work on chess indicated some of the demands that would

be placed on this knowledge.

Language Translation and Linguistics

Ideas about getting computers to deal in some useful way with the human languages, called “natural”

languages by computer scientists, were conceived before any machines were ever buill. The first linc of attack

was tu try to use large, bilingual dictionaries stored in the computers to translate sentences from once language

to another (Barr and Feigenbaum, 1981, pp. 233-238). The machine would look up the translation of the

words in the original sentence, figure out the “meaning” of the sentence (perhaps expressed in some

interlingua), and produce a syntacticallycorrect version in the target language.

It did not work. ht became apparent carly on that processing language in any useful way involved

understanding, which in turn involveda great deal of knowledge about the world—in fact, itcouldbe argued
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that the more onc “knows,” the more onc “understands” cach sentence one reads. And the level of world

knowledge necded for any useful language-processing is much higher than our original intuitions led us to

expect.

There has been a serious debate about whether Al work in computational linguistics has enlightened us

at all about the nature of language (sec Dresher and Hornstein, 1976. and the replies by Winograd. 1977, and

Schank and Wilcensky, 1977). The position taken by Al rescarchers is that if our goal in linguistics is to

include understanding sentences like Do you have the nme? and We'll have dinner after the kids wash their

hands, which involve the (owl relationship between the speakers, then there 1s much more to it than the

syntactic arrangement of words with well-defined meanings—that although the study in linguistics of the

systematic regularities within and between natural languages is an important key to the nature of language

and the workings of the mind, it is only a small part of rie problem of building a useful language processor

and, therefore, only a small part ofan adequate understanding ofkinguage (Schank and Abclson, 1977):

For both people and machines, cach in their own way, there is a scrious problem in common of
making sense out of what they hear, see. or are told about the world. The conceptual apparatus |

necessary to perform even a partial feat of understanding is formidable and fascinating. (p. 2)

Linguists have almost totally ignored the question of how human understanding works. . . . It has
nevertheless been consistently regarded as important that computers deal well with natural

language. . . . None of these high-sounding things arc possible, of course, unless the computer
really ‘understands’ the input. And that is the theoretical significance of these practical
questions—to solve them requires no less than articulating the detailed nature of ‘understanding’.
If we understood how a human understands, then we might know how to make a computer

understand, and vice versa. (p. 8)

This idca that building Al systems requires the articulation of the detailed nature of understanding, that

is, that implementing a theory in a computer program requires onc 0 “work out” one’s fuzzy idcas and

concepts, has been suggested as a major contribution of Al research (Schank and Abelson, 1977):

Whenever an Al researcher feels he understands the process he is theorizing about in ¢cnough
detail. he then begins to program it to find out where he was incomplete or wrong. . . . The time
between the completion ofthe theory and the completion of the program that embaodics the theory
is usually extremely long. (p. 20)

| And Newell (1970), in a thorough discussion of eight possible ways onc might view the relation of Al 10

. psychology, suggests that building programs “forces psychologists to become operational, that is, to avoid the

fuzziness of using mentalistic terms”(p. 365).

Certainly the original conception of the machinc-transiation cffort, although it was intuitively sensible,
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fell far short of what would be required to enable a machine to handle language, indicating a hmited

conception of what language is. It is in the broadening of this conception that Al has contributed most to the

study of language (Schank and Abclson, 1977, p.9). Thus. Al can show, as in the examples of chess and

language understanding, that intuitive notions and assumptions about mental processes just do not work.

l‘urthermore, analyzing the behavior of Al programs implemented on the basis of existing, inadequate

concepts can offer hints on how the concepts of the theory affect the success of its application.

Scientific Languages and Theory Formation

: lawrence Miller, in a 1978 articic that reviews the dialogue between psychologists and Al rescarchers

about Al's contribution to the understanding of mind, concludes that

the critics of Al believe that it is casy to construct plausible psychological theories: the difficult
task is demonstrating that these theories are true. The advocates of Al believe that it is difficult to

cunstruct adequate psychological theories: but once such a theory has been constructed, it may be

rclatis ely simple to demonstrate that it is true. (p. 113)

And Schank and Abelson (1977) agree:

We are nit oriented toward finding out which pieces of our theory are quantifiable and testable in

isolation. We feel that such questions can wait. First we need to know if we have a viable theory.
(p- 21)

Just as Al must consider the same issues that psychology and linguistics address, other aspects of knowledge :

dealt with by other traditional disciplines must also be considered. For example, current ideas in Al about

linking computing machines into coherent systems or cooperative problem-solvers forces us to consider the

sociological aspects of knowing. A fundamental problem in Al is communication among many individual

units, cach of which “knows” some things rclcvant to some problems as well as something about the other

units. The form of the communication between units, the organizational structure of the complex, and the

nature ofthe individuals’ knowledge ofcach other are all questions that must find some enginecring solution

if the apparent power of“distributed processing” is 10 be realized. |

These issucs have been studied in other disciplines, albeit from very different perspectives and with

diffcrent goals and methods. Wc can view the different control schemes proposed for interprocess

communication, for example, as attempts to design social systems of knowledgeable entities. Our intuitions,

once again, form the specifications for the first systems. Reid G. Smith (1978) has proposed a contract net

where the individual entitics negotiate their roles in attacking the problem, via requests for assistance from
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other processors, proposals for help in reply, and contracts indicating agreement to delegate part of the

problem to another processor; and Kornfeld and Hewitt (1981) have developed a model explicitly based on

problem solving in the scientific community. Only after we have been able to build many systems based on

such modcls will we be able to identify the key factors in the design of such systems.

There is another kind of study of the mind, conducted by scientists who seek to understand the workings

of the brain. The brain as a mechanism has been associated with computing machines since their invention

and has puzzled computer scientists greatly:

We know the basic active organs of the nervous system (the nerve cells). There 1s every reason to

believe that a very large-capacity memory is associated with this system. We de most emphatically

not know what type of physical entitics arc the basic components for the incmory In question.

(von Nhcumann, 1958, p. 68)

If research on Al produces a language for descnbing what a computational system is doing, in terms of

processes, memories, messages, and so forth, then that language may very well be the one in which the

function of the neural mechanisms should be described (L.cnat, 1981; Torda, 1982). And, as Herbert Simon

(1980) points out, this functionality may be shared by nature's other brand of computing device, DNA:

It might have been necessary a decade ago to argue for the commonality of the information
processes that are employed by such disparate systems as computers and human nervous systems.

The evidence for that commonality 1s now overwhelming, and the remaining Questions about the

boundaries of cognitive science have more 10 do with whether there also exist nontrivial
commonalities with information processing in genetic systems than vith whether men and

machincs both think. (p. 45)

Onc more cxample of the overlap of concerns between Al and the related disciplines is the following.

Making it possible for an individual 10 know something about what another knows, without actually knowing

it, involves defining the nature of what is known elsewhere: who the experts are on what kinds of problems

and what they might know that could be useful. This relates directly to the categorization of knowledge that

is the essence of library science. Instead of dealing with categories according to which static books will be

filed, however, Al must considerthedynamicaspects of systems that know and lcam.

The relation, then, between Al and disciplines like psychology, linguistics, sociology, brain science, and

library science is a complex one. Certainly our current understanding of the phenomena dealt with by tise

disciplines—cognition, perception, memory, language, social systems, and catcgorics of hnowledge—has

provided the intuitions and models on which the first Al programs were built. And, as has happenedin

psychology and linguistics, these first systems may, in turn, show us new aspects of the phenomena that we
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have not considered in studying their natural occurrence. But, most important, the development of Al

systems, of usefis/ computer tools for knowledge-oriented tasks, will expose us to many new phenomena and

variations that will force us to increase our understanding.

The Practice of Al

Al. and computer science in general, employs a unique method among the disciplines involved in

advancing our understanding of cogniton—building computers and programs, and observing and trying to

explain patterns in the behavior of these systems. The programs arc the phenomena to de studied (Newell,

1981): :

Conceptual advances occur by (scientifically) uncontrolied experiments in our own style of
computing. . . . The solution lies in more practice and more attention to what emerges there as
pragmatically successful. (p. 4)

Observing our own practice—that is, seeing what the computer implicitly tells us about the nature

of intelligence as we struggle to synthesize intelligent systems—is a fundamental source of
scientific knowledge for us. (p. 19)

Thus. All is ore ofthe “sciences of the artificial,” as Herbert Simon (1969) has defined them in an influential

paper. Halfof the job is designing systems so that their performance vill be interesting. There is a valuable

heuristic in generating these designs: The sysiems that we are naturally inclined to want to build arc those

that will be useful in our environment, Qur environment will shape them, as it shaped us. As Simon described

the development oftime-sharing systems:

Most actual designs have turned out initially to exhibit serious deficiencics, and most predictions
ofperformance have been startlingly inaccurate. Under these circumstances, the main route open
to the dev:lopment and improvement of time-sharing systems is 10 build them and see how they

behave. (p. 21)

The Genus ofSymbol Manipulators

Newell and Simon's psychologically phrased idea of “observing the behavior ofprograms™ follows from

their pioneering research program in what they have called information processing psychology. Newell and

Simon developed, in the early years of this enterprise, some of the first computer programs that showed

reasoning capabilities. This rescarch on chess-playing, theorem-proving, and problem-solving programs was

undertaken as an explicit attempt to model the corresponding human behaviors. But Newell and Simon took

the strong position that these programswere not to serve simply as metaphorsfor human thought but were

themselves theories. In fact, they argued that proiirams were the natural vehicle for expressingtheories in

psychology:
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An abstract concept of an information processing system has emerged with the development of the
digital computers. In fact. a whole array of different abstract concepts has developed, as scientists

have sought to capture the essence of the new technology in different ways... . With a model of an
information processing system, of becomes meaningful to try to represent in some detail a

particular man at work on a particular task. Such a representation is not metaphor, but a precise
symbolic model on the basis of which pertinent specific aspects of the man's problem solving

behavior can be calculaied. (Newell and Simon, 1972, p. 5)

Taking the view that artificial intelligence is theoretical psychology, simulation (the running of a
program purporting to represent some human behavior) is simely the calculation of the

consequences of a psychological theory. (Newell, 1973a, p. 47)

A framework comprehensive enough to encourage and permit th aking is offered. so that net only
| answers, but questions, criteria of evidence, and relevance all become affected. (Newell, 197 3a,

p. 59)

Newell and Simon, in their view that computer programs are a vehicle for expressing psychological

theorics rather than just serving as a metaphor for menial processes, were aircady taking a strong position

relative to even the new breed of cognitive psychologists who were talking in terms of computerlike mental

mechanisms. As Paul R. Cohen (1982) puts it, in his review of Al work on models of cognition:

We should note that we have presented the strongest version of the information-processing

approach, that advocated by Newell and Simon, Their position is so strong that it defines
information- processing psychology almost hy exclusion. tis the field that uses methods alien to
cognitive psychology to explore questions alien to Al. This is an exaggeration, but it serves to |
illustrate why there are thousands ofcognitive psychologists. and hundreds of Al rescarchers, and
very few information-processing psychologists. (p. 7)

However, Newell and Simon did not stop there. A further development in their thinking identified brains

and computers as two specics of the genus of physical symbol systems—the kind of system that, they argue.

must undcrlic any intelligent behavior,

At the root of intelligence are symbols, with their denotative power and their susceptibility to

manipulation. And symbols can be manufactured of almost anything that can be arranged and
patterned and combined. Intelligence is mind implemented by any patternable kind of matter.

(Simon, 1980, p. 35)

A physical symbol system has the nccessary and sufficient means for general intelligent action.
(Ncwell and Simon, 1976. p. 116)

Information processing psychology is concerned essentially with whether a successful theory of
human behavior can be found within the domain ofsymbolic systems. (Newell, 1970, p. 372)

The basic point of vicw inhabiting our work has been that programmed computer and human
problem solver are both species belonging to the genus IPS. (Newell and Simon, 1972, p. 869)
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It is this view of computcrs—as systems that share a common, underlying structure with the human

intelligence system—that promotes the behavioral view of Al computer rescarch. Although these machines

arc not limited by the rules of development of their natural counterpart, they will be shaped in their

development by the same natural constraints responsible for the form of intelligence in nature.

The Flight Metaphor

The question of whether machines could think was certainly an issue in the carly days of Al research,

although dismissed rather summarily by those who sitipea the emerging science:

To ask whether these computers can think |. o:tsguous. In the naive realistic sense of the term, it
is people who think, and not cither brains o- -:achines. If. however, we permit ourselves the

ellipsis of referring to the operation of the brain as “thinking,” then, of course, our computers
“think.” (McCulloch, 1964, p. 368)

Addressing fundamental issucs like this one in their carly writing, several rescarchers suggested a parallel with

the study of flight, considering cognition as another natural phenomenon that could eventually be achieved

by machines:

Today. despite our ignorance, we can point to that biological milestone, the thinking brain, in the
same spirit as the scientists many hundreds of years ago pointed to the bird as a demonstration in
naturc that mechanisms heavier than air could fly. (Feigenbaum and Feldman, 1963, p. 8)

It is instructive to pursue this analogy a bit farther. Flight, as a way of dealing with the contingencies of

th: environment, takes many forms—from soaring cagles to hovering hummingbirds. If we start to study

flight by examining its forms in nature, our initial understanding of what we are studying might involve terms

like feathers, wings, weight-to-wing-sizc ratios, and probably wing-flapping, 00. This is the language we

begin to develop—identifying regularities and making distinctions among the phenomena. But when we start

to build flying artifacts our understanding changes immediately:

Consider how people came to understand how birds fiy. Certainly we observed birds. But mainly :
10 recognize certain phenomena. Real understanding of bird flight came fron: understanding
flight; not birds. (Papert, 1972, pp. 1-2)

Even if we fail a hundred times at building a machine that flics by flapping its wings, we learn from every

attempt. And cventually we abandon some of the assumptions implicit in our definition of the phenomena

under study and realize that flight does nok require wing movement or ven wings:

Intelligent behavior on the part of a machine no more implies complete functional equivalence
between machine and brain than flying by an airplane implics complete functional equivalence
between plane and bird. (Ammer, 1963, p. 392)
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Every ncw design brings new data about what works and what docs not, and clues as to why. Every new

contraption trics some different design alternative in the space defined by our theory language. And cvery

attempt clarifics our understanding of what it means to fly. |

But there is more to the sciences of the artificial than defining the “true nature™ of natural phenomena.

The exploration of the artifacts themselves, the stiff-winged flying machines, because they are useful to

society, will naturally extend the exploration of the various points of interface between the technology and

society. While nature's exploration of the possibilities is limited by its mutation mechanism, huma:: inventors

will vary every parameter they can think of to produce cffects that might be uscful—exploring the constraints

on the design of their machines from cvery angle. The space of “flight” phenomena will be populated by

examples that nature has not had a chance to try.

Exploring the Space ofCognitive Phenomena

This argument, that the utility of intelligent machines will drive the exploration of their capabilities,

. suggests that the d. velopment of Al technology has begun an exploration of cognitive phenomena that will

involve aspects of cognition that are not casy to study in nature. In fact, as with the study of flight, Al will

allow us to sec natural intelligence as a limited capability, in terms of the design trade-offs made in the

evolution of biological cognition:

Computer science is an empirical discipline. . . . Each new machine that is built is an experiment.
.. . Fach new program that is built is an experiment. 1t poses a question to nature. and its behavior
offers clues to an answer. . . . We build computers and programs for many reasons. We build them

to serve society and as tools for carrying out the economic tasks of society. But as basic scientists
we build machines and programs as a way of discovering ncw phenomena and analyzing

phenomena we alrcady know about. . . . The phenomena surrounding computers are deep and
obscure. requiring much experimentation to assess their nature. (Newell and Simon, 1976, p. 114)

For what will Al systems be uscful? How will they be involved in the economic tasks of society? It has

certainly been argued that this point is one that distinguishes biological systems from machines (Norman,

1980):

The human is a physical symbol system, yes. with a component of pure cognition describable by
mechanisms.. . . But the human is more: The human is an animate organism, with a biological

basis and an evolutionary and cultural history. Morcover, the human is a social animal, interacting

- with others, with the environment, and with itsclf. The core disciplines ofcognitive science have
tended to ignore these aspects of behavior. (pp. 2-4) |

The difference between natural and artificial devices is not simply that they are constructed of
different stufT; their basic functions differ. Humans survive. (p. 10)
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Tools cvolve and survive according to their utility to the people who use them. Either the users find better

tools or their competitors find them. This process will certainly continue with the development of cognitive

tools and will dramatically change the way we think about Al: |

We measure the intelligence of a system by its ability to achieve stated ends in the face of
variations, difficulties and complexities posed by the task environment. This general investment
of computer science in attaining intelligence . . . becomes more obvious as we extend computers to

more global complex and knowledge-intensive tasks—as we attempt (0 make them our agents,
capable of hendling on their own the full contingencies of the natural world. (New. cil and Simon,
1976. pp. 114-115)

In fact, this change has alrcady begun in Al laboratories, but the place where the changing perception of Al

systems is most dramatic and accelerated is, not surprisingly in our socicty, the marketplace.

Al, Inc.

To date, three of the emerging Al technologies nave attracted interest as commercial possibilities: robots

for manufacturing, natural-language front-cnds for information-retricval systems. and cxpert systems The

reason that a company hike General Motors invests millions of dollars in robots for the assembly line is not

scientific curiosity or propaganda about “retooling” their industry. GM believes these robots arc essential to

its cconomic survival. Al technology will surcly change many aspects of American industry. but its

application to real problems will just as surely change the emerging technology—change our perception of its

nature and of its implications about knowledge. The remaining discussion will focus on this issuc¢ in the

context ofexpert systems.

Expert Systems

With work on the DENDRAL system in the mid-1960s, Al researchers began pushing work on

problem-solving systems beyond constrained domains like chess, robot planning, blocks-world manipulations,

and puzzles: They started to consider symbolically expressed problems that were known to be difficult for the

best human researchers 10 solve (sce Lindsay, Buchanan, Feigenbaum, and |.ederberg. 1980). |
One needs to move toward task environments of greater complexity and openness—to everyday

| reasoning. to scientific discovery, and so on. The tasks we tackled, though highly complex by prior

psychological standards, still are simple in many respects. (Newell and Simon, 1972, p. 872)

Humans have difficulty keeping track of all of the knowledge that might be relevant to a problem, exploring

all of the alternative solution-paths, and making sure none of the valid solutions is overdooked in the process.

WorkonDENDRALshowed that when human experts could explain exactly what they were doing in solving

their problems, the machine could achicve expert-level performance. |
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Continued research at Stanford's Heuristic Programming Project next produced the MYCIN system, an

experiment in modeling medicai diagnostic reasoning (Shortliffe, 1976). In production rules of the form If

<Ccondition) then Saction?. Shortliffc encoded the kind of information about the reasoning processes of

physicians that they were most able to give—advice about what to do in certain situations. In other words, the

if part of the rules contains clauses that attempt to differentiate a certain situation, and the then part describes

| what to do if one finds oneself in that situation. This production-rule knowledge representation worked

surprisingly well: MYCIN was able to perform its task in a specific area of infectious-discase diagnosis as well

as the best experts in the country.

Furthermore, the MYCIN structure was scen to be, at least to some extent, independent of the domain of

medicine. So long as experts could describe their knowledge in terms of If... then... rulgcs, the reasoning

mechanism that MYCIN uscd to make inferences from a large set of rules would come up with the right

questions and, eventually, a satisfactory analysis. MYCIN-like systems have been successfully built in

rescarch laboratorics for applications as diverse as mineral exploration, diagnosis of computer-cquipment

failure, and cven advising users about how to use complex systems.

Transfer ofExpertise

There is an important shift in the view of expert systems just described that illustrates the changing

perspective on Al that is likely to take place as it becomes an applied science. The carly work on expert

systems, building on Al research in problem solving, focused on representing and manipulating the facts in

order to get answers. But through MYCIN, whose reasoning mechanism is actually quite shallow. it became

clear that the way that these systems interacted with the people who had the knowledge and with those who

needed it was an important, deep constraint on the system's architecture—on its knowledge representatieas

and reasoning mechanisms:

A key idea in our current approach to building cxpert systems is that these programs should not
only be able to apply the corpus ofexpert knowledge to specific problems, but they should also be
able to interact with the users and experts just as humans do when they kcarn, explain, and teach

what they know. . . . ‘These transfer ofexpertise (1'OE) capabilitics were originally necessitated by

“human engineering” considerations—the people who build and use our systems necded a variety
of “assistance” and “explanation” facilities. However, there is more to the idea of TOE than the
implementation of needed user features: These social interactions—Icarning from experts,
explaining one's rcasoning, and teaching what onc knows—are essential dimensions of human

knowledge. They arc as fundamental to the nature of intelligence 7s expert-level problem-solving,
and they have changed our ideas about representation and about knowledge. (Barr, Bennett, and
Clancey, 1979, p. 1)
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Randall Davis's (1976) TEIRESIAS system, built within the MYCIN framework, was the first to focus on

the transferral aspects of expert systems. TEIRESIAS offered aids for the experts who were entering

knowledge into the system and for the system's users. For example, in order for an expert to figure out why a |

system has come up with the wrong diagnosis or is asking an inappropriate question, he (or she) has to |

understand its behavior in his own terms: The system must explain its reasoning in terms of concepts and

procedures with which the expert is familiar. The same sort of cxplanation facility is necessary for the

eventual user of an expert system who will want to be assured that the system's answers arc well founded.

Expert-systems technology had to be extended to facilitate such interactions, and, in the process, our

conception of what an expert system was had changed. No longer did the systems simply solve problems;

they now transferred expertise from people who had it to people who could use it:

We are building systems that take part in the human activity of traasfer ofexpertise among experts,
practitioners, and students in different kinds of domains. Our problems remain the same as they
were before: We must find good ways to represent knowledge and meta-knowledge, to carry on a
dialogue, and to solve problems in the domain. But the guiding principles of our approach and
the underlying constraints on our solutions have subtly shifted: Qur systems are no longer being
designed solely to be expert problem solvers, using vast amounts of encoded knowledge. There

are aspects of “knowing” that have so far remained unexplored in Al rescarch: By participation in
human transfer of expertise, these systems will involve more of the fabric nf behavior that is the
reason we ascribe knowledge ard intelligence to people. (Barr, Bennett, and Clancey, 1979, p. 5)

The Technological Niche |

It is the goal of those who are involved in the commercial develep.nent of expert-systems technology to

incorporate that technology into some device that can be sold. But the environment in which expert systems

operate is our own cognitive environment; it is within this sphere of activity—pcople solving their

problems—that the eventual expert-system products must be found useful. They will be engineered to our

minds.

With these systems, it will at last become economical to match human beings in real time with

really large machines. This mcans that we can work toward programming what will be, in effect,
“thinking aids.” In the years (0 come we expect that these man-machine systems will share, and
perhaps for a timc be dominant, in our advance toward the development of “artificial
intelligence.” (Minsky, 1963, p. 450)

It is a long way from the expert systems developed in the rescarch laboratories to any products that fit into

people's lives; in fact, it is difficult even to envision what such products will be. Egon Locbner of Hewlett-

Packard Laboratorics tells of a conversation he had many years ago with Vladimir Zworykin, the inventor of

television techuology. loebner asked Zworykin what he had in mind for his invention when he was
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developing the technology in the 1920s—what kind of product he thought his efforts would produce. The

inventor said that he had had a very clear idea of the eventual use of TV: He envisioned medical students in

the gallery of an operating room getting a clear picture on their TV screens of the details of the operation

being conducted below them.

One cannot, at the ontset, understand the application of a new technology, because it will find its way

into realms of application that do not yet exist. lLocbner has described this process in terms of the

technological niche, paralleling modern evolution theory (1.ocbner, 1976; i.ocbner and Borden, 1969). Like

the species and their environment, inventions and their applications are co-defined—they constantly evolve

together, with niches representing periods of relative stability, into a new reality:

Moreover, the niches themselves are . . . defined in considerable measure by the whole

constellation of orgamsms themselves. There can be no hice without hairy heads for them to
inhabit, nor animals without plants. (Simon, 1980, p. 44)

Thus technological inventions change as they are applied to people's needs, and the acuvities that people

undertake change with the availability of new technologies. And as people in industry try to push the new

technology toward some profitable niche, they will also explore the nature of the underlying phenomena. Of

course, it is not just the scientists and engineers who developed the new technology who are involved in this

exploration: Halfof the job involves finding out what the new capabilities can do for people.

Recognition of the commercial applicatiun of "'V technology was accomplished by David Sarnoff, after

the model he Lad uscd for the radio broadcasting industry. It is important to note that the “commercial

product’ that resulted from TV technology, the TV-set receiver, was only part of a gigantic system that had to

be developed for its support (actually imported from radio, with modifications and extensions), involving

broadcast technology, the networks, regulation of the air waves, advertising. and so forth. Locbner refers to

this need for systemwide concern with product development as the Edisonian model of technological

innovation: Edison's achievement of the invention of the long-life, commercially feasible light bulb was

conducted in paralic? with his successful development of the first dynamo for commercially producing electric

powcr and with his design and implementation of the first electric-power distribution network.

The Knowledge Industry

Amcng the scientific disciplines that study knowledge. the potential for commercial applications of

artificial intelligence presents unique opportunitics. To identify and fill the niches in which intelligent |
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machines will survive, we must ask questions about “knowledge” from a rather different perspective. We

must identify the role that the various aspects of intelligence play, or could play, in the affairs of men, in such

a way that we can identify correctable shortcomings in how things arc done.

There is no question that the current best design of an intelligent system, the human brain, has its .

limitations. Computers have already helped people deal with such shortcomings as memory failure and

confusions, overloading in busy situations, their tendency to boredom, and their need for sleep. These

¢xtended capabilities—total recall, rapid processing, and uninterrupted aticntion—arc cognitive capabilities

that we have been willing to concede to the new species in the genus of symbol munipulators. They have

helped us do the things we did before, and have made some entirely new capabilities possible, for example,

airline reservation systems, 24-hour banking, anc Pac-Man (although the truly challenging computer “games”

arc yet to come!). Intelligence is also going to be present in this new species, as envisioned 20 years ago by

Marvin Minsky (1963):

I believe . . . that we are on the threshold of an era that will be strongly influenced, and quite

possibly dominated, by intelligent problem-solving machines. (p. 406)

Finding a way to apply this new intellectual capability, for effectively applying relevant experience to new

situations, is the task ahead for Al, Inc.

We have hardly begun to uriderstand what this abundant and cheap intellectual power will do to

our lives. [It has already started to change physically the rescarch laboratories and the
manufacturing plants. It is difficult for the mind to grasp the ultimate consequences for man and
society. (Riboud, 1979)

It may be a while in coming, and it may involve a rethinking of the way we go about some cognitive activitics.

But it is extremely important that the development of intelligent machines be pursued, for the human mind

not only is limited in its storage and processing capacity but it also has known bugs: [It is easily misled,

stubborn, and even blind to the truth, especially when pushed to its limits. oo

And, as is nature's way, everything gets pushed to the limit, including humans. We must find a way of

organizing oursclves more cffectively, of bringing together the encrgics of larger groups of people toward a

common goal. Intelligent systems, built from computer and communications technology, will someday know

more than any individual human about what is going on in complex enterprises involving millions of people,

such as a multinational corporation or a city. And they will be able to explain cach person's part of the task.

We will build more productive factorics this way, and maybe someday a more peaceful world. We must keep
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in mind, following our analogy of flight, that the capabilities of intelligence as it exists in nature arc not

necessarily its natural limits:

There are other facets to this analogy with flight; it, too, is a continuum, and some once thought
that the speed of sound represenied a boundary beyond which flight was impossible.  (Armer,

1963, p. 398)
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