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We describe resolution proof systems for several modal logics. First we present the propo-
sitional versions of the systems and prove their completeness. The first-order resolution
rule for classical logic is then modified to handle quantifiers directly. This new resolution
rule enables us to extend our propositional systems to complete first-order systems. The
systems for the different modal logics are closely related.

1. INTRODUCTION

Modal logics ([HC]) have found a variety of uses in Artificial Intelligence (e.g., [McC]),
in Logics of Programs (e.g., [P]), and in the analysis of distributed systems (e.g., [HM]).
For such applications, natural and efficient automated proof systems are very desirable.
A variety of decision procedures have been proposed for propositional modal logics (e.g.,
[W]). The traditional proof systems for first-order modal logics are simple; this makes
them appropriate for metamathematical studies ([Fill. However, they often require much
creative help from a user or give rise to long proofs. Thus, they are not suitable for
automatic implementation.

Classical clausal resolution proofs ([R]) are usually short and their discovery requires
little or no human guidance. Classical nonclausal resolution ([MWl], [Mu]) has the virtue
of added clarity, since formulas do not need to be rephrased in unnatural and sometimes
long clausal forms.

Farifias del Cerro ([Fal], [Fa2], [Fa3]) proposed imitating classical clausal resolution
in some modal logics. The proposed methods are rather attractive, but fail to treat the
full modal logics under consideration — quantifiers are not allowed in the scope of modal
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operators. Geissler and Konolige ([Ko], [GK]) attempted to solve this problem with the
addition of a new operator, ® , and the introduction of “semantic attachment” procedures.

In this paper we extend nonclausal resolution to eight modal logics with the operators
O (“necessarily”) and < (“possibly”). Our approach is quite uniform and generalizes to
a wide class of modal logics in different languages. For instance, this class includes logics
of knowledge with a knowledge operator K for each knower. In fact, all “analytic logics”
as well as some “non-analytic” ones (in the terminology of Fitting ([Fill)) are tractable by
these techniques. Also, similar methods can be used for more complicated loeics. such as

Temporal Logic ([AM1], [AM2]).

In the next section we introduce some basic definitions. In section 3 we present the
propositional proof systems for K, T, K4, S4, S5, D, D4, and G; their completeness is
proved in section 4. These propositional modal systems are lifted to first-order modal
systems by adding some quantifier rules (section 5), special auxiliary rules (section 6), and
an extended resolution rule (section 7). Skolemization rules (mentioned in section 5) are

optional. Section 8 contains a simple example. The completeness of the first-order systems
is proved in section 9.

2. PRELIMINARIES

a. Informal syntax and semantics

The propositional modal language includes propositions, modal operators, and con-
nectives. All propositions are flezible,i.e., they may change value from “world” to “world.”
The modal operators we consider are the usual ones: [J (“necessarily”) and < (“possi-
bly”). The primitive connectives are just =, A, V, true, and false. It is practical to regard
all other connectives as abbreviations. Formulas are not restricted to any special form
such as clausal form.

For the first-order versions, the quantifiers V and 3, variables, and flexible predicate
symbols are added. It is convenient and natural to include flexible function symbols and
world-independent, rigid predicate and function symbols as well. Informally, we may say
that variables are also rigid. For example, the formula 3z.[¢(z) VO p(z)] expresses that
the same object has property ¢ or necessarily has property p.

Models and and the satisfaction relation can be described in terms of possible worlds
(HC]). A model is a tuple (D, W, wo, R, I), where

e the domain D is a non-empty set (note that we require that there be
just one domain rather than one for each element of W);

e Wis a set with a distinguished element wo; intuitively W is the set of
possible worlds and wg the real world;

e R is a binary accessibility relation on W;
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e the interpretation I gives a meaning over D to each predicate symbol
and each function symbol at each world in W; the meaning of rigid
symbols is required to be the same at all worlds.

An assignment a is a function from the set of variables to D. The satisfaction relation,
§=, is then ¢ nfi ind Ud ive vlyver formulas. In particular, the semantics of O and 3 are
given by:

({(D,W,wo, R, I),a) E Ou if for some wy € W, woRw; and (D, W,wy, R, I),a) E u,
((D,W,wo,R,I),a) = 3z.u if for some d € D, ((D,W,wo, R, I),a - (z + d)) |= u.

As usual, the semantics of [ Jand V are dual to those of & and 3, respectively, and validity

is defined as the dual of satisfiability. Free variables are implicitly universally quantified:
u is valid exactly when Vz.u is valid.

The different logics are characterized by properties of the accessibility relation R:
K: R does not need to satisfy any special conditions.
T: R is reflexive.
K4: R is transitive.
S4: R is reflexive and transitive.
S5: R is reflexive, symmetric, and transitive.
D: R is serial (i.e., there is some accessible world from every world).
D4: R is serial and transitive.
G: R71is transitive and well-founded.

b. Proofs and rules

I w denotes that the formula w can be proved by resolution, that is, that there is a
sequence of formulas Sop,. . ., Spsuch that Sp=—-w, S, = false, and S,’.H is obtained from

S; by an application of a rule. We refer to Sp,. .., Sn as a proof of w or a refutation of
—w.

Our proof systems include two kinds of rules: simplification rules and deduction rules.
e The szmplification rules have the form

Ulye ooy Um = V.

Suppose the formulas uy,.. ., Uy, occur in some conjunction in S;,in any order.
Then we delete an occurrence of each of them and add the derived formula v to
the conjuction.



Example:

The rule u, ~u = false applied to

Si:(gVO(-pAgqA p)

yields

Siv1 : (g V O(q A faise)). |

e The deduction rules have the form
Ulye oo yUm V.

Suppose the formulas uy,.. ., Uy occur in some conjunction in S;, in any order.
Then the derived formula v is added to that conjunction.

Unlike simplification rules, deduction rules do not discard the premises %y, ..., Um.
Sometimes, however, we may use the weakening rule (defined in section 3) to dis-
card uy,...,u, immediately after applying a deduction rule.

Example:

The rule OQu, Ov — O(u A v) applied to
Si: ¢V [CgArADDp

yields
Siv1: ¢V [OCgAr ATOp ASOK@ A QL

An occurrence of a subformula has positive polarity in a formula if it is in the scope
of an even number of explicit or implicit =’s. It has negative polarity if it is in the scope
of an odd number of =’s. For instance, [] p occurs with positive polarity and false occurs
with negative polarity in & —(false v—-[p).

We use the following polarity restriction to reduce the proof search space:

Rules are applied only to positive occurrences of Yls. . ., uUmp.

c. Soundness

For our proof notion to be meaningful, we require that rules be sound, i.e., that they
maintain satisfiability: if S; is satisfiable then 5,‘+1 is satisfiable as well.

We say that u entails v (and denote it u < v) if (u D v) is valid. The following
observation is often helpful in soundness arguments: a formula gets “truer” as its positive
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subformulas get “truer” and as its negative subformulas get “falser.” More precisely, we
can prove:

Lemma (Monotonicity of entailment):

For all u and v, if u <— v and
w' is the result of replacing one positive occurrence of u by v in w, or

w’ is the result of replacing one negative occurrence of vby u in w,
then w — w’.

Proof sketch: The lemma is proved by complete induction on pairs of formulas, with the
order < defined by: (w,w’) < (z,2") if w and w' are proper subformulas of z and 2/,
respectively, or of 2’ and z, respectively.

Suppose that for any S;and any Si4; obtained from S; by applying a given rule we
have S; < S;4+1. Then soundness is clearly guaranteed for the rule under consideration.
Consequently, we can use the lemma to conclude that simplification rules are sound if
vV & (ul AL Aum) for negative occurrences of uy, ..., up. For positive occurrences,
it suffices that (u3 A. .. Au,) < v. The entailment (u3 A. . . A up) < v holds for
all the simplification rules we will present, except for the skolemization rules. With the
polarity restriction, this guarantees the soundness of all the simplification rules except the
skolemization rules. We prove the soundness of the skolemization rules with a different
method.

Similarly, deduction rules are always sound for negative occurrences of uy, ..., Unp

(since the given formulas uy, ..., uy are kept); for positive occurrences, (ul A.. Aum)f—vv
suffices. The entailment (u1 A..Au ) < v holds for all the deduct ion rules we will present.
This guarantees the soundness of deduction rules, with no need for polarity arguments.

3. PROPOSITIONAL SYSTEMS

a. Simplificationrules
® true-false simplification rules:
These are the regular true-false simplification rules, such as
false V u = false and false, u = false,
and the rule
O false = false.
e Negation rules:
“Ou= O-u, ~Ou=1Y $E

“(uAv)=(~uV-w),-(uv v ) = (~u A =), 7mu = u.



o Weakening rule:
u, v = u.

The weakening rule lets us discard any conjunct v that we regard as no longer
useful.

e Distribution rule:

u, mV...Vor = (uAv) V... V(uAvg).

b. The resolution rule

We write u(v) to indicate that v occurs in u, and then u(w) denotes the result of
replacing exactly one occurrence of v by w in u. Similarly, u['v] indicates that if v occurs
in u then u[w]denotes the result of replacing all occurrences of vby w in u.

The nonclausal resolution rule for classical propositional logic is:

Alu,...,u), Blu,..., u) — A( true) V B{false).

That is, if the formulas A(u,.. ., u)and B(u,.. .,u)have a common subformula u, then
we can derive the resolvent A(true) V B(false). This is obtained by substituting true for
certain (one or more) occurrences of u in A(u,. .., u),and false for certain occurrences of
u in B(u,.. ., u), and taking the disjunction of the results.

In propositional modal logics, this rule is not sound. For instance, consider the formula
uad -\u); it is satisfied by any model where u holds in the real world and fails in some
possible world. We cannot soundly deduce (u A & —u A (O —true Vfalse)), as the rule
would suggest, since this formula is unsatisfiable. The problem is that while u occurs in
both & —u and u, it does not need to have the same truth value in all contexts. Intuitively,
different occurrences of u may refer to u at different worlds.

The resolution rule is sound in propositional modal logics under the following same-
world restriction:

The occurrences of u in A or B that are replaced by true or false, respectively, are
not in the scope of any Odor ©in A or B.

Informally, this imposes that all the occurrences of u under consideration are evaluated in
the same world.

c. Modality rules

These rules deal with formulas in the scope of modal operators. For each modal logic
there is a set of modality rules:



o K:

Ou, Ov —» O(uAv).

o T:
Ou, Ov = Ounv), QD¢ — &
o Ké:
Ou, Ov = OwAv), Ou, Ov — O(OduAv).
o s4:
Ou, Ov = O(duAv), Q1¢ — ¢&
. s5:
Ou, Ov —» O(OuAv), Ou = u,
Su, Ov i O(OuAv), u - Ou
o D:
Ou, Qv OuAav), = true.
o D4:
Ou, G v OuAv), Ou Ove O(OuAv), O irue.

O voves QuAOQuAvA-Ov).

4. COMPLETENESS FOR PROPOSITIONAL SYSTEMS

Theorem: The resolution systems for propositional K, T, K4, S4, S5, D, D4, and G are
complete for the corresponding classes of models.

Proof sketch: We exploit some known abstract characterizations of completeness for these
logics. Specifically, model existence lemmas (stated in terms of consistency properties)
([Fill) turn out to provide simple and uniform proofs for all the systems. A consistency
property is a syntactic property of sets of sentences that satisfies certain conditions de-
pending on the logic. Typically, consistency properties have the form “is not refutable
(in a given proof system).” Model existence lemmas guarantee that if a set of sentences
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satisfies a consistency property then all the sentences in the set are satisfiable (in fact, all
the sentences are simultaneously satisfiable in some logics).

We give a proof sketch for K and point out where it should be modified to apply to
the other systems. Consider restricting the proof system for K so that negation rules are
applied as early as possible. It suffices to show that the restricted system is complete.

We say that a set S of sentences is admissible (for K) if no finite conjunction of mem-
bers of S can be refuted (in the resolution system for K). More precisely, S is admissible if
for all distinct wy,. .., wg €S there is a permutation 7: (1,. .., kj—{1,..., k}such that
Wr(1) N ... Awgx(k) cannot be refuted (or, as we often say for simplicity, “wy,.. ., wg €S
cannot be refuted”). We show that admissible is a consistency property for K. To this end
we check that admissible satisfies the conditions in the definition of consistency property
for K:

if S is admissible and % = {u|0d u € S}U{~u|=O u € S} then

1) S contains no proposition and its negation; false € S, ~true € S;

2)if @ Av) €S then S U {u, v}is admissible;

3)if 7(u Vv) €S then S U{-u, -w}is admissible;

4)if @ Vv) €S then S U{} is admissible or S U {v}is admissible;

5) if 7(u Av) €S then S U{-u}is admissible or S U{-w}is admissible;

6)if Ou €S then S# U fu}is admissible;

7)it = u €S then S#* U{-u}is admissible.

Thus, admissible is a consistency property for K. Hence, by the model-existence lemma
for K, if S is admissible then each member of S is satisfiable. It follows (taking S = {u})
that if u cannot be refuted then u is satisfiable. Therefore, the propositional proof system
for K is complete.

The completeness arguments for the other logics only differ from the one for Kin the
definition of consistency property that admissible needs to satisfy. i

5. QUANTIFIER RULES

y Starting in this section, we consider the extension of the resolution systems to first-
order modal logics. The propositional language is extended with quantifiers, variables,
predicate symbols, and function symbols. The definition of models imposes that the Barcan

formula (Vx. O u(x)) D (O Vz.u(z)) and its converse (O Vz.u(x)) O (Vx. O u(x)) are

theorems of the first-order systems.
We first give four definitions:

e An occurrence of a quantifier QV is of universal force if it is either a universal
quantifier V and has positive polarity or an existential quantifier 3 and has nega-
tive polarity. An occurrence of a quantifier QEl is of existential force if it is either
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a universal quantifier V and has negative polarity or an existential quantifier 3
and has positive polarity.

e An occurrence of a modal operator M® is of necessary force if it is either [J and
has positive polarity or & and has negative polarity. An occurrence of a modal
operator M?® is of possible farce if it is either [J and has negative polarity or &
and has positive polarity.

This section discusses skolemization and gives some skolemization rules. Completeness
of the systems does not depend on the inclusion of the skolemization rules, but the rules
may sometimes give rise to short-cuts in proofs. In general, we do not rely on skolemization
to eliminate quantifiers. Instead, we describe some rules to move quantifiers; we manipulate
formulas with quantifiers, and, therefore, the resolution rule presented in the next section
takes quantifiers into account.

a. Skolemization

In classical logic, all quantifiers can be eliminated by applications of skolemization
rules. This is elegant for quantifiers of both universal and existential force, and very
practical for quantifiers of existential force. The classical skolemization rule for eliminating
quantifiers of existential force is:

Jz.ufz] = u[f(zl, R Jn)],

where fis a new rigid function symbol and z,23,.. ., Tp are all the free variables in w.

In modal logics, this rule is sound as long as % is not in the scope of any [J or O.
Unfortunately, this rule is not sound in general. For instance, consider the formula

(Vz. O p(z)) A (O 3y.—p(y)),

where p is a flexible predicate symbol. The formula is satisfied by the model M with
D ={0,1}, W = {0,1}, wo = 0, R = W?, where p holds for 0 only in the real world and
p fails for 1 only in the real world. The rule replaces y by a new rigid constant symbol a,
yielding the formula

(Vz. 0 p(2)) A (O ~p(a)),

which is unsatisfiable. Notice that the new formula states that there is an element in the
domain that has the property —p in all possible worlds. The original sentence, on the other
hand, only claimed that in each possible world there was some element with property —p.
Therefore, the classical rule does not capture implicit dependencies on worlds.

A variant of the rule with flexible skolem symbols does capture implicit dependencies
on worlds and soundly eliminates some quantifiers of existential force in the scope of modal
operators. Consider, for instance, the formula 0 3x p ). If OJ ax.p(m) holds then in each
world there must be some element with property p. In each world, denote this element by



a. Thus, we may derive that for a new flexible constant symbol a, ] p(a) holds. More gen-
erally, flexible function symbols are introduced when free variables appear. For instance,

assume [J3z.p(z, y) holds. Then, for a new flexible function symbol f, 4 p(f(y),y)holds.
This resembles the classical method to eliminate quantifiers of existential force, with the
exception that now a flexible function symbol is introduced.

We obtain a flexible skolemization rule of the same form as the classical skolemization
rule:

Jzr.ulz] = u[f(:::l, . ,:c,,)],
where fis a new flexible function symbol, X, Z1,. .., T, are all the free variables in u, and
x does not occur in the scope of any modal operator in u.

Proposition (Soundness of flexible skolemization):

I f o{3z.u[z]} satisfiable, fis a new flexible function symbol, x, Z1,.. ., Tn
are all the free variables in u, x does not occur in the scope of any modal
operator in u, and 3z.ul[z] occurs positively in v,

then v{u[f(z1, ..., xTn)])is also satisfiable.

The rule is not always satisfactory when x occurs in the scope of modal operators in
u. For instance, the formula

O3z.(p(z) A O p(:c))
yields
O (p(a) A © p(a))

for a flexible constant symbol a. The original formula is stronger than the one we deduce:
the original formula asserts that for each world the same x satisfies p(z)in the real world
and in some possible world. On the other hand, since a is world-dependent, the formula
O (p(a) ANO p(a)) does not guarantee that the same element of the domain has property
pin the real world and in some possible world.

Instead, we could deduce the formula
P
HEWET o D (p(z) A O ¢(2))]
This formula is as strong as the original one. Note that it involves a V instead of a 3.

This suggests how to eliminate all quantifiers of existential force. The price paid is that
“the deduced formulas involve some new equations and some new quantifiers of universal
force. The general rule is

Jz.u = Vz.[z = f(z1,...,%n) D ul,
where fis a new flexible function symbol and Z,Z1,. .., Ty are all the free variables in u.

Proposition (Soundness of generalized flexible skolemization):

If v(ﬂx.u) is satisfiable, fis a new flexible function symbol, Z,Z1,. .., Tpare
all the free variables in u, and 3z.u occurs positively in v,

then 'v(V:L'.(:B= flza,. .., Tp)Du))is also satisfiable.
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b. Quantifier extraction rules

The quantifier extraction rules move quantifiers to the outside of formulas. We can
always extract quantifiers of universal force:

uw(QVz.v[z]) = Vz'.u(v[z']),

where ' is a new variable. (QV is V or 3, whichever is of universal force in the context
under consideration.)

Proposition (Soundness of Q¥ rule):
u(Qz.v[z]) — Vz'.u(v[z']).
Sometimes we can extract quantifiers of existential force in a similar way:
w(@Q3z.v[z]) = 3Fz'.u(v[z']),

where x’is a new variable. The rule is restricted so that dependencies on other variables and
implicit dependencies on worlds are not overlooked: the replaced occurrence of QE(L'.'U{LC]
should not occur in the scope of any quantifier of universal force or modal operator of
necessary force in u.

Proposition (Soundness of Q7 rule):

If the replaced occurrence of an.v[:c] is not in the scope of any quantifier of
universal force or modal operator of necessary force in u,

then u(Q3z.v[z]) — Jz'.u(v[z']).

6. AUXILIARY RULES

a. Rigid symbols and the frame rules

It is convenient to include rigid symbols for world-independent functions and predi-
cates in the first-order modal language. The frame rules reflect the fact that the meanings
of these symbols do not depend on the world where they are evaluated:

ifu is a formula with no occurrences of flexible symbols, then
QOu == u and u — [Ju.

For instance, if pis a rigid proposition symbol. then < p can yield p,and then a p-
b. Equality

As in classical logic, we can add axioms for the equality symbol. Alternatively, we
can include an extension of paramodulation or E-resolution (see [MW2]).
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¢. The cutrule

The cut rule is
— u V u.

Note that the cut rule requires heuristics to choose u. This may be impractical in fully
automatic systems. On the other hand, the cut rule is quite convenient in interactive
settings, where a user may suggest appropriate u’s to obtain shorter proofs.

This rule is not essential for completeness for the propositional modal systems, but
it is essential in the first-order systems. Other first-order modal systems include similar
devices. In fact, there exists proof-theoretic evidence that some rule like the cut rule is
necessary for the logics in question ([Fill).

7. THE RESOLUTION RULE

In subsections a, b, and ¢ we describe a unification algorithm and a resolution rule for
first-order modal logics. For the sake of simplicity, the language is temporarily restricted
not to contain flexible function symbols. In subsection d this restriction is abandoned.

a. Unification

We extend the classical unification algorithm to handle formulas with modal operators
and quantifiers. Suppose we have one of the usual recursive definitions of the function uni-
fier to compute most-general unifiers of classical quantifier-free expressions. Two clauses
are added to the recursive definition, one for modal operators and one for quantifiers.

e Modality extension: Let M be a modal operator.

unifie(Muy,. ., Mun) s {umﬁer(ul, , Upp)  if it exists

fail otherwise

In other words, [Jand < are treated just like unary connectives as far as unifi-
cation is concerned.

e Quantifier extension: Let Q be a quantifier and =’ a new variable.

uniﬁer(Qxl agfr], ..., Q$m~um[$m])

unifier(uy[z'],.. ., um[z'])  ifit exists and does not bind '
fail otherwise

For instance, Vz.p(z) and Vy.p(y) unify because p(z')unifies with itself and the
unifier (the empty substitution) does not bind x’. On the other hand, Vz.p(a)
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and Vy.p(y) do not unify, since the most-general unifier of p(a) and p(z’) binds
X’ to a. The formulas Vz.p(z) and p(y) do not unify: the main operator of the
latter formula is not a V.

These additions to the recursive definition of unifier are simple enough that most-
general unifiers can still be computed when unifiers exist at all.

b. The resolution rule

The classical nonclausal resolution rule can be written
A<U1a. RN vn), B(vn+l’ s vm) — Af(true) V BG(false)

where 8 is a most-general unifier of v1,. .., Vm and replaces only variables that are (im-
plicitly) universally quantified ([MWl]) As might be expected, the classical rule is not
sound for formulas with quantifiers, modal operators, and flexible symbols.

Since we do not rely on skolemization and the quantifier extraction rules only shift
quantifiers outwards, the modal nonclausal resolution rule should handle quantifiers in
front of A and B. Also, the conclusion of the resolution rule, A8(true) V B6(false), may be
preceded by some quantifiers (obtained by mixing those in front of A and B). Moreover,
the formulas A, B, and Af(true) V Bf(false) may contain quantifiers. Some restrictions
guarantee that the presence of quantifiers does not make the rule unsound. Other restric-
tions deal with flexible symbols and modal operators.

The rule is:

lel . thh-A(vl7 . ,Un>7 Rlyl. - Rkyk-B<v‘n+17 e 7vm)
— .9121 v Sh+k2h+k- [A9< true) V BG(false)]

where € is a most-general unifier of v1,. .., vy and Q1,. .., Qn,Ri,.. .. Rk, S1,. .., Shyk
are quantifiers, under the restrictions:

(i) The variables y,. .., Zh,Y1, ..., Yk are all different.

(i) The sequence Siz1. . -Sh+k2h+k 1S a merge Of Q1$1 o thh and R1y1 L. Rkyk,
that is, lel. .. thh and Ryyy. .. Rryx are subsequences of S1z1. . . Sh+kZh+k-

(iii) The same-world restriction: If the replaced occurrences of v19,. .., vmB are in the
scope of any modal operator in Af or B8 then v16, ..., vy contain only rigid
symbols.

(iv) The replaced occurrences of v1 0,...,vn,0 are not in the scope of any quantifier in
A8 or B6.

(V) If x « t) €6 then for some i, 1 <i<h+k,S;=V, zi =x, and no variable in ¢
occurs bound in V:I:S','+1z,'+1. .. Sh+kzh+k- (A VB).
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Once all the restricticion are checked, redundant quantifiers in Syzy . . . Sh+kzh+k may
be discarded.

Restriction (iii) is necessary for modal logics, even at the propositional level. On the
other hand, restrictions (i), (ii), (iv), and (v) are intended to solve classical logic prob-
lems; some of them are actually related to restrictions described by Manna and Waldinger
([IMW3]) for resolution with quantifiers in classical logic. Restriction (v) is intended to
enforce that the application of § does not cause any capture of free variable, that 6 only
instantiates universally quantified variables, and that if (x <—-t)€0 then tdoes not depend
on x implicitly.

Example: When we apply the resolution rule to

3:1:1‘9’:1:23:33.(() p(z1,z2) V g(z2,73 ))
A
3y1Vy2.mq(y1, v2)-

with

A =-q(y1,y2) and B = (Op(z1,22) V 9(22,23)),
vy = q(y1,y2) and v = q(z2,73),
6 = {z2 — y1,y2 « 73},

restrictions (i), (iii), and (iv) are satisfied.
To satisfy the remaining restrictions, we choose
3213y Vo IzsVyo. [otrue V (O p(z1,91) V false)]
as the derived formula. We delete redudant quantifiers to obtain
3zyJyy.[~true V (O p(z1,y1) V false)).
Simplification yields

3x13y1. OP(-’DI, yl)‘ I

Example: Whether the resolution rule is applicable or not can be extremely sensitive to
the order of the quantifiers in the premises. For instance, suppose we change the formula
in the previous example to

Bxl‘v'a:23z3.(<>p(w1,x2) \Y% 4(982,163))
A
Vyody, -"Q(yl , yz)
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and take

A
U1

-q(y1,y2) and B _ (Op(z1,22) V g(z2,23)),
q(y1,y2) and vz = g(22,73),
0 = {x2 «— y1,y2 « z3}.

i

Restrictions (i), (i), and (iv) are still satisfied, but it is not possible to satisfy restrictions
(i) and (v) simultaneously. For instance, if we derive the formula

Jz1Vyo 3y Vo dzs.[~true V (O p(z1, y1) V false)]
restriction (v) is not satisfied: (yp « z3) € 8 and z3 is bound in

Vy23y1Vzo3zs. [—g(y1,52) V (O pler,z2) V g(z2,73))].

Other formulas we may want to derive give rise to similar restriction violations. |

c. Mergingthe quantifiers

The resolution rule does not explicitly specify the order of Syz1, . . ., Shtkzhtk. A
method for obtaining the sequence Sy2;1... Sh+k2h+k is based on systematically merging
the sequences lel. .. Qha:h and Ryy1... Rryx in different ways, until one of the results
satisfies all the restrictions at once. Fortunately, there are less expensive implementations.

For instance, the one sketched here is based on choosing a partial order for the quan-
tifiers and then running a topological sort. As a preliminary step, we check that conditions
@), (iii), and (iv) are satisfied. Then we build a directed graph with nodes labelled by the
quantifiers from the premises of the rule, that is, S1z1,. .., Sh+kzh+k. There is an edge
from Sizi 10 Sjzj if (2 « t (2;)) € e for some term ¢ or if S;z;jis in the scope of S;z;
in either of the premises’ quantifier sequences, @1y . .. @Qrzpand Riy1... RikyYk. An edge
from S;z;to Sjzjcan be interpreted as expressing that z; depends on 2; and implies that
S;z; should occur to the left of sz]' in the formula derived by the rule.

If the graph is cyclic, the rule is not applicable. Otherwise, the graph can be mapped

into a string by a topological sort. The output string is just S121 . . . Sh+k2h+k- When
arbitrary choices are possible, it is convenient to place 3’s close to the source (that is,
to the left in S121... Sh+k2h+k) in order to get a stronger conclusion. This construction

respects the original order of the quantifiers and dependencies; therefore, restrictions (ii)
and (v) are satisfied. Finally, redundant quantifiers may be discarded in the derived
formula.

Example: The graph for the first example above is
3161 E— Vl‘z e 4 3:1:3

Jyp — Ve
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It can be flattened into the string

dz;, — Fyy — Vzz — 3323 — vyp. I

Example: The graph for the second example is
31‘1 — Vzy — Jz3
dyn — Vi

The resolution rule is not applicable because the graph is cyclic. |J]

d. Resolution with flexible function symbols

In the presence of flexible function symbols, a new restriction on the resolution rule
is necessary. The following examples show that the current rule is not sound for formulas
with flexible function symbols.

Example: Consider the formula
« : (Ve.nOp(z)) A Op(a),

where a and p are flexible. The formula u is satisfied by the model M with D = {0, 1},
W = {0,1}, wg = 0, R = W?, where a has value 0 in the real world and 1 elsewhere,
p holds for O only in the real world, and p fails for 1 only in the real world. Take A =
- I:]p(a:),Bﬂ 0BH0H viB0 p(z),v2 = [0 p(u). The most-general unifier of v and vy is
@ = {x t a} With the restrictions we have presented so far, the resolution rule allows us
to deduce

(Vz.- Op(z)) A Op(a) A (—trueV false).
Simplification yields false. According to this proof, u is unsatisfiable. [
*Example: Consider the formula
u : p(u) A Op(a) A Va.(-p(z) V © ~p(2)) ,
where a and p are flexible. The model M described in the previous example satisfies v.
Take A = (-p(x) V< =p(z)), B = p(a), v1 = p(x), v2 = p(a). The most-general classical

unifier of v; and va is @ = X t a). With the restrictions we have presented so far, the
resolution rule allows us to deduce

p(a) A Op(a) A Vz.(-p(z) v O —p(z)) A [(—trueV O —p(a)) V false].
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Simplification yields
Op(a) A O ~p(a),
a clearly provably unsatisfiable formula. According to this proof, then, u is unsatisfiable.

Unification in the scope of modal operators and substitution into the scope of modal
operators give rise to incorrect derivations in these examples. The basic problem is sim-
ply that equals cannot be substituted for equals in modal logics. The resolution rule is
restricted further in order to avoid this problem:

(vi) If (x t t) € @ and a flexible symbol occurs in ¢ then x does not occur in the
scope of any modal operator in either A or B.

e. Soundness of resolution

The restrictions presented in the last two subsections are actually sufficient to guar-
antee the soundness of the resolution rule. We first show:

Lemma (Soundness of instantiation):

Given the substitution @, the quantifiers T1,. .., Tg,and v = Tywsy . . . Tpwg.u, and
v = Tyw; ... Towe.ub, such that

if x +-t) € @ then for some i, | <i <l T;=V,w; =x, and no variable
in toccurs bound in VzT41wit1 . . . Towe.u,

if (x « 1) € § and ¢ contains flexible symbols then x does not occur in
the scope of any modal operator in u,

then v < v'.
Theorem: The resolution rule, with restrictions (i), (i), (iii), (v), (v), and (vi), is sound.

Proof sketch: 1t suffices to show that the premises entail the conclusion, that is,

Q1z1... Qrer.A{vy, . . ,vp) AR1y1. . Rikyk.B{vnt1,. . . ,0m)
— S1z1...ShtkZhtk- [Ae(t'rue) Y BG(fa,l.se)] )

Assume the premises @1%1. .. Qpxp.A and Riy1. .. Rgyx.B hold. Conditions () and (i)
guarantee that the (sound) quantifier rules allow us to derive S12z1. .. Sh+kzh+k.(A AB).
This formula and @ fulfill the hypotheses of the lemma by conditions (v) and (vi). There-
fore, we can derive S121. .. Shykzhtk-(A A B), that is, S121 . .. Sh+kzn+k-(AG A B). (At
this point redundant quantifiers can be deleted from the conclusion without harm.)

We have shown that

Qi1z1. . Qrrxp ANR1y1. .. Ryyr.B
— S121... Shakzatk-(A0(v1, . va) A BO{vnt1,. . vp)).
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It suffices to show that

S121...Shik2htk-(A6(v1, . ,vn) A BO(vny1, .. ., vm))
— S1zy... Sh+kzh+k.[A0< true)VBO(false)] .

This can be proved by purely propositional modal reasoning: by the monotonicity of
entailment lemma, it suffices to show that

(AB(vy, .. .,vn) A B8(vny1, . . . ,vm)) — [A8(true) v Bf{false)].

The formulas A8 and B have some subformulas in common, since v16 =. . . = v, 0. Let
vfdenote v16,. . . , v,0. Consider occurrences of v8 not in the scope of any quantifier and,
if v8 contains any flexible symbols, not in the scope of any modal operator. Assume that
Ab(vy1, ... ,vy)and BO{vpt1,. .., vm)hold. If v is true then Af(true)holds; otherwise,
Bf(false) holds. In either case, Af(true)V BO(false) holds, as we wanted to show.

8. AN EXAMPLE

We prove that

O wez)2d(Ve.Op(2))
in the resolution system for K. We will derive false from
O E - U mupwMYz0p())]
By the negation rules, we first get
d (axp)nEs. O-p()).
The rule for moving quantifiers of existential force yields
3x'. [O(Vz.p(z)) A © -p(z')].
“The modality rule in the system for K yields
3x. [O(Vz.p(z)) A © —p(z") A O((Vz.p(2)) A —p(a"))].
Weakening reduces this sentence to
3x’. O [(Vz.p(z)) A -p(z')] .
Take A = -p( z'), B = p(z), v1 = p( z'), v2 = p(z). Resolution yields
3x'. O [(Vz.p(z)) A —p(z') A (mtrue V false)] .
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true-false simplifications yield false.

9. COMPLETENESS FOR FIRST-ORDER SYSTEMS

Our propositional modal resolution systems together with the quantifier rules, the
auxiliary rules, and the resolution rule for the first-order language with flexible function
symbols, constitute first-order resolution systems. Skolemization rules may be added, but
are not essential.

Theorem: The first-order resolution systems for K, T, K4, S4, S5, D, and D4 are complete
for the corresponding classes of models.

Proof sketch: Some Hilbert systems are known to be complete for these logics, at least
for the language with no rigid symbols and no function symbols (e.g., [HC], [Fill). We
can extend these completeness results to the language with rigid symbols and function
symbols. Then we show that each of the resolution systems is at least as powerful as
one such complete Hilbert system. Specifically, we show that any Hilbert proof can be
transformed into a resolution proof, by induction on the structure of Hilbert proofs. 1

Remark: We will not discuss completeness issues for first-order G. Several notions of
completeness have been proposed for this logic and none of those based on Kripke models
seems fully satisfactory ([Fi2]).
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