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Abstract portable over a range of target machines. The system would also
support interprocess communication between machines at a

: : higher level than that possible with traditional network

We describe the operating system Perscus, developed as part architectures: that is, it would be a distributed operating system.
of a study into the issues of computer communications and their The foundation for portability was the choice of high-level
pact on OpeTalngyaem and hg language design, implementation language, Pascal®* [9]. The foundation forerseus was designed to be portable by virtue ol its kernel-base distribution was the choice of message-passing as the principal
structure and its implementation in Pascal. In particular, : Co

: Ce means of interprocess communication.
machine-depcndent code 1s limited to the kernel and most
operating systems functions are provided by server processes, This paper presents the result of the Joint Study, an operating
running in user mode. Perseus was designed to evolve into a system called Perseus. The Perscus system was implemented in
distributed operating system by virtue of its interprocess native mode on an IBM 4331 and on a guest-level to DecSystem-
communication facilities, based on message-passing. This paper 20/TOPS-20 and VAX/Berkeley Unix. Unfortunately, the
presents an overview of the system and gives an assessment of system did not survive (at Stanford) to fulfill its potential as a
how far it satisfied its original goals. Specifically, we evaluate its distributed operating system.

| history of the project pointing out. major milestones and 4 are critical reviews of the underlying interprocess) ’ communication mechanisms and overall system structure,
: stumbling blocks along the way. respectively. Section 5 discusses the portability of Perseus and,

related to that, the choice of implementation language. Section 6
concludes with a brief history of the project. Additional details

1. Introduction may be found in the final report of the Joint Study [12].

In the spring of 1979 the Stanford computer science
community was on the verge of acquiring a large set of new 2. An Overview of Perseus
computer facilities. Until that time, the only available rescarch

machine of a note was a DecSyeon 1) running a homegrown. Perseus was influenced primarily by Demos [1. 14, 16] and
pg1 operating 8)Sem modin for 2 DocSysteo secondarily by Thoth[5.6] and RIG [10,13]. As such, it consists
2060 and two VAX/780’s, and a grant he 20 Xerox Altos [22] of a resident kernel and a sct of processes. The kernel establishes
together with a 3 Mbit experimental cthernet [15] was in the a virtual machine for the processes to run on. It provides

) offing. Long-term plans called for an in-house workstation inicrprocess communication, basic process and memory
which ‘ultimately became known as the SUN workstation [2] ’ management, and interfaces to the hardware at the interrupt anddevice register level. The kernel is the only component of the

In order to investigate the issues involved in interconnecting system to run in privileged mode.

(heseooh witv as vel PY acquire additional ed Cr suntord All other services arc provided through server processes,
™ Crook wi th I "i . y ot 151 ") ( Omputing. executing in user mode. Server processes provide process

¢. purpose of the Join q re was 10 mvestigdte Issues in management, memory management, file storage and retrieval,
and broaramming language desion, Tn vow oFh)eraungocity time service, name service, device handling, command language
f machines then on order or anti ; ted. kev attention No interpretation and nctwork access. Applications accessthe system

OL machines \ 0 ¢ Ol anficipated, XCy attention was g through wser processes. which arc, from the kernel’s viewpoint, in
to building a general-purpose operating system that would be no way different from Server processes.

2.1. Interprocess Communication

The interproccss communication mechanism in Perseus is a
very close descendant of the one in Demos. In general, one can

Crt say that the system exhibits a vast amount of functionality at the
kernel level, as opposed to at the process level in systems such as

" This work was supported by the IBM Joint Study on Distributed Computing under Thoth.
contracts SEL 47-79, SEL 2-80, SEI. 8-81, and SEL 18-81. ‘This paper has been The principal protected objects in the system arc the
submitted to Software- Practice and Experience. communication paths over which messages can be sent. These



paths arc called links and arc similar to the notion of ports in directory structure {20].

systems such as Accent [18,19]. A link has one receiver and one The file system is implemented as a set of four cooperating
sender. The sender may change over time. A link is maintained

by the kernel independent of any process. Phe ,
In order for process A to send a message to process B, A must 7. ne Jee ory ver

possess a link to B. This link must previously have been created 3. the buffer manager, and
by Rand sent (in a message) to A. A sender names a link through 4. the disk driver.
a process-local link-id, which is then mapped by the kernel into a : : : Co :
system-global identificr for the link. Thus, a link-id is similar to a The directory processor is responsible for maintaining working
capability. At the time it is created, a process is given access to a directories and for translating pathnames into the file system's
set of standard links associated with Various Servers. internal representation of files, called file identifiers. The basic

file server maintains all active files in the system. It translates
Each link is associated with a channel and a code. Multiple read and write requests into logical blocks to be read or written,

links may belong to the same channel and/or have the same code. requests those blocks from the buffer manager and moves the
Channels are typically used to represent a particular type of data from (to) the client’s address space to (from) the buffer
request: codes are used to distinguish particular senders. The manager. The buffer manager attempts to keep a pool of
receive operations are performed on a set of channels. When a frequently used file blocks in memory. When the need for free
message is received, the receiver may use the code to determine buffers arises, it flushes a number of buffers out to the disk, based
the sender. on an LRU strategy. Finally, the disk driver translates logical

Perseus provides both synchronous and asynchronous block numbers into disk addresses, schedules the requests for the
message communication. Four basic primitives are available for disk and maintains the file descriptors and the extent trees on the
sending and receiving messages: blocking Send and Receive, and disk. It interfaces to the disk through a small number of assembly
non-blocking ASend and AReceive. Additional primitives exist routines in the kernel that implement single and multiple block
for creating and destroying links and for obtaining status transfer at the interrupt and the device vector level
information about them.

Since messages are small and fixed size, there is an additional 2.3. The Network Software

facility for bulk data transfer. The data transfer facility is
protected through the use of links. Process 4 can send process B The goal of the networking project was to make the 4331
a link, containing a pointer to and the size of an area in if’s accessible from Stanford’s ethernet, primarily as a file server. The
address space. A can also specify whether he grants read or write choice of protocols was dictated by the fact that all existing
access to process B. machines on the ethernet used the PUP protocols [3] at the time

To clarify the use use of links, consider a standard scenario the project began.
involving a client and the file system. Assume that a client wants The 4331 1s connected to the ethernet via several pieces of
to tead a file. The client first sends a message over its standard hardware. The ethernet transceiver is interfaced to a Multibus
link to the file system, asking the file system to open the file. connected to a modified I/0 port on an Series/l minicomputer.
Implicit in this message is a rep&-link, R, owned by the client, on The Series/l in turn is connected to the 4331 via a channel attach
which the file system will reply. If the file system accepts the unit.
request, it will ask the kernel to create a new link, F, pointing to : :

itself, and it will reply to the client on R, returning the newly h Level 0 of the het hierarchy conse of!he harqwarefrom
created link ¥. F now represents the open file in the client’s the ethernet up to and including the Nr + 2NE SCTICS Nasworld. Tt is used to send a message with a read request to the file some software to buffer packets for per ormance reasons. The
system. The client passes in the message with the read request a F—levels of jhe architecture ho orcemented under
link, D, pointing to the area in its address space where it wants the CISCUS. PUP and evedh ar = 1pee 3 one
file stored. The file system uses the data transfer facility over link Pae © S process and the 0 po Process. An oP sii]
D to transfer the file to that particular area and, finally, replies to anc a NELSEIVET proc J C TC dceess oe 3 ol
the client on R. The client typically closes the file by deleting link terminal service, respectively, tor clients on remote hosts. Loca
F; the file system will be notified of the destruction of the link clients requesting remote icsources interface to the network
and—close down the connection through FtpUser and FelnetUser processes, respectively. There 1S

some level O software in the kernel for handling communication
between the PUP process and the Series/l.

2.2. The File System

The basic unit of information with respect to the file system is 2.4. The Switchboard
a byte. To the system, every file appears as a continuous stream : : : :

of bytes. with length greater than or equal to zero, no structuring ne switchboard Alowsi client Ho Coma with an
whatsoever 1s expected. Some user programs may generate or arbitrary wueT, « W tH It ies not ave d stan he Hi. 111s
expect files in a particular format but this is left entirely under the Hoot I denuca tot at of b har pe noO cr systems.control of those programs. The system provides operations for ssentially, a servcr registers with the switct OdTC y sending it a
creating and deleting files and arbitrary length reads and writes link pointing to itscil and the name of the service that the server
on files. provides. A client can query the switchboard’s database of servers

and, on a successful query, sct up a connection with a server. The
Directories provide the mapping between file names and files. switchboard allows the system to be configured in a dynamic

They arc considered to bc objects owned by the file system. User fashion: servers can go down and come back up and re-register
access is thercfore restricted through the use of special primitives with the switchboard.

and cannot be done through the normal read/write operations. Th :The directory structure forms a rooted tree similar to the Unix ere may be one or THOTE SCIVET Processes for a givenry
service, depending on the service class. The three classes of
service are:

-_— Static There is always exactly one server for a Static service.
IAccent is a descendant of RIG. with changes inspired primarily by Demos and The switchboard binds the name of the service to a

Multics. link to the server.
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Auto There is at most one server for an Auto service, but if 2.7. The Time Server

the scrvice has never been requested no server exists.
The switchboard binds the name of the service to: The time server maintains the current time of day and accepts

1. the pathname of the file from which the server requests from other processes tobe notified after a certain period
should be started when the first request for it is of time. It performs the machine-indcpendent aspects of timing,
received: and while the kernel writes the so called timer block (on the 4331) and
7 accepts the timer interrupts.

2. a link to the server, if it has already been
created.

Private There is one server process per request for a Private 2.8. The Command Language Interpreter
service. The switchboard binds the name of the
service to the pathname of the file from which the The command language interpreter forms the interface of the
server should be started. The switchboard starts a new user to the system. It is similar to the Unix shell [4}. The Pcrscus

server process for every request it receives: therefore, command language is position-oriented. Essentially, the
it docs not store the binding from name to link. command language interpreter takes a command name from the

Note that these service classes are completely invisible to the input line andoechs whether IL is an executable object tile 5io
client process which requests a service; all the client sees 1s a link NAiBVPh"Goble file©——d
08 Syod only theDProcess whichreese} the service with the interpreter starts a process running the designated program.

Otherwise, the command interpreter spawns a new command
Client processes may send two kinds of requests to the interpreter, which reads its input from the command file and

switchboard: initiates other processes as necessary. Facilities for sending

Locate Find a link to the requested service and returns that parameters (0 a process, for redirecting standard input and output
link to the requester. and for supporting search lists were also implemented.

Open Find a link to the requested service and forward the
Open request over that link. This is more convenient _ _
for the client than using Locate followed by an Open 3. Interprocess Communication
to the server, but it is not an essential function of the

switchboard. Since the area of inter-process communication is of continuing
It was once contemplated to remove all standard links from interest, we will now devote some special attention to the subject.

client processes except for the link to the switchboard [8]. All We perceive three predominant characteristics of the Pcrscus
connections would then be set up dynamically at runtime. Inferprocess communication system:
Although this idea was never implemented in Pcrscus, it has since e The use of links which introduces both protection and the

"been incorporated in a much more general design for a universal notion of a tight connection at the IPC level.

directory service [11}. e The provision for both synchronous and asynchronous
communication.

2.5. The Process Manager ® The distinction between small, fixed-size messages and bulk
data transfer.

The process manager is responsible for process creation, We discuss each of these issues in turn, in comparison to other
loading, destruction, suspension and resumption. Upon process systems and in the perspective of distributed communication.
creation, the parent (creator) receives a link to the process
manager, on which it sends requests related to that particular
child. This link is referred to as the control link for the child. 3.1. Links

A principal function of the control link is for debugging. Co : CL : :

That io ihe. parent can request that a child be suspended. The use of links is motivated primarily by a desire to achieve
resumed, or destroyed as desired. The control link can be passed a certain amount of protection. Since link-ids are capabilities,

- to another process, so the original creator need not remain the they cannot be easily fabricated. This helps prevent either buggy
parent. or malevolent processes from gaining fraudulent access toresources. In addition, the kernel access lists allow the system to

know who is talking with whom and to provide event-driven
notifications to processes when links pointing to them are

2.6. The Memory Manager and the Swapper destroyed. However, there are a number of problems with links,
Memory management was implemented for the 4331, which which we now consider.

supports multiple address spaces and demand paging. Memory Links arc an example of a connection-based communication
management is performed by the kernel and two server processes, system. The client first requests the scrvcr to open a connection,
the mcmon, manager and the swapper. The kernel handles all the server validates the rcqucst. allocates a state record for this
parts that directly interface the hardware. It handles the page and connection and returns a unique identifier (a link-id) to the client
scement tables needed for virtual address translation, reads the process by which it can access the connection. Connections have
change and rcfercnce bits, fields the address fault traps, and is a number of advantages similar to thosc attributed to virtual
responsible for locking into memory the pages needed for 1/0. circuits. Nevertheless, wc observe three problems inherent in

The swapper moves page between disk and memory. It acts connection-based systems:
only on request from the memory manager. I. The overhead for setting up and dismantling a link is

The memory manager contains the algorithms for memory substantial. In its simplest form, it requires two kernel calls
scheduling. The process manager notifies the memory manager for creating and destroying the link, two extra messages for
when processes have to be loaded or when processes are oPor the connection {the per ode! and the reply)
suspended or destroyed. The mcmoty manager also receives pt hl % a theSSAEC o notilymg te server that the
periodic notifications from the time scrvcr in order to do periodic cet “® © © COMNECHOn.
memory rescheduling. 2. Connection-based systems do not recognize the fact that

most client-server interactions arc of a single-shot nature,
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meaning that the client usually wants a single request process. Thus, a port can be used to specify kernel objects, such
satisfied and is not interested in the connection afterwards. as interrupt handlers, or an operating system could implement
In particular, it was observed in Perseus that client-server ports without implementing proccsscs. This scheme eliminates
interaction had an almost constant pattern of setting up a the need for virtually all system calls other than those for sending
connection, satisfying a request and breaking down the and receiving messages. Moreover, the scparation of
connection. ~~ This made the overhead just discussed communication and function allows the service to migrate
particularly undesirable. without clients being aware of the migration, and it allows for the

3. It is not clear how well the tight connection IPC explicit management of communication between two parties by
mechanisms map into a distributed world with loosely an intermediary (such as a debugger or performance monitor).
connected kernels on different machines. As a single Perscus also introduced asymmetry in the way that rcccivers
machine implementation, the Perscus kernel takes very and senders refer to links. That is, a sender refers to a link via a
explicit advantage of the fact that all the information link-id, whereas the receiver refers to a link via a channel and a
relevant to a particular connection is available in the local code. Accent, on the other hand, provides a symmetrical
kernel. ~~ Distribution of this knowledge substantially treatment of its ports. Both sender and receiver refer to a port
complicates the algorithms involved. ~~ A simple but through a port-id. This symmetry is supported by the fact that
important example of the problems involved concerns the both sender and receiver have access rights to the port and,
message scnt to the server when a link pointing to it is therefore, both have capabilities.
destroyed. This message allows the server to free the
resources allocated to that connection. Message transfer
across a network is not entirely reliable and therefore the 3.2. Asynchronous vs. Synchronous Communication
message might never arrive at the server, if it lives on a
different host as the client. So, the server cannot entirely It is instructive to observe the typical usage pattern of the
rely on this notification to deallocate its state record and will Perscus primitives. The non-blocking rcccive operation was
probably have to usc some other higher level mechanism as never used. User processes almost invariably used blocking sends
well (e.g. timeouts). Extrapolating this argument, we came and then waited for a reply from the server they addressed.
to wonder whether it would not be better to rely entirely on Server processes used asynchronous sends and synchronous
this higher Icvcl mechanism and get rid of the explicit receives.

notification at the [PC level. This was the approach taken There docs not seem to be much need for asynchrony in user
proccsscs since they most often cannot proceed without the

‘The usc of connections was dictated primarily by the decision current request being fulfilled. A compiler, for instance, cannot
to provide capability-like protection. The use of link-ids is proceed without its request to the file system to read in the source
notably different from systems like RIG or Thoth in which all file being finished. The situation is somewhat different for server
communication ports are global identifiers. In RIG, the usc of processes: the notion here 1s that the service should at all times be
global, location-dependent identifiers was reported to be a major available. It is clear that this notion cannot be supported with a
headache, and, indeed, was a principal motivation for the completely synchronous communication mechanism (i.e. a
integration of ports in to Accent [18, 19]. No such problems were mechanism which has nothing else than blocking send and
reported in Thoth, largely because Thoth supported an extra level receives), since the server would invariably become blocked on
of low-level naming. location-independent logical process the first request. Permanent availability of the service can be
identifiers. There arc two issues involved here, neither of which achieved in one of two ways [10]:

have, in our opinion, been given a substantial treatment: I. The service is performed by a single process, able to
1. Is there a substantial gain in building protection in at the multiplex itself bctween different requests. This solution
message lcvel or would be it be better to provide that demands multiple addresses per process (typically one per
protection on the process level, based on end-to-end type outstanding request) and built-in asynchrony in the message
arguments [21]? Not all checking can be done at the system, so the server never blocks on a single request.

message level. because in general, the message level does 2. The second solution has the service performed by a variable
not possess cnough knowledge to do so. Therefore, the number of proccsscs (one per request). A single address per
receiving process will, even in a protected system, still have process is sufficient in this scheme and the processes can

- to do some checking of its own. So one can wonder communicate on a synchronous basis. There is typically a
whether there is any merit in doing checking at the message supervising process, that receives the user requests, starts up
level at all. since the effort probably will have to be (at least a new server process and forwards the request to that
partially) duplicated at the process level. process without blocking itself.

2. What cost is involved in using local identifiers? What :

percent of the time does the Kono] spend in mapping A number of systems of both flavors have been built, but no
identifiers from one level to another? One must bear in conclusive evidence seems to be available for either case.
mind that interprocess communication is a heavily-used Synchronous communication makes programming easier because
utility and thcrcforc it should bc made as efficient as of its more familiar semantics, not unlike procedure calls. It
possible. incurs a penalty though increased message traffic, a higher

number of proccsscs in order to gain concurrency, and,
Accent may help answer some of these questions. conscqucntly. a higher number of context switches. These

Assuming that protected communications paths (connections) disadvantages have to be weighed against the machineryneeded
arc a good idea, a third potential problem with links is that they in the kernel to support multiplexed processes and the difficulty
are tightly coupled with processes. That is, the only entity that of writing multiplexed processes (comparable to writing the
can rcccive a message from a link is a process; in particular, necessary kernel machinery!). This machinery includes, as
communication with the kcrncl is via system calls distinct from mentioned. the support of multiple addresses per process, a
the IPC machinery. This may be warranted under the argument facility for mapping these addresses into entry points in the
that services with substantially different semantics and process and the support of asynchronous communication, which
performance characteristics should be accessed with substantially complicates the buffering strategy in the kernct.
different mechanisms. Characteristics of the particular hardware at hand heavily

In Accent, on the other hand, ports and processes arc totally influence the relative merits of cither solution. On machines
independent. It is the port that represents the scrvice, not the where process creation and process switching is relatively



5

expensive, the one-process-per-server model is likely to come out By keeping thc kernel small it was possible to run it with
ahead in performance. interrupts disabled. In so doing, the kernel becomes a sequential

program, easier to understand and more likely to bc correct. On
the other hand, this decision severely complicates a number of

3.3. Separate Message and Data Transfer Facility issues related to demand paging: The kernel has to be very careful
not to stepon a page that is not in memory. It raises problems

Small, fixed-size messages enormously alleviate the buffering when the processor is idle: The idle state is, in general. terminated
problems in the kernel, especially in the case of asynchronous by an interrupt which has to bc processed in the kernel.
communication. ‘The strategy also ties in well with an often IHowever, one cannot wait for this interrupt in the kernel since all
observed usage pattern: A vast amount of communication is interrupts are masked. So control has to bc transferred to a (non-
transfer of control information. Usually the amount of data in kernel) idle process only to be returned to the kernel as soon as
these messages 1s small and its contents are explicitly interpreted the interrupt occurs. Thus, wc have become convinced that,
by the receiving process. On the other hand, there is occasional while it is essential to keep the kernel small and simple, running
bulk transfer of untyped and uninterpreted data, as in data the kernel with all interrupts disabled, is in general not a viable
transfer to and from secondary storage. Using a separate facility solution.
eliminates the performance disadvantage of copying and
buffering large messages. Although this distinction is usually

rejected by message purists, advocating variable size messages and 5. Portabilit
no data transfer facility, it was never felt to be a major restriction - y

in the system. We h _ . ;: Co e have pointed out that due to the large variety o

It is not clear, however, whether the distinction between computers that wre under consideration at the beginning ofthe
message and bulk data transfer _maps very nawrally in a Perseus project, we were strongly motivated to build a system that
distributed setting, We are currently investigating this issue in the could be ported to different machines. Two critical issues are
context of the distributed operating system V [7). Moreover, involved in making an operating system portable:
some systems have been built that eliminate the nced to be
concerned about message size. Accent, for example. treats 1. The logical design must be represented in such a way that it
messages as just another segment in virtual memory. They may can readily be ported from one machine to another.
be mapped directly from the sender’s address space to the 2. The logical design of the system must be efficiently
receiver's address space using copy-on-write page mapping [19]. implementable on different machines.

Addressing the second issue first, the system structure described
in the previous section, with the system built out of a kernel and a

4. System Structure sct of system processes, proved to be very valuable. With respect
to the first issue, in practice this requires the design to be

The distribution of system functions was based on an almost represented in a suitable high-level language so that the
fanatic desire to keep the kernel minimal. Most process representation can be mapped automatically onto differentKeep machines. In the remainder of this section we review the logical
management functions, for example, are performed by the des fh . ih { to portability and we di hh
process manager. Although these functions can logically be done csIgh OF tho System WIth TeSpect to portabiilty dnd we discuss the

: : choice of Pascal as the implementation language. Practical
outside the kernel, it seems that doing so constitutes an undue : : : :
duplication of effort and a major cause of inefficiency. experience with porting the system is presented throughout thep J y

Invariably, a process would call the process manager, the process section.
manager would transmit the information almost literally to the
kernel, the kernel then replied to the process manager and finally - . .
the process manager replied to the original requester. “This caused 5.1. Portability of the Logical Design

two extra —. and (wo extra Context : switches for cvery The portability of the logical design of Perseus derives from
Process manipulation, with no apparent gail ii uNCUonatly. its construction in terms of a kernel and a set of system processes.

Similar decisions were taken for memory management and The kernel abstracts to a large degree the idiosyncrasies of a
device handling. Manipulation of the memory map was done by particular machine into a well-defined virtual machine in which

"the kernel but memory allocation and rescheduling was done by the processes operate. The objects available at the interface of
another server process, the memory manager., With respect to this virtual machine (processes, messages, generic devices) are
device handling, all the kernel did was field the interrupts, essentially machine-independent, and therefore the processes
transform them into a message and send it off to the device executing in this virtual machine tend to be machine-
handling process. In the reverse direction, the kernel would independent. Messages are advantageous in this respect since
accept a message from the controlling process, write the device they do not depend on the existence of shared memory segments,
register and start the device. a facility not easy to implement in some memory architectures.

While in the case of process management, the separation of Some hardware characteristics of peripheral devices cannot be
function between kernel and process manager scems to have been ignored totally. Wc attempted to mask these dependencies as
a mistake. this conclusion is not so obvious in the case of device much as possible by paramectrizing certain proccsscs. For
handling and memory management. In a large system, device example, in the case of the file system it is clear that the size of the
handling codec can become very extensive, and cven in systems disk blocks is of paramount importance to the proper
where the kernel does not run with all interrupts disabled. there implementation of the system. All processes that made up the file
are still good reasons for keeping the kernel small and system were parametrized in terms of this number.
manageable. I lowcvcr, one pays an inevitable penalty in repeated Parametrization was also used to tune the system to certain

. context switches between the kernel and the device handlers. configuration, e.g. a parameter was available in the file system

A : : : : : buffer manager to denote the maximum number of 1/0 buffers topotential solution to this problem was implemented in be kepl i : :Thoth where the so called system team ran in privileged mode plin corc at any given time.y p g

and in the address space of the kernel. ‘This obviates the need for More pervasive dcpendcncics occur, which cannot be
doing [requent context switches. llowcvecr, it blurs somewhat the adequately paramctrized. A sophisticated disk driver requires
distinction bctween kernel and non-kerncl operation: certain scheduling algorithms in order to minimize the arm

movement. This is clearly very dependenton the particular disk
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and the dependency cannot be captured in a single parameter but to start programming in Pascal and, as soon as the Pascal®
rather pervades the entire algorithm. A similar problem occurs in compiler would become available, we would upgrade our code.
the memory manager: Different algorithms need to be used to Pascal* being upward compatible with Pascal, it was believed
take advantage of different memory management schemes. that this could be done without major retrofits.

Nevertheless, -with the excepiion of : the disk driver and the It is not our intention here to debate at length the various
Memory managet, bh phod i porting . necrFat strengths and weaknesses of Pascal. We restrict ourselves to the
(process 4 Tan. SWI te Ime wl Nv o— oe ard an context of writing operating systems. Whereas the idea of writing
command language Itefpreter) was relatively stralghtiorward. an operating system in a high level language has become

Although the kernel of an operating system might, at first commonplace, there is still a lot of debate as to how high-level the
sight, be considered the epitomy of a machine-dependent language should bc and both commercial and research
program, this is not necessarily true. The kernel logically consists development efforts arc underway in either direction.

of two levels: oo Pascal attempts to achieve high levels of protection and
1. A device level which interfaces the bare hardware (device machine independence and therefore has to impose some

interrupts, ~~ processor traps, memory management restrictions on what can be expressed in the language. Certain
hardware). constructs, necessary in systems programming (mainly access to

2 The virtual machine interface. memory address and bits within a word, the ability to locate code

While the device level is necessarily machine-dependent, the next and data at specific locations in memory and dynamic storage
) ) ; : allocation and deallocation), fall outside of Pascal’s scope and

level need not be if a strict separation between the two is :
Co : : therefore have to be progratnmed in assembly language. A less

maintained. One cannot totally localize all machine-dependent ie
: : : restrictive language might allow these constructs to be expressed
information to the device level, but again the technique of : ; : ,

ng in the language itself, but in return it would not offer comparably
parametrizing the kernel showed excellent results. Parameters are reduced levels of orotection and machine-independence
needed, among others, for the size of the volatile process state to 1p ; p

: os : Conversely, Pascal’s protected world requires a little more of the
be saved and for certain constants describing the size of address : : :

: So code to be written in assembly language, but in return, makes for
translation tables and address spaces. The interface between the : :

: CC a much cleaner separation between machine dependent and
two levels cannot bc made entirely machine-independent. In machine independent code
particular, we found it necessary to impose the following P
requirements on the machine architecture in order for the higher We feel that, in view of the very small part of the system that
level to work correctly: actually requires the kind of constructs Pascal does not supply,

e There needs to be an efficiently addressable memory unit this clean separation is to be preferred over the disadvantage of
commonly called a word, in which both a memory address having to write a little bit more of assembly code. An interesting
and an infeger can be stored. compromise was explored by the implementors of Pcrseus on

ere hine | . VAX/Berkcley Unix. They choose to leave most of the kernele The possibility must exist to turn machine interrupts off. code in its original Pascal implementation but redid some of the
e The volatile storage of a process must be easily accessible. device-level code in C. This was possible since the languages

In porting the system from the DecSystem-20 to the 4331, no could call cach other. The general impression of this approach
: Co : was very favorable, maintaining both the protection and machine-

major problems occurred. However, the transition from a single : : : :
: : independence of Pascal wherever possible, while making the

address space to multiple address spaces on the IBM required device level easier to read and to maintain
several changes to the kernel. The original kernel essentially
made the assumption that it could address user memory as part of Having argued in favor of Pascal for writing an operating
its own. In a multiple address space world, uscr pointers first had system, is Pascal a portable language? The constructs in the
to be translated into addresses meaningful to the kernel. This language are, with the exception of variant records, machine-
change was simple but pervasive: It turned that there were a independent. However, poor specification has often led to
substantial number of such memory references in the kernel, implementations that allow non-portable constructs. the size of
much more than logically necessary. set’s being the classic example. Also, lack of expressive power in

certain areas has led to local extensions and, in turn, to a

proliferation of Pascal variants. Our experience is that the
5.2. Language Issues differences betwecn Pascal implementations are usually easily

N resolved. In porting the operating system from the DecSystem-20
~ One of the key decisions, to be taken early in a project like to the 4331 and later to the VAX, the language system was not

this one, is the choice of implementation language. At the time ported with the operating system; each time we had to interface
the project began, our two principal choices were Model and to a new compiler. It turned out that the changes required to the
Pascal. Demos was written in Model, so the first option was to code were extremely small and usually lexical in nature.
retargct the Model compiler, port Demos, and work from there. Cp
This route was taken by Mike Powell in developing a multi- In retrospect,we feel that the choice of Pascal was justified,
processor descendant of Demos [17]. However, the Model especially nv he 1a of [he projected upgrade to Pascal.
language was unfamiliar to most people at Stanford and neither bo vinI Mei d LY 0 v ho mo , compl - of
the Model compiler nor the Demos system were written with the p “n the proved oncof the major stumbling
portability in mind. Substantial effort would have been required stones tor the project.
to overcome these deficiencies.

At about the same time, the Pascal* [9] project got underway -
at Stanford. Pascal®* is an upward-compatible extension to 6. The Rise and Fall
standard Pascal with several features added for facilitating
systems programming, including parametric types, exception As noted in the introduction, Stanford was computer poor at
handling, and separate compilation. The Pascal* compiler would the time the project began. ‘T’hus, a principal motivation was the
bc explicitly designed to bc portable, using a fairly machine- acquisition of additional facilities through IBM. Given the type
independent front-end and a retargctablc code generator. In of IBM computers available and the typc of computers available
addition, we had a Pascal compiler available, running on and from other sources. Perseus was originally targeted for a wide
producing code for our original machine, and accompanied by range of micro- and minicomputers.These machines originally
some reasonable program development tools. Thus, we decided included the Scries/ 1, the 11P-300 and the Xerox Alto, and grew
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