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Abstract

We describe the operating system Perscus, developed as part
of a study into the issues of computer communications and their
impact on operating system and programming language design.
Perseus was designed to be portable by virtue of its kernel-based
structure and its implementation in Pascal. In particular,
machine-depcndent code is limited to the kernel and most
operating systems functions are provided by server processes,
running in user mode. Perseus was designed to evolve into a
distributed operating system by virtue of its interprocess
communication facilities, based on message-passing. This paper
presents an overview of the system and gives an assessment of
how far it satisfied its original goals. Specifically, we evaluate its
intcrprocess communication facilities and kernel-based structure,

. followed by a discussion of portability. We close with a brief

history of the project, pointing out major milestones and
stumbling blocks along the way.

1. Introduction

In the spring of 1979 the Stanford computer science
community was on the verge of acquiring a large set of new
computer facilities. Until that time, the only available rescarch
machine of any note was a DecSystem-10 running a homegrown,
one-of-a-kind operating system similar 10 TOPS-10 and known as
WATITS. THowever, orders were outstanding for a DecSystem-
2060 and two VAX-11/780’s, and a grant of 20 Xerox Altos [22]
together with a 3 Mbit experimental cthernet [15] was in the
offing. Long-term plans called for an in-house workstation,
which ultimately became known as the SUN workstation [2].

In order to investigate the issues involved in interconnecting
these resources, as well to acquire additional resources, Stanford
undertook with IBM a Joint Study on Distributed Computing.
The_ purpose of the Joint Study was to investigate issues in
computer communications and their impact on operating system
and programming language design. In view of the hcterogencity
of machines then on order or anticipated, key attention was given
to building a gencral-purpose operating system that would be
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portable over a range of target machines. The system would also
support interprocess communication between machines at a
higher level than that possible with traditional network
architectures: that is, it would be a distributed operating system.
The foundation for portability was the choice of high-level
implementation language, Pascal* [9]. The foundation for
distribution was the choice of message-passing as the principal
means of interprocess communication.

This paper presents the result of the Joint Study, an operating
system called Perseus. The Perscus system was implemented in
native mode on an IBM 4331 and on a guest-level to DecSystem-
20/TOPS-20 and VAX/Berkeley Unix.  Unfortunately, the
system did not survive (at Stanford) to fulfill its potential as a
distributed operating system.

Section 2 presents an overview of the system. Sections 3 and
4 are critical reviews of the underlying interprocess
communication mechanisms and overall system structure,
respectively. Section 5 discusses the portability of Perseus and,
related to that, the choice of implementation language. Section 6
concludes with a brief history of the project. Additional details
may be found in the final report of the Joint Study [12].

2. An Overview of Perseus

Perseus was influenced primarily by Demos [1. 14, 16] and
secondarily by Thoth[S.6] and RIG [10,13]. As such, it consists
of a resident kernel and a sct of processes. The kernel establishes
a virtual machine for the processes to run on. It provides
intcrprocess  communication, basic process and memory
management, and interfaces to the hardware at the interrupt and
device register level. The kernel is the only component of the
system to run in privileged mode.

All other services arc provided through server processes,
executing in user mode. Server processes provide process
management, memory management, file storage and retricval,
time service, name service, device handling, command language
interpretation and nctwork access. Applications access the system
through wuser processes. which arc, from the kernel’s viewpoint, in
no way different from server processes.

2.1. Interprocess Communication

The interproccss communication mechanism in Perseus is a
very close descendant of the one in Demos. In general, onc can
say that the system exhibits a vast amount of functionality at the
kernel level, as opposed to at the process level in systems such as
Thoth.

The principal protected objects in the system arc the
communication paths over which messages can be sent. These



paths arc called /inks and arc similar to the notion of ports in
systems such as Accent [18,19].! A link has one receiver and one
sender. The sender may change over time. A link is maintained
by the kernel independent of any process.

In order for process A to send a message to process B, A must
possess a link to B. This link must previously have been created
by Rand sent (in a message) to A. A sender names a link through
a process-local link-id, which is then mapped by the kernel into a
system-global identificr for the link. Thus, a link-id is similar to a
capability. At the time it is created, a process is given access to a
set of standard links associated with various servers.

Each link is associated with a channel and a code. Multiple
links may belong to the same channel and/or have the same code.
Channels are typically used to represent a particular type of
request: codes are used to distinguish particular senders. The
receive operations are performed on a set of channels. When a
message is received, the receiver may use the code to determine
the sender.

Pcrseus provides both synchronous and asynchronous
message communication. Four basic primitives are available for
sending and receiving messages: blocking Send and Receive, and
non-blocking ASend and AReceive. Additional primitives exist
for creating and destroying links and for obtaining status
information about them.

Since messages are small and fixed size, there is an additional
facility for bulk data transfer. The data transfer facility is
protected through the usc of links. Process A can send process B
a link, containing a pointer to and the size of an area in if’s
address space. A can also specify whether he grants read or write
access to process B.

To clarify the use use of links, consider a standard scenario
involving a client and the file system. Assume that a client wants
to tead a file. The client first sends a message over its standard
link to the file system, asking the file system to open the file.
Implicit in this message is a rep&-link, R, owned by the client, on
which the file system will reply. If the file system accepts the
request, it will ask the kernel to create a new link, F, pointing to
itself, and it will reply to the client on R, returning the newly
created link F. F'now represents the open file in the client’s
world. It is used to send a message with a read request to the file
system. The client passes in the message with the read request a
link, D, pointing to the area in its address space where it wants the
file stored. The file system uses the data transfer facility over link
D to transfer the file to that particular area and, finally, replies to
the client on R. The client typically closes the file by deleting link
F; the file system will be notified of the destruction of the link
and-close down the connection.

2.2. The File System

The basic unit of information with respect to the file system is
a byte. To the system, every file appears as a continuous stream
of bytes. with length greater than or equal to zero, no structuring
whatsoever is expected. Some user programs may generate or
expect liles in a particular format but this is Ieft entirely under the
control of those programs. 'The system provides operations for
creating and deleting filgs and arbitrary length reads and writes
on files.

Directories provide the mapping between file names and files.
They arc considered to bc objects owned by the file system. User
access is thercfore restricted through the use of special primitives
and cannot be done through the normal read/write operations.
The directory structure forms a rooted tree similar to the Unix

]Acccm is a descendant of RIG., with changes inspired primarily by Demos and
Multics.

directory structure {20].

The file system is implemented as a set of four cooperating
processes:

1. the directory processor,
2. the basic file server,

3. the buffer manager, and
4. the disk driver.

The directory processor is responsible for maintaining working
directories and for translating pathnames into the file system’s
internal representation of files, called file identifiers. The basic
file server maintains all active files in the system. It translates
read and write requests into logical blocks to be read or written,
requests those blocks from the buffer manager and moves the
data from (to) the client’s address space to (from) the buffer
manager.  The buffer manager attempts to keep a pool of
frequently used file blocks in memory. When the need for free
buffers arises, it flushes a number of buffers out to the disk, based
on an LRU strategy. Finally, the disk driver translates logical
block numbers into disk addresses, schedules the requests for the
disk and maintains the file descriptors and the extent trees on the
disk. It interfaces to the disk through a small number of assembly
routines in the kernel that implement single and multiple block
transfer at the interrupt and the device vector level.

2.3. The Network Software

The goal of the networking project was to make the 4331
accessible from Stanford’s ethernet, primarily as a file server. The
choice of protocols was dictated by the fact that all existing
machines on the ethernet used the PUP protocols [3] at the time
the project began.

The 4331 is connected to the ethernet via several pieces of
hardware. The ethernet transceiver is interfaced to a Multibus
connected to a modified 170 port on an Series/l minicomputer.
The Series/l in turn is connected to the 4331 via a channel attach
unit.

Level O of the PUP hierarchy consists of the hardware from
the ethernet up to and including the Series/l. The Series/l has
some software to buffer packets for performance reasons. The
remaining levels of the architecture are implemented under
Perseus. Level 1 and level 2 are each implemented by one
process, the PUP process and the Rip/Bsp process. An FtpServer
and a ‘TelnetServer process provide file access and virtual
terminal service, respectively, for clients on remote hosts. Local
clients requesting remote resources interface to the network
through FtpUser and TelnetUser processes, respectively. There is
some level O software in the kernel for handling communication
between the PUP process and the Series/l.

2.4. The Switchboard

The switchboard allows a client to communicate with an
arbitrary server, to which it does not have a standard link. This
notion is identical to that of a mame server in othcr systems.
Iissentially, a scrver registers with the switchboard by sending it a
link pointing to itself and the name of the service that the scrver
provides. A client can query the switchboard’s databasc of servers
and, on a successful query, sct up a connection with a server. The
switchboard allows the system to be configured in a dynamic
fashion: servers can go down and come back up and re-register
with the switchboard.

There may be one or more server processes for a given
service, depending on the service class. The three classes of
service are:

Static There is always exactly one server for a Static service.
The switchboard binds the name of the service to a
link to the server.



Auto There is at most one server for an Auto service, but if
the scrvice has never been requested no server exists.
The switchboard binds the name of the service to:

1. the pathnamc of thefile from which the server
should be started when the first request for it is
rceeived; and

2. a link to the server, if it has already been
created.

Private There is one server process per request for a Private
service.  The switchboard binds the name of the
service to the pathnamc of the file from which the
server should be started. The switchboard starts a new
server process for every request it receives: therefore,
it docs not store the binding from name to link.

Note that these service classes are completely invisible to the
client process which requests a service; all the client sees is a link
to a server. Only the process which registers the service with the
switchboard is concerned with the service class.

Client processes may send two kinds of requests to the
switchboard:

Locate Find a link to the requested service and returns that
link to the requester.

Open Find a link to the requested service and forward the
Open request over that link. This is more convenient
for the client than using Locate followed by an Open
to the server, but it is not an essential function of the
switchboard.

It was once contemplated to remove all standard links from
client processes except for the link to the switchboard [8]. All
connections would then be set up dynamically at runtime.
Although this idea was never implemented in Perscus, it has since
been incorporated in a much more general design for a universal
directory service [11].

2.5. The Process Manager

The process manager is responsible for process creation,
loading, destruction, suspension and resumption. Upon process
creation, the parent (creator) reccives a link to the process
manager, on which it sends requests related to that particular
child. This link is referred to as the control link for the child.

A principal function of the control link is for debugging.
That is, the parent can request that a child be suspended,
resumed, or destroyed as desired. The control link can be passed

- to another process, so the original creator need not remain the

parent.

2.6. The Memory Manager and the Swapper

Memory management was implemented for the 4331, which
supports multiple address spaces and demand paging. Memory
management is performed by the kernel and two server processes,
the mcmon, manager and the swapper. The kernel handles all
parts that dircctly interface the hardware. 1t handles the page and
scement tables ncceded for virtual address translation, reads the
change and rcfercnec bits, fields the address fault traps, and is
responsible for locking into memory the pages needed for 1/0.

The swapper moves page between disk and memory. It acts
only on request from the memory manager.

The memory manager contains the algorithms for memory
scheduling. The process managcr notifies the memory manager
when processes have to be loaded or when processes are
suspended or destroyed. The mcmoty manager also receives
periodic notifications from the time scrvcr in order to do periodic
memory rescheduling.

2.7. The Time Server

The time server maintains the current time of day and accepts
requests from other processes to be notified after a certain period
of time. It performs the machine-indcpendent aspects of timing,
while the kernel writes the so called timer block (on the 4331) and
accepts the timer interrupts.

2.8. The Command Language Interpreter

The command language interpreter forms the interface of the
user to the system. It is similar to the Unix shell [4]. The Pcrscus
command language is position-oriented. Essentially, the
command language interpreter takes a command name from the
input line and checks whether it is an executable object file or a
command file (a text file containing a sequence of commands). If
the command name is an executable file, the command
interpreter starts a process running the designated program.
Otherwise, the command interpreter spawns a new command
interpreter, which reads its input from the command file and
initiates other processes as necessary. Facilities for sending
parameters to a process, for redirecting standard input and output
and for supporting search lists were also implemented.

3. Interprocess Communication

Since the area of inter-process communication is of continuing
interest, we will now devote some special attention to the subject.
We perceive three predominant characteristics of the Pcrscus
interprocess communication system:

e The use of links which introduces both protection and the
notion of a tight connection at the IPC level.

e The provision for both synchronous and asynchronous
communication.

® The distinction between small, fixed-size messages and bulk
data transfer.

We discuss each of these issues in turn, in comparison to other
systems and in the perspective of distributed communication.

3.1. Links

The use of links is motivated primarily by a desire to achieve
a certain amount of protection. Since link-ids are capabilities,
they cannot be easily fabricated. This helps prevent either buggy
or malevolent processes from gaining fraudulent access to
resources. In addition, the kernel access lists allow the system to
know who is talking with whom and to provide event-driven
notifications to processes when links pointing to them are
destroyed. However, there are a number of problems with links,
which we now consider.

Links arc an example of a connection-based communication
system. The client first requests the scrver to open a connection,
the server validates the rcquest. allocates a state record for this
conncction and returns a unique identifier (a link-id) to the client
process by which it can access the connection. Connections have
a number of advantages similar to thosec attributed to virtual
circuits. ~Nevertheless, wc observe three problems inherent in
connection-based ~ systems:

1. The overhead for setting up and dismantling a link is
substantial. In its simplest form, it requires two kernel calls
for creating and destroying the link, two cxtra messages for
opening the connection (the open request and the reply)
and one extra message for notifying the server that the
client has closed the connection.

2. Conncction-based systemis do not recognize the fact that
most client-server interactions arc of a single-shot nature,



meaning that the clicnt usually wants a single request
satisfied and is not interested in the connection afterwards.
In particular, it was observed in Perseus that client-server
interaction had an almost constant pattern of setting up a
connection, satisfying a request and breaking down the
connection. ~ This made the overhead just discussed
particularly undesirable.

3. It is not clear how well the tight connection IPC
mechanisms map into a distributed world with loosely
connected kernels on different machines. As a single
machine implementation, the Perscus kernel takes very
explicit advantage of the fact that all the information
relevant to a particular connection is available in the local
kernel.  Distribution of this knowledge substantially
complicates the algorithms involved. A simple but
important example of the problems involved concerns the
message sent to the server when a link pointing to it is
destroyed.  This message allows the server to free the
resources allocated to that connection. Message transfer
across a network is not entirely reliable and therefore the
message might never arrive at the scrver, if it lives on a
different host as the client. So, the server cannot entirely
rely on this notilication to deallocate its state record and will
probably have to usc some other higher level mechanism as
well (e.g. timeouts). Extrapolating this argument, we came
to wonder whether it would not be better to rely entirely on
this higher lcvel mechanism and get rid of the explicit
notification at the IPC level. This was the approach taken
in RIG.

‘The usc of connections was dictated primarily by the decision
to provide capability-like protection. The use of link-ids is
notably different from systems like RIG or Thoth in which all
communication ports are global identifiers. In RIG, the usc of
global, location-dependent identifiers was reported to be a major
headache, and, indeed, was a principal motivation for the
integration of ports in to Accent [18, 19]. No such problems were
reported in Thoth, largely because Thoth supported an extra level
of low-level naming. location-independent logical process
identifiers. There arc two issues involved here, neither of which
have, in our opinion, been given a substantial treatment:

1. Is there a substantial gain in building protection in at the
message lcvel or would be it be better to provide that
protection on the process level, based on end-to-end type
arguments [21]?  Not all checking can be done at the
message level. because in general, the message level does
not possess enough knowledge to do so. Thercforce, the
receiving process will, even in a protected system, still have

. to do some checking of its own. So one can wonder
whether there is any merit in doing checking at the message
level at all. since the effort probably will have to be (at least
partially) duplicated at the process level.

2. What cost is involved in using local identifiers? What
percent of the time does the kerncl spend in mapping
identifiers from one level to another? One must bear in
mind that interprocess communication is a heavily-used
utility and thcrcforc it should bc made as efficient as
possible.

Accent may help answer some of these questions.

Assuming that protected communications paths (conncctions)
arc a good idea, a third potential problem with links is that they
are tightly coupled with processes. That is, the only entity that
can rcceive a message from a link is a process; in particular,
communication with the kerncl is via system calls distinct from
the IPC machinery. This may be warranted under the argument
that services with substantially different semantics and
performance characteristics should be accessed with substantially
different mechanisms.

In Accent, on the other hand, ports and processes arc totally
indcpendent. It is the port that rcpresents the scrvice, not the

process. Thus, a port can be used to specify kernel objects, such
as interrupt handlers, or an operating system could implement
ports without implementing proccsscs. This scheme eliminates
the need for virtually all system calls other than those for sending
and receiving messages. Moreover, the scparation of
communication and function allows the service to migrate
without clients being aware of the migration, and it allows for the
explicit management of communication between two parties by
an intermediary (such as a debugger or performance monitor).

Perscus also introduced asymmetry in the way that rcccivers
and senders refer to links. That is, a sender refers to a link via a
link-id, whereas the receiver refers to a link via a channel and a
code.  Accent, on the other hand, provides a symmetrical
treatment of its ports. Both sender and receiver refer to a port
through a port-id. This symmetry is supported by the fact that
both sender and receiver have access rights to the port and,
therefore, both have capabilities.

3.2. Asynchronous vs. Synchronous Communication

It is instructive to observe the typical usage pattern of the
Perscus primitives.  The non-blocking rcccive operation was
never used. User processes almost invariably used blocking sends
and then waited for a reply from the server they addressed.
Server processes used asynchronous sends and synchronous
receives.

There does not seem to be much need for asynchrony in user
proccsscs since they most often cannot proceed without the
current request being fulfilled. A compiler, for instance, cannot
proceed without its request to the file system to read in the source
file being finished. The situation is somewhat different for server
processes: the notion here is that the service should at all times be
available. It is clear that this notion cannot be supported with a
completely synchronous communication mechanism (i.e. a
mechanism which has nothing else than blocking send and
receives), since the server would invariably become blocked on
the first request. Permanent availability of the service can be
achieved in one of two ways [10]:

1. The service is performed by a single process, able to
multiplex itself between different requests. This solution
demands multiple addresses per process (typically one per
outstanding request) and built-in asynchrony in the message
system, so the server never blocks on a single request.

2. The second solution has the service performed by a variable
number of proccsscs (one per request). A single address per
process is sufficient in this scheme and the processes can
communicate on a synchronous basis. There is typically a
supervising process, that receives the user requests, starts up
a new server process and forwards the request to that
process without blocking itself.

A number of systems of both flavors have been built, but no
conclusive evidence seems to be available for either case.
Synchronous communication makes programming easier because
of its more familiar semantics, not unlike procedure calls. It
incurs a penalty though increased message traffic, a higher
number of proccsscs in order to gain concurrency, and,
conscquently. a higher number of context switches.  These
disadvantages have to be weighed against the machinery needed
in the kernel to support multiplexed processes and the difficulty
of writing multiplexed processes (comparable to writing the
necessary kernel machinery!). This machinery includes, as
mentioned. the support of multiple addresses per process, a
facility for mapping these addresses into entry points in the
process and the support of asynchronous communication, which
complicates the buffering strategy in the kerncl.

Characteristics of the particular hardwarc at hand heavily
influcnce the relative merits of cither solution.  On machines
where process creation and process switching is relatively



cxpensive, the one-process-per-server model is likely to come out
ahead in performance.

3.3. Separate Message and Data Transfer Facility

Small, fixed-size messages enormously alleviate the buffering
problems in the kernel, especially in the case of asynchronous
communication. ‘The strategy also ties in well with an often
obscrved usage pattern: A vast amount of communication is
transfer of control information. Usually the amount of data in
these messages is small and its contents are explicitly interpreted
by the receiving process. On the other hand, there is occasional
bulk transfer of untyped and uninterpreted data, as in data
transfer to and from secondary storage. Using a separate facility
eliminates the performance disadvantage of copying and
buffering large messages. Although this distinction is usually
rejected by message purists, advocating variable size messages and
no data transfer facility, it was never felt to be a major restriction
in the system.

It is not clear, however, whether the distinction between
message and bulk data transfer maps very naturally in a
distributed setting. We are currently investigating this issue in the
context of the distributed operating system V [7]. Moreover,
some systems have been built that eliminate the nced to be
concerned about message size. Accent, for example. treats
messages as just another segment in virtual memory. They may
be mapped directly from the sender’s address space to the
receiver’s address space using copy-on-write page mapping [19].

4. System Structure

The distribution of system functions was based on an almost
fanatic desire to keep the kernel minimal.  Most process
management functions, for example, are performed by the
process manager. Although these functions can logically be done
outside the kernel, it seems that doing so constitutes an undue
duplication of effort and a major cause of inefficiency.
Invariably, a process would call the process manager, the process
manager would transmit the information almost literally to the
kernel, the kernel then replied to the process manager and finally
the process manager replied to the original requester. “This caused
two extra messages and two extra context switches for every
process manipulation, with no apparent gain in functionality.

Similar decisions were taken for memory management and
device handling. Manipulation of the memory map was done by
the kernelbut memory allocation and rescheduling was done by
another server process, the memory manager., With respect to
device handling, all the kernel did was field the interrupts,
transform them into a message and send it off to the device
handling process. In the reverse direction, the kernel would
accept a message from the controlling process, write the device
register and start the device.

While in the case of process management, the separation of
function between kernel and process manager scems to have been
a mistake. this conclusion is not so obvious in the case of device
handling and memory management. In a large system, device
handling codc can become very extensive, and cven in systems
where the kernel does not run with all interrupts disabled. there
are still good reasons for keeping the kernel small and
manageable. I lowcver, one pays an inevitable penalty in repeated
context switches between the kernel and the device handlers.

A potential solution to this problem was implemented in
Thoth where the so called system team ran in privileged mode
and in the address space of the kernel. ‘This obviates the need for
doing frequent context switches. llowever, it blurs somewhat the
distinction bctween kernel and non-kernel operation:

By keeping the kernel small it was possible to run it with
interrupts disabled. In so doing, the kernel becomes a sequential
program, easier to understand and more likely to bc correct. On
the other hand, this decision severely complicates a number of
issues related to demand paging: The kernel has to be very careful
not to stepon a page that is not in memory. It raises problems
when the processor is idle: The idle state is, in general. terminated
by an interrupt which has to bc processed in the kernel.
However, one cannot wait for this interrupt in the kernel since all
interrupts are masked. So control has to bc transferred to a (non-
kernel) idle process only to be returned to the kernel as soon as
the interrupt occurs. Thus, wc have become convinced that,
while it is essential to keep the kernel small and simple, running
the kernel with all interrupts disabled, is in general not a viable
solution.

5. Portability

We have pointed out that due to the large variety of
computers that were under consideration at the beginning of the
Perseus project, we were strongly motivated to build a system that
could be ported to different machines. Two critical issues are
involved in making an operating system portable:

1. The logical design must be represented in such a way that it
can readily be ported from one machine to another.

2. The logical design of the system must be efficiently
implementable on different machines.

Addressing the second issue first, the system structure described
in the previous section, with the system built out of a kernel and a
sct of system processes, proved to be very valuable. With respect
to the first issue, in practice this requires the design to be
represented in a suitable high-level language so that the
representation can be mapped automatically onto different
machines. In the remainder of this section we review the logical
design of the system with respect to portability and we discuss the
choice of Pascal as the implementation language. Practical
experience with porting the system is presented throughout the
section.

5.1. Portability of the Logical Design

The portability of the logical design of Perseus derives from
its construction in terms of a kernel and a set of system processes.
The kernel abstracts to a large degree the idiosyncrasies of a
particular machine into a well-defined virtual machine in which
the processes operate. The objects available at the interface of
this virtual machine (processes, messages, generic devices) are
essentially machine-independent, and therefore the processes
executing in this virtual machine tend to be machine-
independent. Messages are advantageous in this respect since
they do not depend on the existence of shared memory segments,
a facility not easy to implement in some memory architectures.

Some hardware characteristics of peripheral devices cannot be
ignored totally. Wc attempted to mask these dependencies as
much as possible by parametrizing certain proccsscs.  For
example, in the case of the file system it is clear that the size of the
disk blocks is of paramount importance to the proper
implementation of the system. All processes that made up the file
system were parametrized in terms of this number.
Parametrization was also used to tune the system to certain
configuration, e.g. a parameter was available in the file system
buffer manager to denote the maximum number of 170 buffers to
be kept in corc at any given time.

More pervasive dcpendencics occur, which cannot be
adequately parametrized. A sophisticated disk driver requires
certain scheduling algorithms in order to minimize the arm
movement. This is clearly very dependenton the particular disk



and the dependency cannot be captured in a single parameter but
rather pervades the cntire algorithm. A similar problem occurs in
the memory manager: Different algorithms neced to be used to
take advantage of different memory management schemes.
Nevertheless, -with the exception of the disk driver and the
memory manager, WC found that porting the server processes
(process manager, switchboard, time server, network software and
command language interpreter) was relatively straightforward.

Although the kernel of an operating system might, at first
sight, be considered the epitomy of a machine-dependent
program, this is not necessarily true. The kernel logically consists
of two levels:

1. A device level which interfaces the bare hardware (device
interrupts, ~ processor  traps, memory  management
hardware).

2. The virtual machine interface.

While the device level is necessarily machine-dependent, the next
level neced not be if a strict separation between the two is
maintained. One cannot totally localize all machine-dependent
information to the device level, but again the technique of
parametrizing the kernel showed excellent results. Parameters are
needed, among others, for the size of the volatile process state to
be saved and for certain constants describing the size of address
translation tables and address spaces. The interface between the
two levels cannot bc made entirely machine-independent. In
particular, we found it necessary to impose the following
requirements on the machine architecture in order for the higher
level to work correctly:

e There needs to be an efficiently addressable memory unit,
commonly called a word, in which both a memory address
and an integer can be stored.

e ‘The possibility must exist to turn machine interrupts off.
e The volatile storage of a process must be easily accessible.

In porting the system from the DecSystem-20 to the 4331, no
major problems occurred. However, the transition from a single
address space to multiple address spaces on the IBM required
several changes to the kernel. The original kernel essentially
made the assumption that it could address user memory as part of
its own. In a multiple address space world, user pointers first had
to be translated into addresses meaningful to the kernel. This
change was simple but pervasive: It turned that there were a
substantial number of such memory references in the kernel,
much more than logically necessary.

5.2. Language Issues

One of the key decisions, to be taken early in a project like
this one, is the choice of implementation language. At the time
the project began, our two principal choices were Model and
Pascal. Demos was written in Model, so the first option was to
retargct the Model compiler, port Demos, and work from there.
This route was taken by Mike Powell in developing a multi-
processor descendant of Demos [17].  However, the Model
language was unfamiliar to most people at Stanford and ncither
the Model compiler nor the Demos system were written with
portability in mind. Substantial effort would have been required
to overcome these deficiencies.

At about the same time, the Pascal* [9] project got underway
at Stanford. Pascal* is an upward-compatible extension to
standard Pascal with several features added for facilitating
systems programming, including parametric types, exception
handling, and separate compilation. The Pascal* compiler would
be explicitly designed to bc portable, using a fairly machine-
independent front-end and a retargctablc code generator. In
addition, we had a Pascal compiler available, running on and
producing code for our original machine, and accompanied by
some reasonable program development tools. Thus, we decided

to start programming in Pascal and, as soon as the Pascal*
compiler would become available, we would upgrade our code.
Pascal* being upward compatible with Pascal, it was believed
that this could be done without major retrofits.

It is not our intention here to debate at length the various
strengths and weaknesses of Pascal. We restrict ourselves to the
context of writing operating systems. Whereas the idea of writing
an operating system in a high level language has become
commonplace, there is still a lot of debate as to how high-level the
language should bc and both commercial and research
development efforts arc underway in either direction.

Pascal attempts to achieve high levels of protection and
machine independence and therefore has to impose some
restrictions on what can be expressed in the language. Certain
constructs, necessary in systems programming (mainly access to
memory address and bits within a word, the ability to locate code
and data at specific locations in memory and dynamic storage
allocation and deallocation), fall outside of Pascal’s scope and
therefore have to be progratnmed in assembly language. A less
restrictive language might allow these constructs to be expressed
in the language itself, but in return it would not offer comparably
reduced levels of protection and machine-independence.
Conversely, Pascal’s protected world requires a little more of the
code to be written in assembly language, but in return, makes for
a much cleaner separation between machine dependent and
machine independent code.

We feel that, in view of the very small part of the system that
actually requires the kind of constructs Pascal does not supply,
this clean separation is to be preferred over the disadvantage of
having to write a little bit more of assembly code. An interesting
compromise was explored by the implementors of Pcrseus on
VAX/Berkeley Unix. They choose to leave most of the kernel
code in its original Pascal implementation but redid some of the
device-level code in C. This was possible since the languages
could call each other. The general impression of this approach
was very favorable, maintaining both the protection and machine-
independence of Pascal wherever possible, while making the
device level easier to rcad and to maintain.

Having argued in favor of Pascal for writing an operating
system, is Pascal a portable language? The constructs in the
language are, with the exception of variant records, machine-
independent. However, poor specification has often led to
implementations that allow non-portable constructs. the size of
set’s being the classic example. Also, lack of expressive power in
certain areas has led to local extensions and, in turn, to a
proliferation of Pascal variants. Our expericnce is that the
differences between Pascal implementations are usually easily
resolved. In porting the operating system from the DecSystem-20
to the 4331 and later to the VAX, the language system was not
ported with the operating system; each time we had to interface
to a new compiler. It turned out that the changes required to the
code were extremely small and usually lexical in nature.

In retrospect, we feel that the choice of Pascal was justified,
especially in view of the projected upgrade to Pascalx.
Unfortunately, the lack of availability of a Pascal* compiler for
the IBM and the MC68000 proved one of the major stumbling
stones for the project.

6. The Rise and Fall

As noted in the introduction, Stanford was computer poor at
the time the project began. ‘T’hus, a principal motivation was the
acquisition of additional facilities through IBM. Given the type
of IBM computers available and the type of computers available
from other sources. Perseus was originally targeted for a wide
range of micro- and minicomputers. These machines originally
included the Series/ 1, the 11P-300 and the Xerox Alto, and grew



to include the 4331 and the Motorola MC68000. The hope was
that the rctargctublc Pascal* compiler would alleviate most of
the problems associated with bringing the system up on so many
machines.

Ironically, the first working version of the kernel was not
implemented on a micro or mini, but on a DecSystem-2060. It
used onc TOPS-20 process for each Perscus process and emulated
the Pcrseus intercommunication facilities through TOPS-20
messages. This first kernel only supported interprocess
communication. Soon thereafter, a second version was brought
up capable of dynamic process management.

In early 1980, a 4331 appeared and became the major target
for the project. The kernel was ported and memory management
was added, allowing processes to run in multiple address spaces.
In late 1980, priority was placed on connecting the machine to the
ethernet and using it as a file server for the Stanford University
Network (SUN). Consequently, the PUP network protocols [3]
were implemented to run under Pcrseus and a file storage system
was dey eloped. A Scries/1 was uscd as a network frontend.

In early 1981, the MC68000-based SUN workstation [2] was
targeted as the machine of choice for the future, and hopes for the
4331 and Scries/1 began to wane. During the bummer of 1981,
Perseus was implemented a t a guestlevel on top of
VAX/Berkeley Unix. Ironically, its md&age-passing capabilities
were simulated with Accent IPC[18]. This effort signaled the end
of active Pcrseus development.

Perseus came to an end due to a combination of hardware and
software problems, disruptive changes in personnel, and
differences of opinion at several levels. In terms of hardware, the
machine of choice, the SUN workstation, never became available
in the time frame of the project. Not only does the SUN perform
better than the 4331, but it is trivial to connect to an ethernet. As
mentioned above, a Series/l frontend was required to connect the
4331 to the ethernet.

In terms of software, the development tools available on the
4331 were quite different from those with which the
implementors were familiar. The result was that much of the
development was carried out on other machines, with the
resulting overhead of maintaining consistent versions of the code
on multiple machines. =~ More important, a Pascal-k code
generator for the 4331 never materialized and the code generator
for the SUN workstation did not materialize in time.

As for project management, in summer 1980, the original
principalinvestigator left Stanford. One of the authors (Lantz)
took over, but a lack of familiarity with the project and
fundamental disagreements with some of the ideas resulted in a
slowdown. Ultimately, policy differences between IBM and
Stanford mitigated against continuation of the Joint Study and
the project was terminated by mutual consent.

7. Concluding Remarks

The Perseus project was under way from 1979 through 1981.
In that period of time the system was implemented both in native
mode and as a guest-level operating system. Wc have described
the logical design and the irnplementation of the system. We
have outlincdits successes and its failures, in terms of interprocess
communication, system structure, and portability.  Although
Pcrscus itself has been abandoned, all of these issues retain our
active interest.
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