
January 1987 Hcport No. STAN-('S-87-1148
Also numbered KS|1.-86-36

An Instrumented Architectural Simulation System

by

Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd

Department of Computer Science

Stanford University
Stanford, CA 94305

ER
Ty\: ali YY
Eeanizen oF

Knowledge Sens Laboratory January 1987Report No. KSL 86-36

An Instrumented Architectural Simulation System

by

Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd

KNOWLEDGE SYSTEMS LABORATORY

Computer Science Department
Stanford University

Stanford, California 94305

WORKSYSTEMS ENGINEERING GROUP

Low End Systems and Technology

Digital Equipment CorporationMaynard, Massachusetts 01754

This work was supported by DARPA Contract F30602-85-C-0012, NASA Ames
Contract NCC 2-220-S1, and Boeing Contract W266875. Greg Byrd was
supported by an NSF Graduate Fellowship and by the Stanford University
Department of Electrical Engineering.

SIMPLE/CARE 29 January 1987

Table of Contents

| INTRODUCTION A
1.1 Design Time Interaction And Run Time Operation 2

2 STRUCTURE AND COMPOSITION 4

2.1 CARE Base Components 5
2.2 CARE Composite Components 0
2.3 Automatic Composi tion in CARE 6

3 SPECIFYING BEHAVIOR 6
3.1 Behavioral Rules

3.2 Using Methods 8
4 INSTRUMENTATION 8

4.1 Com ponent Probes 3
4.2 Instrument Specifications 9

5 EXAMPLE PANELS Ll
5.1 Point Plot Panels 11

5.2 Scrolling Line Plot Panels 12
5.3 Self Scaling Line Plot Panels 12
5.4 Boxes and Lines Panels 13

5.5 Scrolling Text Panels 14
5.6 Noting Simulation Parameters 15
5.7 A n Instrumen t Screen 16

6 USING PROGRAM DEVELOPMENT TOOLS 16
7 CONCLUSIONS 20
§ ACKNOWLEDGEMENTS 21

List of Figures

Figure I: Design Time Interactions and Run Time Representations 3
Figure 2: Hierarchical Composi tion 4
Figure 3: Graphic Structure Specification 5
Figure 4: Example Condition/Action Behavior Rule
Figure 5: Instrument System Organization 9
Figure 6: Instrument Probe and Panel Relationships 10
Figure 7: Point Plot and Scrolling Line Plot Panels 11
Figure 8: Site Correlation Panel Specification 12
Figure 9: System I-listory Panel Specification 12
Figure 10: Self Scaling Line Plot Panel 13
Figure I I: Operator-Network Panel Specification 13
Figure 12: Boxes and Li nes Panel and Scrolling Text Panel 14
Figure 13: Mapping Panel Specificatiori 14
Figure 14: Producer Limited Process Panel Specification 14
Figure IS: Parameter Menu 15
Figure 16: Annotation Panel 15

" Figure 17: Overseer Instrument 16
Figure 18: Inspecting Simulated Components 17
Figure 19: Debugging A Simulation 18
Figure 20: Changing Application Code 19

SIMPLE/CARE 29 January 1987

A BSTRACT

AN INSTRUMENTED ARCHITECTURAL SIMULATION SYSTEM

Simulation of systems at an architectural level can offer an effective way to study critical
design choices if (1) the performance of the simulator is adequate to examine designs executing
significant code bodies -- not just toy problems or small application fragments, (2) the details
of the simulation include the critical details of the design, (3) the view of the design presented
by the simulator instrumentation leads to useful insights on the problems with the design, and
(4) there is enough flexibility in the simulation system so that the asking of unplanned
questions is not suppressed by the weight of the mechanics involved in making changes eithel
in the design or its measurement. A simulation system with these goals is described together
with the approach to its implementation. Its application to the study of a particular class of
multiprocessor hardware system architectures is illustrated.

!
i
kK
£

i
3

!

,

SIMPLE/CARE 29 January 1987

1 INTRODUCTION

Simulation systems ure quite often developed in the context of a particular problem. To a
degree, this is true for SIMPLE, an event based simulation system, and CARE, the computer

array emulator that runs on SIMPLE.! The problem motivating the development of both
SIMPLE and CARE was the performance study of 100 to 1000-element multiprocessor systems
executing a set of signal interpretation applications implemented as “1000 rule equivalent
expert systems” [2 3.

A set of constraints pertinent to this problem governed the design of SIMPLE/CARE. The
applications represented significant bodies of code and so simulation run times were expected
to be an important consideration. Moreover, the issues involved with the interactions of
multiprocessor system elements were sufficiently unexplored prior to simulation that
simplifications in the CARE system model, specifically with respect to element interactions,
were suspect. This need for detail was, of course, in tension with the need for simulation
performance. The ways that simulated system components would be composed into complete
systems was initially difficult to bound. Further, it was clear that the models of these
components would be elaborated over time and would undergo substantial change as design
concepts evolved. It was also clear that the ways of examining the operation of these
components would change independently (and at a great rate) as early experience indicated
what alternative aspect of system operation should have been monitored in any given
completed run.

The design goals that emerged then were (1) that the simulation system should support the
management of substantial flexibility with regard to simulated system structure, function, and
instrumentation and (2) that, in order to accomplish runs in acceptable elapsed times, the detail
of simulation should be particularly focused on the communications, process scheduling, and
context switching support facilities of the simulated system -- that is, on just those aspects of
system execution critical to multiprocessor (as opposed to uniprocessor) operation.

1.1 Design Time Interaction And Run Tinie Operation

Encapsulation of the state of design components with the procedures that manipulate that
state is one clear way to manage design evolution. Such encapsulation partitions the design
along well defi ned boundaries. Components (by and large) interact with other components
only through defined ports. Connections between components terminate at such ports. When
a system simulation is initializecl, connections are traced so that for every port, the simulator
knows the connected (terminating) ports together with their containing components. Once such
initialization is complete, that is, throughout the simulation run, assertions about the state of a
port of one component can be directly translated to assertions about the state of connected
ports of other components.

Partitioning issues of system structure, component hehavior, and instrumentation into separate
domains of consideration helps in managing a design that is both fluid and complex. System
structure, that is, the relationship between components, can be specified through use of an
interactive, graphics structure editor and is largely independent of component function per se.
Component behavior is encapsulated in a set of definitions pertinent to the given class of
component. Each component in a SIMPLE simulated system is a member of a class defined
for that component type. Instrumentation is automatically and invisibly made part of the
definition of each simulated component that is to be monitored during a run. This is done by
arranging that the class of every component to be monitored is a specialization of the general
instrumented-box class. The basic data structures and procedures for monitoring simulated
components and maintaining the organizational relationships between each component and its
related instrumentation are inherited through this general, ancestral class and are thus made a
separate, substantially independent consideration in the design.

lSIMPIF and CARF were developed by the authors at the Knowledge Systems Lab of Stanford University. SIMPIF
is a descendent of PALLLADIO [1] optimized tor the subset of PAT LADIO's capabilities relevant to hierarchical design
capture and simulation. 101s written 11 Zetalisp [4] and currentdy runs on Symbolics 3600 machines and T1 Explorers.

2

SIMPLE/CARE 29 January 1987

A further part tioning of concerns is employed to separate out the definition of the
application programming language interface and its support (as provided by CARE) from the
underlying information flow control governing component behavior. The behavioral
descriptions of components (which are expressed as sets of condition/uction rules) deal
generically with gating information, independently of the structure of the information, between
ports of the component and its internal state variables. This is separated in «. component
model definitions from the functions performed to create and manipulate the information so
gated. The simulated implementation of the application programming language support
facilities, on the other hand, relies only on the specifics of the information and its structure
and’plays no part in gating it between the components of the system. Changing the definition
of the application language is thus done independently of changing component flow control
behavior. The application programmer and the implementer of the application language
interface may use whatever data structures seem suitable to them, be they numbers and
keywords or procedure bodies and execution environments. The simulation system doesn’t care.

The component probe definitions, that is, the specifications of what information should be
captured for each component type, are separated from the descriptions of the behavior of such
corn ponen ts. In designing for flexibility in the instrumentation system, it turned out to be
important to further divide the information presentation from the information collection
issues. The mapping from particular component probes to particular instrument panels and the

transformations to be applied to the information as it passed from a given kind of probe to a
given panel (and between panels) is captured in the instrument specification. This is a
definition of what kinds of panels are included in an instrument, how they fit on an
instrument screen, how they are labeled and scaled, and what information from which kinds of
probes are displayed on each panel, The instrument specification also indicates what kinds of
probes are to be connected to which kinds (that is, which classes) of components in the system.

application code

multiprocessor :
a —— programming language

gomponent library Joen, interface

|vporatgg | (component probe) py euie) ‘event-basedmodules intertace : neem

|medias| epecitication © compiler“Xo y
design time interactions simulation TUM

Figure I: Design Time Interactions and Run Time Representations

Putting together all the definitions of components, component probes, panels, instruments.
applications interfaces, and inter-component relationships is done in a set of design time
interactions by a system archi tect. These interactions are used by the simulation system to
generate efficient run time representations so that simulation performance goals can be met.
Figure 1 illustrates the partition between design time interactions and simulation run time
operation. Structure editing pulls together componen ts from the comporten t li brary to produce
a circuit. Associated with some components in the library, there are definitions for the syntax
and underlying mechanisms of a multiprocessor applications language. These specify the

SIMPLE/CARE 29 January 1987 |

interface used to provide the program input to the multiprocessor system being simulated.’
The definitions used to generate component probes are associated with each library component
to be monitored. There may be several such definitions, each appropriate to measuring a
different aspect of the associated component’s operation. An instrument specification selects
from these definitions, elaborates them with selections from a set of probe operation modules
to include any pre-processing (for example, a moving average) to be calculated by the probe,
and indicates under what conditions what information from the probe is to be sent to which
panels of the instrument and how it is to be transformed and displayed there. Instrument
specifications also partition the screen among the panels of the instrument. The end product
of these design time interactions is an instrumented circuit and an instrument. The instrument
comprises a set of instrument panels and a set of constraints relating them to the instrument
screen. The instrumented circuit ties together instances of components, probes, and panels for
a simulation run.

For each defined class of component and its associated probes, the design time interactions
produce code bodies that accomplish simulation operations during a run. It is an attribute of
the underlying Lisp base of the simulation system that changes in these definitions have
immediate effect even during a simulation run -- an important capability during debugging.

2 STRUCTURE AND COMPOSITION

Design time interactions to specify a4 system include the establishment of component
relationships. Such specifications can be said to accomplish the composition of the system
from its components and so define its structure. SIMPLE supports hierarchical composition:
components may be described in terms of a fixed set of relationships among their sub-
components. Additionally, such composite components may have function beyond what can be
inferred strictly from their composition. All this can then be included a higher level
composite (as shown in figure 2) and so on indefinitely until the top level “circuit”, the system
structure, is reached.

| fever Homa || Hler[HH GEEERCEERCERL

Leek| [J foperator J_ Aim teRE i;RE S..

nn Co NO 2ceeanadE ERE Tl GLE ok H-
processor| | site rrr Te TR Te

Figure2: Hierarchical Composition

The behavior induced on a composite component from its parts changes according to the
behavior of its parts. Thus, for example in figure 2, if at any time during a simulation the
function of CARE operator components is changed by redefining their operation, the behaviol

2The language primitives supplied can be used (0 define multiprocessor language interfaces for either shared-variable
or value-passing paradigms. As supplied, Lhe 1anguage interface built on these primitives supports value-passing on
streams between objects bul alternative interfaces can be (and have been) easily d e fi ne d interms o f the given
primilives.

4

SIMPLE/CARE 29 January 1987

of the nine-site grid is in immediate correspondence.”
Composi tion is described graphically and interactively in SIMPLE by picking a previously

specified component type from « menu, placing tt in relationship to other components with
"mQOuse” movements, and, through the same means, specifying the connections between its
selected ports and those of other components (as indicated in figure 3).

EDIT OPERAT [ONS .

Hdd Box .

| Add Lines , }
acd Ports i ~} = = #3] B [>1] & &dd Contact; . 'Mees Companents ; C] [] []

Uelete Components

Edit Behavior

Modif » Attributes ;
Instant ate Bo- ;

Prototize Component | p—°2
Inspect Component !Inspect World : Nn NB Ld

CHAMGE MODE EE]

= I 3 1 |

1 [emmen

F———et—GF—r—{G——{———

SITE | Level

Figure 3: Graphic Structure Specification

Through another menu selection, ports can be defined for the new composite component so
that it, in turn, can be fitted into yet higher level structures. Such external ports can be
connected directly to ports of sub-components “within” the composite. If this is done,
information appearing on that external port will be the responsibility of the connected sub-
component. By this same means, a component previously described as a base level component,
can be redefined as a composite of yet lower level elements as its design is elaborated with
further details.

Components and (internal) connections can also be deleted from a library component and
replaced with substitute components. After all sub-components and connections have been

added, deleted, elaborated, and replaced as required, the completed structure can then be entered
into a library of components and used in turn to compose higher or equivalent level
com ponen ts.

2.1 CARE Base Components

CARE supplies a small library of system level base component types. Currently these are the
net-input, the net-output, the fifo-buffer, the operator, and the evaluator. The net-input, net-

I However, tor reasons concerming simulation performance and because of their relatively low frequency, changes in
the number and names of (he internal state variables of componentsand Lhe structural relationships between sub-
components o f a composite are not reflected ran already instantiated circuit. Changes in the internal structure of a
CARF site library component, for example, will be reflected only in circuits instantiated after the change took effect.
For this reason and (0 reduce long term storage requirements and load time for the fundamentally tlerative circuits that
we primarily study,we do not keep files of instantiated circunts. They are instantiated as needed from a high level
library component with the same prototypical structure.

5

SIMPLE/CARE 29 January 1987

output and fifo-buffer accept (or block), route, and buffer transmissions. They do so in
accordance with a dynamic, flow-controlled, multicast, cut-through communications protocol as
described in [3]. The evaluator does the real work of the application: evaluating the
application of functions to their parameters. The operator does the overhead work associated
with such evaluations: for example, scheduling processes and sending and receiving (but not
routing) messages.

In keeping with the objective of focusing simulation cycles on the aspects of the simulation
particularly relevant to multiprocessor operation, the behaviors of the net-input, net-output,
and fifo-buffer component classes are defined in fair detail, that is, at the register transfer
level. Routing operations are described procedurally and assumed to occur within a time set by
a parameter to the simulation. As indicated previously, the simulation of the operator and
evaluator is broken into two aspects: the control of the flow of information and the functions
performed on that information. The former is described in terms of SIMPLE behavior rules
(as documented in section 3), register transfer by register transfer. The latter is describeci
directly in terms of procedures and the simulated time taken by such procedures is modeled.
In the case of the operator, this is done as a function of the number of storage cells
manipulated during an operator procedure. In the case of the evaluator, this is done as a
function of the execution time used by the machine executing the simulation, that is, the
simulation vehicle.

2.2 CARE Composite Components

The prototypical composite component supplied with CARE is the site. As supplied, it
includes net-inputs and net-outputs for up to eight “neighboring” components (generally othei
sites), a net-input and a net-output with associated fife-buffers for local receptions and
transmissions, and, finally, an operator and evaluator as described above. Specializations of the
site, for example, the rorus-situ, exist in the library to fit the site into alternative topologies by
supplementing the site routing and wiring procedures as appropriate to the topology.

2.3 Automatic Composition in CARE

Although any connection of components can be created by the means noted previously, toi
some repetitive, well patterned systems of connections, composition can be automated. The
CARE library includes a component, the iterated-cell. which represents a template for the
creation of composite components by iteration of a unit cell. The unit ceils (for example, the
torus-site) are specializations of other components (for example, the site) as just discussed.
The specializations include a method for responding to a request to provide a wiring list. Such
a list associates each source port of a cell with the corresponding destination port (in terms of
port names) and the position of the destination cell relative to the source cell in the iterated
structure. The iterated cell component uses this information to make the required connections
between each of its constituent cells.

3 SPECIFYING BEHAVIOR

SIMPLE is an event based simulator. The behavior of a simulated component is described in

terms of responses to the events pertinent to that component. A component's response may
include consequent events to be handled by the simulator as well as direct operations on
component state. Assertion of consequent events and the responses to them (involving further
consequences) drives the simulation. When there are no more events to handle, the simulation
IS complete.

To maintain modularity in a simulation system, responses to simulation events should be
local to the affected component and its defined ports, that is, its connection to the remainder
of the simulated system. The composition system of the simulator maintains the relationship
between ports of one component and those of other components connected to them. Assertions

SIMPLE/CARE 29 January 1987

relative to a port of a component are thus systematically translated to events pertinent to

‘ corn ponentscon nected to it. This is the general mechanism for event propagation between
components. In a limited number of cases, a direct operation on a related component may be

appropriate. With fair warning about its possibility of abuse, a facility is provided to
accomplish this.

3. I Behavioral Rules

The behavior of a component is described in terms of its responses to pertinent events.

Each event stipulates the component affected, ils port or state variable signalled with an
assertion, the asserted value, and the simulated “time” of the event. The time of an event may
be thought of as the “current” simulation time. Differences in event times represent the
temporal relationship between events. Event times in SIMPLE simulations are monotonically
increasing.

For each type of component, there 1s a procedure to handle pertinent events. The arguments
to the procedure are those stipulated by the event (as just described). The procedure tests {oI
conditions and, as satisfied, asserts or directly effects consequent actions. The conditions may

include arbitrary predicates On the event parameters and the state variables of the component.

Event based simulators are based on the assumption that state and port variables remain

unchanged until explicitly modified. Synchronous designs, that is, those in which the
opportunities for state change are temporally quantized to a clock, can be modeled in such

implicitly asynchronous, event based simulators by asserting the clock signal on a port of each

and every clocked component of the simulated system. If only some of the components in a
system need take action on each clock signal, there is an obvious inefficiency in this approach
that is crippling for systems with even a modest number of components.

If, however, event times in an event based simulator are restricted to integers, the clock can

be assumed. All that is needed is a way to detect the event for which a boolean combination

of conditions as strobed by an assumed clock is first met. Primitive condition predicates are
supplied for detecting an “edge” (a value changed by the current event) with a coincident
“level” (a value set before the current even&) of two ports or state variables of a component in

either of the two possible event sequences. The predicate both-states in the example
evaluator behavior rule shown in figure 4 has these semantics.

«+ If the evaluator is ready and there is at least one runnable process...
((or (both-states Evaluator-Status® ‘ready Evaluator-Queue-Status ‘some)

(both-states Evaluator-Status ‘ready Evaluator-Queue-Status ‘full))
iv. make it current, start evaluation, and adjust status as per removal.
(setq Evaluator-Status ‘busy) s block rule
(assert-state Evaluator-Status ‘busy now) y next event

(setq Current-Evaluation (queue-take Evaluator-Queue)) note process
(user-evaluate Current-Evaluation now) yexecutle it

(send self :evaluator-queue-decreased now)) s note change

| Figure 4: Example Condition/Action Behavior Rule

Figure 4 illustrates the generality of SIMPLE behavioral descriptions. The underlying object-
oriented programming Systeni, Flavors [4], in which SIMPLE is implemented provides for
direct reference of component state variables. The conditions and actions of behavior rules for

a component then need only name the component’s port or state variable (as stipulated in the

definition of that component type) to get or change the appropriate value in the component

instance for which the event is pertinent. Actions may include arbitrary procedures: for
example, the procedures user-eval uate and queue- take in the given example.

| 4gy convention, component state variables are written in capitalized form.

7

SIMPLE/CARE 29 January 1987

3.2 Using Methods

The environment for the execution of the procedures defining responses to events includes
the state variables and ports of the component instance for which the event is pertinent.
These procedures are Flavor methods [4] (in this case corresponding to the :ApplyRules
message) of the component type and, as just noted, refer implicitly to the state variables of the
component instance handling the event. Other methods may be defined for simulated
components: for example, the : evaluator-queue-decreased method invoked in figure 4.
Such methods have proved to be a natural way to realize the functional operations of
components not described by behavior rules.

The composition system leaves information about the enclosing and contained component
instances for each simulated component in system defined state variables of that component.
With this information, methods directly referencing the ports and state variables of such
related components may be invoked as needed. This is a useful but sharp-edged facility. The
warning about loss of modularity given previously applies here.

4 INSTRUM ENTATION

The results of a simulation are primarily the insights it provides into the operation of the
simulated system. The “insight” we frequently experienced using an early version of the
simulation system was that tnore interesting results could have been produced by the run just
completed if only the instrumentation had been different. With this in mind, the design foi
the current version of the simulation instrumentation system was aimed at flexibility. This
was attained without significant performance impact by building efficient run-time system
structures before each run, as outlined in section 1.1, from the declarations defining the
instrumentation.

The organization of the instrumentation system is pictured in figure 5. The simulators
interacts with component instances through assertions, that is, calls on an assert function, in
behavior rules (the methods associated with : ApplyRul es messages). All instrumented
components are specializations of an instrumented-box (as well as other classes). After each
invocation of :ApplyRules for such components, the :ApplyRules method for a generic
instrumented-box is appt ied. This causes invocation of the : trigger method for each

. component-probe associated with that component. Since this flow of measurements is
accomplished by means invisible to the the writer of behavior methods for a component, the
concerns surrounding component design are effectively partitioned from corn ponent
instrumentation. The remainder of this section details these “invisible” means used to
accomplish measurement flow during a simulation run as the measurements are staged from
components through component probes to instrument panels.

4. | Component Probes

The first filtering of events is done by component probes. Some events cause no further
measurement activity since, as it turns out, not all events merit action on the part of the
ipstrumen tation system. The parameters of the event and the ports and state variables of the
instrumented component dealing with the event are available to the component probe as are
the state variables of the probe itself. Each piece of the selected information is tagged with an
identifying keyword and passed along as the parameters of the : trigger method along with a
keyword identifying the type of component probe, a number representing the current event
time, and a pointer to the component with which the information is to be associated in the
display. This pointer might be to some component related to the one actually handling the
event, for example, the component enclosing it.

Component probes may he composed of predefined probe operation modules to do standard
calculations (for example, moving averages) and then to forward the results to selected panels.
In order to automate the composition of probes to accomplish such operations, each of these
operations is chained together by invoking the method for that probe that is associated with

SIMPLE/CARE 29 January 1987

euent based
Simulator

create ¢z

. instrument | (1 m———
copy I Oar

:. A— 22 _instrumented-box

¢ template-probe ;

I) | Pal component-probepane select < :calculate
update

Figure 5: Instrument System Organization

the system-defined message name of the generic next operation. Thus, the : trigger method

calls the : calcul ate method of the probe which, in turn, calls its : select method which,

: finally, calls the : update method of the selected panels associated with the probe. Probes are
composed by naming them as specializations of appropriate probe operation modules (for
example a : cal cul ate module for moving averages) as desired. ~The default, if no
specializations are stipulated, is to pass through information Without change to all the panels
associated with a probe.

Information flow between components and panels is accomplished by the component probes
associated with each instrumented component. The creation of such component probes and

their association with appropriate components (by execution of : add methods) accomplishes
the instrumentation of a circuit. This is done when an instrument is created. During
simulation initialization, the components of the circuit (and their sub-components) to be

instrumented are (recursively) examined by each template probe defined for the instrument to
see if they are to be monitored. If so, the : copy method for the given template probe is
invoked to create a new instance of the appropriate component probe and add it to the probes

con nec ted to the con ponen L. Each template probe previously received the identifiers for the
panels to which its clones should send information. These will be the panels identified when a
component probe invokes the : update method.

4.2 Instrument Specifications

The operations performed by an instrument panel are to:

. Find information previously stored according to the component pointer suppl '€d by
the : update method:

9

SIMPLE/CARE 29 January 1987

« Link new data structures as needed (to save such information) to other such
structures of the panel;

e Suave in these data structures the results of expressions that reference indicated
keyed information from the : update parameters and the prior contents of the
structures:

. Send the results of periodic analyses on the information associated with a panel for
display by the same panel or by some other; and

. « Show processed information in the manner specified for the panel.

The defaults for the panel operations supply the most commonly required specifications
implicitly, so simple operations are simply specified. These defaults can be overridden as
needed and either predefined or user specified alternatives for the panel operation's can be
selected in their place. Arbitrarily complex (Lisp) expressions can be used to specify the
transformations between the information provided by a probe and that saved and displayed by
the panel.

These transformations and all the default overrides for the panel operations that are
stipulated in the instrument declaration are scanned when a new instrument is created for a
simulation session. They are compiled at that time into code bodies referenced by run time
control blocks associated with each panel. A simulated system is instrumented by examining
all of its components and attaching to each component the copies of template probes specified
by the instrument definition that are appropriate for the component (by means of calls on the
: copy and : add methods for the probe). This can be a many to many relationship as shown
in figure 6.

panels probes components

mapping — me
boxes and lines RN _—= net-output-load ~~system-history fs \ ———4 net-output |

scrolling line plot ~\ yet-output-connectio -«—operator-network|[¥ NN —
self-scaling line plot AN operator-load ~~process-latency N\ ——— (grrrself-scaling point plot xX |2X operator-latenc

producer-limited ——————

scrolling text with scroll bar evaluator-load -~~
consumer-limited : «——Y evaluator |scrolling text with scroll bar evaluator-latenc

Figure 6: Instrument Probe and Panel Relationships

Component probes to measure “load” and “latency” are specified in the given example fori
each operator and evaluator in the circuit. The “load” and current “connection” for each net-
output is also to be monitored. Some panels, for example the one showing “consumer-limited”
processes, receive inputs Irom only one type of component probe, those measuring evaluator
latency. Others, such as the one measuring “process-latency” receive inputs from more than
one kind of probe (in this cast!, from probes measuring operator latency as well as those
measuring evaluator latency). A way must thus be provided to distinguish the type of probe
sending information to a panel: this is described in the next section.

| 10

SIMPLE/CARE 29 January 1987

Some probes send information to only one panel, for example, the net-output connection
probes. Others monitor information which is needed by several panels, for example, the
operator latency probe. Transformation of the raw information provided by a probe will need
to be specialized to the information expected by each panel receiving it. A general way to
stipulate these transformations is stipulated in the next section.

5 EXAMYLE PANELS

Some example panels are described in this section to give a feel for the instrumentation
possibilities available in CARE and elaborate on how the requirements described in the
previous section for probe type identification at a panel and per panel specialization of the
information provided by a probe are handled.

5.1 Point Plot Panels

The first panel (shown in the left half of figure 7) is an example of a point plot panel used
to generate a scatter plot. As an option, only points representing simulated activity over a
limited past history from the most recent event time are kept for display. ln this example,

resource load? information is provided by the operator-load and evaluator-load component
probes attached respectively to the operators and evaluators of the system.

SITE CORRELATION SY VI H JRY

Site Availadility Correlation Network & Operator-Eva {RQ¥0P Load

1.0 I 16 16

E P
8.8 N r

a e 12 12 ©
1 0.6 W c

a 84 - r
0 <|Tnr k 4 4 1

9

0.08 8.38 0.60 1.00 658 700 733

Operator Simulated Time [us]

Figure 7: Point Plot and Scrolling Line Plot Panels

The balance between the “availability” of the evaluator and operator of each site, that is, the
complements of their respective loads, is displayed during the simulation as events are
processed that change this measure. In order to avoid capturing information at too fine a
temporal granularity, previously gathered information for a given site is overwritten if it is
within a given sampling interval of the new information. Information that is beyond a given
history range is dropped. The scale of availabilities displayed is fixed between 0 and 1.0. The
panel specification to declare all this and to also stipulate the axis labels is shown in figure 8.

Resource load is defined as (1 = 1 7 (1 + aggregate-queue-length)) where the aggregate queue-length is the sum of
the lengths of all queues providing work for the resource.

11

SIMPLE/CARE 29 January 1987

‘“(((“Operator”) (0 1.0) (- 1 (:operator-load :busy))) : Bottom axis
| (“Evaluator”) (0 1.0) ((- 1 (:evaluator-load :busy)))) :Left axis

find (find-sample-distinct (:simulator :time) ,sampling-interval)
: show (recent-history (: simulator :time) ,point-panel-history-range 0))

Figure 8: Site Correlation Panel Specification

5.2 Scrolling Line Plot Panels

An example of a scrolling line plot panel is shown in the right half of figure 7. This panel
sums the loads seen by the resources in the simulated system and displays this as a strip chart,
the “system history”. Some of the same probe load information used by the previous panel is
used in this panel as well, but with different transformations defined in the panel specification
as shown in figure 9.

"((("Simulated Time [us]") (,history-range) (:simulator :time)) Bottom
(("Network") (0 ,si1tes) (:net-output-load :busy save-sum)) Left
(("Processing”) (0 ,sites) : Right

(average (:evaluator-load :busy save-sum
(:operator-load :busy save-sum)))

: find (update-history (:simulator :time) ,sampling-interval)
:Show (recent-history (:simulator :time) ,history-range 0))

Figure 9: System History Panel Specification

Line plot panels may have two independently scaled vertical axes. For the system history
panel shown, the sum of network loads as indicated by the net-output components of the
system is plotted against the left axis and the sum of the processing loads provided by the
current-average of the sums of the operator and evaluator loads is plotted against the right
axis. Event time is plotted on the horizontal axis. The update-his tory function uses the
component pointer to find the information previously saved for that component and records
the current event time as the (: simulator : time) so that it may be used to display
information correctly on the horizontal axis. The current sums of the evaluator loads and the
operator loads measured by the system are stored in a record for the given event time (or a
prior event time within the specified sampling interval) by the calls to the save-sum function
specified as part of the save operation.

5.3 Self Scaling Line Plot Panels

Figure 10 illustrates both the self scaling Of displays and the use of a display analysis
operation. For this self scaling line plot panel, two pieces of data are collected for each

- operator in the system: the load on the operator. shown on the right axis, and the latency of
the information it has most recently received. This last item is provided by the operator
latency probe in two parts: (1) the interval between the creation of the information and its
receipt by the net-input feeding the operator and (2) the interval between such receipt and the
operator taking action on it. There are thus two curves plotted on the left axis. The
specification stipulates a list for the left axis display. The elements of this list are the "net
del ay" andthe sum of this measure and the "operator delay” monitored by the operator latency
probe. Since both delays are non-negative, their sum must be at least as large as either one
taken alone: the two curves may be superimposed but can not cross. The difference between
the two curves is the incremental delay added by the operator.

The panel specification for the operator-network panel is shown in figure 11. In addition to
transformations shown previously, an analysis function is stipulated for the send operation of
the panel. The information saved from each of the probes sending : update messages to the

panel is to be sorted from the greatest to the least values of the associated sum of delays
described above. This information is to be saved as the operator latency rank and used as such
to determine the position on the horizontal axis that the delay and load information will be
displayed.

12

SIMPLE/CARE 29 January 1987

OPERATOR - NETWORK

= - 1.4

t x I -— L
2 3 13 Oh 4.6 ©
I a = 7 wl
- 1s 11 | I] | a 0

} pag < | | _ }
SN RIE! HR 4c

LS - i | | oo
HE kl,

1 94 7 18 13 16

Operators

Figure IO: Self Scaling Line Plot Panel

'(((“Operators”) (1 ,sites) (:operator-latency :rank))
(((“Latency” "us")) (0 nil) :;Second string: 90 degree baseline shift
*((:operator-latency (:net-delay (+ :net-delay :operator-delay)))))
((“Load”) (0 1.0) (:operator-load :busy))
:send (sort-arrays

((,#'> (:operator-latency (+ :net-delay :operator-delay))))
((:operator-latency :rank))))

Figure I I: Operator-Network Panel Specification

5.4 Boxes and Lines Panels

Perhaps the most intuitively satisfying of the types of panels available is the boxes and lines
panel, a graphic representation of a circuit showing its components and their interconnections.
An example of such a panel is shown the left part of figure 12. This class of panels uses
information left behind by the structure editor when the circuit was defined. Its form is thus
automatically generated. The position of the components (“boxes”) and the connections
between them (“lines”) in the display are used to animate system operation. In the example
shown, the shading (or color) of the boxes is used to indicate the availability of the evaluators
in the simulated system as the simulation proceeds. Darkest shades indicate highest availability,
that is, empty queues for utilization of the resource; lighter shades indicate lower availability,
that is, longer queues. The lines between boxes indicate communication -paths that are in use,
that is, not ": free” at the time of the most recent show operation for the panel.

The panel specification for the mapping panel, an instance of a boxes and lines panel, is
shown in figure 13. There are two specifications for the panel: one for the boxes and one for
the lines. The specification for boxes in the panel stipulates that the availability of evaluators
in the sites corresponding to the boxes displayed controls the shading of those boxes. The
scale is defined to run from 0 to 1.0. The specification for lines in the panel uses the
connection information reported for the net-output to determine line placement on the display.
When the status is reported as : free. the connection information is dropped from the panel
and the corresponding lines are removed.

13

SI MPLE/ CARE 29 January 1987

ARE OVERSEER PRODUCER LIMITED
Evaluator Aval {adi lity & Network Connections .

ProcessPosting

[oe 2 32(APPLY ([] BUTTERS(1 2) 16773) 50483)
MZ(APPLY ([) ETCTTERS (1 3) 16773) SoAS3)

[ie Z 64(APPLY ([] BUTTERS(1 2) 16773) S72)
rn IAN rom— 64 (APPLY ([) ETTTERS (1 3) 16773) S723)
Aan EE 2 GW (FPRLY (1 BUTIERS (1 2) 16773) S723)

: . — GL(APPLY ([] BUTTERS(1 3) 16773) S72)

[rr ES i [Joo 2 % (APPLY (1) BLTTERS(1 &) 16773) S723)
nr rad Lo 3 — & (FPPLY ((] BUTTERS 11 3) 16773) S72)

\ 11 HIN 7 [eo ” (APPLY ([] BUTTERS(1 3) 16773) S723)| | saints BA % (APPRLY ([] BTTERS (1 2) 16773) S723)
i | «2 (IDEMTIFY-SELF (1 BUTTERS (2 1) 16773) i402)

4 3 Va .207 25(IMPUT ((] SITE-CESEPWATIONS (2 31 25149) Ate)a A — 25¢ INT (0) SITE-CESEPURTIONS (2 3) 25149) 314)

| < I z 25 (INPUT ([] SITE-CESERMTLONG (2 31 25149) Ld)NNN \\ NN [} SITE-EEPWRITING (2 1) CT153) 31146)X \ . SC meu

IB~ a LL Be 2 2(INPUT (0) STTE-TESEPVATIONS 12 3) 25149) 14)
| | 20 INPUT WL) ol [E-CGSEF TIONG 12 7) S149) 7116)

H-

Er

Figure 12: Boxes and Lines Panel and Scrolling Text Panel

'"((("Evaluator Available") (0 1.0) (- 1 (:evaluator-load :busy))))
'((("Packet Trace") nil (:net-output-connection :points))
(("Packet Status") nil (:net-output-connection :Status))
find (find-and-remove ,#'€Qq (:net-output-connection :status) :free)))

Figure 13: Mapping Panel Specification

5.5 Scrolling Text Panels

Sometimes, the mostappropriate way to display information is to show it as text. Based On
a similar facility provided by the underlying Lisp system, the scrolling text panel provides a
scrollable window into lines of text. In the right part of figure 12, the delay in each process
execution while waiting for something to do, that is. (he eventtime interval spentwaiting foi
an appropriate task to appear on a certain stream of tasks, is shown together with the process
that finally produced the awaited work. This information is sorted so that the text lines
appear from the greatest stream waiting interval to the least.

. (0) ("~4D - A) |
((fix (:stream-waiting :interval)) Jirst field
(let* ((origins (packet-origin (:stream waiting :packet)))

(origin (if (listp origins) (first origins) origins)))

(remote-address-local origin)))) ;second field
:send (sort-arrays ((.#'> (:stream-waiting :interval))) nil))

Figureld4: Producer Limited Process Panel Specification

The values and formats used for display in a scrolling text panel are defined much as in
previously defined panels. Format control strings take the place of scale information. As

usual, values are described by a list of forms, each one of which specifies the transformations
to perform on information received from probes. The example specification in figure
14 shows the generality with which probe information can be incorporated in Lisp expressions

I

SIMPLE/CARE 29 January 1987

to produce transformation specifications. The information used to generate the value for the
second field of the text display is based on the origin of the task packet that arrived on the

stream the process was waiting for.

5.6 Noting Simulation Parameters

The CARE component models are parameterized through menu interaction as shown in
figure 15 to allow easy variation of their performance characteristics relative to each other.

Additionally, the site model parameterizes alternative routing strategies: directed, that is,
blocking when progress can not be made toward the goal; spiraling around the goal if progress
toward it is blocked; and dithering, that is, routing away from the goal even if only the last
link towards it remains to be acquired. The rate at which each site accepts application data is
also a parameter, the data rate and can be used by an application to control how hurd it
drives the simulated system.

Simulation Paramefers

Data Eate [nz]: 25.8 ;
Evaluation Dduerride [us]: NIL
Stack Group Switch Duerride [ws]: 1.09
Process Block Creation Querride [ws]: 4.4
Stack Group Creation Override [us]: 28.8
Operator Word Touch Time [ws]: 3.2 :

Communication Cycles: J :
Pout ing: DIRECTED SPRIRALIMNG DITHERING ;

RRRSNA SRE TR SRT TRA SRRARR 1ROS TCRSRORARS SONAR RSTHARAR RETR CIR SI SO ROR SE

Fisure 15; Parameter Menu

Many of the CARE parameters are specified as overrides. If not specified, the corresponding
performance is taken as measured on the simulation machine. Thus, the evaluation override,

) that is, the time to perform an evaluation can be specified as non-nil in order to fix the time
that each user evaluation will take. (This is useful In making runs repeatable for debugging).

The time that it takes to switch context can he specified as the stack group switch override.
Similarly, the time lo create a process control block and a stack context for that process can be
taken as given rather than measured by specifying respectively the process block creation
override and the stuck group creation override.

The time required for operator execution is modeled in terms of the number of words the

operator must manipulate in handl i ng a given message, The manipulation time per word is
specified by the operator word touch time. Lastly, the performance of the communication
subsystem is specified as communication cveles., This is done in terms of the minimum
number of evaluator data path clock times (that is, event times) required for a 32-bit word to
pass a given point in the network. Thus the parametric specification, “4 communication
cycles”, dictates that 8 bits may cross such a boundary each time the evaluator passes through
one event time. If the communications path were narrower or the base communication clock

rate were lower, a higher number would be specified.

Fo 98:54:48 3 2 DIRECTED Cyc'es,Acceleration 2, Creat ton 2000.8, Switch 250as, Evaluation 25.8, Data [Jas
Figure16: Annotation Panel

The last example of SIMPLE panels is the annotation panel as illustrated in figure 16. This

15

SIMPLE/CARE 29 January 1987

Is used to (automatically) record the date, time, and parameters of the simulation run as well as
any other information the user chooses to keyboard into it.

5.7 An Instrument Screen

All these panels are put together in an instrument screen according to a set of layout
constraints manipulated by the underlying window system. The finished screen might look like
figure 17. The instrument screen is redrawn at a rate set by the user. By experience, it is
often better to update the screen at a frequency low enough to let the user interpret each
screen comfortably than at the maximum rate possible. This approach also restricts the
computing resources consumed by the instrumentation system. More focused approaches to
controlling instrumentation load on the system include the ability to freeze selected panels and
disconnect selected probes during a simulation run.

DNSUMER LIMITED "ARE OVERSEET LISP LISTENER
Process Queued Evalnator Avaiiadiiity & Metwork Connections (Resune)

[12:22 Process CARE OVERSEER got an err
WC PLY (I) SETTERS(1 3) 16773) TDaET) 1Breakpoint BREA, PRESINE to continue,
WO APRLY ((] OEITERS(1 9) 1677S) SDS) ”MC APPLY (1)BRITS(1 2) 1677S TR [Je * » [Resume]
TC MPRLY (0) ORTTERS(2 3) 16779) S72) ——— 3Breskpoint BREAK, RESUME %0 continue,
1SC UPOWE1() DEITIES (1 3) 1477 228%) bran -150 UPOAIE (1) BRITONS(1 2) 1677) ZXS) : RE Tb (Resume)
SLC MPRLY CL] ELI (25) ZANT) ott) ANY

15C INPUT (1) STTE-CORERUMIONS(3 1) SSIS) M148) AT LANER \ “| MEU-EMITTER-CROUF 0 2 «= EMITTERS (1
13¢ INPUF (0) SITE-COSERUMIOMS+ 2 7) 29149) 21840) —— ALT-A ({[] EMITTEP-OBSEFVATIONS 4 | %
1S UPOME ([) OEITERS (2 1) 167TH ZRS) S—ye 101S LPOATE([) DRITERS (1 1) 1677) 2KS) EE Ch [1] 30% Leu-entrrer-cror 0 1 cer entrTERS 1

a I Jw \ Ce Al=-A <([] EMITTER-OBSERVATIONS 2 2» 57
SUBSET A 2 [| : SERS 40 7 |ifreskpoint BREAK. RESUME to continue,
BO Ra . > RN (12:27 Finis anti . t Screen |BN — - 50 7 oe Finished or inti Detale Screen NSEE SSE [12:29 Finished printing Def aylt Screen La

die 50 7 ;Breabpoint BREAK. PRESUME to continue, We

PIRODUCER LIMITED , BN BN Bl - a | pstProcess Postin oF : PENDING-EMITTER | 1 =-2EMITTERPS 1 2) |
8 AI-A HIL NIL 2Queue 2: ¥S<SITE-0BSEPY |. (

oC APPLY J ETTERS(1 OD) 1677 ST2MD) BE ” pBreskpoirt BREAK, RESUME +o continue, PELRCC APPLY (1) ONITERS(4 1) 14770 727)

a1 APPLY ((] BETTERS(1 2) 1877 2) “a

SLC APRY (L) BRITERS(1 1 167TH) 72M) Bl - ” (12:29 Finished printing Defatt Screan nd™ (MPPLY (() BETIEPS(t 2) 1677) STZN) i ' [12:21 Finished printing Default Soreen the

Tama em ROCESS TATERCY (OPERATOR- NETWORK SYSTEM HISTORY fl
® (RLY (1) BUTTERS(1 2) 16775) 2%) 2K or Producer -Consumer L imited Latency & Qperator Load Network ¢ Qperator-Evaivator Load ELA
42(IDBNIFY-SELF(1 DEITERS (2 1) 16779 20000)

SS INE (1) SITE-CRGERUMIONG(2 3) 28149) RH) [W] 130 L 8 1.a 16 16 re
SSC INE LL] STTE-COSMATIONS/2 3) 21491 A141) a 256 a A 8.8 M . rhe
35C DPW (L] SITE-RENMTIONS(3 1) SNS) R146) 1 rt © A TL |e 12 tz g |
BIC IPA (0) SITE-CORPUNTONS(2 3) S149) Nid) t ced € AY fy 8.6 0 t a TA
20 IRA (01 SITE-CONERVAIONS(2 3) 25149) Ri#) 1 sg ng — oa Wa 2 ° ELA
20 IU (1) SIIE-CONRUNIONS(2 1 LoD) 1M) S (00 g 4 0.9 4 2 ’ : :o i — k 4 ; 1 prs.seq \ 9.2 a! NE

wa 0 Sq CET TF Popes 0.0 a 0 9 hee
@ 33 60 306 129 2 16 } BOO BSH B34 s bly

Queueing | Operators: Simulated Time [us) . |!
OTES: a

pr24s/86 12:12:04 32 DIRECTED Cuclez, Acceleration 2, Creation 750.0.3, Switch <.Bu3, Evaluation 25.0,z, Data 25.0.3:

I ——

Figure 17: Overseer Instrument

The SIMPLE/CARE simulation system is integrated into the underlying Lisp machine
program development environment. The objects and data structures at both the component
model and application language interface have abstraction interfaces that provide summary

16

SIMPLE/CARE 29 January 1987

state information when they are displayed 1n test forni. These text abstractions are “mouse
sensitive” in the development machine environment and so can be inspected at successively
finer levels of detail as desired.

In figure 18, the net-output components of the site at grid coordinates (3 2), the particulars
of the net-output on the east side of the site (that is, net-output-3), and a summary of all
the sub-components of the site at (3 2) are being inspected. This same kind of view into the
progress of a simulation is provided in the debugging process and may, as shown in figure 19,
refer to the conceptual entities of the application that is driving the simulated system.

CONSUMER LIMITED CARE OVERSEER LISP LISTENER

Magis rn seg oe Fram Dfeeov | Site pyr ing ond Network Connections y [Rasuma)
Top of Object IY nin BF & ESUME th © ohTin

I#<CART-Q-11 51436036> [J . Brenipoint BREA FESUME £3 Loni
E: Q: B-HET-QUTRUT ¢3 2) 0: FREE END-0OF-FRACKET | .tt B-HET-0UTRUT (23 2% 1: FREE END-DF-PRLCHET +32 Pracg:s"nRE CVERIZEER got x

[E16 2: WeNET-AUTPUT (3 3) 2: FREE END-OF-PACRET | [he TU fay ees TORE MERSERR wat;
Et 3: BeNET=OUTPUT (3 20 2: WAIT «(= SPANNING (# RE ENC RCI [1™02 Finished printing Cafaulr Sorgen
; Mere Object Below Ws ae - SEE uw an printar imagen=-1 of Imagan- 1]

Top of Object 1] ER eq 7
1 #<NET-OUTPUT (3 2) 3: WAIT (=> :SPAWNING(#<DTP-CLO |

An object of flavor CARE: :HET-OUTPUT. Func tion 13 #8 f J [ws -
CARE : : COMPRSS-POINT 2 Se Rio, AL iBreakpoint BREAK. REIUME ro contin
{CARE: : PACKET -STRTL:: CARE: :MRIT NE Medias FERN SLI 9, ABARAT to quit.| CARE : : INTERNAL -BUS (= SPAWNING (# DTP-CLOSURE (MEN Goakoall SSE ae % |SITE CORRELATION

More Object Below Proce tiny Lead Seater Bios

BR HET-0UTPUT (3 2 &: NO=0F FRC EN . 9.2 -§ HET-IIPUT (3 2) 2: FREE FREE END-UF-PRCLET [i]s n H] .
#.FIFO-BUFFER (3 2; OPERATOR ro HET-TNHFUT: FREE # Tuilay | | 0 | EEE 1 @.8

 # FIFI-BUFFER «3 2+ HET-OUTFUT to ODPERRTOR: FREE 8 ONT +] ER Sol J =
EURLURTOR 2 2 +: BUSY B OPERATOR + 3 2): BUSY No ie 0 2 a.4
#HET-OUTPUT «32, 10: F FEE END-DF-PRCHET | : 3 -
H-HET-IHPUT1°3 2:10: FFEE FPEE EHD-DF~FRIMET | ro Bes

WHET-OUTPUT321 7:F F E E END=-OF-FRCHET | EB .| # NET-INPUT (3217: FREEF F E E END-OF-PACKLET | 9.0 -
| #.NET-QUTPWT 3 21Q:F RE E END=IJF-PACHLET | 4.d w.9 bod
E B-MET-INPUT (2 2 v 0: FREE FREE END-OF-FRLLET : ag Oper ator
8. FIFD-ONELE EVALUATOR to OPERATOR: ®« Queus 0: NIL || a

Mere Object Below PACKET LATENCY SYSTEM HISTORY

va ACE Dp Lomplle Hrgllst] More History Above | Sorted Notwork & hperator Delay Network & Spsrotor-Eweluctor Loa
| Trace Docmnt Flauwlns Edit BR APT ~2=23 S1330035) _ -

| Help E-lt felete er = # HET-DUTPUT «3 2)f 40 A ne Ie
Refresh Modify Config Mode (HCHET=THRUT i 2 2) L 32 \ So eee P
Print Bottom of History | RE EE v, AK: RC
Thzpect ! € 24.9: hy F A :

nN NY Vy bt po] : I
[ny iN 4 a Tz

- * 4
“20 a J

| 9 EN 4" NE Sr EE 80 0 Su too

Oper ators aimglated Time (uz)

JOTES:

Figure 18: Inspecting Simulated Components

fn the example shown in figure 19, a distributer process running on the evaluator at site

(1 1) has made an improper call on the update-locale function during execution of its

:start method. It might have been appropriate to investigate this situation in terms of the
modeled components. That could be done, for example, using the debugger to inspect the
evaluator component, its enclosing site, related net-output components, or whatever else at the

component model level seemed relevant. In this case, what was done was to use a few mouse
clicks to indicate interest in the source file for the distributer : start method generating

the problem. It was brought up for review and control was then transferred to an editor using
the underlying program development environment as shown in figure 20.

Because of the implementation system chosen for the realization of SIMPLE/CARE, at any

point in the simulation, procedures either in the application or in the component models can

be modified, incrementally recompiled (within a few seconds), and be made effective for all

17

29 January 1957SIMPLE/CARE y

calls on them -- even those in the interrupted stack frame. Thus simulation execution can Debacked up to some previous point in the stack (rame and retried (given that intermediate side
effecting code, if any, is safely re-executable).

CONSUMER LIMITED CARE OVERSEER LISP LISTENER re]
Process Queued Evaluator Avarladitity & Network Connections

T1

Tap of Object |
#<DISTRIBUTER -4 17752586)

An object of flavor DISTRIBUTER., Function 15 REQ~HRASH-APRRAY (Funcallable) 3500637» |

[REQUEST -STREAN: (> (1. 1.)(=>DISTRIBUTER DISTRIBUTER-REQUESTS1573. Q 8)) -

| Bottom of Object ’
Top of Args fer Crrrcnt Frame Top of Lecals/Specials for Current Frame =

org Q (.OPERRTION.): :START Local @ (COUNT): | xArg1 (SERVICE): #’SIH Local1 : 8.DTP-LOCRTIVE 2216R536> =
Arg 2 (SERVERSj : 20. Local © NIL
Ary 3 (FUTURE: (° (2. 2.)} {= FREQUESTORREQUESTS-FULocal3 (THE-SIT ES yv:MIL |

Ar g 4 (LOCALE i: *HIL Local 4 (OBJECT : MIL |Local 5, THE-CLOCK=-MHOMW, : NIL

’RODUCER LIMITE Bottom of Args More Locals Below B
Process Fostf Top of Stack

| (EH: | HVOKE-DEBUGBGER W<EH:RARG-TYFE-ERROR : COND! TIOM-MAMES (EH:RRG-TYPE-ERROR ERRDR CONDI TIOH SYSTEM: PI.(SIGNAL-CONDI TION ACEH: ARG-TYPE-EPROR : COMDIT [OH-HRMES (EH: ARG-TYPE~ERROR E R RO R IOMDIT ION SYSTEM: WRI I-

| {EH:FH-APPLIER~-HO-RESTART SIGNAL-CONDITION (HCEH:ARG-TYPE-ERRQOP :CONDIT{ON-NAMES (EM:ARG-T(PE-ERPOR E {J
: (EH:FOOTHOLD) 5
| (UPDATE-LOCALE NIL)

~~ (R<DISTRIBUTER -41 773256 :STARTH’SIN2 0 . ((2 . 2 .)(="REQUESTOR PEQUESTS-FUTURE 273.20 1).. . a

((:INTERHALF L RV OR Q.):STRARTH#*S[H20.((2.2.) (=> REOUESTOR REQUESTS-FUTURE 273.09))...)](FUNCALL R<DTP-CLOSURE - 36 26 4730: (:STARTH’SIN2B.¢~ (2.2.){=> REQUESTOR REQUESTS-FUTIURE 273. Q q|§
(CARE: USER~-EVALURTE (= R<DTP-CLOSURE -362B54730> R<DISTRIBUTER ~417752S6_ 1309.11313.j v
((:METHOD CARE: EVALUATOR : APPLYRULES): APFLYRULES (: TRUE (B: BR-VALUE #<EVALUATOR (1. |. VY: BUSY: CARE: -
(R<EVALURTOR (| ,1. »:BUS’,“ :APPLYRULES! : TRUE (B:BR-YALUE #-EVALUATOR (|. | . 3: BUSY CRPE:IN-STARTUS {II

More Stack Below B

Ex # S2ArChHiR e p oO t Resume bk Next Top of History Eg
[Error Rrglist Exit Retry BKExit #<stack-Frame UFDATE~LOCALE PC=55 i.

[inspect Duit Edit | Resume Bk RI 1 R:Stack-Frame (METHOD DISTRIBUTER START) PC=123 .
Help FlavinsModinsp Return step R<DISTRIBUTER -41775256 |

Dbg 5G Modify Stay Bottom of History,

>» TRAP The Fier s Carqum_L -Ct- Re —— LEE (|. . Eo, eee © (32 —=hir0h [0%
©.

The function 2~pected anarray,
>

JOTES. Type Or muse a function to (NlLaborts, Troedit nothing): Rh
23,36 {0:43:10 gy 4° or MOUJSR A nessage nane for a ~DISTRIBUTER =4]| 775256:

Debugger Frame J

Figure 19: Debugging A Simulation

18

SIMPLE/CARE 29 January 1987

CONSUMER LIMITED CARE OVERSEER LISP LISTENER re
FIT d o xt Lo 1 A a fara (PARTY .1. 7. {ons “

(DEFMETHOD (DISTRIBUTER :START) (service servers future locale) .

"Request creation of servers and continue on to request to wait” Bl: ” ba
(Jet ((the-sites (loop for count from 1 to servers collect

(locale-site (update-locaie locale))))) 1
(let ((object (reference seif)))

(without «clock ARRAY (Funcallable) 3500637:
(format *output-stream* "~&~A [distributer] “A”

(send (remote-site object) :location) MENTS ©57% sy 0) 0)) :,
(mapcar #‘(lambda (site) (send site :location)) the-sltes))) ‘ %

(posthg request-stream to future as :requests-stream) :
(spawning ((flavor ‘server) :start servke acknowledgements) on the-sites ect ;

as service) Top eof Lecals/Specials for Current Irene 2
(applying (:requast) on object as :distributer-requesting) for contlnuatbn 1 @ (COUNT i: | A

object))) in #<DTP-LOCATIVE 22166536, 32 NIL

DEFMETHOD (DISTRBUTER :REQUEST) (8 (Ege,wi .
“If there’s an available server and a request, pass out request; loop” i § (THE=-CLOCK=-MNOW): MIL 3
(loop Mere Locals Below 2

for response’ ® (accept (first-posting acknowledgements)) ck .

for (value clients tag) s (accept (next-posting request-stream)) ES EH:AP LiPE ERROR ERROR CONDI IoH SiSTEM:of ido (posting value to (posting-clients response) 5, (EH:ARG-TYPE-ERPOR ERROR LONDITIOH SSTEM: WRN) E

(next-posting acknowledgements))) ;done with this acknowledgement 3
{=> REQUESTOR REQUESTS-FUTURE 273. @@1}... :

compile-flavor-methods distributer) > REQUESTOR REQUESTS-FUTURE 273. 80))...)} 4
: uU -41 > 2.) 3.

DEFFLAVOR SERVER ((service (new-stream :server-r-yuests))) ()) RUE (B:BR-URLUE A<EVALURTOR (1. 1.1: BUSY: CARE: ||
ALUVE H<EVRLURTOR (1.1.1: BUS? REA ARORA - NUIT RATUIS RB

DEFMETHOD (SERVER START) (operation acknowledgements) Below v
“Send back notke of availablity” Tep of History :
(let* ((object (reference self)) UPDATE-LOCALE PC=SS: 1

(the-site (remote-site object)) (METHOD DISTRIBUTER START) PC=123" -
(the-location (send the-site :location))) "41775256 v

(without -clock Bottom ef Histery kt
(format *output-stream* "~&~A ~A" the-bcatbn operation)) ?

(posting 'initialized to acknowledgements for (list service) as the-location) a
(applying]] othing j : ¢

(request operation the-location) on object as :server=-continuation) : .
object)) :

MRS (Ze8CA&ILSP FONC-IQCK) JEJELT=STHES.LTSF . NEWES (4) FONT: HAR ¢) tl HLIZB) tI
Read Ing 2:>care examples >QBJECT-5IHES.LISP.4 (installed version 1s 3) - Sk
characters.

PN 1Nt pushed

Figure 20: Changing Application Code

19

SIMPLE/CARE 29 January 1957

7 CONCLUSIONS

The goals of simulation flexibility and simulation environment completeness have been dealt
with in the ways described throughout this paper. In summary, the system is flexible in that it
supports:

. Arbitrary data types and lengths in simulation. The information whose flow and
creation is controlled by simulated components may be of arbitrary complexity
-- from numbers and keywords to procedure bodies and execution environments.

« Instantaneous effect of definition change at both the application and component
modeling level (even during a simulation run).

. A broad range of instrumentation customization. Customizations may involve
arbitrary expressions for probe data transformations, many to many probe to panel
mappings, information from summary analyses on one panel's data included in
another, and control of what state is saved and for how long.

« Separation of probe and component definitions to facilitate their independent
modification.

« An application language interface that is easily extended or changed without
recasting the information flow control described by the component behaviors.

While there is always room for additional capability >, SIMPLE/CARE is a usefully complete
system. It now includes:

« Supplied components for a network multiprocessor simulation with many of their
parameters customizable by menu interactions.

+ A- hierarchical structure editor that currently provides automatic grid and torus
coniposi tion operators. (Automated composition of richer topologies, such as
hypercubes, has been provided for in the basic design).

. A rule language that supports a synchronous design style without incurring the
overhead of (naive) synchronous simulation.

| . Method invocation for functional simulation that is integrated into the behavioral
simulation rule system and which provides for operations by and on both local and
hierarchically related components.

0 Method specification design aids provided by the underlying program development
environment (for example, method dictionaries and quick access to method sources
from the debugging system).

. An evolved set of panel templates providing sorted, scrollable text lines as well as
self and fixed scaling, “two and a half” dimensioned, history sensitive displays
which may be scatter plots, strip charts, line graphs, intensity maps, and signal
animations.

.We set off to build a multiprocessor simulation system with performance adequate for the
understanding of inultiprocessor systems executing significant applications. The
SIMPLE/CARE simulation system has been used to study [he operation of “expert systems” of
respectable size [2]. Depending on instrumentation load, these studies have involved
simulation runs from 20 minutes to several hours each. While faster would surely be better,
performance has proven adequate to these needs.

OA histogram panel, for example, is just now being added (0 the system

20

SIMPLE/CARE 29 January 1987

8 ACKNOWLEDGEMENTS

This work stands on the shoulders of its predecessor, the Palladio system, designed and
implemen ted by Harold Brown and Gordon Foyster. Our functional goals were more restrictive
than theirs so we had the luxury of design by simplification. Without their implementation
base, it would have been hard to know even where to begin.

Many hands and minds have contributed to the development of SIMPLE/CARE. We are

particularly indebted to the work of Russ Nakano who started off to do a simple learning

exercise and ended up doing a particularly careful modeling of a intricate signalling protocol.

References

I. Brown, Harold, Christopher Tong, and Gordon Foyster. “PALLADIO: An Exploratory
Design Environment for Integrated Circuits.” IEEE Computer [6 (December 1983).

2. Harold D. Brown, kric Schoen, and Bruce A. Delagi. An Experiment in Knowledge-Based

Signal U nderstandi ng Using Parallel Architectures. Tech. Rept. STAN-CS-86-1136 vi
KSL-86-69, Stanford University, October, 1986.

3. Greg Byrd, Russell Nakano, and Bruce Delagi. A Point-to-Point Multicast Communications
Protocol. Tech. Rept. KSL-87-02, Knowledge Systems Laboratory, Stanford University, January,

1987.

4. Daniel Weinreb and David Moon. Lisp Machine Manual. Sym bolics, Cam bridge, MA,
1981.

21

