April 1983 Report No. STAN-CS-83-964

Proving Precedence Properties:
The Temporal Way

by

Zohar Manna and Amir Poucli

Department of Computer Science

Stanford University
Stanford, CA 94305

PROVING PRECEDENCE PROPERTIES:
THE TEMPORAL WAY

ZOHAR MANNA AMIR PNUELI

Computer Science Department Applied Mathematics Department
Stanford University The Weizrnann Institute of science
Stanford, CA Rehovot, Israel

and

Applied Mathematics Department
The Weizmann Institute of Science
Rehovot, Israel

Abstract:

The paper explores the three important classes of temporal properties of concurrent programs:
invariance, liveness and precedence. It presents the first methodological approach to the precedence
properties, while providing a review of the invariance and liveness properties. The approach is
based on the unless operator &, which is a weak version of the until operator U.Forecach class of
properties, wc present a single complete proof principle. Finally, we show that the properties of
cach class are decidable over finite state programs.

1. INTRODUCTION

In studying temporal properties of programs, i.e., properties that go beyond partial correctness,
an obvious hierarchy of such properties can be developed. One way of classifying the different sets
in this hierarchy is by the syntax of the temporal formulas expressing them.

The first scl in this hierarchy is the class of invariance properties (safety in the terminology
of [L1]). These are the properties that can be expressed in terms of a formula of the form:

Oy or ©>0O%.

A formula of the first form, staled for a program P, says that cvery computation of I continuously
satisfies 1. In the case of the second form, the formula says that, whenever ¢ is true, ¥ is im-
mediately realized and will hold continuously throughout the rest of the computation. Propertlies

This rescarch was supported in part by the National Science Foundation under grants MCS79-
09495 and MCS80-06930, by DARPA under Contract N00039-82-C-0250, by the United States
Air Force Office of Scientific Researchunder Grant AFOSRR-81-0014, and by the Basic Research
Foundation of the Israeli Academy of Sciences.

Part of this paper appearsinthe Proceedings of thelOth Colloquium on Automata, Languages
and Program nine. Barcelona, Spain (July 1983).

falling into this class include partial correctness, c¢lean behavior (error freedom), mutual gxclusion,
and deadlock absence. ’

The second set in the hierarchy of properties is the class of Ziveness propcrtics (eventualities
in the terminology of [MPl]). These are properties that are expressible by temporal formulas of
the form:

O or D O

In both forms these formulas guarantee the occurrence of some event %, in the first case uncondi-
tionally and in the second case conditionally on an earlier occurrence of the event ¢. Among the
properties falling into this class are: total correctness, termination, accessibility, lack of individual
starvation, and responsiveness.

While most of the researchers in the field tend to agree that these two classes are lhe first
two rungs in a natural hierarchy, there is less of a consensus about what should be the next step
in the hierarchy. In previous work we have proposed that the next class to be studied is that
of precedence properties. In a broad sense, precedence properties are all the properties that are
expressible using the until operator U. To remind the reader, the expression pllq,read “p until ¢”,
means that eventually ¢ must happen and between now and then p must continuously hold.

A more mathematical formulation of this definition is given by:

Let a = 8g,81,82, ... be a sequence of states, then plq is true for ¢ if there exists a > 0
such that:

g is true for the sequence $j;,8;541,8542, . . .
(if g is a state property then g holds at s;), and for every ¢, 0 <7 < j:
p is true for the sequence 8;, 8;41,8;42; . . .

(if p is a state property then p holds at s;). Here, a state property is a property that depends only
on the state and not on the full sequence. Note that in the special case that 7 = 0, then g is true
on ¢ and no requirements for p arc implied.

A derived operator is the precede operator P that can be defined by:
pPPg = ~((~p)Uq).

The meaning of this operator is that “p precede ¢”, i.c., if g ever happens it cannot happen unless
p occurs first (strictly before q). In contrast to pUq which requires that g eventually happens, pPq
is automatically salislied if ¢ never happens.

We often use nested until expressions of the form

Pl (paU (pslh . .. (pelq)...)),

where py, @ pirg are state properties, i.e., formulas dependent, only on theslaleand containing
no temporal operators. By careful examination of the scmanlicdeflinition of the until operator

we arrive at the interpretation that, stated at to, this expression means that there cXist instants
tiy ooy tky

to Sty <te< ... Sty
such that:

P1 holds in every ¢, to <t < ¢,

P2 holds in every ¢,£; <t < iy

Pk holds in every ¢, tk—-1 <t < g, and

q holds in t.

Thus, this expression predicts a period of continuous p; followed by a period of continuous paz,
and so on, until a period of continuous Pk, followed by an occurrence of g. Note that any of these
periods may be empty by having #; = ;41 for an empty (¢ + L)st period.

Since we arc interested only in nested until expressions where the nesting is in the second
argument, we can omit the parentheses and represent the expression above by:

p1UpeUps. .. prlg.

The class of precedence properties that we consider are therefore formulas of one of the forms:

p D(gPr) — a precede formula

pD(piUpel ... pllg) — an untid formula.

Several inlcresting properties fall into the broad class of precedence properties.

Example:

Let us consider a program G (granter) serving as an allocator of a single resource between
several processes (requesters) I2j,..., Rk competing for the resource. Let each I2; communicate
with G by means of two boolean variables: 7; and g;. The variable r; is set to rrue by the requester
R; to signal a request for the resource. Once I2; has the resource it signals its release by setting
r; to false. The allocator G signals IZ; that the resource is granted to him by setting g; to true.
" Having obtained a release signal from R;, which is indicated by 7; = false, some time later, it will
reappropriatc the resource by setting g; to false.

Several obvious and important propertics of this system belong to theinvariance and liveness
classes. For instance, the property

0 SRIAH |

ensuring that the resource is granted to at most one requester at a time, is an invariant property.
In summing boolean variables we treat true as 1 and false as 0. Similarly, the important property

Ty O Ogi;

which cnsures responsiveness, is a livencss property. It guarantees that every request r; will
evenlually be granted by setting ¢; to true.

Let us, however, consider some precedence properties which arc relevant to the specification
of such a system.

(a) Absence of Unsolicited Response.

An important but often overlooked desired feature is that the resource will not be granted to
a party who has not requested it. (A similar property in the context of a communication network is
that cvery message rcccived must have been sent by somebody.) This is expressible by the temporal
formula

~gi D (riPgi).

The formula states that if presently g, is false, i.e., f2; does not presently have the resource, then
beforc the resource will be granted to R; the next time, B; must signal a request by setting 7; to
true.

(b) Strict (FF'TF Q) Responsiveness.

Sometimes the weak commitment of cventually responding to a request is not sufficicnt. At
the other extreme wc may insist that responses arc ordered in a sequence parallclling the order of
arrival of Lhc corresponding requests. Thus if requester I2; succeeded in placing his request before
. requester Ijthe grant to R; should precede the grant to R;. A straightforward translation of this
sentence yields the following intuitive but slightly imprecise expression:

(T,‘P'I’j) D (g,-Pg,').

A more precise expression which also better conforms to the general form of the class of
properties we discuss in this paper is:

(ri A ~r; A ~g5) D (~gjUg)

It states that if wc ever find ourselves in a situation where 7; is presently on, and 7; and g; are
both off, then wc arc guaranteed to eventually get a ¢g;, and until that moment, no grant will be
madc to R;. Note that r; A ~7; implies that R;’s request preceded R;’s request, which has not
materialized yet. Wc implicitly rely here on the assumption that once a request has been made it
is not-withdrawn until the request has been honored.

This assumption can also be made cxplicit as part of the specification, using another precedence
exprcssio n:

ri D g;P(~r).

Note that while all the earlier properties are requirements from the granter, and should bc viewed
as the “post-condition” part of the specification, this requirement is the responsibility of there-
questers. It can be viewed as part of the “prc-condition” of the specification. Without this
assumption, we could not hope to implement the granler in any reasonable way, since it would
have to respond to very short and intcimittent rcqucsts.

(¢) Bounded Over taking.

The requirement of IFFIFO responsiveness may sometimes be too restrictive and difficult to
implement. Any program for the allocator that scans the requests in a certain polling order,
T1, ...,7k and then back to r; may respond to requests in, say, the order of their detection by the
program. This order rnay bc different, from the arrival order. A more realistic requirement would
allow deviations from the F'IFQO discipline, provided they are boundctl. For example I-bounded
overtaking would say that for every¢ and j such that r; preceded 7;, we may allow g; to precede
g; at rnost once. I'IFO responsiveness may then be regarded as O-bounded overtaking. In order
to express k-bounded overtaking we have to use nested until expressions.

The 1-overtaking property can be expressed by a nested until cxpression:
(ri A ~r5) D (~g;)UgyU(~g;)Ugi.

This expression predicts a period in which f2; does not have the resource, followed by a continuous
period in which R; has got the resource, followed by a period in which B; does not have the
rcsource, followed by a grant of tho resource to [2;. Since any of these periods may be empty,
the formula actually states that in the worst case, I2; may gain the resource at most once before

;. g

Proofs of invariance properties for concurrent programs, have been extensively discussed in
the literature (e.g., [0G], [K],[L1],[MP2]). Fewer suggestions have been made for approaches to
proving livencss properties (e.g., [OL}, [MP2],[MP3]).

In this work wc address the problem of verifying properties of the precedence class. Our main
conclusion is that the verification of precedence properties does not call for radically new ideas and
can actually be viewed as a gencralization of the approaches suggested for invariance and liveness
properties. In fact, precede formulas are in many respects generalization of invariance properties,
whereas until formulas can be established by a generalization of the proof principles for livencss
properties.

To provide a proper framework, wc first introduce an abstract opcrational model of concurrent
programs. We then outline a proof systern based on temporal logic; the system has been shown
in [MPS] to be relatively complete for proving all properties of concurrent programs. We then
discuss some derived proof principles that are tailored directly for the verification of precedence
properties. The utility of these principles is demonstrated by proving several examples.

2. A COMPUTATIONAL MODEL

We start by defining an abstract computational model; the ternporal logic properties will be
stated and proven for computations over this model.

The abstract model consists of the following elements:

S — A set, of computation states. This is a possibly infinite set.very clement s €S represcnts
the full configuration of the computing syslcrn; for concrete programs cachstale includes
the values of all the program variables as well as the program pointers for all the processcs.

0 -- The initiality predicate. We will only consider computations originating in a state sy such
that 6(sg) holds.

T ----- A finite set of transitions. With each transition 7E€T we associate a partial function
fr:S —»23, where f(s)yelds all the possible outcomes of the transition 7 on the state
s €S. A transition 7 €7 is said to be enabled on a state s if f,(s)# ¢; otherwise it is
called disabled on s. A state s such that no transition 7 € T is enabled on it is called

terminal.

J — The justice family. This is a (possibly empty) family of sets of transitions J = {Tl",. R T,;I}
Each set in J, TiJ ¢ T, is called a justice set and a justice requirement defined below is
to be applid to the set 7.

3 — The fairness family. This is a (possibly empty) family of sets of transitions F =
{TF, o e T{ }.Each set in 3, TJFcT, is called a fairness set and a fairness requirement
is to be applied to TJF.

An initialized computation of such a system is a sequence of states with labclled transitions:

T1 T2 73
o: 8 —>8; —>8 —>... where €T,

which satisfies the following requirements:

o Mazimality. The sequence ¢ is maximal, i.e., either it is infinite or the last state sy is
terminal.

e Initiality. The first state $gsatisfies the initiality predicate, i.e., 0(sg) = true.

Ti+1
o State- to-State transition. For each step s; —>8;41in ¢ we have that 8;41€ fr, ., (8:).

e Justice. For each T7 € J we impose a justice requirement:
e o is finite, or

e o is infinite and contains an infinite number of states on which no transition in
TY is enabled, or

e an infinite number of a-steps are labclled by transitions in TV,

This corresponds to the notion that if for all states from a certain point on, some transition
in 77 (not necessarily always the same) is always enabled, then some transition of 1"
will be taken infinitely many times.

o Fairness. For cachT¥ €7 wc impose a fairness requirement:
e o ‘is finite, or
e o is infinite and from a certain point on no transition of TF is enabled, or
e some transition of TF is taken infinitely many times.

This corresponds to the notion that if some transitions from TF arc enabled infinitely
many times then some transitions from 7'F arc activated infinitely many times.

An admissible computation is any suflix of an initialized computation.

When considering a concrete computational system, we have to identify the five elements
described above with more concrete objects. Since our example is based on a shared-variables
computational model, we proceed with such identification for the shared-variables system. Such a
system has the form:

y:=g); [P]l ... || Pul,

where ¥ = (y1, . . ., Yn) are the program (shared) variables, T = (z1,..., T4) are the input vari-
ables, and Py,..., P, are the concurrent processes of the program. Each F; is represented by a
transition graph with nodes (locations) L; = (£}, ..., £) and directed edges I; = {€}, ¢ 0o c‘,}

The locations Zf, are the entry locations of Py, respectively. Ilach edge e € E; is labelled by an

instruction: @) -7
Cely) Y=k ~
@ g @1 7

whose meaning is that when c.(¥) is true, execution may proceed from £, to £, while assigning
the values h.(y) to the variables §. Special cases are the semaphore instructions request(y) and
release(y), equivalent to (y > 0) — [y ==y —1] and true — [y := y +1], respectively. We refer
the reader to [MP1] for a more detailed discussion of these models.

A program state for this system has the form:

(&Y ..., 0™ n,),

where each £ € L; denotes the current location of the execution in the process P;, and each
n; € D is the current value of the program variable y;. (The variables ¥ are assumed to range
over some domain D.) Thus we identify the set of all states S as the set of all (m + n)-tuples

(Ly - . -+ x Ly x D™).

The initiality predicate is given by:
m .
o,em3): [N - &) A @ - o)
ensuring that all the processes are at their initial locations and the values of the program variables

are properly initialized.

The set of transitions 7T is identified with the set of all edges |JirLi. For r- e €5 uwe
‘define

(e,em: G e f(8,. ... ™)
if and only if

¢=¢, £ =4, @5=21 foreveryj#1, ce(7) = true and 7 = k(7).

The justice family is given by:

] = {El, Em},

that is, we require that justice be applied to each process individually. This implics that in any
infinite computation, each process that has not terminated yet will eventually be scheduled.

The fairness family is given by:
3 = {{e} | eis labelled by a request(y) instruction}.

Thus, each semaphore transition is to be individually treated fairly. This implies that a request(y)
instruction which is waiting while y turns positive infinitely many times must eventually be per-
formed.

In considering computations of a program as models for temporal formulas that express prop-
erties of the program, we define the model ¢ corresponding to a sequence o,

it 72

73
0. S9g———>81 —>82—>...,

as follows: If ¢ is infinite then the corresponding model is

. 80,813 2

In the case that ¢ is finite and its last state is the terminal state sg, we take & to be

o 8058ty - - SkySky - - -,

- that is, the last state repeats forever.

3. THE PROOF SYSTEM

The proof system consists of three parts.

e Part A, called the general part, formalizes the pure temporal logic properties of sequences
in gencral. It is cornplctcly independent of the particular program analyzed.

e Part B, called the domain-dependent part, formalizes the properties of the domain over
which the program operates, such as integers, reals, strings, lists, trees, etc.

e Part C is the program-dependent part. It provides a formalization of the properties that
result from restricting our attention to the computational sequences of the particular
program being analyzed.

W e refer the reader to [MP4],[MP5] for a discussion of parts A and B.Here we only repeat
part C which we further develop in order to prove precedence properties.

The program-dependent part consists of four axiom schemes corresponding to the four re-
quirements imposed on admissible computations. In the following, a state formula is a formula
containing no temporal operators and hence interpretable on a single state.

Let ¢ and ¥ be two state formulas. We say that a transition 7 leads from @ to ¥ if for every
two states s and s’ the following is true:

o(s) A (s € f:(s)) = o(s').

Note that this formula is classical, i.e., contains no temporal operators and should bc expreasnble
and provable in the first-order theory over the domain.

For example, in the case of the shared-variables computation model a transition 7 would
correspond to an edge e in some process F;:

@ c(g) =¥ = h(y)] @

so that the condition above is expressible as

o8, ...) Acy) > ¥(d. ..)Z‘,. 5 h(y)).

Given a subset of transitions 7' ¢ 7', we say that T’ leads from ¢ to 9 if every transition
7€ 77 leads from ¢ to 7. If the full set 7'leads from to %, wc also say that the program P leads
from o [0 .

The state formula Terminal, characterizes the terminal states:

Terminal(s) = /\(fr(s)ztﬁ)

7T

Also, for a subset T of transitions, the state formula Enabled characterizes the enabled transitions

in T':

Enabled(T")(v [f-(s) # ¢).

reT’!
Both formulas arc expressible by a quantifier-free first-order formula.

Following are the inference rules of the program part:

(INIT) For an arbitrary temporal formula w
t- 020w
F O«

This rule states that if w is an invariant for all initialized computations it is also an invariant
for all admissible computations. This is because every admissible computation is a suffix of an
initialized computation, and a property of the form CI w is hereditary -from a sequence to all of its
suflixes.

(TRNS) Let ¢ and % be two state formulas

 LEvery7 €T leads from ¢ to 9
F(pa Terminal) D

F o D O%

The first premise cnsures that as long as at leasl onc transition is enabled, then if the current
state satisfies p, the next stale must satisfy . The sccond premise handles the case that all

transitions are disabled, i.e., that of a terminal state. In a computation this means that no further
action is possible and the next state is identical to the present. Hence this premise also ensures
that in such a case the next state will satisfy .

(JUST) Let @ and ¥ be two state formulas, and T €17 a justice set

t- Every 7€ T leads from @ to @ V¢
F Every 1€TY leads-from ¢ to %

F e 8 Q@ imazer ooy

To justify this rule, consider a computation ¢ such that ¢ o O Enabled(T7) holds for o but
©U% does not hold. By the first premise, once ¢ holds it can only stop holding when % happens.
Hence @U% may fail to hold only if % never happens and ¢ is true forever. Since we assumed that
T is continuously enabled on o, some transition in T7 must eventually be activated, and this in
a state satisfying @. Hence, by the second premise, once this transition is activated, it achieves %,
contrary to our assumption.

A similar rule applies to fairness:

(FAIR) Let ¢ and % be two state formulas, and TF € 3 a fairness set

t- Every T€ T leads from @ to o V¢
- Every T€TF leads from ¢ to %

Flp A C 1O Enabled(TF)] > pUyp

The justification is similar to that of the JUST rule.

In the following discussion we will consider computations only under the assumption of justice.
This amounts to considering an empty fairness family 3 = ¢. In the shared-variables computation
system this means that we consider programs without semaphores. The reintroduction of fairness
to the following analysis can be done in a straightforward manner.

In [MP5] thesct of the rules above has been shown to be relatively complete. By this we
mean that an arbitrary property which is valid for a given program, can be proved using these
rules, provided the pure logic and domain dependent parts are strong enough to prove all valid
properties. This result implies that the program dependent part is adequate for establishing all
the ‘properties that are true for admissible computations. However, while giving full generality,
these rules do not provide specilic guidance for proving propertics of the three important classes
that we have discussed: invariance, liveness and precedence.

We will proceed to develop derived rules, one for each class. These rules, while being derivable
in the general system, have the advantage of being complete for their classes. By this we mean,
that every valid property in the class can be proved using a single application of the proposed rule
as the only temporal step. All the premises to the rule are first-order over the domain. Thus, for
anyone who is interested only in proving properties of these classes, the respective rules arc the
only temporal proof rules he may ever need, dispensing for example with the general temporal
logic part.

10

W ¢ will illustrate these rules on a single example -- an algorithm for mutual exclusion (Fig.
0) -- taken from [Pe]. The program consists of two concurrent proccsscs, Py and P that compete
on the access to Lheir critical regions, presented by €3 and mg rcspectively. Entry into the critical
regions is expected to bc exclusive, ie., at no time can Py be at £3 while at the same time Py is
at m3. The processes communicate by means of the shared-variables ¥i,¥ye, . Process P; sets y;
(t = 1,2) to T whenever he is interested in entering his critical region. e then proceceds to set
t to 1. Following, he reaches a waiting stats (£ or mg, respectively). There he waits until either
Y7 = F (hered is the competing process, i.e.,,1 = 2 and 2 = 1) or t = 1. In the first case he infers
that the competitor is not currently interested. In the sccond case hc infers that I’; is interested
but has arrived to his waiting state after I’; did, since P; was the last to set ¢ to 7. In any of these
cases DI’ enters his critical region. Once he [inishes his business there hc exits while setting y; to
F, indicating loss of interest in further entrics for the present.

This description is of course intuitive and informal. The following discussions will provide
more formal proofs of the correctness of thealgorithimn.

4. INVARIANCE PROPERTIES

A single rule which is complete for this class is:

(INV) — Invariance Rule

Let ¢ and 9 be slate properties

A . FO0Dp
B. I- Every 7€ T leads from @ to ¢
c .Fp D29

F Ovy

A slightly more elaborate rule can similarly be used to establish properties of the forrn ¢ D2 [J%.
Since the rule is derivable from the INIT and TRNS rules above, it is certainly sound.

To argue that it is complete for properties of the form [, let ¥ bc a state property such
that O+ is true for all computations. Define the predicate:

71 72 Tk
Ace(s) = {There exists an initialized computation segmentso—>s3—>... —>s; = §}.

Thus, Ace(s) is true for a state silf there exists an initialized computation having 8 as onc of
its states. Wc have defined Ace(s) in words rather than by a formula; howcver, if Lhc underlying
domain is rich cnough to contain, say, the intcgers, then this predicate is expressible by a first-order
formula over the domain.

We now apply the INV rule with ¢ = Acc. Certainly 0 D Ace, since every stale so satisfying
0 participates in a computalion:sg— sy — It is also easy to sec that if 8 is accessible
and s’ € f;(s) then s’ is also accessible. This establishes premise B. Premise C says that every
accessible state satisfies 4, but this follows from our assumption that OJ is true on all admissible .
compulalions. Consequently the INV rule is always applicable.

11

Let us consider_some invariance properties for the mutual exclusiion program (Fig.‘O)tpresented
PR

above. In: F (t=1)v(t=2)

Il N

I :

I3:

Iy

Is :

Note that for this prograrn
0: atloAatmoA[(yi,yz,t) = (F,F,l)].

Takep =% = (t =1) v (¢t =2). It is easy to verify that § Dpsinced implies ¢ = 1.
Similarly by inspecting every transition we sce that all of them maintain ¢.

F Oy, = £.3)

The proposition £ 3 is defined as at£;VatfsVatls, ie., it holds whenever P; is somewhere
in {£1, €2, £3}. Potentially falsifying transitions are:

£y — £4: setting both y; and €. 3t0 T.

€3 — fo: setting both yq and £y..3 to F.

All other transitions do not rnodify either y; or £; 3.
FoO (r2=mos).

This property is symmetric to [j.
F A {{eaa~ma]o=1))

Note that initially £5 (i.e., atf2) is false so that the implication is true. Potentially
falsifying transitions are:

£y — £g: sets t to 1.
my — mg: makes ~mg false.
mg — mg while €9 by Ij,yy, = T so this transition is possible only when ¢ = 1.

All other transitions trivially maintain the invariant.
F A {maa~tyo(t-2)

Can be shown in a similar way.

We may now obtain the invariant ensuring mutual exclusion:
- D(NE;; \ ~m3).

It is certainly true initially. The potentially falsifying transitions of this invariant are:

¢y — €3 while m3: but then yg = T (by [3) and £ = 1 (by I3), so that this transition

is impossible.
mg — mg while £3: impossible, because =T (by /1) and ¢ = 2 (by Iy).

Thus mutual exclusion has been formally proved.

LIVENESS PROPERTIES

We start by developing a proof rule which is more convenient to apply than the JUST rule.

12

(J-EVNT) - - The Just Eventuality Rule

Let ¢ and % bc two state formulas and TV a justice set
A. b Every T€T leads from o to o VY
B. F Tveryr €TV leads from ¢ to ¥
C.-p> (1/1 V Encbled(T "))

F o D Uy

A similar rule exists for fairness. The rule can easily be derived from the JUST rule since by premise
C every computation having in it a ¢ which is not followed by a %, will have T continuously
enabled. This by the JUST rule implies pU.

Let us apply the EVNT rule to our sample mutual exclusion program (Fig. 0). Take for
example,

e = p1: atlgAatmaA (t = 2) A (yr =T) N(ya = T)

Y = po: atls

Clearly the only transitions enabled on a state satisfying 1 are £g — €3 and mg — mg. Conse-
quently every lransition leads from g to @1V 9. Taking T to be Py, i.e., all transitions within
Py, we have premises A and 13 obviously satisfied. Also @y implies that €3 — €3 and hence P is
enabled. Thus wc obtain I- golD(golU.goo). From this we can certainly obtain

F 12 Opo

since pUgq implies 0 q.

Next, let us take

= g : ategAatmlA(y1=T)A(y2=T)

©
¥ = @1V po.

We now take 77 to be Ps. Certainly, the only transitions possibly enabled under g are g — g,
£y — €3 and m; — mg. Thelirst transition preserves ¢g. The second transition leads from g to
©o- The third transition which is guaranleed to be enabled under g, leads from w3 to 1. Thus
every transition leads from pg t 0 | V 9. W c conclude t- 92D Q1 V pp). From this wemay
conclude by temporal reasoning and Lhc previously established t- ¢; D 0 g that

F o2 D O po.

W c may proceed and define additional @, j=3,...,6, such that for each j, Fp;D
O(Vi<,;#k) which eventually leads to F ;2 0 pg. This proof strategy of constructing a finite
chain of’ assertions, each cventually leading to an assertion of lower index can bc summarized by:

13

(CJIAIN) — The Chain Reasoni ng Proof Principle
Let g, @1, ..., s be a sequence of state formulas.
A. F Every 7€ T leads from ¢, to V(p,',
<

B. For every % > 0 there exists a justice set TV = T such that

F Every TETiJ leads from ¢, to \/(pj

i<i

C. For every @ > 0 and 7Y as above:

FoiD[(V ©;) V Enabled(T?)]
i<i

F (V) > oo

1=0

The scheme of a proof according to the CHAIN principle is best presented in a form of a
diagram. In this diagram we have a node for each ;. For each transition 7 leading from a state
satisfying (s to a state satisfying @, with j #1% (and hence by A, j < %) we draw an edge from @;

"to ;. This edge is labelled by the appropriate justice set to which the transition belongs. Edges
belonging to the justice set which is known by premise C to bc enabled in ¢; are drawn as double
edges. For example, Fig. 1 contains a proof diagram for proving t- atfyD 0 atf3 for the mutual
exclusion program. By the CHAIN rule wc actually proved F(Vf=0<p,~)3 0 atf3, but since pg is
atfy this establishes the desired result. The diagram representation of the CHAIN rule resembles

“closely the proof lattice advocated in [OL] for proving liveness properties.

In the application of the CHAIN rule we may freely usc any previously derived invariances of
the program. Thus, if FO 1 is any previously derived invariance, we may use ©; A I instead of p;
to establish any of Lhe premises. This amounts to considering the sequence @o Al ..., ¢, Al
instead of the original sequence of assertions. Thus in the diagram (Fig. 1) wc did not have an
assertion corresponding to (£3,mg3) since by the previously established invariances such a situation
is impossible, in particular no transition could lead from I A ¢4 to (Zg,mg). Similarly no transition
from (€2, ml) to €3 has been drawn in view of I3.

The chain reasoning principle assumed a {initc number of links in the chain. It is quite adequate
for finite state programs, i.e., programs where the variables range over finite domains. However,
once we consider programs over infinite domains, such as Lhe intcgcrs, it is no longer sufficient
to consider only finitely many assertions. In fact, sets of assertions of quite high cardinality arc
needed. The obvious generalization to infinitc sets of assertions is to consider a single stale assertion
¢(a, s), paramelrized by a parameter taken from a well-founded ordered set (A, <). Obviously,
an important feature of our chain of assertions is that program transitions led from @; to ¢; with
j < 2. This property can also bc stated for an arbitrary well-founded ordering. Thus a natural
genceralization of the chain reasoning rule is the following:

14

(WELL) — The Well Founded Livencess Principle 1

Let (A, <) bc a well-founded ordered set.

Let p(a) = p(a,s)be a parametrized state formula, and ¥ a state
formula.

Let # : A — J be a helpfulness function identifying for each ¢ € A
the helpful juslice set h(a) € J.

A. F Every transition T€ T leads from
pla) top Vv IB((B = a) A e(B))
B. t- Every transition 7€ h(a) leads from
pla) to PV IB(B=<a)Ap(B))
C. F pla) 2 [v 3B((B <a) A (B)) V Enabled(h(c))]

F (Bap(a)) 2 O

In order to obtain a complete rule for livencss properties we have to treat the parametrized
assertion ¢(a, s) as an auxiliary assertion:

(LIVE) — A Complete Principle for Liveness

Let p, ¢ be state formulas and Lp(a),d) a parametrized asser tion pair
as in WELL.

Assume premises A, B, C as in WELL, and
D. F0Op, ie. pis an invariant

Bk @ A p)2(3ap(a))

Fqg D2 Oy

W c refer the reader to [LI’S] for a completeness proof of the LIVE principle. Completencss
here means that given lwo state properties ¢ and % such that ¢ D 0 % is a valid statement over
all the computations of the program P, it is always possible to find state predicates p, (e, s)
with @ € A and (A, <), h as in WELL that satisfy premises A to II. Note that premise D requircs
preliminary derivation of the invariance of pwhich can be done using the INV rule.

6. PRECEDENCE PROPERTIES
As a key operator in expressing and establishing precedence properties wc take the weak until
operator, &, to which we will refer here as the unless operator.
The unless operator rnay be defined in terms of the standard until operator as:
plg = 0 pv(plUa)

Thus, in contrast to plq it does not require that ¢ eventually happen. But in the casc that ¢ never
happens p is rcquirod to hold forever.

Even though it is introduced here as a derived operator, it can be adopted as the basic operator
for establishing precedence properties. This is because both the until and precede operators can be
expressed in terms of the unless operator:

plqg = (pig) A O¢q
pPqg=(~q) Ulp A ~q).

We can also express the nested until operator by considering the nested unless operator. Let
Yy, Yy—1, ..., P1,%0 be a sequence of formulas then

"»br ﬂ¢f—l ... '¢1 ﬂ'/’o = "/)r ‘u("/}r—l ﬂ(B ("pl 5-11/)0)))

holds on a sequence 0 = so, 81,... if there exists a sequence of indices 0 = 2, <%,1<...<
11 <19 <w such that for every £ > 0 and j, 1¢<j < 44—1,%¢ holds on

o) = 85y 85+1y. ..

and if 29 < w then %y holds on o(io). Note that some of the 1g may be equal to one another, and
also to w in which case somc of the 1¢ hold in empty periods.

An alternative description is that %, 40 .. . %13 ¢y holds on o iff either o satisfies %, U . . .
%1Udg or for some j, 0 < j <r,o satisfies ¥, U ... %40 U0 ;. In the case j = 7,0 satisfies
O,

Then we can express the nested until by an extension of the previous formula for a simple
until:

DUty U P Ut = (b, Uehr—1 8. .3hy Lehg) A O 2o

Let us justify this equivalence. The, direction in which the nested until implies the nested
unless and the eventual ocurrence of ¥y is obvious. Let us therefore consider the other direction.

Assume that %, .. . ;g and 0 g both hold on a sequence o. By the interpretation of
nested unless there exists a partition:

0 = ’l:rf_'l:r_.ls...<’i1<i0<w

such. that ¥¢ holds between ¢y and 2¢—1 for £ > 0 and g holds at 7g if it is finite. Since g must
occur somewhere in ¢ let j be the minimal index such that g holds on o@. If j = 4y < w,
then the samec partition justifies ¥, U ... 1 Usg on 0. Otherwisce there exists some £ such that
12 <j < 1g-1. In this casc the partition up Lo 2¢ and then j justifies ¥, U ... Ut from which

P U.o. pelehe g ... 91 Usho

follows by letting %g—1, ..., %1 hold over empty periods.

Thus, expressively at least, the unless operator scems to be an appropriately basic operator.
Bul we claim that the choice of the unless operator is appropriate on proof theoretic grounds as well.
By inspecting the expression of until formulas in terms of unless formulas wc lind a resemblance

16

to the relation between the concepts of total and partial correctness. Total correctness, which is a
liveness property, can be expressed as the conjunction of partial correctness, which is an invariance
properly, and terminalion, which is another livencss property but simpler than the original. In
quite the same way wc can express the until properly as a conjunction of an unless property, which
we regard as extended invariance property and the simpler livencss property 0 %¥p.

In practice, if wc want a single proof principle that will cover properties of the following three
su bclasscs

(@) ¢ 2 (pUq)
() ¢ > (pPq)
() ¢ 2 (pUq)

then the unless operator is a good choice.

In order to establish (a) we establish separately
F (p D pilq) and F o D <g,

which are implied by (a). The first will be established by using the unless proof principle. The
second is a liveness property and can be established by the WILLrule or its cxtcnsions.

Similarly in order to establish (b)itis sufficient to establish ¢ D (p U§) where p is ~q and ¢
is p A(.

We could not have used the until operator in a similar role, i.e., reducing proofs of proper ties
of the subclasses (b) and (c) to these of (a). This is for example because if ¢ D (p Llq) is a valid
statement, then certainly so is ¢ D (Cl pV (plg)), but it docs not imply that either ¢ D Cl p or
go:)(pllq) are valid statements. Proving precede statements would cause similar problems.

The fact that the weak form of the until operator is more basic than its strong form seems
to have been intuitively sensed in [[.2] where a while operator is introduced which is equivalent to
p U ~q.

Consequently, we will proceed by developing proof principles for the unless operator il. We
begin by formulating a core rule:

(CORE-u) — core Rule for Unless Properties

Let @y, ©y—1,...,p0 be state formulas

A. Forevery: > 0,

t- livery 7 €T lcads from @; to V Pj
i<

F (Vi) 2 (or ho,—1 4 ... o1 i)

1=0

Let 0 be a computalion whose first state 8g satislics p; for some 0 <j<r. Assume first that
j > 0.Decfinet, =i,.y=...= 1ij = 0. Bypremise A, 8; must satisfy some g for £<j. If

17

€ = j wc procced until we find an 8k that satisfies @g for £ < j. If we never find such a state we
may take ;.3 =...=1p=w. Otherwise we take ¢4 =.,.=1%p=k and procé’e’d”ﬂsimilarly
beyond sk unless £ = 0. This construction shows that if 8p satisfies @; for some j then o satisfies
o, 3 ... pg. The case j = 0 is even simpler.

Wc can make a complete rule out of the CORE-U rule by strengthening the preconditions and
weakening the post conditions.

(UNLS) -- Complete Rule for Unless Properties
Let o;y..., P O, %r ..., %o,p,q be state formulas such
that:
A. For every i > 0,

- Every T€T leads from @; Ap to th,-
J<i

B. - Op

C.I—(q/\p)D(\r/tpg)

1=0
D. For every i, 0<i<r
F (pi A p) D %

Fog D (% U9y 8. 9y Seg)

Let us consider the application of this rule to the analysis of the mutual eXclusion algorithm.
We take (the ;’s refer to the assertions in Fig. 1):

q: atly

Yo = 1o : atly

S1=p1.3: Ll A[mo1V (ma A (t =2))]
P2 =p4: LaAmg

Y3 =1wps: L AmgA(t=1)

¥1

p — the conjunction of all the invariants Ig A...A Iy

%3 = ~mag, P = mgy

The diagram certainly establishes that, $;, i > 0, leads to th"J
i<
3
It is also easy to show that (qA p):)(vtﬁ;) and that ¢;D; for i = 0, ...,3. Thus wc

i=1
may conclude:

F £y D (~mg Umg ~mgz L l3).

This establishes the property of I-bounded overtaking from £€y. This means that once I is at
£5, Py may be at g at most once before Py gets to his critical scction at £3.

An alternative derivation of the same result could have been achieved by taking the ‘p’s in the
rule to bc identical to the ‘p’s in the diagram. This leads to:

F £ D (ps Upg s o2 Up, Hepo).

We may now use the collapsing theorem for the unless operator:
(pUqilr) D ((pVq)Llr)

to obtain:
F €2 D (o5 Uesdh(p1Vpa V) o),

which is equivalent to the above after we replace cach of the p;’s by the weaker ;.

Having obtained 1-bounded overtaking from the point that P’ is at £ we may inquire whether
the same holds from the point that P is at £;. As the analysis shows in I'ig. 2 the best we can
hope for is 2-bounded overtaking. The diagram in Fig. 2 establishes

F 8 D (ps Uos.7 o e s Upo)

from which ‘t-bounded overtaking is easily established.

7. COMPLETENESS OF THE UNLS RULE

Next we will show that the UNLS rule presented above is complete for establishing nested
unless properties.

Proof:
Let ¢, %, %o be state properties such that the statement ¢ D (¥, U eh, 1. .. 1 Llahp) is
valid on all admissible computations. We will show that there exist state properties p, ©,,..., ©o,

which arc first-order expressible over the integers, such that all the premises of the UNLS rule are
satisfied.

As p we choose
p(s) = Ace(s) = {There cxists an initialized computalion containing s}.

Clearly p is an invariant of all admissible computations so that premise B is satisfied.

Let ¢ be a [inite segment of a computation, i.e., a finite sequence

- Tt 72 Tk
C = §9g—>81—>. . —>8
such thats;y € f,(s;) for cachi=0,..., k— L

19

Wesay that 6 satisfiesatemporal formula w if 6’s infinite extension 89,81, ..., 8k)SkySk,. . .
satisfies w.

Let 0 be a computation satisfying %, Y . . . 91 tepg. It can be verified that any finite prefix of
0 is a computation segment that also satisfies ¥, 4 ... 91 Uabo.

Let us define now p; fori =0, 1, ..., 7 by go,-(s) =true iff

(a) Every computation segment originating at s satisfies; Uy 1. .. ¥ Uy

(6) The index i is the srnallest index for which (a) holds.

Let us show that the sequence of ¢;’s defined in this way satisfies premises A, C and D of the
UNLS rule.

Consider first premise A. Let s be a state satisfying @y, for i > 0. Let 8’ be a state such that
s" € f-(s). Consider any computation segment originating in s’:

~ , 72 Tk
ol: §—>s—>...—>8.

We can obtain from it a computation segment:

~ T, "N 72 Tk
o: §—>8 —™>81 —>. .. —> 8.
By our assumption about s, & must satisfy ;31 . .. Llg. It can be shown that due to i > O,

and the minimality of i this implies that o’ must also satisfy ¥; 4l ... U1pg. Thus we have identified
at least onc index, i, such that clause (a) is satisfied for i and s’. Let j = 0 now be the minirnal
index satisfying (a) for s’. Then (b) is also satisfied and we have that s’ satisfies @; for j < i. This
establishes premise A.

Next, consider premise C. Let s be a state satisfying ¢ and p. It is therefore an accessible state
satisfying (1. By the assumption that ¢ D (¢, $l...4leg) is a valid statement for all admissible
computations, every computation originating in s saisfies ¥, 4l ... & 9g. Consequently every
computation segment originating in s satisfiese,4l... £l pg. Thus, clause (a) of the defini tion of
p; is satisfied for i = r. Let j be the minimal index satisfying clause (a). Then g, (s) holds and
j <.

To show premise D, let s be a state saisfying ¢;. Consider first i = 0. The zero version of
s ... $l4pg is Yo by itself. Since every finite computation segment originating in s must saisfy
1o which is a state property, it follows that s satislies 9. Consider next, i > 0. Since i was
the minimal index satisfying clause (u), there must exisl a computalion segment o originating in
8 which satisfies ¥; 3 . .. g but not ;4 . .. Ug. Consequently the initial section of &
satisfying %; must be non-empty and therefore s must satisfy ;. Thus, we have ©;D ;.

We claimed that the @;'s defined above are first-order expressible over the integers. This is due
to the fact that clause (u) refers only to finite computation segments. This is a direct consequence
of the fact Lhat we deal with the unless operator. No similar first-order definition is possible for
the until operator. J

20

8. DIRECT PROOFS OF UNTIL PROPERTIES

In spite of our recommendation of splitting a proof of until property into a proof of a similar
unless property, followed by a liveness proof of O %), there are many cases in which an until property
can be directly obtained by a small modification of the liveness proof. As we have seen both the
CHAIN rule and the UNLS rule call for a sequence of assertions, such that the computation always
lead from @; to @; with j <i. The CHAIN rule stipulates in addition a strict decrease under
certain conditions. It is often the case that the same chain of assertions used in the CHAIN rule
can be used to establish a nested until. In fact, in much the same way that we have justified the
CHAIN rule we can with the same premises obtain a stronger result:

Taking 0 < p;<p2<...<ps= rbe a partition of the index range [0...7] into s
contiguous segments, we may formulate the following chain principle for until properties:

(U-CHAIN) -- The Chain Rule for Until Properties

Let pg, ©1, ..., ©r be a sequence of state formulas, and 0 < p;<pg<
. < ps = 7 a partition of [L...7}.

A . F Every 7 € T lcads from p; to (V(Pj) fort=1,...,r.
j<i
B. for every i > 0 there exists a justice set TV = T such that:
F Every TET{I leads from @; to (\/(pj)
i<t
C. fori> 0 and T as above:

F i [(\/ vj) v Enabled(T)]

i<t
T P. Ps-1 3!
F (Ve o [V epu(V o) U (Vo) ol
1=0 J=ps-1+1 =P, _2+1 j=1
The conclusion states that starting at a state that satisfies one of the;’s,i=0,..., 7, we
P,
are guaranteed to have a period in which (V (Pj) continuously hold, followed by a period in
J=ps—1+1

Pa-1 .
which (Vng) continously holds, etc., until finally @q is realized. Any of these periods may

J=pa_2+1
be cmpty.

To justify the soundness of this conclusion we first prove it for the most refined partition
possible, namely:

(*) (V‘Pi) D (‘Pru‘Pr-lu‘pr.zu .-.g01u900)-

This is proved in a way similar Lo the justificalion of the corresponding livencss principle. We show

21

by induction on n, n =0, 1, ..., r, that

n

F (\/go,-) O (palipn 1l .. o1lUpo)

i=o

For n = 0 we have I- @9 Do from which follows trivially

F vo D polpo.

Assume that the statement () above has been proved for a certain n and consider its proof
forn + 1.

n
Consider the EVNT rule with © = @nt1,% = (Vgp,-), As shown in the proof of the liveness
i=1
case all ‘the premises of the IKZVNT rule are satisfied. Consequently we may conclude:

n

F @nt1 D ©ni1U(V‘Pi)-

=1

By the induction hypothesis and the monotonicity of the U operator this yields
F Pnt1 O (<p,,+1utp.,.u CCN ‘Plu‘PO)'

Due to t- v D (ulw), the induction hypothesis can also be written as

F(V. . 2 (enrilleall .. p1Upo).
i=0

Taking the disjunction of the last two statements gives

n+1
- (V (p,,:) D (So-n+lur§0-nu s <P1u<P0),

1=0
which is the required statement (x) for n + 1.
Consider now a coarser partition:

0<p<p<... <ps=r.

By consccutively merging any. two contiguous assertions that fall into thesame cell, using the
collapsing rule:

F (pir1U(pilp)) 2 ((pir1 vV wi)lp),

we obtain the coarser conclusion:

- (‘_'/%-) = ((,_V ;) U(y‘—‘;") Lo ’(-\?%) um). -l

22

In our mutual exclusion program, by recference to Fig. 1 it is easy to usc the U-CIIAIN rule
and obtain:

£2] (<p5ucp4U501..3U<Po),

from which the 1-bounded overtaking from fg2 is obtained by the monotonicity of the until operator
(i.e., replacing formulas by weaker formulas).

A natural extension of the U-CHAIN rule to programs that require infinite chains of assertions
uses again well-founded ordered sets.

Let (A, <) be a well-founded ordered set. We require however that the ordering is total (or
linear). That is, for every two distinct clcments, a;,xg € A either a3 < g or ag < ay.

(U-WELL) — Well-Founded Until Rule

Let (A, <) be a well-founded totally ordered sct.

Let p(a) = p(a, 8) be a parametrized state formula.

Let h : A — J be a helpfulness function identifying for each @« € A the helpful
justice set h(a) €J.

Let a;<ag=< ... <wagbe a finite sequence of elements of A.
A. F Every transition 7 €T leads from
pla) to ¢ vIB((B=a)Ap(B)
B. F Every transition 7 &€ h(a) leads from
pla) to %V IB((B<a)Ap(B))
C. + pla) D [v 3B((B <a)Ap(B))V Enabled(h(a))]

F da((a < as) A p(a)) D
[3,6(043 1< B a)Ap(B)u
B((as—2<BZas)Ap(B)U . . .
3B((B < a1) A p(B)) U 9]

By a combination of the completeness of the WELL rule for liveness propertics and the UNLS
rule for unless properties we can cxtend the above rule to a complete rule for until properties.

9. DECISION PROCEDURES FOR FINITE STATE PROGRAMS

The question of whether a given program has a certain property expressed by a temporal for-
mula, is in general highly undccidable. However, for a very important restricted class of programs,
this question is decidable, namely for finile state programs. Finite state programs are prograrns
whose variables range each over a finile domain. These programs gcncratc only finitely many
different states and a joint, finitc transition diagram over these states can bc constructed such
that any computation is a maximal path in this finite directed graph. The literature abounds in.
many special decision procedures for testing for deadlock situations, starvation, etc. on prograrns

23

represented by finile transition diagrams. All these arc special cases of the general result which
states that testing a temporal formula over a finite state program is decidable. The g’enéral deci-
sion procedure for testing a temporal forrnula @ on a finite state program P consists in checking
the implication Wp D for general validity. In this implication Wp is a formula characterizing
all admissible computations of P. If P is finite state then both Wp and ¢ may be represented
as propositional temporal formulas. Consequently wc test a propositional temporal formula for
general validity. As shown in [PS]jtcan be done in time exponential in the sizc of P and . This
exponential time complexity has been a source of criticism of linear ternporal logic in [CES].

In this section we show that when the temporal property ¢ to be tested, falls into one of the
property classes discussed here, then there exists an eflicient decision procedure polynomial in the
size of P and ¢ for testing © on P.

Let P be a program consisting of m processes P, ..., Pp. Let each process P; be presented
as transition diagram with set of nodes L;. The prograrn variables ¥y, ..., Y, assume values
over finite domains Dy, ..., D,respctively. Then the state set S of the program P is the set of
all possible tuples (€1, ..., Lm;N1, ..., Ma) with &€L;5=1,...,m, and n; € Dj for 5=
1,.. ., n. Consequently

IS < Ll x o X L] X Dy X e o+ X | D]

P
We construct for P a joint transition diagram Tp with § as nodes, and an edge s—>s' for
every pair of states s, s’ and a transition 7 in P; which leads from s to s'.

In order to generate only accessible states we start from all states satisfying 0 and include in
Tp only states which are derivable from states which are already included in 7p. Fig. 3 shows the
diagram Tp for the mutual exclusion algorithm. States in this diagram have the form (Z,‘,mj, t).
We have not included the values of ¥1,y2 since in all accessible states they arc uniquely determined
by the location values £; and m,. The initial state in this diagram is so.

We proceed to describe three algorithms which, for properties in each of the three classes, will
determine whether a finite state program P has this property. The algorithms will be linear in the
size of T'p. Let us denote N = |Tp|.

10. TESTING INVARIANCES

Let the formula to be tested be of the form ¢ [. We can check whether all paths in Tp,
and hence all admissible computalions of P, satisfy ¢ D Cl ¢ by the following procedure:

PI: Locate in Tp all states which satisfy q. For each such state s construct the transition
diagram Tp(s) which includes exactly all the states accessible from s. Check that each
s €Tp(s) satisfies .

If all these steps succeeded then gD Cl ¢ is valid for P. Wc can organize the procedure so
that it takes no more than m - N steps where N = |Tp|and m is the number of processes and
hence the maximal degree of Tp. This is because if s € Tp(sy) satisfies ¢ then Tp(s2) C T'p(s1)
and no separate check is needed for sy if we have already checkectl ,’I‘p(sl).

24

Conscquently we have to access each state at most once, and then may have to explore cach
of its edges.

For checking invariances wc rnay actually suggest a simpler procedure: mark in Tp each state
which is accessible from a g-state (a state saisfying 9). Then check that all the marked states
satisfy (. However the complexity of the two procedures is identical and the PI procedure above
conforms better with the procedures presented below for the other classes.

We may for example apply PI to test for the invariance of Iy to I5 derived for the mutual
exclusion. All these properties have the form ¢ so we may take ¢ = rrue and consider Tp(s) for
all accessible states. However since every accessible state s €T'p(sg)=1p, it is sufficient to check
that all states in Tp satisfy .

Indeed we can easily check for example that there are no states in which £z, ~mg and t #1
are all true. In other words every state in which both €3 and ~mg are true, i.e., 8g, 819, also has
t = 1 in it. This establishes I3. Similarly, there is no accessible state in which both £3 and mg
hold, establishing I.

It is easy to prove:

Lemma:

A formula ¢O W ¢ is valid for P iff the procedure PI applied to Tp succeeds.

11. TESTING LIVENESS

Let the formula to be tested be of the form ¢D <O . Let S€Tp be an accessible state. Let
Tt = 81,..., 8 be a finite path in Tp. We say that m is a non-¢ path if none of 8y,..., Sk satisfy
©. Note that s is allowd to satisfy ¢. We deline Tp(s,9) to be the dirccted graph containing all
states in Tp which are accessible from s by non-p paths. The graph 7’p(s,) can be efliciently
constructed as follows:

(a) Put sin Tp(s,p)

(b) For every s’ €Tp(s,) which does not satisfy ¢, add all the successors of 8 to
TP(S) ‘P)'

Let us decompose T'p(s, @) into maximal strongly connected components. It is known that
‘when we consider edges between the components, it is always possible to order the components in
a topological sorting order Kjy,.. ., K,, such that if there is an edge from a node in K; to a node
in K; then neccessarily 2< j. Components such that there are no edges leading out of them are
called terminal co rnponcnts.

We suggest the following test for checking that all just computations in Tp(S,(p) satisfy < ¢:
p-Liveness Test:

Decompose Tp(S, <p) into a topologically sorted list of maximal strongly connected com-
ponents: Ky, ..., K,.

For cachz =1, ..., 7 check:

25

(a) If K is terminal then it consists of a single node satisfying ¢.

(b) If K; is nonterminal, then there must exist aj, j=1,...,m, such that every
state 8€ K has a P; transition leading out of Kj.

Lemma:

All just computations in Tp(s,) realize 0 ¢ iff the p-liveness test succeeds.

Proof:

Assume that the test succeeds. Let ¢ be any maximal computation in Tp(8,®). By the ordering
of the Ky,....K,, from a certain point on, the computation must be fully contained in a single
component, Ky say. If K, is terminal then the computation terminates once it has entered K,
and the’last state satisfies @ by ¢)above. If K¢ is not terminal then being contained in K¢ and
by (b) it must be infinite, since no state in K is terminal. Furthermore, no Fj transition is ever
taken once the computation has entered Ky, otherwisc it would have left K¢. Consequently the
computation is unjust, with respect to Pj. Thus all just computation must eventually realize ¢.

Assume that the test fails. Then either there is a terminal component K; not satisfying ¢, or
there exists a nontcrminal component K not satisfying condition (6). In the first case we construct
a computation o leading from o to K;, and then either stopping if the statc s € K; is terminal or
looping within K in a loop that spans all of K;. Since states within K; do not satisfy ¢ (actually
none of them does) this can be shown to be a just computation not realizing ®.Inthe second
case, we construct again a computation ¢ reaching K; and continuing in a loop spanning all the
transitions within K. By violation of condition (b) every process Pj that has not terminated yet
has a P; transition internal to Kj;. Thus by traversing all transitions in K;, we generate a just
. computation which does not realize .

Note that the construction of T'p, its decomposition into strongly connected components and
gly
applying the liveness test are all linear in the size of Tp.

In order to check that ¢ D 0 ¢ is valid for P wc could in principle take each s € Tp which
satisfies ¢, construct Tp(s,) and apply the ¢p-liveness test to it. But we can actually be more
efficient as follows:

Let sy, . + ., 8k bc all the g-states in Tp. Construct T'p(81,%1) and check it for ¢;-liveness,
where

p1(s) = o(s).
Nexl, construct Tp(sg,p2) and check it for po-liveness, where

pa(s) = p(s) v s € Tp(s1,91)

Thus in constructing TP(Sg,(pg) we may stop the analysis once the computation enters
Tp(s1,91), since we already know that, all computations there realize .

In general we construct Tp(s;, ;i) and check it for p;-liveness for ¢ =L, . .., k where:
pi(s) = e(s) v [s € | Tr(s5, 05)]-
j<i

26

In this way we essentially consider each state at most once and the whole procedure chozpes linear
in |Tp|. *

- |

Let us apply this procedure for checking validity of at€; D 0 atf3 on the mutual exclusion
program. We will check the following q-states:

s17: (£1,m3,2), s12: (£1,m0,2), 813 : (€1, my,2),

81 ¢ (el’mO: 1), s3: (fl, my, 1)) 816 : (El,m2,2).

In Fig. 4 we present Tp(817,at€3). In decomposing the graph wc find that every component
consists of exactly one node and a possible sorting order for them is:

817, S12, S13, 816, 518, 819, 54, 85, 86, 58, 89.

The terminal components are 85 and 89 and they both satisfy ar €3. For every other com-
ponent we easily identify a helpful process leading out of the component. Thus Py is helpful for
{317, S12, 813, 316,34,88} and Peis helpful for {818,819, 85}.

Note that this diagram also took care of 812,313,816 The next g-state not yet analyzed is
s1. We construct for it Tp(s1, p2) where p2(8) = atl3 V s € T'p(s17, €3).

The corresponding diagram in Fig. 5 shows that all computations starting at 8; or 83 eventually
must enter Tp(sy7, at £3). Consequently we conclude that atf; D 0 atf3 is valid for the program
P.

12 TESTING UNLESS PROPERTIES

Let the formula to be tested be

g 2 (pr Uo,—1...01 o).

Let s€Tp be an accessible g-state. Construct T'p(s, ©p) as before. We propose the following
‘test for checking that all computations in Tp(8,pq) satisfy w : @, 2,1 ., .01 Uepp.

w-Precedence Test:

Decompose Tp(s,pq) into a topologically sorted list of maximal strongly connected com-
ponents: Ky, ..., K,.. Proceeding from K, down to Ky, we try to assign each component
K; a rank p; = p(K;) as follows:

Let p; be the smallest k > 0 such that all states in K, satisfy @ and that any component
K, directly connected to Kj,72 j, has a lower or equal rank, i.e., k 2 pj.

If we fail to rank some component K;then the test is said to fail, otherwise we say that
it has succeeded.

27

Lemma A:

If the w-precedence test succeeds, then all computations in Tp(s,p) satisfy w.

Proof:

Assume that the test succecded. Let ¢ be any computation in Tp(s,). Such a computation
must progress through a finite chain of components K;,, Ki,, . . . , K, with ¢ < i2 < . . . < g

Thus it sucessively satisfies ok,), Pp(ii,)r - - - Pp(i,) With p(Ky,)2 p(Ki) 2 2 p(K;).
Obviously it satisfies w.

Let K; be any component. We say that we failed to assign K the rank j if either p; > j or
we failed to rank K, altogether. ,
-l

Lemma B:

If we failed to assign K, the rank j then for every s € K; there exists a computation o =

s —> ... (beginning in s) that does not satisfy
w; = ;... Upo.
Proof:
We will prove the lemma by double induction, first on j = 0, 1, . . . and then for each j on

t=rr—1,...,1

Consider first j = 0. Let s € K; be any state in K;. If ssatisfies g then K; consists of s
alone and has no successors. Correspondingly we could havedefined p(K;) = 0. Since we failed
to assign 0 to K;, s does not satisfy ¢g. Consequently any computation beginning in s falsilies
wo = ©g. This establishes the lemma for j =0 and Ky, . . . , K,.

Consider now a j > 0 and assume by induction that the lemma has been proved for j — I and
K, and also for j and each of K;4y,...,K,. Let s€ K.

. There could be two distinct reasons why we failed to assign the rank j to K;.

o There exists some state s'€ K; which does not satisfy ;. By the induction hypothesis
there exists a computation ¢’ = 8',82%, . . . which does not satisfy wji. Wc claim that
o' also does not satisfy w;. I'oro’ to satisfy w; there must be a (possibly em ply) prefix of
o' continuously satisfying p; followed by a suflix which satisfies w;._ 1. Since s! falsifies
©;, the prefix must be empty and the whole of o' must satisfy w;—y which contradicts

the definition of ¢’.

It only remains to obtain a similar computation starting from s, the arbitrarily spccified
state in K. If by chance 8= s then ¢/ will do. Otherwise, since s and 8! belong to the
same strongly connected component there must exist a path $ =81,..., 8y, = s within
K; connccling s to s!'. Consider the computation o =3, . . ., 31,32, ..., le., the path

28

from s to s followed by o'. Since no state in Kj satisfies @g,0 can satisfy wj only if o'
does. Thus o falsifies w;.

e The second case where we fail to assign j to K is that there exists a Ky directly connected
to K, < £, such that py > j or more generally we failed to assign j to Kjy. Thus there
exists 8; € K; and sy € K, such that

Py
8; —> 8y for some Pk.
By strong connectedness there exists a (possibly empty) path connecting s to 8 : s,
., 8;. By the induction hypothesis since £ > ¢ and we failed to assign j to Ky there
exists a computation oy : st,sz, . . . which falsifies w;. Consider now the computation

. . 2
oS8 ..., 8 8 84 .

The computation o consists first of the path from 8 to 8; within K, then the cdge from

8; to 8¢ and then follows oy. Since the whole segment s, . . ., 8¢ does not contain a state
satisfying g, 0 can satisfy w; only if 04 does, which is impossible. Thus o falsifies wy as
required. A

Let now K; be a component that was not ranked altogether. By the last lemma there exists
a computation o =s, §°, 8% ... with s € K, such that o falsifies

Wy = go,i,l . ..(plu(p().

We can prefix ¢ by a path leading from 8¢ to s and obtain a computation 6g=38p,...,8,...
which fails to satisfy w,. We may combine Lemmas A and B to obtain:

Corollary:

Given Tp(sg,90), all so-initialized computations in Tp(8g, @o) satisfy
w=1p, %...01Hpp

iff the w-precedence test succeeded.

Proof:
In order to test the general implication ¢ D w on the entire Tp diagram we proceed as follows:

Let sy, 89, ..., 8k be all the g-states in Tp. Construct Tp(s1,9p) and test p, 3 . .. 14l g
on it. Construct Tp(s2, ¥2) where ¥2(s) = wo(s) Vs € Tp(s1, po).

Test p, 3. .. p1 g on T'p(82,92). [n ranking the components we add the following rule:

If K; is a terminal component consisting of the single node 8 € Tp(81, po), give K, the rank
that s (or the component containing 8) has received in Tp(s1,p0)-.

In general we construct Tp(8;,%;) where

¥ils) = po(s) v [s € [Tr(s;95)] (1= o).

i<t

29

We then test o, ... 2 g on Tp(s;, ;) ranking any component consisting of s€7p(:,,1/)_,) for
some j < 1 accordmg to the rank it received earlier.

Consequently the testing procedure is again linear in the size of Tp. To be precise, of com-
plexity r.m . |Tp

7

To illustrate the procedure let us test the validity of the following unless property:
ly D (eo Umgz U~m3z Umz U ~m3 .UZ3).

This property again expresses a certain kind of 2-bounded overtaking. However the reference point
is when Py is at £y. It states that from the time P; decides to leave £y, Ps may enter mgz at most
twice before P; enters £3. Furthermore, actual 2-overtaking can take place only if P; on exiting
£y finds Py in mg3 at precisely the same moment. If on exiting Co, Pyfind Py anywhere else then
at most l-overtaking can take place. In contrast with other unless properties considered before in
this paper, this property is not an until property. The corresponding until property does not hold
since when Pj is at £y it is quite acceptable that it never gets out to achieve £3.

We define
q = ps5 : atdy
w4 = poiutm3
= 1 : ~ atmg

po = atly

Accessible g-states in Tp are:
s15: (fo,m3,2), 810 (fo,m0, 2), s11: (bo,mi,2),
814 ¢ (ZO;m272)7 So ¢ (EO’mO)])) 82 ¢ (eO)mlyl)'

In Fig. 6 we have Tp(sy5,90). Its component decomposition gives the following topologically
sorted list of components:

K, = {815, 310, 811, 814}, {817}, {812}, {813}, {816}, {818}, {319}, {;94}, {85}, {36}, {38}; {89}-

Going backwards we assign the following ranks:
pi=0 fort€{5,9}
pi=1 fori€{8,6,4}
pi =2 for t = 19
pi=3 forie{18,16,13,12}

pi =4 fori= 17

30

pK1) =5

This shows that the desired unless property actually holds for the q-states 815,510,811, 314-

Next let us consider Tp (so,[qpo(s)VsETpaam,<po)]).It is given in Fig. 7. All the terminal
nodes belong to the previous diagram and their ranks have been listed. We may proceed to rank
the unranked states in Tp(8g,¥2)-

Wc define
pi =3 fori€{l,3},
and
pi=25for ¢ €{0,2}.
Thus, all g-states have been successfully ranked, and the unless property:
Lo D (£o tmgz Uh~my Umg U~m3z LU L3).
has been established. We obviously cannot do better since the computation:

315""317“‘*312""313“’318_'318“*319""34_’35

demonstrates 2-overtaking.

Acknowledgement:

W c would like to thank Yoni Malachi, Ben Moszkowski, and Frank Yellin for careful and
critical reading of the manuscript.

13. REFERENCES

[CES] Clarke, E.M., IE.A. Emerson, and A.P. Sistla, “Automatic Verification of Finite State
Concurrent Systems using Temporal Logic Specifications: A Practical Approach,” Proc.
of the IEEE Conf. on Foundations of Computer Science, Chicago (1982).

[K] Keller, R.M., “Formal verification of parallel programs,” CACM, Vol. 19, No. 7 (July
1976), pp. 371-384.

[L.1] Lamport, 1,., “Proving the Correctness of Multiproccss Programs,” IEEE Trans. Soft.
Lng. SE-3,2 (Mar. 1977), pp. 125-143.

[L2] Lamport, L ., “ ‘Sometime’ is Sometimes “Not Never’: On the Temporal Logic of Pro-
grams,” 7th Annual ACM Symposium on Principles of Programming Languages (1980),
pp. 174-185.

[LPS]Lehmann, D., A. Pnueli, and J. Stavi, “Impartiality, justice and fairness: the ethics
of concurrent termination,” in Automata Languages and Programming, Lecture Notes in
Computer Science 115, Springer Verlag (1981), pp. 264-277.

31

[MP’1] Manna, Z. and A. Pnueli, “Verification of Concurrent Prorams: The Temporal I'rame-
work,” in The Correctness Problem in Computer Science (R.S. Boyer and J S. Moore,
eds.), International Lecture Series in Computer Science, Academic Press, London (1982),
pp. 215-273.

[MP2] Manna, Z. and A. Pnueli, “Verification of Concurrent Programs: Temporal Proof
Principles,” Proc. of the Workshop on Logic of Programs (D. Kozen, cd.), Yorktown-
Heights, N.Y. (1981). Springer-Verlag Lecture Notes in Computer Science 131, pp. 200-
252.

[MP3] Manna, Z. and A. Pnucli, “Verification of Concurrent Programs: Proving Eventualities
by Well-Founded Ranking,” TOPLAS (1983, to appear).

[MP4] Manna, Z. and A. Pnueli, “Verification of Concurrent Programs: a Temporal Proof
System,” Proc. 4th School on Advanced Programming, Amsterdam, Holland (June 1982).

[MP5] Manna, Z. and A. Pnueli, “How to Cook a Temporal Proof System for Your Pet
Language,” in the Proc. of the Symposium on Principles of Programming Languages,
Austin, Texas (Jan. 1983).

[OL] Owicki, S. and L. Lamport, “Proving Liveness Properties of Concurrent Programs,”
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3 (July 1982),
pp. 455-495.

[OG] Owicki, S. and D. Gries, “An Axiomatic Proof technique for Parallel Programs,” Acta
Informatica, Vol. 6, No. 4 (1976), pp. 319--340.

[Pe] Peterson, G.L., “Myths about the Mutual Exclusion Problem,” Information Processing
Letters, Vol. 12, No. 3 (June 1981), pp. 115-116.

i

[PS] Pnucli, and A., Sherman R., “Semantic Tableau for Temporal Logic,
CS81-21, The Weizmann Institute (Sept. 81).

Technical Report,

32

(Yllyart) = (T, 1)

Figure O

¢’2=
PE
. N
12,m2,t= q:’l' >
Py
Ny
% | 1

Fig. 1. Proof Diagram for ”l D <>!5

33

Fig. 2. Proof Diagram for 2-bounded overtaking from le

34

P P
1 2
. Fa \
L—Sl: 1, O’l Cse !O,ml)l 89 5,1!1 ,QQ
P
P2 1 Py P2 Pll >
55: ll)ml’
P2

Fig. 3.

Joint Transition Diagram for the Mutual Exclusion Program,

35

Fig. 6. Tp(S15:%p)

37

Fig. T. TP(so,wg)

38

