
April 1983 Report No. STAN-CS-83-964

Proving Precedence Properties:
The Temporal Way

by

Zohar Manna and Amir Pouch

Department of Computer Science

Stanford University

Stanford, CA 94305

®PROVING PRECEDENCE PROPERTIES:

ZOHAR MANNA AMIR PNULELI

Computer Science Department Applied Mathematics Department
Stanford University The Weizrnann Institute of science
Stanford, CA Rehovot, Israel

and

Applied Mathematics Department
The Weizmann Institute of Science

Rehovot, Israel

Abstract:

The paper explores the three important classes of temporal properties of concurrent programs:

invariance, liveness and precedence. It presents the first methodological approach to the precedence

properties, while providing a review of the invariance and liveness properties. The approach is

based on the unless operator il, which is a weak version of the until operator U.IForecach class of
properties, wc present a single complete proof principle. Finally, we show that the properties of

cach class are decidable over finite state programs.

1. INTRODUCTION

In studying temporal properties of programs, i.e., properties that go beyond partial correctness,

an obvious hierarchy of such properties can be developed. One way of classifying the dillerent sets

in this hierarchy is by the syntax of the temporal formulas expressing them.

The first set in this hierarchy is the class of invariance properties (safety in the terminology

of [L1]). These are the properties that can be expressed in terms of a formula of the form:

Cy or DO. |

A formula of the [irst form, staled for a program P, says that cvery computation of I” continuously

satisfies 1.In the case of the second form, the formula says that, whenever¢ is true, ¥ is im-

mediately realized and will hold continuously throughout the rest of the computation. ’roperties

This rescarch was supported in part by the National Science foundation under grants MCS79-

09495 and MCS80-06930, by DARPA under Contract N00039-82-C-0250, by the United States

Air Force Office of Scientific Research under Grant AFOSR-81-0014, and by the Basic Research
Foundation of the Israeli Academy of Sciences.

Part of this paper appearsinthe Proceedings of thel 0th Colloquium on Automata, Languages

and Program nine. Barcelona, Spain (July 1983).

1

falling into this class include partial correctness, clean behavior (error freedom), mutual exclusion,
and deadlock absence. ”

The second set in the hierarchy of properties is the class of Ziveness propcrtics (eventualities

in the terminology of [MP1]). These are properties that are expressible by temporal formulas of
the form:

OY or pd OY.

In both forms these formulas guarantee the occurrence of some event %, in the first case uncondi-

tionally and in the second case conditionally on an earlier occurrence of the event ©. Among the

properties falling into this class are: total correctness, termination, accessibility, lack of individual

starvation, and responsiveness.

While most of the researchers in the field tend to agree that these two classes are lhe first

two rungs in a natural hierarchy, there 1s less of a consensus about what should be the next step

in the hierarchy. In previous work we have proposed that the next class to be studied is that

of precedence properties. In a broad sense, precedence properties are all the properties that are

expressible using the until operator U. To remind the reader, the expression pl.q, read “p until ¢”,

means that eventually g must happen and between now and then p must continuously hold.

A more mathematical formulation of this definition is given by:

Let a = Sg,81,82,... be a sequence of states, then plq is true for ¢ if there exists a J > 0
such that:

g 1s true for the sequence 8;,8;41,8;42,.. .

(if g is a state property then g holds at s;), and for every 4,0 <7 < j:

p is true for the sequence 8;, 8,41, 8:42, . ..

(if p is a state property thenp holds at s;). Here, a state property is a property that depends only
on the state and not on the full sequence. Note that in the special case that 3 = 0, then g is true

on ¢ and no requirements for p arc implied.

A derived operator is the precede operator P that can be defined by:

: pPq = ~((~p)Ug).

The meaning of this operator is that “p precede ¢”, ic., if g ever happens it cannot happen unless

p occurs first (strictly before g). In contrast to pUg which requires that g eventually happens, pPq
is automatically satisfied if ¢ never happens.

We often use nested until expressions of the form

p1U (p2U (p3l . .. (pxllq)...)),

where py, @ pig are state properties, i.e., formulas dependent, only on thestaleand containing
no temporal operators. By careful examination of the semanlic definition of the until operator

2

we arrive at the interpretation that, stated at to, this expression means that there c¢xist instants

Ely «oy thy

to Sth<te< Sig,

such that:

p1 holds in every £, to <{t < {;

p2 holds in every £11 <1 < {5

pr holds in every ¢,txk—1 <1t < fk, and

q holds in #g.

Thus, this expression predicts a period of continuous py followed by a period of continuous pg,

and so on, until a period of continuous pg, followed by an occurrence of g. Note that any of these

periods may be empty by having &; = t;41 for an empty (2 + 1)st period.

Since we arc interested only in nested until expressions where the nesting is in the second

argument, we can omit the parentheses and represent the expression above by:

prUp2Ups... plg.

The class of precedence properties that we consider are therefore formulas of one of the forms:

p D(qPr)— a precede formula

p D(piUp2U... prlq) — an untid formula.

Several inlcresting properties fall into the broad class of precedence properties.

Example:

Let us consider a program G (granter) serving as an allocator of a single resource between

several processes (requesters) Rp,..., Ix competing for the resource. Let each IZ; communicate
with G by means of two boolean variables: 7; and g;. The variable r; is set to true by the requester

R; to signal a request for the resource. Once I2; has the resource it signals its release by setting

r; to false. The allocator G signals IZ; that the resource is granted to him by setting ¢g; to true.

" Having obtained a release signal from [;, which is indicated by 7; = false, some time later, it will

reappropriatc the resource by setting g; to false.

Several obvious and important propertics of this system belong to theinvariance and liveness

classes. For instance, the property

rim

1 BRNOKD «
ensuring that the resource 1s granted to at most one requester at a time, 1s an invariant property.

In summing boolean variables we treat rrue as 1 and false as 0. Similarly, the important property

Te 2 < gi,

3

which cnsures responsiveness, 1s a livencss property. It guarantees that every request r; will

eventually be granted by setting ¢; to rrue.

Let us, however, consider some precedence properties which arc relevant to the specification

of such a system.

(a) Absence of Unsolicited Response.

An important but often overlooked desired feature 1s that the resource will not be granted to

a party who has not requested it. (A similar property in the context of a communication network is

that cvery message reccived must have been sent by somebody.) This is expressible by the temporal
formula

~g; DO (r:Pg:).

The formula states that if presently g; is false, i.e., f2; does not presently have the resource, then

before the resource will be granted to FE; the next time, KE; must signal a request by setting 7; to
true.

(b) Strict (FIFO) Responsiveness.

Sometimes the weak commitment of cventually responding to a request is not sufficient. At

the other extreme wc may insist that responses arc ordered in a sequence parallclling the order of

arrival of Lhc corresponding requests. Thus if requester f2; succeeded in placing his request before

. requester I; the grant to I; should precede the grant to I;. A straightforward translation of this
sentence yields the following intuitive but slightly imprecise expression:

(riPr;) 2 (9:Pg;)-

A more precise expression which also better conforms to the general form of the class of

properties we discuss in this paper is:

(ri A ~r5 A ~05) OD (~g;Ugi).

It states that if wc ever find ourselves in a situation where 7; is presently on, and 7; and g; are
both off, then wc arc guaranteed to eventually get a g;, and until that moment, no grant will be

made to I2;. Note that r; A ~7; implies that [;’s request preceded [2;’s request, which has not
materialized yet. Wc implicitly rely here on the assumption that once a request has been made it

1s not-withdrawn until the request has been honored.

This assumption can also be made cxplicit as part of the specification, using another precedence

EXprcssio n:

re DO giP(~rs).

Note that while all the earlier properties are requirements from the granter, and should bc viewed

as the “post-condition” part of the specification, this requirement is the responsibility of the re-

questers. It can be viewed as part of the “prc-condition” of the specification. Without this

assumption, we could not hope to implement the granler in any reasonable way, since it would

have to respond to very short and intcimittent requests.

4

(c) Bounded Over taking.

The requirement of FIFO responsiveness may sometimes be too restrictive and difficult to

implement. Any program for the allocator that scans the requests in a certain polling order,

T1, ...,7k and then back to r; may respond to requests in, say, the order of their detection by the

program. This order rnay bc different, from the arrival order. A more realistic requirement would

allow deviations from the F'IF(Q discipline, provided they are boundctl. For example I-bounded

overtaking would say that for everyt and j such that 7; preceded 7;, we may allow g; to precede
g; at rnost once. I'II'O responsiveness may then be regarded as O-bounded overtaking. In order

to express k-bounded overtaking we have to use nested until expressions.

The l-overtaking property can be expressed by a nested until expression:

(ri A ~7;) 2 (~g;)Ug;iU(~g;)Ug:.

This expression predicts a period in which £2; does not have the resource, followed by a continuous
period in which R; has got the resource, followed by a period in which Rj; does not have the
rcsourcc, followed by a grant of tho resource to I2;. Since any of these periods may be empty,

the formula actually states that in the worst case, If; may gain the resource at most once before

R;. Kr

Proofs of invariance properties for concurrent programs, have been extensively discussed in

the literature (e.g., [0G], [K],[L1], [MP2]). Fewer suggestions have been made for approaches to
proving livencss properties (e.g., [OL], [MP2], [MP3]).

In this work wc address the problem of verifying properties of the precedence class. Our main

- conclusion is that the verification of precedence properties does not call for radically new ideas and

can actually be viewed as a gencralization of the approaches suggested for invariance and liveness

properties. In fact, precede formulas are in many respects generalization of invariance properties,

whereas until formulas can be established by a generalization of the proof principles for livencss

properties.

To provide a proper framework, wc first introduce an abstract operational model of concurrent

programs. We then outline a proof systern based on temporal logic; the system has been shown

in MP5] to be relatively complete for proving all properties of concurrent programs. We then
discuss some derived proof principles that are tailored directly for the verification of precedence

properties. The utility of these principles is demonstrated by proving several examples.

2. A COMPUTATIONAL MODEL

We start by defining an abstract computational model; the ternporal logic properties will be

stated and proven for computations over this model.

The abstract model consists of the following elements:

. S —A set, of computation states. This is a possibly infinite set. Iiveryclements&S represents

the full configuration of the computing syslcrn; for concrete programs eachstale includes

the values of all the program variables as well as the program pointers for all the processes.

5

0 -- The initiality predicate. We will only consider computations originating in a state sg such

that 8(sg) holds.

T ----- A finite sct of transitions. With each transition 7TE€T we associate a partial function

fr:8S —2% where f-(8) yields all the possible outcomes of the transition 7 on the state
s €S. A transition T€7T is said to be enabled on a state s if f.(8)#¢; otherwise it is
called disabled on s. A state s such that no transition 7 € T is enabled on it is called

terminal. -

J — The justice family. This is a (possibly empty) family of sets of transitions J = {17,. C. T7 }.
Each set in J, T/ c T, is called a justice set and a justice requirement defined below is
to be applid to the set TY.

3 — The fairness family. This is a (possibly empty) family of sets of transitions F =

{TF « 00 T{ }- Each set in 3, TT, is called a fairness set and a fairness requirement
is to be applied to TS.

An initialized computation of such a system 1s a sequence of states with labclled transitions:

T1 72 73

0: 89 ——>8; —>8 —>... where; E€T,

which satisfies the following requirements:

o Maximality., The sequence 0 is maximal, i.e., either it is infinite or the last state sj is
terminal.

e [nitiality. The first state sg satisfies the initiality predicate, i.e., 0(sg) = true.

Tit1
o State- to-State transition. For each step s; —>8;41 in 0 we have that s;41€fr, (8;)

o Justice. For each TV€ J we impose a justice requirement:

e0 1s finite, or

e 0 is infinite and contains an infinite number of states on which no transition in

TV is enabled, or

e an infinite number of a-steps are labclled by transitions in TY,

This corresponds to the notion that if for all states from a certain point on, some transition

in TY (not necessarily always the same) 1s always enabled, then some transition of TJ
will be taken infinitely many times.

e llairness. For cachT¥ €¥F wc impose a fairness requirement:

e0 ‘Is finite, or

e 0 1s Infinite and from a certain point on no transition of TF is enabled, or

e some transition of TF is taken infinitely many times.

This corresponds to the notion that if some transitions from T¥ arc enabled infinitely
many times then some transitions from 7% arc activated infinitely many times.

6

An admissible computation is any suflix of an initialized computation.

When considering a concrete computational system, we have to identify the five elements

described above with more concrete objects. Since our example 1s based on a shared-variables

computational model, we proceed with such identification for the shared-variables system. Such a

system has the form:

y:=g(=); [PL] ... || Pml,

where ¥ = (v1, . . . , Yn) are the program (shared) variables, T = (zq,..., Tg) are the input vari-
ables, and Pi, ..., P, are the concurrent processes of the program. Each FPF; is represented by a

transition graph with nodes (locations) L; = (£3, ..., £}) and directed edges Il; = {€}, « wos et}.
The locations £ are the entry locations of Py, respectively. Ilach edge e¢ € EF; is labelled by an

instruction: _ _

(Ce ce(T) — [¥ = k(g)] (i)e

whose meaning 1s that when c.(v) is true, execution may proceed from £. to l while assigning
the values h.(¥) to the variables J. Special cases are the semaphore instructions request(y) and
release(y), equivalent to (y > 0) — [y :==y —1] and true — [y := y +1], respectively. We refer
the reader to [MP1] for a more detailed discussion of these models.

A program state for this system has the form:

| (4, ...,0™ ny, ..., Mn),

where each £ € L; denotes the current location of the execution in the process F;, and each
Nn;€ D is the current value of the program variable y;. (The variables ¥ are assumed to range
over some domain D.) Thus we identify the set of all states S as the set of all {(m + n)-tuples
(Ly . . ++ x Lpx DT").

The initiality predicate is given by:

m -

oes...) [ANE= &)] a - o@)
1=1

ensuring that all the processes are at their initial locations and the values of the program variables

are properly initialized.

The set of transitions 7 is identified with the set of all edges Ur I. For r-e€f;we
‘define

(el, ...,em: p)e fo(8... 7)

if and only if

0 =, 0 =2£, (5=17forevery j#£i, co(f)=1true and 7 = he)

The justice family 1s given by:

I

: that is, we require that justice be applied to each process individually. This implies that in any

infinite computation, each process that has not terminated yet will eventually be scheduled.

The fairness family is given by:

3 = {{e} | eis labelled by a request(y) instruction}.

Thus, each semaphore transition is to be individually treated fairly. This implies that a request(y)

instruction which 1s waiting while y turns positive infinitely many times must eventually be per-

formed.

In considering computations of a program as models for temporal formulas that express prop-

erties of the program, we define the model 0 corresponding to a sequence O,

1 72 73

0: Sg 281 28 >...,

as follows: If 0 is infinite then the corresponding model is

oO: 80; S133 2 eee

In the case that o is finite and its last state is the terminal state sg, we take 0 to be

0: 80,81,SkySk,

+ that 1s, the last state repeats forever.

3. THE PROOF SYSTEM

The proof system consists of three parts.

eo Part A, called the general part, formalizes the pure temporal logic properties of sequences

in gcncral. It 1s cornplctcly independent of the particular program analyzed.

oe Part 3, called the domain-dependent part, formalizes the properties of the domain over

which the program operates, such as integers, reals, strings, lists, trees, etc.

oe Part C is the program-dependent part. It provides a formalization of the properties that

result from restricting our attention to the computational sequences of the particular

program being analyzed.

We refer the reader to [MP4], [MP5] for a discussion of parts A and B. Here we only repeat
part C which we further develop in order to prove precedence properties.

The program-dependent part consists of four axiom schemes corresponding to the four re-

quirements imposed on admissible computations. In the following, a state formula is a formula

containing no temporal operators and hence interpretable on a single state.

Let© and 9 be two state formulas. We say that a transition T leads from © to if for every

two states s and $s’ the following is true:

_ a!

p(s) A (s'€ f(s) = (5).

Note that this formula is classical, i.e., contains no temporal operators and should bc expressible
and provable in the first-order theory over the domain. +

For example, in the case of the shared-variables computation model a transition 7 would

correspond to an edge e in some process Pj:

(Ce) c(g) = [yg = hy)] (8)e

so that the condition above 1s expressible as

ot,0.9)Acy) = Ph. DE, f™h(y).

Given a subset of transitions T' ¢ 1", we say that 7’ leads from ¢ to 9 if every transition

7 € 7” leads from ¢ to 9. If the full set 7" leads from ¢ to , wc also say that the program P leads

from p [0 9.

The state formula Terminal, characterizes the terminal states:

Terminal(s) = N (f+(s) = ¢).
T&T

Also, for a subset 7" of transitions, the state formula Enabled characterizes the enabled transitions

in T':

Enabled(T')(s) = \ [f-(s) # 4].
rT!

Both formulas arc expressible by a quantifier-free first-order formula.

Following are the inference rules of the program part:

(INIT} For an arbitrary temporal formula w

t- 0D Ow

FO

This rule states that if w 1s an invariant for all initialized computations it is also an invariant

for all admissible computations. This 1s because every admissible computation 1s a suffix of an

initialized computation, and a property of the form Cl w is hereditary -from a sequence to all of its
suffixes.

(TRNS) Let ¢ and 9 be two state formulas

 BEvery7€T leads from ¢ to 9%

F{(oa Terminal) DY

F © DO Ov

The first premise cnsures that as long as at leasl onc transition is enabled, then if the current

state satislics ¢, the next state must satisfy 9. The second premise handles the case that all

9

transitions are disabled, i.e., that of a terminal state. In a computation this means that no further

action 1s possible and the next state 1s identical to the present. Hence this premise also ensures

that in such a case the next state will satisfy 1.

(JUST) Let © and © be two state formulas, and Te] a justice set

t- Every 7T€ T leads from © to oo V¥

Every 1€TY leads-from ¢ to

Foe d J [EnahZed(TJ)] DU

To justify this rule, consider a computation o such that ¢ A [0 Enabled(T”) holds for o but
@wU does not hold. By the first premise, once ¢ holds it can only stop holding when % happens.
Hence ©U% may fail to hold only if % never happens and ¢ is true forever. Since we assumed that

TY is continuously enabled on ¢, some transition in TY must eventually be activated, and this in
a state satisfying ¢. Hence, by the second premise, once this transition is activated, it achieves 4%,

contrary to our assumption.

A similar rule applies to fairness:

(FAIR) Let ¢ and 9% be two state formulas, and TF€ 3 a fairness set

t- Every 7€ T leads from @ to V

I- Every T€T¥ leads from ¢ to ¥

Fle A C1 OC EnabledTY)] 2D pUv

The justification 1s similar to that of the JUST rule.

In the following discussion we will consider computations only under the assumption of justice.

This amounts to considering an empty fairness family 3 = ¢. In the shared-variables computation

system this means that we consider programs without semaphores. The reintroduction of fairness

to the following analysis can be done in a straightforward manner.

In IMP5] the sect of the rules above has been shown to be relatively complete. By this we
mean that an arbitrary property which 1s valid for a given program, can be proved using these

rules, provided the pure logic and domain dependent parts are strong enough to prove all valid

properties. This result implies that the program dependent part 1s adequate for establishing all

the ‘properties that are true for admissible computations. However, while giving full generality,
these rules do not provide specific guidance for proving propertics of the three important classes
that we have discussed: invariance, liveness and precedence.

We will proceed to develop derived rules, one for each class. These rules, while being derivable

in the general system, have the advantage of being complete for their classes. By this we mean,

that every valid property in the class can be proved using a single application of the proposed rule

as the only temporal step. All the premises to the rule are first-order over the domain. Thus, for

anyone who is interested only in proving properties of these classes, the respective rules arc the

only temporal proof rules he may ever need, dispensing for example with the general temporal

logic part.

10

Wc will illustrate these rules on a single example -- an algorithm for mutual exclusion (Fig.

0) -- taken from [Pe]. The program consists of two concurrent proccsscs, PP; and I’; that compete
on the access to Lheir critical regions, presented by £3 and mg respectively. Entry into the critical

regions is expected to bc exclusive, ie., at no time can P| be at £3 while at the same time Pg is

at m3. The processes communicate by means of the shared-variables ¥1,¥2,t. Process P; sets y;

(¢ = 1,2) to T whenever he is interested in entering his critical region. Ie then procceds to set

t to 1. Following, he reaches a waiting stats (£3 or mag, respectively). There he waits until either
y: = I" (here7 is the competing process, i.e.,1 = 2 and 2 = 1) or t = ¢. In the first case he infers
that the competitor is not currently interested. In the sccond case hc infers that Ps 1s interested
but has arrived to his waiting state after I’; did, since P; was the last to set t to 2. In any of these
cases I’ enters his critical region. Once he [inishes his business there hc exits while setting y; to

FI, indicating loss of interest in further entries for the present.

This description is of course intuitive and informal. The following discussions will provide

more formal proofs of the correctness of the algorithm.

4. INVARIANCE PROPERTIES

A single rule which is complete for this class is:

(INV) — Invariance Rule

Let ¢ and 9 be slate properties

A FO Dp

B. I- Every7€ T leads from © to

c .Fp D9

FO

A slightly more elaborate rule can similarly be used to establish properties of the forrn ¢ D2 [11.

Since the rule is derivable from the INIT and TRNS rules above, it is certainly sound.

To argue that it is complete for properties of the form Of, let ¥ bc a state property such

that LJ 4) is true for all computations. Define the predicate:

T1 T2 Tk

Acc(s) = {There exists an initialized computation segment sg —> 81 —>... —> 8k = 8}.

Thus, Ace(s) is true for a state sill there exists an initialized computation having 8 as one of
its states. Wc have defined Ace(s) in words rather than by a formula; howcver, if Lhe underlying
domain is rich cnough to contain, say, the integers, then this predicate is expressible by a first-order
formula over the domain.

We now apply the INV rule with ¢ = Ace. Certainly0 D Acc, since every stale so satisfying

f participates in a computbalion:sg—8;— It is also easy to sec that if 8 is accessible

and 8’ € f;(s) then s* is also accessible. This establishes premise B. Premise C says that every
accessible state satislics 9, but this follows from our assumption that [J is true on all admissible .

compulalions. Consequently the INV rule is always applicable.

11

Let us considgeyome invariance properties for the mutual exclusiion program (Fig. 0) presented |above. Ij: F (t=1)v(t=2) * oo

Note that for this prograrn

0: atly A atmo A [(y1,ye,t) = (F, F, 1)].

Take =% = (t = 1) v(t =2). It is easy to verify that § Dp sinced implies t = 1.
Similarly by inspecting every transition we sce that all of them maintain ¢.

Li: FO = 4.3)

The proposition £4 3 is defined as at€;VatfoVatls, ic., it holds whenever Pj is somewhere

in {£1, £2, £3}. Potentially falsifying transitions are:

fo — £4: setting both yy and ¢1.3t0 T.

f3 — fp: setting both yy and £;.3 to F.

All other transitions do not rnodify either y; or £;.3.

L: F (ve=my)

This property is symmetric to I.

L: FWD {[toa~mg]oe=1)}

Note that initially fp (i.e., atf3) is false so that the implication is true. Potentially
falsifying transitions are:

fy — £9: sets t to 1.

my; — me: makes ~mg false.

mg— mg while €o: by Ij,y; = T so this transition is possible only when ¢ = 1.

All other transitions trivially maintain the invariant.

Can be shown in a similar way.

We may now obtain the invariant ensuring mutual exclusion:

It 1s certainly true initially. The potentially falsifying transitions of this invariant are:

¢o— £3 while m3: but then yg = T (by Ig) and t = 1 (by I3), so that this transition
is impossible.

mq — mg while £3: impossible, because yy =T (by [1) and t = 2 (by I).

Thus mutual exclusion has been formally proved.

5. LIVENESS PROPERTIES

We start by developing a proof rule which is more convenient to apply than the JUST rule.

12

(J-EVNT) - - The Just Eventuality Rule

Let¢ and 9 bc two state formulas and TV a justice set

A. + Every T€T leads from p to po Vo

B. F TLvery7€TY leads from @ to ¥

C.k oD (¥ V EndbledT 7))

Fo DO Uy

A similar rule exists for fairness. The rule can easily be derived from the JUST rule since by premise

C every computation having in it a ¢ which is not followed by a %, will have TY continuously
enabled. This by the JUST rule implies Ub.

Let us apply the KVNT rule to our sample mutual exclusion program (Fig. 0). Take for

example,

po = 1: atlgANatmoA (t+ = 2) a (yy =T) Nye = T)

Y = po: atl

Clearly the only transitions enabled on a state satisfying i are €g — £3 and mg— mg. Conse-

quently every lransition leads from © to 1 V9. Taking TY to be Pi, i.e., all transitions within
Py, we have premises A and 13 obviously satisfied. Also 3 implies that €g — £3 and hence Pj is

| enabled. Thus wc obtain I- 012 (1 Upo). From this we can certainly obtain

Fo12 po

since pUq implies 0 gq.

Next, let us take

po = pg: atl Aatmy A(y1=T)A (y2=T)

Y = oi V pe.

We now take TY to be Py. Certainly, the only transitions possibly enabled under @gq are €g — fo,
£9 — €3 and my; — mg. The lirst transition preserves wg. The second transition leads from sg to

©o- The third transition which is guaranteed to be enabled under 4, leads from pg to 01. Thus

every transition leads from pg t 0 © V go. Wc conclude t- p31 V pp). From this we may
conclude by temporal reasoning and Lhc previously established t- ©;D 0 pg that

F pg DO Opp.

Wc may proceed and define additional ¢;,j=3,...,6, such that for each j, Fp;D

OV < 0k) which eventually leads to F 9; D0 0 pg. This proof strategy of constructing a finite
chain of’ assertions, each cventually leading to an assertion of lower index can bc summarized by:

13

(CJIAIN) — The Chain Reasoni ng Proof Principle

Let pg, ©1,..., pr be a sequence of state formulas.

A. F Every TE T leads from ¢; to \ ei,
7<1

B. For every z > 0 there exists a justice set TY = TY such that

F Every reT/ leads from ¢; to \ vo;
I<

C. For every ¢ > 0 and 17 as above:

Foi (\/ ©;) V Enabled(T)]
I<

’

F (Ve) D> Qo
[=0

The scheme of a proof according to the CHAIN principle is best presented in a form of a

diagram. In this diagram we have a node for each ;. For each transition 7 leading from a state

satisfying (os; to a state satisfying ¢; withj #2 (and hence by A,j < 7) we draw an edge from
"to ;. This edge is labelled by the appropriate justice set to which the transition belongs. Edges

belonging to the justice set which is known by premise C to bc enabled in ¢; are drawn as double

edges. For example, Fig. 1 contains a proof diagram for proving t- atf;D 0 atf3 for the mutual

exclusion program. By the CHAIN rule wc actually proved F(Vi_gwp:) 2 0 atf3, but since @g is
at £; this establishes the desired result. The diagram representation of the CHAIN rule resembles

“closely the proof lattice advocated in [OL] for proving liveness properties.

In the application of the CHAIN rule we may freely usc any previously derived invariances of

the program. Thus, if FO I is any previously derived invariance, we may use ©; A I instead of

to establish any of Lhe premises. This amounts to considering the sequence @g Al ..., ©, Al

instead of the original sequence of assertions. Thus in the diagram (Fig. 1) wc did not have an

assertion corresponding to (£3,m3) since by the previously established invariances such a situation
is impossible, in particular no transition could lead from I A ©4 to (£3, mg). Similarly no transition
from (£2, ml) to £3 has been drawn in view of Ij.

The chain reasoning principle assumed a finite number of links in the chain. It is quite adequate

for finite state programs, i.e., programs where the variables range over finite domains. However,

once we consider programs over infinite domains, such as Lhe intcgcrs, it is no longer sufficient

to consider only finitely many assertions. In fact, sets of assertions of quite high cardinality arc

needed. The obvious generalization to infinite sets of assertions is to consider a single state assertion

©(a, s), parametrized by a parameter a taken from a well-founded ordered set (A, <). Obviously,
an important feature of our chain of assertions is that program transitions led from @; to ¢; with
j <2. This property can also bc stated for an arbitrary well-founded ordering. Thus a natural

generalization of the chain reasoning rule is the following:

14

(WIELL) — The Well Founded Livencess Principle |
Let (A, <) bc a well-founded ordered set.

Let p(a) = p(a,s)be a parametrized state formula, and 9 a state
formula.

Let h : A — J be a helpfulness function identifying for each a € A

the helpful justice set h(a) € J.

A. F Every transition 7€ T leads from

pla) tov 3B((B 2 a) A p(B)

B. t- Every transition 7€&€ h(a) leads from

pla) to PVIB(B<a)A p(B)

C. F pla) 2 [¢ v 3B((B <a) A p(B) Vv Enabled(h(a))]

(Fe.p(a)) D OY

In order to obtain a complete rule for livencss properties we have to treat the parametrized

assertion o(a, s) as an auxiliary assertion:

(LIVE) — A Complete Principle for Liveness

Let p, g¢ be state formulas and (a), a parametrized asser tion pair
as in WELL.

Assume premises A, B, C as in WELL, and

D. F0Op, ie. pis an invariant

E.F @ A p) 2 (Japa)

Fg DO OY

W c refer the reader to [LPS] for a completeness proof of the LIVE principle. Completeness
here means that given two state properties ¢ and ¥ such that gD 0% is a valid statement over

all the computations of the program [I?, it is always possible to find state predicates p, o(a, 3)
with « € A and (A, <), h as in WELL that satisfy premises A to Ii. Note that premise D requires
preliminary derivation of the invariance of pwhich can be done using the INV rule.

6. PRECEDENCE PROPERTIES

As a key operator in expressing and establishing precedence properties wc take the weak until

operator, i to which we will refer here as the unless operator.

The unless operator rnay be defined in terms of the standard until operator as:

pig = OQ »viplg)

Thus, in contrast to plUgq it does not require that q eventually happen. But in the case that q never

happens p 1s rcquirod to hold forever.

15

Even though it 1s introduced here as a derived operator, it can be adopted as the basic operator

for establishing precedence properties. This is because both the unril and precede operators can be

expressed in terms of the unless operator:

plqg = (pig) A Og

pPaq=(~q) Ulp A ~q).

We can also express the nested until operator by considering the nested unless operator. Let

Vr, Yyr_1,..., ¥1,%0 be a sequence of formulas then

br Uap1 Loopy Hho = Py (byt L(($1 Kebo))...)

holds on a sequence 0 = so, 81,... if there exists a sequence of indices 0 = 2, <2, 1<...<

11 <1g<w such that for every £ > 0 and j, 1¢<j < 2g_1,%¥e holds on

ol) = S59 8541, ..

and if 19 < w then Yu holds on a"), Note that some of the 1¢ may be equal to onc another, and
also to w in which case some of the 7 hold in empty periods.

An alternative description is that 1, 3... 91 Uy holds on o iff either o satisfies 2,U . . .

1 Ug or for some j, 0 < j <r,0 satisfies ¥,U...%;41 UDO ,. In the case j = 7,0 satisfies
4,

Then we can express the nested until by an extension of the previous formula for a simple
until:

Let us justify this equivalence. The, direction in which the nested until implies the nested

unless and the eventual ocurrence of 1g is obvious. Let us therefore consider the other direction.

Assume that 9,4... 23g and 0 Pg both hold on a sequence o. By the interpretation of
nested unless there exists a partition:

such. that ¥¢ holds between 1g and 2g_1 for £ > 0 and %g holds at 7g if it is finite. Since 9g must

occur somewhere in 0 let j be the minimal index such that %g holds on 09), Ifj = 19 < w,
then the samc partition justifies ¥, UW... 1%; Ug on 0. Otherwise there exists some £ such that

1¢ <j < tg_1. In this casc the partition up Lo 2¢ and then j justifies 9, UU... Uo from which

YoU. Pelthe—1... Pilg

follows by letting %¢_1,..., ¥1 hold over empty periods.

Thus, expressively at least, the unless operator seems to be an appropriately basic operator.

Bul we claim that the choice of the unless operator is appropriate on proof theoretic grounds as well.

By inspecting the expression of until formulas in terms of unless formulas wc lind a resemblance

16

to the relation between the concepts of total and partial correctness. Total correctness, which is a

liveness property, can be expressed as the conjunction of partial correctness, which 1s an invariance

properly, and termination, which is another livencss property but sitnpler than the original. In
quite the same way wc can express the until properly as a conjunction of an unless property, which

we regard as extended invariance property and the simpler livencss property 0 pg.

In practice, if wc want a single proof principle that will cover properties of the following three
su bclasscs

(a) © 2 (pUg)

6) ¢ 2 (Pg)

() © 2 (pl)

then the unless operator 1s a good choice.

In order to establish (a) we establish separately

F (pp DO pq) and Fo DO <g,

which are implied by (a). The first will be established by using the unless proof principle. The

second is a liveness property and can be established by the WILL rule or its cxtcnsions.

Similarly in order to establish (b)itis sufficient to establish ¢ D(p Lg) where p is ~q and
1s p A™~(.

We could not have used the until operator in a similar role, i.e., reducing proofs of proper ties

of the subclasses (b) and (c) to these of (a). This is for example because if ¢ D (p Llq) is a valid

statement, then certainly so is ¢D (Cl pV (pl.q)), but it docs not imply that either ¢ DO Cl p or
© Dd(pUq) are valid statements. Proving precede statements would cause similar problems.

The fact that the weak form of the until operator is more basic than its strong form seems

to have been intuitively sensed in [[.2] where a while operator is introduced which is equivalent to
p YU ~q.

Consequently, we will proceed by developing proof principles for the unless operator il. We

begin by formulating a core rule:

(CORE-u) — core Rule for Unless Properties

Let ©y,0y—1,...,00 be state formulas

A. For every: > 0,

t- lveryT€T leads from ¢; to V ©
J <A

r

F (Vi) 2 (or o,1 40...01 Yeo)
1=0

Let 0 be a computalion whose first state 8g satisfies p; for some 0 <j <r. Assume first that
j > 0.Decfinez, =¢,.1=...= 1] = 0. By premise A, 8; must satisfy some @g for £<j. If

17

{ = 7 wc proceed until we find an 8g that satisfies gg for £ < j. If we never find such astate we
may take ¢;1=...=1y=w. Otherwise we take 2.1 =. ,. = 12g = k and procéed similarly
beyond sx unless £ = 0. This construction shows that if 8g satisfies ©; for some j then o satisfies
©, 3... Mpg. The case j = 0 is even simpler.

Wc can make a complete rule out of the CORE-U rule by strengthening the preconditions and

weakening the post conditions.

(UNLS) -- Complete Rule for Unless Properties

Let ory..., PO , ¥ry..., %0,Dp,q be state formulas such
that:

A. For every 1 > 0,

- Every 7€T leads from p; Ap to \ vo;
Js

B. + Op

C. + (a Ap) 2 (VV ©)
1=0

D. For every i, 0<i<r~

F (ps Ap) DO i

Fog 2 (wr Up ULL. 2hy Hah)

Let us consider the application of this rule to the analysis of the mutual exclusion algorithm.
We take (the ;’s refer to the assertions in Fig. 1):

q: atély

Yo = Po : atl

61 =p1.3: La Amo V (mg A(t = 2))]

p2 = ps: La Amg

©3= ps: Ly AmgA(t=1)

Yr = $3 = ~ma, Ye = mg

p — the conjunction of all the invariants fg A... A Ig

The diagram certainly eslablishes that, p;,1 > 0, leads to \ &;-
J<1

3

It 1s also easy to show that (¢A p)o(\ é:) and that @¢; D2; for i = 0, ...,3. Thus wc
1=1

may conclude:

Fly DO (~mg3 Umg U~mg ly).

18

This establishes the property of 1-bounded overtaking from £3. This means that once [’ is at
£5,P; may be at mg at most once before FP; gets to his critical scction at £3.

An alternative derivation of the same result could have been achieved by taking the ‘p’s in the

rule to bc identical to the ‘p’s in the diagram. This leads to:

F fy D (ps Hog ilps Ups tp) pg).

We may now use the collapsing theorem for the unless operator:

(pUqilr) o ((pVq) Ur)

to obtain:

Fl; OD (ps Upa U(p1 V2 Ves) Up),

which is equivalent to the above after we replace cach of the p;’s by the weaker 1;.

Having obtained I-bounded overtaking from the point that PF’; is at £3 we may inquire whether

the same holds from the point that Py is at £;. As the analysis shows in IFig. 2 the best we can
hope for is 2-bounded overtaking. The diagram in Fig. 2 establishes

o£ D (ps Ups.r Log Upg.3 pg)

from which ‘t-bounded overtaking 1s easily established.

7. COMPLETENESS OF THE UNLS RULE

Next we will show that the UNLS rule presented above is complete for establishing nested

unless properties.

Proof:

Let ¢, ¥,, %o be state properties such that the statement g D{(, leh, 1... 21 apg) is
valid on all admissible computations. We will show that there exist state properties p, ©,,..., ©o,

which arc first-order expressible over the integers, such that all the premises of the UNLS rule are
satisfied.

As p we choose

p(s) = Acc(s) = {There exists an initialized computation containing s}.

Clearly p 1s an invariant of all admissible computations so that premise B 1s satisfied.

Let 0 be a finite segment of a computation, i.e., a finite sequence

. Tt 72 Tk
0c — 8p —28—>. . —>8k

such thats;€ [,(s;) for cachi=0,..., k— IL

19

Wesay that o satisfiesatemporal formula w if ¢’s infinite extension 80,81, ..., Sky Sk) Sk, . . .
satisfies w.

Let 0 be a computation satisfying ¥,4 ... 9 tg. It can be verified that any finite prefix of

0 is a computation segment that also satisfies %, 4... 1bLabo.

Let us define now ©; fori =0,1,..., 7 by ©;(8) = true iff

(a) Every computation segment originating at s satisfies; YP; 1... 91 Ug

(6) The index 1 1s the srnallest index for which (a) holds.

Let us show that the sequence of @;’s defined in this way satisfies premises A, C and D of the
UNLS rule.

Consider first premise A. Let s be a state satisfying ;, for i > 0. Let 8’ be a state such that
s’ € f(s). Consider any computation segment originating in s’:

~ , 72 Tk
ol: 8§—>sg—>...—> 8.

We can obtain from it a computation segment:

~ T , N1 72 Tk
o: §—>8 —>»81 —2>... —2> 8k.

By our assumption about s, 6 must satisfy 1; 4l... lpg. It can be shown that due to i > 0,
and the minimality of i this implies that 0’ must also satisfy 3;3 . . . Llehg. Thus we have identified

at least onc index, i, such that clause (a) is satisfied for i and s’. Letj 2 0 now be the minirnal

index satisfying (a) for s’. Then (b) is also satisfied and we have that s’ satisfies ¢; forj < i. This
establishes premise A.

Next, consider premise C. Let s be a state satisfying q and p. It 1s therefore an accessible state

satisfying (1. By the assumption that ¢ D(¢, 1... 402g) is a valid statement for all admissible
computations, every computation originating in s saisfies ¥, 4... 9g. Consequently every

computation segment originating in s satisfies, il... lpg. Thus, clause (a) of the defini tion of

p; is satisfied for i = r. Let j be the minimal index satisfying clause (a). Then, (s) holds and
j <r.

To show premise D, let s be a state saisfying ¢;. Consider first 1 = 0. The zero version of

Yi ML... Llpg is Pg by itself. Since every finite computation segment originating in s must saisfy

po which is a state property, it follows that s satisfies ©g. Consider next, i > 0. Since i was

the minimal index satisfying clause (u), there must exist a computalion segmento originating in

8 which satisfies 9;31 . . . lag but not ¥;14... Ug. Consequently the initial section of &
satisfying %; must be non-empty and therefore s must satisfy 1;. Thus, we have ©; D9¥;.

We claimed that the ¢;’s defined above are first-order expressible over the integers. This is due >

to the fact that clause (u) refers only to finite computation segments. This 1s a direct consequence

of the fact Lhat we deal with the unless operator. No similar first-order definition is possible for |

the until operator.
ul

20

8. DIRECT PROOFS OF UNTIL PROPERTIES

In spite of our recommendation of splitting a proof of until property into a proof of a similar

unless property, followed by a liveness proof of 0 1%, there are many cases in which an until property

can be directly obtained by a small modification of the liveness proof. As we have seen both the

CHAIN rule and the UNLS rule call for a sequence of assertions, such that the computation always

lead from @; to ©; with j <i. The CHAIN rule stipulates in addition a strict decrease under
certain conditions. It is often the case that the same chain of assertions used in the CHAIN rule

can be used to establish a nested until. In fact, in much the same way that we have justified the

CIIAIN rule we can with the same premises obtain a stronger result:

Taking 0 < p3<p2<...<ps= 7 be a partition of the index range [0...7] into s
contiguous segments, we may formulate the following chain principle for until properties:

(U-CHAIN) -- The Chain Rule for Until Properties

Let ©g, ©1, ..., ©r be a sequence of state formulas, and 0 < P< p<

... < ps = 7 a partition of [L...r].

A .F Every 7 € T leads from ¢; to (\ ©;) fori=1,...,r
<i

B. for every i > 0 there exists a justice set TY = TY such that:

FF Every rel? leads from @; to (\ #5)
7 <q

C. fori > 0 and TY as above:

Foi 2 [(\ pj) V Enabled(T?)]
<<

r Da Pas-1 Di

(Ved so [CV edu (Ved te (Ve) el
1=0 J=ps-1+1 J=PFP, 2+1 Jj=1

The conclusion states that starting at a state that satisfies one of thee;’s,i=0,...,7, we
Ps

are guaranteed to have a period in which (\V ©;) continuously hold, followed by a period in
I=ps—1+1

* Pa-1 .

which (V ©5) continously holds, etc., until finally gq is realized. Any of these periods may
J=ps-2+1

be cmpty.

To justify the soundness of this conclusion we first prove it for the most refined partition

possible, namely:

r

(%) (V ©) 2 (pr Wort Up, Ju... ©1Upo).

This is proved in a way similar Lo the justiflicalion of the corresponding livencss principle. We show

21

by induction on n, n =0, 1, ..., 7, that

n .

F (Ve) 2 (palloa aU... pile).
1=0

For n = 0 we have I- gDqo from which follows trivially

F vo 2 polo.]

Assume that the statement (x) above has been proved for a certain n and consider its proof
form +1.

n

Consider the EVNT rule with © = @nit1,% = (\/ ©:). As shown in the proof of the liveness
i=1

case all ‘the premises of the IZVINT rule are satisfied. Consequently we may conclude:

n

F ©nt1 2 ©nt1U(V ©).
t=1

By the induction hypothesis and the monotonicity of the WU operator this yields

F oni DO (Pnrilenl oo 01lepo).

Due to t- v D(ulwv), the induction hypothesis can also be written as

FV... 2 (entileal .. p1lUpo).
i=0

Taking the disjunction of the last two statements gives

n+1

+ (V ©) > (Pnt1Upnl SEI v1 Uo),
1=0

which is the required statement (x) for n + 1.

Consider now a coarser partition:

0<p<p2<...<ps=r.

By consccutively merging any. two contiguous assertions that fall into thesame cell, using the
collapsing rule:

F (piri Ulpilp)) 2 (piv: V ei)lp),

we obtain the coarser conclusion:

r / Ps Ps—1 Pi

(Ved 2 ((Ve) u(V edu (Ve) Us)
i=0 J=Ps—1+1 J=ps—2+1 7=1

22

In our mutual exclusion program, by reference to Fig. 1 it is easy to usc the U-CIIAIN rule
and obtain:

£o DO (psUpslUpi.3Upo),

from which the l-bounded overtaking from fg is obtained by the monotonicity of the until operator

(1.e., replacing formulas by weaker formulas).

A natural extension of the U-CHAIN rule to programs that require infinite chains of assertions

uses again well-founded ordered sets.

Let (A, <) be a well-founded ordered set. We require however that the ordering is total (or
linear). That 1s, for every two distinct clcments, ay, xg € A either ay <ag or ag< «tq.

(U-WELL) — Well-Founded Until Rule

Let (A, <) be a well-founded totally ordered sct.

Let p(a) = o(a, s) be a parametrized state formula.

Let h : A — J be a helpfulness function identifying for each a& A the helpful

justice set h(a) € J.

Let ay <agpg<... <agbe a finite sequence of elements of A.

A. F Every transition 7&7 leads from

pla) to Vv IB((B=a)A p(B)

B. Fk Every transition 7 &€ h(a) leads from

pla) to 9 VIB((B=<a)A p(B)

C. F pla) o> [¥ v 38((B <a)Ap(B))V Enabled(h(a))]

F Ja((a < a,) A pa) D

[38((as—1 < B= as) A p(B)
38 ((as—2 < g = as—1) A v(8)) u Coe

38((8 = a1) A p(B) U 9]

By a combination of the completeness of the WELL rule for liveness propertics and the UNLS

rule for unless properties we can extend the above rule to a complete rule for until properties.

9. DECISION PROCEDURES FOR FINITE STATE PROGRAMS

The question of whether a given program has a certain properly expressed by a temporal for-

mula, is in general highly undeccidable. However, for a very important restricted class of programs,

this question is decidable, namely for finile state programs. Finite state programs are prograrns

whose variables range each over a finite domain. These programs gcncratc only finitely many

different states and a joint, finite transition diagram over these states can bc constructed such

that any computation is a maximal path in this finite directed graph. The literature abounds in.

many special decision procedures for testing for deadlock situations, starvation, etc. on prograrns

23

represented by finite transition diagrams. All these arc special cases of the general result which
states that testing a temporal formula over a finite state program is decidable. The general deci-
sion procedure for testing a temporal forrnula ¢ on a [inite state program P consists in checking

the implication Wp Dp for general validity. In this implication Wp is a formula characterizing

all admissible computations of FP. If FP? is finite state then both Wp and ¢ may be represented

as propositional temporal formulas. Consequently wc test a propositional temporal formula for

general validity. As shown in [PS]jtcan be done in time exponential in the size ofP and ¢. This
exponential time complexity has been a source of criticism of linear ternporal logic in [CHES].

In this section we show that when the temporal property ¢ to be tested, falls into one of the

property classes discussed here, then there exists an efficient decision procedure polynomial in the

size of PP and ¢ for testing ¢ on P.

Let P be a program consisting of m processes Py, ..., Pp. Let each process FP; be presented

as transition diagram with set of nodes L;. The prograrn variables ¥yi,..., Yn assume values

over finite domains Dy, ..., D, respectively. Then the state set S of the program P is the set of

all possible tuples (€i,....%m;M1,..., Ma) with ,€L52=1,...,m, and 5; ED; for j=
I,... , n. Consequently

IS] < Li]xX +0 XL]X D1] xX +++ X|Dal.

F;
We construct for P a joint transition diagram Tp with S as nodes, and an edge s—>s' for

every pair of states s, 8/ and a transition 7 in P; which leads from s to s'.

In order to generate only accessible states we start from all states satisfying 0 and include in

Tp only states which are derivable from states which are already included in 1T'p. Fig. 3 shows the

diagram Tp for the mutual exclusion algorithm. States in this diagram have the form (4, my, t).
We have not included the values of y1,¥y2 since in all accessible states they arc uniquely determined

by the location values £; and m;. The initial state in this diagram is so.

We proceed to describe three algorithms which, for properties in each of the three classes, will

determine whether a finite state program FP has this property. The algorithms will be linear in the

size of 1'p. Let us denoteN = |Tp|.

10. TESTING INVARIANCES

Let the formula to be tested be of the form ¢O WW ¢. We can check whether all paths in Tp,

and hence all admissible computations of P, satisfy ¢ DO Cl © by the following procedure:

PI: Locate in Tp all states which satisfy q. For each such state s construct the transition

diagram Tp(s) which includes exactly all the states accessible from s. Check that each
s* €Tp(s) satisfies ¢.

If all these steps succeeded then gD Cl ¢ is valid for P. Wc can organize the procedure so

that it takes no more than m - N steps where N = |Tpland m is the number of processes and
hence the maximal degree of Tp. This is because if sg € Tp(81) satisfies ¢ then T'p(s2)C Tp(s1)
and no separate check is needed for sy if we have already checkectl Tp(s1).

24

Consequently we have to access each state at most once, and then may have to explore each

of its edges.

For checking invariances wc rnay actually suggest a simpler procedure: mark in Tp each state

which is accessible from a g-state (a state saisfying 9). Then check that all the marked states

satisfy ¢. However the complexity of the two procedures is identical and the PI procedure above

conforms better with the procedures presented below for the other classes.

We may for example apply PI to test for the invariance of Ig to [5 derived for the mutual

exclusion. All these properties have the form [d¢ so we may take q¢ = true and consider Tp(s) for
all accessible states. However since every accessible state s€Tp(so) = Tp, it 1s sufficient to check
that all states in Tp satisfy ¢.

Indeed we can easily check for example that there are no states in which £3, ~msg and {#1

are all true. In other words every state in which both £9 and ~mg are true, i.e., 8g, S19, also has

t = 1 in it. This establishes I3. Similarly, there is no accessible state in which both £3 and mg

hold, establishing Is.

It 1s easy to prove:

Lemma:

A formula ¢qD Wp is valid for P iff the procedure PI applied to Tp succeeds.

11. TESTING LIVENESS

Let the formula to be tested be of the form ¢ Dp. Let SE Tp be an accessible state. Let

t = 81,..., 8 be a finite path in Tp. We say that 7 is a non-¢ path if none of 8y,..., Sk._1 satisfy

©. Note that sg is allowd to satisfy ¢. We decline T'p(s,@) to bec the directed graph containing all
states in Tp which are accessible from s by non-p paths. The graph T'p(s, ©) can be efliciently
constructed as follows:

(a) Put sin Tp(s,p)

(b) For every s’ €Tp(s,p) which does not satisfy ¢, add all the successors of §’ to
Tp(s, p).

Let us decompose Tp(s, ©) into maximal strongly connected components. It is known that
‘when we consider edges between the components, it is always possible to order the components in

a topological sorting order Ki,..., K,, such that if there is an edge from a node in K; to a node

in K; then necessarily2 < j. Components such that there are no edges leading out of them are
called terminal co rnponcnts.

We suggest the following test for checking that all just computations in Tp(s, ©) satisfy © ¢:

p-Liveness Test:

Decompose Tp(S, ©) into a topologically sorted list of maximal strongly connected com-
ponents: Ky, ..., K,.

For cachz =1,...,r check:

25

(a) If K; is terminal then it consists of a single node satisfying ¢.

(b) If K; is nonterminal, then there must exist aj, j=1,...,m, such that every

state 8 € K; has a Pj; transition leading out of Ki.

Lemma:

All just computations in Tp(s, @) realize 0 ¢ iff the p-liveness test succeeds.

Proof:

Assume that the test succeeds. Let 0 be any maximal computation in Tp(S,®). By the ordering
of the Ky,....K,, from a certain point on, the computation must be fully contained in a single

component, Ky say. If Kg is terminal then the computation terminates once it has entered Kp,

and the’last state satisfies © by ¢)above. If K¢ is not terminal then being contained in Kg and

by (b) it must be infinite, since no state in Kp is terminal. Furthermore, no Fj transition is ever
taken once the computation has entered Kp, otherwise it would have left Ky. Consequently the

computation is unjust, with respect to Pj. Thus all just computation must eventually realize ¢.

Assume that the test fails. Then either there is a terminal component K; not satisfying ¢, or

there exists a nontcrminal component K; not satisfying condition (6). In the first case we construct

a computation o leading from o¢ to K;, and then either stopping if the states€ K; is terminal or

. looping within K; in a loop that spans all of K;. Since states within K; do not satisfy ¢ (actually

none of them does) this can be shown to be a just computation not realizing ©. Inthe second

case, we construct again a computation o reaching K; and continuing in a loop spanning all the

transitions within Kj;. By violation of condition (b) every process Pj; that has not terminated yet

has a PF’; transition internal to K;. Thus by traversing all transitions in Kj, we generate a just
. computation which does not realize ©.

Note that the construction of Tp, its decomposition into strongly connected components and

applying the liveness test are all linear in the size of Tp.

In order to check that ¢ OD 0 ¢ is valid for F? wc could in principle take each s € Tp which

satisfies q, construct Tp(8,9) and apply the @-livencss test to it. But we can actually be more
efficient as follows:

Let 81, . . . , 8k bc all the g-states in Tp. Construct Tp(s),®1) and check it for p-liveness,
where

| p1(s) = p(s).

Nexl, construct T'p(sg2,@2) and check it for pe-liveness, where

pas) = p(s) vs € Tp(s1,p1)

Thus 1n constructing Tp(s2, 2) we may stop the analysis once the computation enters
Tp(s1,%1), since we already know that, all computations there realize .

In general we construct Tp(s:,i) and check it for gp;-liveness for ¢ = 1, ..., k where:

oils) = ols) V [s € J Trls7,05)]
j<i

20

In this way we essentially consider each state at most once and the whole procedure becomes linear
in Tp . *Tel

Let us apply this procedure for checking validity of at€yD 0 atf3 on the mutual exclusion

program. We will check the following g-states:

S17 (£1, m3, 2), S12 (£1, m0,2), 813 (£1, my, 2),

51: (L1,mo, 1), s3:(fy, m1, 1), sig: (£4, ma,2).

In Fig. 4 we present Tp(s17,at ls). In decomposing the graph wc find that every component
consists of exactly one node and a possible sorting order for them is:

s17, S12, $13, 816, S18, S19, 84, 35, 86, 38, 99.

The terminal components are 85 and 8g and they both satisfy az €3. For every other com-

ponent we easily identify a helpful process leading out of the component. Thus Pj is helpful for

{s171, S12, 813, 516, 54, S8 } and Ps is helpful for {318, 819, 86 }-

Note that this diagram also took care of 812,813,816. The next g-state not yet analyzed is

si. We construct for it Tp(s1, p2) where p2(8) = atf3 Vs € T'p(s17,£3).

The corresponding diagram in Fig. 5 shows that all computations starting at 8; or 83 eventually

must enter Tp(sy7,at £3). Consequently we conclude that at;D 0 atf3 is valid for the program
P.

12. TESTING UNLESS PROPERTIES

Let the formula to be tested be

g DO (pr Uor_1...01 tpg).

Let s€ Tp be an accessible g-state. Construct Tp(s, vo) as before. We propose the following
‘test for checking that all computations in Tp(8, ©) satisty w : w, Lp,_1.,. 0; Hepp.

w-Precedence Test:

Decompose Tp(s,q) into a topologically sorted list of maximal strongly connected com-
ponents: Ky, ..., K,.. Proceeding from K, down to Kj, we try to assign each component

K; a rank p; = p(K;) as follows:

Let p; be the smallest k > 0 such that all states in K; satisfy ©, and that any component

Kj, directly connected to K;,72> j, has a lower or equal rank, i.e., k 2 pj.

If we fail to rank some component Kj then the test is said to fail, otherwise we say that
it has succeeded.

27

Lemma A:

If the w-precedence test succeeds, then all computations in Tp(s, pq) satisfy w.

Proof:

Assume that the test succecded. Let ¢ be any computation in Tp(s, vp). Such a computation
must progress through a finite chain of components K;,, K;,, . . . , K;, with ti < 12 < . . . < 1g

Thus it sucessively satisfies ©p(k,)) Po(Ki,)s - + - Pp(k,,) With pK;)2 p(K:,) >... 2 p(K,,).

Obviously it satisfies w.

Let K; be any component. We say that we failed to assign Kj; the rankj if either p; > j or
we failed to rank I; altogether. :

Lemma B:

If we failed to assign K; the rank j then for every s € K; there exists a computation ¢ =

$s —> ... (beginning in s) that does not satisfy

w; = ; 8... 01 Up.

Proof: :

We will prove the lemma by double induction, first on j = 0, 1, . . . and then for each j on

r=r,r—1, ...,1

Consider first j = 0. Let s€ K; be any state in K;. If ssatisfies pg then K,; consists of 8

alone and has no successors. Correspondingly we could havedefined p(K;) = 0. Since we failed
to assign 0 to K;, s does not satisfy ¢qg. Consequently any computation beginning in falsilies

wo = op. This establishes the lemma for j = 0 and Ky, . . . , K,.

Consider now a J > 0 and assume by induction that the lemma has been proved for j — I and

K; and also for j and each of K;4{,...,K,. Let s€ Kj.

. There could be two distinct reasons why we failed to assign the rank j to Kj.

o There exists some state s' € K; which does not satisfy ¢;. By the induction hypothesis
there exists a computation o’ = s!,8%, . . . which does not satisfy wj1. Wc claim that
o' also does not satisfy w,. Foro’ to satisfy w, there must be a (possibly em ply) prefix of
o' continuously satisfying ¢; followed by a suflix which satisfies w;..1. Since s! falsifies
©4, the prefix must be empty and the whole of 6 must satisfy w;_1 which contradicts
the definition of o’.

It only remains to obtain a similar computation starting from s, the arbitrarily specified

state in Kj. If by chance 8 == sl! then ¢' will do. Otherwise, since 8 and s! belong to the
same strongly connected component there must exist a path $s = 81,..., 8; = s! within
K; connccling s to s!. Consider the computation 0 =s,...,8!,8% ..., ie. the path

28

from s to 8! followed by o'. Since no state in Kj satisfies ©p,0 can satisfy wj only if o’
does. Thuso falsifies w;.

e The second case where we fail to assign j to Kj; is that there exists a Kp directly connected

to K;,2 < £, such that pg > j or more generally we failed to assign j to Kg. Thus there
exists 8s;€ K,; and sp€ Kp such that

Py
8; —> 8p for some Pk.

By strong connectedness there exists a (possibly empty) path connecting s to 8; : s,

..., 8. By the induction hypothesis since £ > ¢ and we failed to assign j to Kg there

exists a computation Og : 84,82, . . . which falsifies wy. Consider now the computation

a. 8. . ., 8iy 82, 82, . .

The computation & consists first of the path from 8 to 8; within Kj, then the edge from

Ss; to sg and then follows og. Since the whole segment s, . . . , 8, does not contain a state

satisfying ¢g,0 can satisfy w; only if 0g does, which is impossible. Thus o falsifies wy as

required. _q

Let now K; be a component that was not ranked altogether. By the last lemma there exists

a computation o =s, §°, 8°... with 8€ K; such that o falsifies

w, = pA. 01 Ho.

We can prefix 0 by a path leading from 8g to 8 and obtain a computation cg =8¢g,...,8,...

which fails to satisfy w,. We may combine Lemmas A and B to obtain:

Corollary:

Given Tp(8g, ¥o), all so-initialized computations in Tp(80, wo) satisfy

w=, %...01 Leg

iff the w-precedence test succeeded.

Proof:

In order to test the general implication ¢ DO w on the entire Tp diagram we proceed as follows:

Let sy, 8g, ..., 8k be all the g-states in Tp. Construct Tp(s1,%0) and test ©, 3... 1 il pg
on it. Construct Tp(s2, 2) where ¥2(8) = wo(s) Vs € Tp(s1,vo)-

Test 0, 4... 1 po on Te(s2,2). In ranking the components we add the following rule:

If K; is a terminal component consisting of the single node s € p(s),vo), give K; the rank
that 8 (or the component containing 8) has received in Tp(s1, v0)

In general we construct Tp(8;,%;) where

vi(s) = wols) vs € |JTr(s;i95)] (¥1= wo).
IE

29

We then test p, i... Ug on Tp(ss,1;) ranking any component consisting of s€Tp(s5,v;) for
some j < ¢ according to the rank it received earlier. #

Consequently the testing procedure is again linear in the size of Tp. To be precise, of com-

plexity r.m . |Tp|. ,

To illustrate the procedure let us test the validity of the following unless property:

Yo iB) (Lo msg H~mg Umg sl ~ms i £3).

This property again expresses a certain kind of 2-bounded overtaking. However the reference point

is when Pj is at £3. It states that from the time Pj; decides to leave £3, FP5 may enter mg at most

twice before Pj enters £3. Furthermore, actual 2-overtaking can take place only if P| on exiting

fo findsPs in mg at precisely the same moment. If on exiting Co, Pjfind Ps anywhere else then

at most l-overtaking can take place. In contrast with other unless properties considered before in

this paper, this property is not an until property. The corresponding until property does not hold

since when Pj is at £g it is quite acceptable that it never gets out to achieve £3.

We define

q = ps5: atl

04 = Po: utm?3

pz = 1: ~ alms

wo = atly

Accessible g-states in Tp are:

S15 + (£0, m3, 2), $10 - (£0, mo, 2), S11 (£0, m1, 2),

s14: (fo, m2,2), so : (fo,mo, 1), sz : (fo, my, 1).

In Fig. 6 we have Tp(sy5,®0)- Its component decomposition gives the following topologically
sorted list of components:

Ky = {s15, 810,811,814}, {817}, {812}, {513}, {516}, {818}, {519}, {54}, {55}, {56}, {58}, {89}

Going backwards we assign Lhe following ranks:

p;= 0 for 1€{5,9}

p= 1 for 1€{8,6,4}

pi = 2 for © = 19

pp =3 for ie {18,16,13,12}

pi = 4 for 1= 17

30

plK1)=75

This shows that the desired unless property actually holds for the g-states 815,510,811, 314.

Next let us consider Tp (0, [0(s) Vs € Tris, po)]). It is given in Fig. 7. All the terminal
nodes belong to the previous diagram and their ranks have been listed. We may proceed to rank

the unranked states in Tp(8g, ¥2).)

Wc define

p; =3 for1 €{1,3},

and

pi = 9 for ze {0,2}.

Thus, all g-states have been successfully ranked, and the unless property:

has been established. We obviously cannot do better since the computation:

815 — 817 — S12 — 813 — 816 —* 518 > 819 ~* 84 7 55

demonstrates 2-overtaking.

Acknowledgement:

Wc would like to thank Yoni Malachi, Ben Moszkowski, and Frank Yellin for careful and

critical reading of the manuscript.

13. REFERENCES

[CES] Clarke, E.M., E.A. Emerson, and A.P. Sistla, “Automatic Verification of Finite State

Concurrent Systems using Temporal Logic Specifications: A Practical Approach,” Proc.

of the IEEE Conf. on Foundations of Computer Science, Chicago (1982).

[K] Keller, R.M., “Formal verification of parallel programs,” CACM, Vol. 19, No. 7 (July
1976), pp. 371-384.

[L1] Lamport, I,., “Proving the Correctness of Multiproccss Programs,” ILI Trans. Soft.
Eng. SIE-3,2 (Mar. 1977), pp. 125-143.

[2] Lamport, L ., “ ‘Sometime’ is Sometimes “Not Never’: On the Temporal Logic of Pro-
grams,” 7th Annual ACM Symposium on Principles of Programming Languages (1980),
pp. 174-185.

[LPS] Lehmann, D., A. Pnueli, and J. Stavi, “Impartiality, justice and fairness: the ethics
of concurrent termination,” in Automata Languages and Programming, Lecture Notes in
Computer Science 115, Springer Verlag (1981), pp. 264-277.

31

MP1] Manna, Z. and A. Pnueli, “Verification of Concurrent Prorams: The Temporal I'rame-
work,” in The Correctness Problem in Computer Science (R.S. Boyer and J S. Moore,

eds.), International Lecture Series in Computer Science, Academic Press, London (1982),
pp. 215-273.

: [MP2] Manna, Z. and A. Pnueli, “Verification of Concurrent Programs: Temporal Proof
Principles,” Proc. of the Workshop on Logic of Programs (D. Kozen, cd.), Yorktown-

Heights, N.Y. (1981). Springer-Verlag Lecture Notes in Computer Science 131, pp. 200-

[MP3] Manna, Z. and A. Pnucli, “Verification of Concurrent Programs: Proving Eventualities
by Well-Founded Ranking,” TOPLAS (1983, to appear).

[MP4] Manna, Z. and A. Pnueli, “Verification of Concurrent Programs: a Temporal Proof
System,” Proc. 4th School on Advanced Programming, Amsterdam, Holland (June 1982).

[MP5] Manna, Z. and A. Pnueli, “How to Cook a Temporal Proof System for Your Pet
Language,” in the Proc. of the Symposium on Principles of Programming Languages,

Austin, Texas (Jan. 1983).

[OL] Owicki, S. and L. Lamport, “Proving Liveness Properties of Concurrent Programs,”

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3 (July 1982),

; pp. 455-495.

[OG] Owicki, S. and D. Gries, “An Axiomatic Proof technique for Parallel Programs,” Acta

Informatica, Vol. 6, No. 4 (19786), pp. 319-340.

[Pe] Peterson, G.L., “Myths about the Mutual Exclusion Problem,” Information Processing

: Letters, Vol. 12, No. 3 (June 1981), pp. 115-116.

[PS] Pnucli, and A., Sherman R., “Semantic Tableau for Temporal Logic,” Technical Report,
i CS81-21, The Weizmann Institute (Sept. 81).

32

(¥12¥,rt) = (FF 1)

Oe I as
yon (t=1)2 yA (t=2)7

- Py - - Ps -

Figure O

Py Pe
FE—_— £4

Pg

CL]’ |Py, x

Fa
\ P

. 1

ER

Cx
PA:

2° o fool

Fa

{ SONAL Pq: |— 2 — =3

F1

Pp {3

Fig. 1. Proof Diagram for +1; > Ly
33

Py

Pg: rpm

Pry 2
1 ! L,I

« 1’ o,1

Fs

Ik

Ps

Pz: Pq

Fa

PAs
2

Ps

5

Fig. 2. Proof Diagram for 2-bounded overtaking from {4

34

2

5: £250 1 S¢ INEIER i&- P
Py Fy 1 2

5 2 [fa F200 Bh Fa

TA

2 Pr |e F1| 2

F1 - J

Fa

F,

. :
ER Srth

Py Ps Py 128
19° “2773

4

! Py P, 2 Py 2 P, P,

P P

Py P Py 1 2

:

) 1

Fig. 3. Joint Transition Diagram for the Mutual Exclusion Program,

35

Py EF, .

S (2) 72P

1 Py
|

(2) De2
P P

Fy ANE Za
& Ces IOP P

1 2 Py

ONIO P

FP 2

P, P,

Fig. 5. To(8150,)

36

Co p, [Xo

OEE CPL
P P |)
1 2 P P,

| P
P pn

ACh OLE OD
FP, Py Py Py Ps |

)% POSES Ie. OE

PL) Cag,(5) 1 | 7%
Ps Py

P

(58) Je (((ag—2

5

Fig. 6. Tp(815,90)

37

On
Fy Pa

Ove
Py Pr P Py

P P

Pe =1 P16 =

38

