e rne COpPY

September 1987 Report No. STAN-CS-87-1178
Also numbered KSL-87-44

ADA-197 006

DA

A Dynamic, Cut-Through
Communications Protocol
with Multicast

AD-A197 €06

by

G. T. Byrd, R. Nakano, and B. A. Delagi

Department of Computer Science

Stanford University
Stanford, CA 94305

REPRODUCED BY:
S, Department of Commer o NFIS:
National Technical Information sn,c
Sp ingfield, Virginia 22161

SECURITY CLASSIFCATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188
Exp. Date: jun 30, 1986

1a. REPORT SECURITY CLASSIFICATICN
unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release‘ distribution

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

STAN-CS-87-1178

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL

6a. NAME OF PERFORMING ORGANIZATION
(If appiicabie)

COMPUTER SCIENCE DEPT.

7a. NAME OF MONITORING ORGANIZATION

6¢. ADDRESS (City, State, and 2iP Code)

STANFORD UNIVERSITY
STANFORD, CA 94305

7b. ADORESS (City, State, and ZIP Code)

8b. OFFICE SYMBOL

8a. NAME OF FUNDING/SPONSORING
’ (if applicable)

ORGANIZATION
DARPA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F30602 -85-C ~OOIZL

Bc. ADDRESS (City, State, and 2IP Code)

1400 WILSON BLVD.
ARLINGTION, VA

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

"A DYNAMIC, CUT-THROUGH COMMUNICATIONS PROTOCOL WITH MULTICAST

12. PERSONAL AUTHOR(S)

GREGORY T. BYRD, RUSSELL NAKANO, AND BRUCE A. DELAGI

13b. TIME COVERED
FROM TO

13a. TYPE QF REPORT

14. DATE OF REPORT (Year, Month, Day)]15. PAGE COUNT

16. SUPPLEMENTARY NQTATION

17. COSATI CODES

FIELD ~ GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and idenufy by block number)

19. ABSTRACY (Continue on reverse if necessary and identify by block number)

Abstract

3y
A

This paper describes a protocol to support point-to-point interprocessor com-
muaications with multicast. Dynamic, cut-through routing with local fiow con-
trol is used to provide & high-throughput, low-latency communications path
between processors. In addition, multicast transmissions are available, in which
copies of a packet are sent to multiple destinations using common resources as
much as possible. Special packet terminators and selective buffering are intro-
duced to avoid deadlock during multicasts. A sxmulated implementation of the

protocol is also described.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
O uncLassifieDUNUMITED [SAME AS RPT.

{J oTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢ QFFICE SYMBOL

DD FORM 1473, 8amar

83 APR edition may be used until exhausted

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

Knowledge Systems Laboratory August 1987
Report No. KSL-87-44

A Dynamic, Cut-Through
Communications Protocol
with Multicast

Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi

KNOWLEDGE SYTEMS LABORATORY
Department of Computer Science
Stanford University
Stanford, CA 94305

A Dynamic, Cut-Through
Communications Protocol
with Multicast* (1 cunry

NSPEOTE']

2

Greg Byrd!

Department of Electrical Engineering Accesion For)
Stanford University NTIS CRA&! v
Stanford, CA 94305 DTIC TAB 0

Unannounced O
Russell Nakanot Justification
Department of Computer Science
Stanford University By .
Stanford, CA 94035 Distribution |
Bruce A. Delagi Avaiiability Codes
Worksystems Engineering Group o Avziandfor
Digital Equipment Corporation st L Spesial
Maynard, MA 01754 A | ;’
AR

*This work was supported by DARPA Contract F30602-85-C-0012, NASA Ames
Contract NCC 2-220-S1, and Boeing Contract W266875.

tSupported by an National Science Foundation Graduate Fellowship, with addi-
tional support provided by the Dept. of Electrical Engineering. Any opinions findings,
conclusions or recommendations expressed in this publication are those of the author
and do not necessarily reflect the views of the National Science Foundation.

t Author’s present address: Digital Equipment Corporation, 100 Hamilton Avenue
UCO-1, Palo Alto, CA 94301.

Abstract

This paper describes a protocol to support point-to-point interprocessor com-
munications with multicast. Dynamic, cut-through routing with local flow con-
trol is used to provide a high-throughput, low-latency communications path
between processors. In addition, multicast transmissions are available, in which
copies of a packet are sent to multiple destinations using common resources as
much as possible. Special packet terminators and selective buffering are intro-
duced to avoid deadlock during multicasts. A simulated implementation of the
protocol is also described.

Contents
1 Introduction

2 Components

3 The Protocol

3.1 Packets e e
3.2 Packet Transmission
3.3 FlowControl e
3.4 Deadlock Avoidance,
3.4.1 Unicast Deadlocks
3.4.2 Multicast Deadlocks

4 Implementatio
4.1 Operator

4.1.1 Sending a Packet

n

...............................

.......................

4.12 ReceivingaPacket,

4.2 Fifo-buffer
4.3 Net-Input
4.4 Net-Output

4.5 Router . . .
4.5.1 Making a Connection
4.5.2 Multicast Transmissions

...............................

...............................

..............................

..............................

....................

...................

5 CARE Implementation

5.1 Operator e e e e e e e e e e
52 Fifo-buffer L e e
5.3 Net-Input, Net-Output, and Router
5.4 Results. . .

6 Conclusion

References

..............................

List of Figures

1 Componentsofa CARE site. 3
2 Organizationof apacket. 4
3 Network component interconnections. 6
4 Example of deadlock in a multicast. 8
5 Generic network component. L. L. 9

.6 Fifo-buffer state diagram. 12
7

Simulated fifo-buffer output state diagram. 20

List of Tables

A Tags used by communications system. 4
B Flow-controlsignals. 5
C Packet terminators.. 10
D Communication cycle phases. 14

ii

1 Introduction

This is a revision of an earlier paper [1], in which we presented a high-perfor-
mance point-to-point communications protocol with multicast capabilities. The
protocol described here is essentially the same, but an effort has been made
to describe the protocol in terms that more closely correspond to the intended
hardware implementation.

The protocol described in this paper is designed to effectively utilize network
resources. Dynamic, cut-through routing with local flow control is used to pro-
vide a high-throughput, low-latency communications path between processors.
In addition, a multicast facility is provided, in which copies of a packet are sent
to multiple destinations, using common resources as much as possible.

. Dynamic routing means that the communications channel to be used is cho-
sen at transmission time, based on what channels are then available. The alter-
native, static routing, would prescribe a specific channel for every destination—if
that channel were not available, the transmission would be blocked. Dynamic
routing, by adapting to current channel usage, attempts to balance the network
load. It is especially useful when the communications traffic is unpredictable or
variable over time {2]. Balancing the load allows more of the communications
resources of the system to be well used throughout a computation.

Cut-through routing means that a routing decision is made on the fly, as a
packet is received, rather than after buffering the entire packet. For example, in
“virtual cut-through” routing [3], the packet is passed on a word at a time, until
a desired channel is blocked, at which time the packet is buffered.! “Wormhole”
routing [5], on the other hand, uses flow control signals to halt the packet
flow, rather than buffering it. Cut-through routing offers reduced buffering
requirements (since the packet need not be buffered at each node) and low
latency. [6,7]

Flow control, in general, is any mechanism which attempts to regulate the
flow of information from a sender to match the rate at which the receiver can
accept it [8]. In this protocol, a transmission may be blocked and resumed in
the event of network congestion. If an output channel becomes blocked, the
sender stops sending data and halts the flow of data from upstream. When the
channel becomes unblocked, the transmission is continued from where it was
halted. The flow control mechanism is local, because actions are taken based on
the state of the downstream component rather than global information about
the entire network.

Multicast transmissions in a point-to-point network allow a packet to be
sent to multiple destinations, using common resources as much as possible. The
packet is replicated as needed, and subsets of the original target list are assigned
to the copies. Thus, “virtual busses” are available precisely as and when they
are needed. Selective buffering and special packet terminators allow potential

1 A related concept is staged circuit switching, described in [4].

deadlock conditions in multicasts to be detected and avoided.

The network components which define the protocol are introduced in sec-
tion 2, and the protocol itself is described in section 3. Section 4 presents a
" hypothetical hardware implementation of the protocol, while section 5 describes
the implementation in the CARE simulation system.

2. Components

This section defines the network components used by the protocol. The protocol
is defined by the behavior of these components and the values that are passed
among them. Of course, these components do not necessarily correspond to
distinct physical entities in a machine which implements this protocol—they
are merely a useful means of specifying the communications behavior of such a
machine.

The site component corresponds to a processor-memory pair in the target
machine. In particular, a site contains an operator, an evaluator, a router,
some local storage, and some network interface components, which are called
net-inputs and net-outputs (see figure 1).

The evaluator is the part of the site which executes application code. The
evaluator can request network activity, but otherwise has no role in the network
behavior of the system, so very little will be said about it in this paper.

The operatoris responsible for handling system-level activity, including com-
munication. In the target machine, it would create packets to be sent over the
network and accept transmissions destined for its associated procéssor. The
operator and evaluator communicate through shared local memory. The details
of operator-evaluator communication will not be addressed in this paper.

The site components which interface directly to the network are called net-
inputs and net-outputs. On each site, there is a net-input/net-output pair con-
nected to the operator, for local packet origination and delivery, as well as a
pair for every communication channel to the network.2 We will refer to the pair
connected to the operator as the “local” net-input and net-output. Because
of cut-through routing, net-inputs and net-outputs are only required to have
enough storage for one word of a packet, rather than the entire packet, where a
“word” is long enough to specify a target site.

The router connects all the net-inputs on a site to all the net-outputs. When
it receives a packet from a net-input, it determines the destination (or destina-
tions) and makes the connection to the appropriate net-output (or net-outputs).
Also, flow control information from the net-outputs are relayed by the router to
the appropriate net-input.

A pair of fifo-buffers queues packets between the operator and local net-input
and net-output. The upstream fifo-buffer queues packets from the network to

2The exact number of net-input/net-output pairs required by a site depends on the network
topology.

From To
Network Network

y s

Net- Net-
(Input Output '

o) ‘ @— Fom

Network Router “\- Network
Fom —p] v s L » T

twork
Network Local Local Ne

Net- Net-

Qutput lnAp'ut
Upstream Downstrea

Fifo- Fifo-

Buffer Buffer

M _,| Operator

e

m

0 .

I <

Y Lyl Evaluator

bite ~)

Figure 1: Components of a CARE site.

the operator; the downstream fifo-buffer queues packets from the operator to
the network.

3 The Protocol
3.1 Packets

Figure 2 shows the organization of a packet. The first part of a packet is
devoted to the target eniries. Each entry specifies a target site, as well as other
information that will be used when the packet arrives at the site. Following the
target entries are zero or more words of data and a one-word packet terminator.
The operator determines the status of a packet by examining its terminator.3

Each word in a packet is tagged, so that target entries may be differentiated

3As described in section 4.1.

Target Entry 1
Target Entry 2

Target Entry n

Data

Packet Terminator

Figure 2: Organization of a packet.

from data. There are two types of tags used for specifying a target site—one
which indicates that there is only one target for this packet (i.e., unicast), and
one which indicates that there may be more than one (i.e., multicast). This
allows the router to handle unicasts efficiently, without the extra mechanisms
required for multicasts described later. There are also a tags for the other words
in a target entry, which do not specify a site.

Also, tags are used to implement several special characters required for the
protocol. There are two types of pad characters: one for denoting a null target
entry, and one for indicating that there is no word available for transmission.
Finally, there are three distinct packet terminators—:end-of-packet, :local-
end-of-packet, and :abort-packet. The uses of these special cha.tacters will
be further explained as the protocol is described.

Table A summarizes the tags needed to implement target entries and specxal
characters.

Target Sites tunicast-site
:multicast-site

Pad Charactérs | :null-target
:null-transmission
Terminators :end-of-packet
:local-end-of-packet
:abort-packet

Table A: Tags used by communications system.

3.2 Packet Transmission

The transmission path of a packet is shown in figure 3. First, an evaluator
requests a packet transmission. For the moment, assume a unicast transmission
(only one target). The operator then sends the packet (through a fifo-buffer)
to the local net-input. The router decides which net-output should receive the
packet, based on the target site and the availability of net-outputs, sets up a
connection between the local net-input and the selected net-output, and begins
the transfer of the packet. Each non-local net-output is physically connected
to a net-input on a (logically) neighboring site. When available, this net-input
accepts the packet, and its router sends the data to the local net-output, if
the target site has been reached, or to another net-output, if not. This contin-
ues until the target site has been reached, where the local net-output delivers
the packet to the operator (through a fifo-buffer). The operator can then per-
form whatever operation is specified by the packet, such ‘as storing the value in
memory or queueing some opeération for the evaluator, for example.

If the packet has more than one target, the router may split it—that is, it
may send (essentially) the same packet to several net-outputs. This is called
a multicast transmission. Each transmitted packet contains a distinct subset
of the targets of the original packet.* The copying operation is done during
transmission, one word at a time, as opposed to buffering the entire packet
and making copies. If any branch of the multicast is blocked, the net-input
sends :null-transmission characters down the other branches until valid data
may be sent down all the paths. The pad characters (either :null-target or
:null-transmission) are thrown away when received by a fifo-buffer.

3.3 Flow Control

Flow control information, in the form of status signals, flows in the direction
opposite to packet transmission. There are three distinct status signals, as

4Each copy of the packet as it is transmitted will have the same number of target entry
“slots,” but some of them will contain nuil entries.

Status Meaning
‘open Available to receive data.
‘wait Busy or network is blocked; do not send
more data.
*abort-request | Potential deadlock detected.®

%2Only a fifo-buffer may originate the ’abort-request signal.

Table B: Flow-control signals.

Interconnection Network

! !

"~ Net- Net- Net. Net-
4 Input Output) 4 Input Output)
o "‘. “0.
'{j Router) (: Router '.'
Local Local Local Local
Net- Net- Net. Net.
Output Input OQutput Input:
Upstream ownstream Upstream ownstrea
Fifo- Fifo- Fifo- Fifo-
Buffer Buffer Buffer Buffer

.-'—‘\ f—-\‘_‘ .

M Operator M Operator

o

e e

m ‘m

o 0

r r .

y Evaluator y Evaluator
L.Q_‘—-_.' % #
kSI'fe- 1 - \Sif6-2 y

Figure 3: Network component interconnections. Packets travel in the direction
marked by arrows. Flow control information flows in the opposite direction.

shown in Table B. The status signals are used to indicate to the upstream
component whether data can safely be transmitted.

An’open signal is used to indicate that the component is ready to receive the
next word of the packet. If the transmission becomes blocked for some reason, a
wait signal is sent upstream to temporarily halt the flow of data. Finally, the
’abort-request signal indicates that a potential multicast deadlock condition
has been detected and the transmission may be aborted.

3.4 Deadlock Avoidance
3.4.1 Unicast Deadlocks

Dally and Seitz [5] have developed a deadlock-free unicast transmission scheme
for wormhole routing, based on virtual channels. Our strategy is different—if
progress cannot be made, a packet may be temporarily buffered at an interme-
diate site. In this way, at least one of the packets responsible for a deadlock will
be removed from the network, so that the other packets may make progress.
Thus, this protocol is a compromise between virtual cut-through [3], in which
the packet is always buffered when it is blocked, and wormhole routing [5], in
which the packet is never buffered.

More specifically, if the number of connection attempts for an acceptable
net-output exceeds a threshold, then the local net-output is considered as a
potential target. If the local net-output becomes available before the desired net-
output, the packet is buffered, freeing its upstream channels. When the operator
examines the packet and discovers that the packet was targetted for another site,
it will retransmit the packet. Assuming packets cannot be infinitely long, either
the local net-output or an acceptable remote net-output will eventually become
free, so that deadlocks can be avoided, as long as there is sufficient space in the
site at the front edge of the transmission.

3.4.2 Multicast Deadlocks

The existence of packet multicasts introduces the possibility of another type of
deadlock. A packet traveling through the network acquires the use of network
resources (e.g., net-inputs and net-outputs) and simultaneously excludes the
use of those resources by other packets. Without special attention paid to the
possibility of deadlocks, it is possible that resources are consumed to perform
the multicast, but completion of the transmission is not possible because the
resources acquired are insufficient.

Figure 4 illustrates an example of how multicast deadlock can arise. Sup-
pose we have two multicast transmissions, call them .4 and B, with common
destinations, site-1 and site-2. Suppose that one of the packets from multicast
A has already gained access to the local net-output on site-1. A packet from
multicast B has similarly gained access to the local net-output on site-2. For

Multicast A

= Net-(nput
& = Net-Qutpue
a =Fifo-Buffer

Muilticast B

Figure 4: Example of deadlock in a multicast.

multicast A to continue, it needs to gain access to the local net-output of site-2;5
for B to complete, it needs to gain access to the local net-output on site-1. Also,
neither of the multicasts can release the resources it has already required until
the transmission is completed. Since each multicast has acquired a resource
that the other needs, a deadlock results.

In order to recover from such a situation, the system must:

e Detect a potential deadlock condition, such as the situation described
above;

e Back out of the unsafe condition (by aborting one or more transmissions,
thereby releasing some set of resources); and

e Retransmit the aborted packets later, when the network is (hopefully) less
congested.

Whenever a packet is split for multicast, the protocol requires that a copy of
the original packet (with a complete target list) be sent to the local net-output.
This packet will then be stored in a fifo-buffer, so that it may be retransmitted
in the case that the current multicast must be aborted due to deadlock.

5The transmission cannot continue because the net-input cannot send any words until
all branches of the multicast are ready to receive it. Since the branch waiting for the local
net-output of site-2 is blocked, none of the branches may proceed.

A potential deadlock is detected by the fifo-buffer when the number of con-
secutive :null-transmission characters exceeds a threshold. This indicates
that one or more branches of the multicast have been blocked for a long time,
which implies the possibility of deadlock. When the threshold is exceeded, the
fifo-buffer asserts an ’abort-request signal upstream, so that the router may
abort the transmission if necessary.

A multicast is aborted by sending the :abort-packet terminator
downstream—all operators which receive a packet with this terminator will ig-
nore the packet. Also, the operator which receives the copy of the original packet
can tell whether it needs to be retransmitted by looking at its terminator.

These actions are sufficient to prevent persistent deadlock during multicasts.
However, since there is finite storage in the system, a scenario can be constructed
in which all the storage becomes committed and no packets can be delivered.
The protocol does not prevent this type of resource exhaustion. The assumption
is made that the designed capacity of the system is sufficient for its applications.

4 Implementation

This section provides a detailed description of the behavior of each of the net-
work components in a hypothetical hardware implementation. Figure 5 shows a
“generic” network component, with its input and output ports. The input and
output ports are used to pass packets and flow control information—packets flow
downstream, flow control signals flow upstteam. The packet-in port accepts
data from upstream, and the packet-out port sends data downstream; the
status-in port accepts flow control signals from downstream, and the status-
out port sends flow control signals upstream. -

packet-in status-out
Component
packet-out status-in

Figure 5: Generic network component.

4.1 Operator

The operator sends and receives packets through the network and through the
memory it shares with the evaluator. Thus, it has more than one set of ports for
packet communication. To avoid confusion, the ports it uses to communicate
with the network are prefixed network- (e.g., network-packet-in), while the
ports used for communication with the evaluator are prefixed evaluator- (e.g.,
evaluator-packet-in). Only network communication will be discussed in this
paper.

With respect to the network, both the upstream and downstream compo-
nents of an operator are fifo-buffers. The upstream fifo-buffer queues packets
from the local net-output and sends them to the operator. The downstream
fifo-buffer queues packets from the operator and sends them to the local net-
input.

4.1.1 Sending a Packet

The operator has a queue of operations, or requests, which it services in order
of arrival. If the head of this queue is a packet to be sent out into the network,
and network-status-in is ’open, indicating that the downstream fifo-buffer
is ready to accept a packet, the operator sends the packet (with an :end-of-
packet terminator) through the network-packet-out port.

4.1,2 Receiving a Packet

A packet arrival at the operator is signalled by the appearance of a target entry
word on the network-packet-in port. The network-status-out port is set
to 'open, which signals the upstream fifo-buffer to keep sending packet words,
and the packet is stored in a temporary buffer.

The action taken by the operator when the packet is completely received
depends on the type of packet terminator. There are three types of terminators,
shown in Table C, and their interpretations are given below.

The arrival of an :end-of-packet signifies that the packet transmission
was successful. The operator sends *wait to the upstream fifo-buffer (through
network-status-out) until the packet is serviced (e.g., an evaluator operation

Terminator Meaning
:end-of-packet Normal packet termination.
:abort-packet Packet is to be discarded by operator.

:local-end-of-packet | Treat as :end-of-packet, except ignore
all packet targets other than the local site.

Table C: Packet terminators.

10

is queued). When the operator is ready to receive the next packet, it asserts
‘open.

If the operator notices that some or all of the target addresses of the received
packet do not correspond to its own address, the packet is sent back out into
the network.® This might happen for one of the following reasons:

1. During a unicast transmission, a net-input could not make a connection
to the desired net-output. The packet is forced into the local fifo-buffer,
so that the operator may resume the transmission at a later time, freeing
up the net-input and its upstream components.

2. A multicast transmission (originated locally) was aborted. The local fifo-
buffer received a copy of the packet with a complete target list, so that
the packet could be retransmitted in case of an abort.

A :local-end-of-packet terminator instructs the operator to accept the
packet, as in the case of :end-of-packet, but to ignore any non-local target
addresses (i.e., no retransmission). This indicates that a multicast was successful
and does not have to be retried.

The arrival of an :abort-packet terminator instructs the operator to ignore
the packet. In other words, the temporary buffer holding the packet is released
without servicing the packet.

4.2 Fifo-buffer

Each site has two fifo-buffers, which have identical behavior but perform slightly
different functions. One fifo-buffer is upstream with respect to the operator,
and the other is downstream. The fifo-buffer can be thought of as three distinct
parts: the input, the queue, and the output. ,

The queue is a simple FIFO queue, with one-word input and output ports.
It responds to a ’take signal from the output by placing the oldest item in
the queue on the output ports. It responds to a ’put signal from the input by
placing the incoming data at the tail of the queue. It also presents a queue-
status signal to both the input and output, which can be ’empty, ’some, or
full. If the queue is empty, it sends a pad character to the output in response
to a ’take signal.

On its output side, the upstream fifo-buffer is connected to the operator,
while the downstream fifo-buffer is connected to the local net-input. The output
interprets an ’open signal on status-in by sending ’take to the queue and
sending the resulting output downstream. Nothing is removed from the queue
if status-in is *wait.

$1If any of the targets are local, the operator keeps a copy of the packet and strips the local
targets from the retransmitted packet.

11

DNF/open DF/wait

NF/open

Condition Meaning

" DF | Data arrives, and queue full.
DNF | Data arrives, and queue not full.
F Queue full.
NF Queue not full.
TQ Terminator queued.

Figure 6: Fifo-buffer state diagram.

On its input side, the upstream fifo-buffer is connected to the local net-
output, and the downstream fifo-buffer is connected to the operator. The fifo-
buffer needs to keep track of whether the terminator for the current packet has
arrived, because of the multicast abort procedure needed for deadlock avoidance,
so we describe the input handler as a finite state machine, whose state diagram
is shown in figure 6. The labels on the arcs represent the condition which caused
the transition and the status signal asserted on status-out as a result.

The fifo-buffer input begins in the 'free state. Whenever new data arrives
on the packet-in port, if the queue is not full, the 'open state is entered and
’open is asserted on status-out. If the queue is full, the wait state is entered
and ’wait is asserted; when space becomes available in the queue, the open
state is entered and ’open is asserted. If the queue becomes full at any point
in the transmission, the 'wait state is entered and the *wait signal is asserted
on status-out, so that no more data will be sent from upstream. When space
becomes available, the open state is re-entered, and ’open is sent upstream to

12

resume the flow of data.

When the fifo-buffer is in the ’open state, a “time-out” may occur, which
indicates that number of consecutive :null-transmission characters has ex-
ceeded a threshold. When this happens, it remains in the open state and
asserts 'abort-request on the status-out port.

When a packet terminator arrives, if the queue is not full, the *free state
is entered and ’open is asserted on status-out. If the queue is full, the *wait
state is entered first, which asserts *wait until space is available in the queue.
Then the ’free state may be entered. At this point, the fifo-buffer is ready to
receive the next packet.

4.3 Net-Input

The downstream component from a net-input is a router, but the values on the
status-in port are actually originated from a downstream net-output and are
passed through the router. If the net-input is local {connected to an operator),
its upstream component is a fifo-buffer; otherwise, its upstream component is a
net-output {on a neighboring site).

The net-input serves as a one-word data buffer and relays flow control infor-
mation to its upstream component. It has a two-phase operation:

1. During phase one, the status latch is opened, and the current value of
status-in flows upstream. This value will either be ’open or *wait—the
router will not allow an ’abort-request signal to ever reach the net-input.
The data latch (fed by packet-in) is closed during this phase, and the
stored value is output on packet-out.

2. During phase two, the net-input closes the status latch and examines the
latched signal. If the signal is ‘open, it opens the data latch, allowing
data to flow downstream. If the signal is *wait, the data latch remains
closed. In any case, the data latch is closed at the end of this phase.

4.4 . Net-Output

The upstream component of a net-output is always a net-input. On the down-
stream side, the local net-output is connected to the fifo-buffer which delivers
packets to the operator, while a non-local net-output is connected to a net-input
on a logically neighboring site.

The operation of the net-output is the same as the net-input, except that
the phases are reversed. The net-output conditionally latches data during phase
one, and allows flow control signals to flow upstream during phase two. The only
other difference is that the *abort-request signal may be passed upstream.

Table D summarizes the net-input and net-output operations during the two
communication phases.

13

Component

Phase One

Phase Two

Net-Input

Open status latch to
allow status information
to flow upstream.

Latch status from
downstream and
conditionally open data
latch to allow data to
flow downstream.

Net-Output

Latch status from
downstream and
conditionally open data
latch to allow data to
flow downstream.

Open status latch to
allow status information
to flow upstream.

4.5 Router

The router connects the net-inputs and net-outputs of a site, and is responsible

for:

e Determining to which net-outputs a packet should be sent, based on the
packet’s target addresses, the system routing strategy, and the current

availability of net-outputs;

e Creating, maintaining, and deleting the connections between a net-inputs
and sets of net-outputs, including transmitting data and flow control sig-

nals between them; and

o Sending appropriate pads and packet terminators, in order to implement

the deadlock avoidance mechanism.

For a unicast transmission, the function of the router is quite simple. Upon
examining the packet target, it selects a net-output (possibly the local one) to
continue the transmission, based on the location of the target site relative to
its own and on the availability of net-outputs. If no connection can be made,
a ’wait signal is sent to the requesting net-input until a net-output becomes
available. After a net-output is selected, the router maintains the connection
by sending data from the net-input to the net-output and sending flow control
signals from the net-output to the net-input. When the packet transmission is

Table D: Communication cycle phases.

completed, the net-output becomes available to accept another connection.

During a multicast transmission, the packet targets are read one at a time,
and the connections to net-outputs are made as the targets are read. For each

14

net-input the router keeps track of the type of its current connection. There are
three possible connecton types:

’unicast The packet is being transmitted to only one target, either because
there was only a single target in the packet, or because the packet is being
“passed through” because the local net-output was not available.

‘all-remote The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet’s target list
contained only non-local sites.

’some-local The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet’s target list
included the local site.

In the next two sections, we present further details about how connections
are made and how multicasts are handled.

4.5.1 Making a Connection

Making a connection involves determining the logical “direction” (e.g., up or
down) of the target from the local site, then determining which net-output
should be used for that direction, and finally updating the connection tables
and starting the packet transmission.

Determining the logical direction deépends on the network topology and is
usually straightforward. For example, a grid or torus requires only some arith-
metic comparisons between the target address and the local address to get Up,
Down, Right, Left, or some combination of these. A hypercube, on the other
hand, requires an exclusive-OR operation to see which bits in the destination
address are different than the local address. Equally simple operations can be
envisioned for most other network topologies, as well.

The protocol does not prescribe a particular routing policy for the network.
Instead, information about possible connections is “hard-wired” into the router
in the form of a priority network. Conceptually, we model the priority network
as a preference table—for every logical direction, we provide a prioritized list of
net-outputs that may be considered. Examples of routing strategies which may
be implemented in this way are (1) try all net-outputs, starting with the closest
to the target, (2) try only one net-output (static routing), and so forth.

Given a direction, the router checks the status of each net-output in the
preference table, in turn, until an available net-output is found. If none is
available, then the connection fails, and *wait is sent upstream to the net-input.

4.5.2 Multicast Transmissions

When a multicast packet arrives, the router makes a connection for each packet
target, one at a time. If the connection for a target has already been made (in re-
sponse to an earlier target), the target entry is merely transmitted downstream

15

to that net-output. Whenever a target entry is transmitted, :null-target char-
acters are sent down all of the other connections. In this way, the target list
is partitioned along several paths. When the packet data is received by the
router, it is transmitted to all the connected net-outputs. If any of the down-
stream paths becomes blocked, :null-transmission characters are transmitted
down all the other paths.

There is an additional complication for the router, however, since the local
net-output must be sent a copy of the packet to be buffered, in case the trans-
mission is aborted and must be retried. Because of the special :unicast-site
tag, the router knows immediately whether a packet should be treated as a
multicast or unicast. Note, however, that since the router only looks at one
address at a time, the router cannot determine when the last target occurs for
a particular branch of the multicast. Thus downstream routers may mistakenly
interpret a packet with only one target as a multicast. As a result, unnecessary
local copies of this packet will be made as it makes its way to its target site.”

When the first target of a multicast is received, the router tries to connect to
the local net-output, as well as the net-output specified by the preference table.
If the local net-output is not available, then the packet is not split at this site.
Instead, the entire packet is sent down the remote connection. In this way, the
packet will either sequentially visit each target on the list or will finally reach a
site where it may be split.

If at any time during the connection process, a desired net-output is not
available, a *wait is sent upstream to the net-input to halt the flow of additional
targets. While waiting for a net-output to become free, the router must send
target pad characters down the established connections. Unlike in the unicast
case, we cannot decide to divert this target to the local net-output, since then
there would be no way to tell which targets were actually serviced and which
were diverted. Therefore, to avoid the possibility of deadlock during target
processing, the local net-output must be sent data pad characters, so that the
downstream fifo-buffer can time out, if appropriate, and the multicast can be
aborted.

If the transmission completes successfully (i.e., is not aborted), the received
packet terminator is passed on to all the remote (non-local) net-outputs, but the
local net-output may be sent a modified terminator, as follows. If the received
terminator is :abort-packet, it is sent as is, instructing the local operator to
ignore the packet. If the received terminator is :end-of-packet, the terminator
sent to the local net-output depends on the connection type:

’all-remote: An :abort-packet is sent, since the packet should not be retrans-
mitted, and may be ignored.

"The router could be optimized to notice when an ’all-remote connection only uses a
single connection—an :abort-packet could then be sent to the local fifo-buffer, since there
is no possibility of deadlock and thus no retransmission will be neceasary.

16

’‘some-local: A :local-end-of-packet is sent, instructing the operator to ac-
cept the packet for the local targets, but to ignore the remote targets (i.e.,
do not retransmit).

If, during the multicast transmission, the router receives an ’abort-request
signal from the local net-output (generated by the downstream fifo-buffer), the
router aborts all the remote connections for the connected net-input by forcing
the net-outputs to latch an :abort-packet terminator. An ’open signal is
passed upstream to the net-input, and the transmission proceeds as if it were
a unicast transmission destined for the local operator. When the packet ter-
minator is received, it is passed directly to the local net-output. Note that
an :end-of-packet will cause the packet to be retransmitted by the operator,?
since there are non-local targets, and an :abort-packet will cause the packet
to be discarded.

5 CARE Implementation

In this section, we provide an overview of the implementation of the protocol
in the CARE simulation system. CARE is a library of functional modules and
instrumentation built on top of an event-driven simulator {9], which is used
to investigate parallel architectures. The typical CARE architecture is a set
of processor-memory pairs (sites) connected by some communications network,
though it can also be configured to represent a system of processors communicat-
ing through shared memory. The behavior and relative performance of CARE
modules can easily be changed, and the instrumentation is flexible and useful
in evaluating the performance of an architecture or in observing the execution
of a parallel program.

CARE is implemented using Flavors—an object-oriented extension of Zeta-
lisp [10]. Roughly speaking, each component described in section 2 is imple-
mented as an object (an tnstance of a flavor). (One notable exception is the
router—its functions and tables are assumed by the site object, rather than im-
plemented as a separate component. Also, the memory at a site is not explicitly
represented as an object, but exists implicitly in the simulator.) Associated
with each object is a set of instance variables, used to hold state information,
and a set of methods, procedures used by the object to respond to messages
from other objects.® The instance variables loosely correspond to the ports and
state variables used to describe the protocol in section 3. In particular, each of
the components which are described in terms of a state machine has a instance
variable, packet-status, which hold the current state of the component.

81If there are local targets, a copy of the packet will be kept and the local targets will be
removed from the target list upon retransmission.

90bjects and messages are only a software tool used by the simulator. Sending messages
between objects in the simulator has no particular correspondence to sending packets between
components in the target machine.

17

These objects communicate through shared structures called vias, which
represent unidirectional data paths. These are the “wires” which connect the
components’ “ports.” Asserting a value on the sending end of the via imme-
diately (in simulated time) triggers an event for the object at the other end.
Therefore, a via can be considered a zero-delay wire which can transmit any
arbitrary value (not just single bits).

The simulation is functional,'? rather than circuit-level, and event-driven,
rather than clock-driven, because cycle-by-cycle simulation of a parallel machine
would be extremely time-consuming, especially when the number of processors
is large. For this same reason, we do not wish to model the transmission of
a packet one word at a time. Instead, a packet is represented by two distinct
parts, one representing the contents of the packet, and the other representing
the packet terminator. In the following discussion, packet will refer to the first
part (representing the front edge of a “real” packet), and packet terminator will
refer to the terminator part.

In the simulation environment, explicit packet terminators allow us to (1)
implement the deadlock avoidance mechanisms described earlier, and (2) model
the transmission of a packet through the network in terms of its front edge and
its back edge. The transmission time of a packet is the time between arrival
of its front edge and its terminator. In this way, we can accurately model the
transmission of the packet without explicitly representing every word.

In the following subsections, we describe how the protocol is implemented
in terms of objects, packets, and packet terminators,

5.1 Operator

The time required to transfer a packet from the operator to a fifo-buffer (one
word at a time) would be proportional to the size of the packet. To model
this, the operator delays an appropriate time between sending a packet and
sending its terminator. When the transmission time of the packet has elapsed,
the terminator is sent as soon as an 'open signal is received from the fifo-
buffer. This is a simplified model, since there can be arbitrary delays involved
in freeing up space in a full buffer, but the fifo-buffer output module ensures
that the proper space is inserted between packet and terminator in the network.

A CARE operator receives a packet as described in the protocol. Note that
the time between receiving the packet and its terminator is dependent on the
size of the packet plus any delays encountered on its transmission path.

10The simulation is functional, in the sense that not every aspect of the hardware is sim-
ulated in detail. Some aspects are simulated by register transfer level behavior, while other
aspects have only a functional description. For example, the communications system is simu-
lated in terms of register transfers, while the execution of (uniprocessor) application code by
the evaluator is not simulated at all—it is directly executed by the host machine. However,
timing information for the execution of application code, based on measurements and esti-
mates, is used to assure that the simulation is reasonably faithful to the execution of a “real”
machine.

18

5.2 Fifo-buffer

In the simulator, the amount of storage in the fifo-buffer may be set at run
time.!! Each packet or packet terminator takes up one space in the buffer, no
matter what its actual size.

Since we do not simulate each word of a packet transmission, the fifo-buffer
cannot count pad characters to detect a potential multicast deadlock. Instead,
the simulated fifo-buffer uses a time-out procedure: when the packet is received,
the fifo-buffer schedules a wake-up event at random time in the future, based on
the packet size (for example, between 1.5 and 3 times the packet transit time).
If the packet terminator has not arrived by that time, the fifo-buffer asserts
*abort-request. This is not a viable option for actual implementation, since a
real packet header contains no information about the packet size.

On its output side, the simulated fifo-buffer is more complex than the pro-
tocol indicates. If a packet is being output from the queue, the fifo-buffer must
introduce a delay between the packet and its terminator to model the packet
transit time. However, the transit time is not merely proportional to packet size,
because downstream blocking could cause arbitrary delays in the transmission.

The simulated fifo-buffer output transitions are shown in figure 7. In this
case, the transitions are labelled with conditions and actions, rather than flow
control signals. Some additional instance variables for the fifo-buffer are required
to implement the output function. They are:

1. transmission-status: State of packet output.
2. delay: Accumulated time spent waiting.
3. last-wait: Event time when last *wait was received.

Initially, transmission-status is *free. If the downstream component re-
quests data (status-in goes to ’open) and the queue is not empty, the top of
the queue, which must be a packet, is placed on the packet-out via, delay is set
to zero, and transmission-status goes to ’busy. Also, transmission-status
is scheduled to go to ’done at a time that is proportional to packet size.

If no *wait signals are received from downstream while the transmission is
‘busy, then the transmission will be done after the packet transit time has
elapsed, and the packet terminator will be sent as soon as the downstream
component is ready to receive it.

However, if *wait is received during 'busy, last-wait is set to the current
time and waiting is set to t. If open is received during *busy, the time spent
waiting is added to delay and waiting is set to nil.

If ’open is received when transmission-status is ’done, and delay is
non-zero, then ’busy is entered again, *done is scheduled for the current time

11By getting the care:***buffer-size*** variable to any positive integer, or to nil, which
means “unbounded.”

19

W/lwnow
\ OND/term

DONE/

Oldelay WD/busy
" Condition Meaning
F ‘Free rec'd on status-in.
w 'Wait rec'd on status-in.
0 ‘Open rec'd on status-in.

DONE | 'Done event.
WD | ‘Waitrec'd and -
[delay nonzero OR last-wait non-nil].
OND | 'Open rec'd and ‘
[delay = 0 AND last-wait = nil].

Action Meaning

send | Send packet, schedule ‘done for
now + transmission-time.
Ilwnow | Last-wait = now.
delay | Delay = delay + (now - last-wait);
Last-wait = nil.

busy | Schedule 'done for now + delay;
. Last-wait = nil.
term Send terminator.

Figure 7: Simulated fifo-buffer output state diagram.

20

plus the accumulated delay, waiting is set to nil, and delay is set to zero.
Alternatively, if waiting is t and delay is zero, then done has occurred in the
middle of a wait; *busy is entered, waiting is set to nil, and done is scheduled
for the current time plus the difference between now and last-wait. .

Finally, when transmission-status is *done, delay is zero, and waiting
is nil, the top item of the queue (which must be a packet terminator) will be
sent. Then transmission-status becomes 'free, and the fifo-buffer is ready to
respond to the next data request.

All of this is to ensure that the time between the packet and its terminator is
dependent on the packet size plus any network delays along its path. The other
components, net-inputs and net-outputs, do not require this added complexity
on the output side. Since they merely pass packets and terminators from one
point to the next,!2 the flow control signals ensure that they will maintain the
proper separation between a packet and its terminator.

5.3 Net-Input, Net-Output, and Router

As mentioned earlier, the router is not an explicit object in the simulation.
Instead, the site object performs its operations. Net-inputs and net-outputs
communicate with it by passing messages (in the Flavors sense) rather than
making assertions on vias. Likewise, the site updates net-input and net-output
“ports” by setting instance variables.

To connect to net-outputs, the net-input sends a :connect message to the
site, which then attempts to make the appropriate connections. The result is
stored in the connection instance variable of the net-input. If no connection
could be made, ’seek is returned; otherwise, the type of connection (unicast, all-
remote, or some-local) is returned. If only some of the desired connections could
be made, the unsuccessful targets are placed in the pending-connections in-
stance variable. The net-input keeps sending :connect messages to the site
until all the targets are satisfied.

Other site methods used by the net-input include :disconnect-remote,
which releases the connections to all net-outputs except the local one, and
:send-all, which transmits a packet or terminator to all connected net-
outputs. (:Send-local and :send-remote transmit to a subset of connected
net-outputs.) ‘

Similarly, the net-output uses the :wait, :open, and :abort-request meth-
ods to relay flow control signals to the site, which then makes the appropriate
assertions to the connected net-input.

In the router, the :find-direction method determines the logical direction
of a target, given its address. This is defined as a method, rather than a func-
tion, because this operation is topology-dependent. In Flavors, we can define

12This is in contrast to the fifo-buffer, which must insert th. packet and terminator into
the network at the proper time.

21

a specialized site object for a particular topology by changing this one method
and inheriting the remaining behavior from the generic site definition.

The setup-targets function examines the target list, makes the connections,
and copies the packet, as needed. Finally, the make-connections function is
resposible for actually setting up connections and sending the packet down-
stream.

5.4 Results

Variants of this protocol have been used for many CARE simulations over the
‘course of several months. Though the performance has not been extensively
measured, the protocol appears to offer reasonable performance over a range of
network loads. Deadlocks and lost packets do not occur, even when the net-
work is extremely congested. Thus, our experience with the protocol indicates
that it offers efficient and robust one-to-one and one-to-many interprocessor
communication.

6 Conclusion

A protocol for high-performance interprocessor communication has been pre-
sented. This protocol supports dynamic, cut-through routing with local flow
control, which allows high-throughput, low-la.tency transmission of packets. In
addition, multicast transmissions are allowed, in which a packet is sent to several
targets using common resources as much as possible.

The protocol also prescribes mechanisms for detecting and avmdmg deadlock
conditions due to resource conflicts during multicast. In particular, a copy of
the packet is saved before it is split, special packet terminators are used to
abort transmissions and trigger retransmissions, and random timeout intervals
are used to detect potential deadlock conditions.

Finally, the implementation of this protocol in the CARE simulation sys-
tem is described. Explicitly representing a packet as the front edge and the
terminator allows accurate modelling of word-by-word packet transmission in
a functional, event-driven simulator. Also, the success of the implementation
indicates that this is a reasonable protocol for interprocessor communication.

References

[1] Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi. A Point-to-point
Multicast Communications Protocol. Technical Report KSL-87-02, Knowl-
edge Systems Laboratory, Stanford University, January 1987.

{2] V. Ahuja. Design and Analysis of Computer Communication Networks.
McGraw-Hill, 1982.

22

[3] P. Kernami and L. Kleinrock. Virtual cut-through: a new computer com-
munication switching technique. Computer Networks, 3:267, 1979.

[4] M. Arango, H. Badr, and D. Gelernter. Staged circuit switching. [EEE
Transactions on Computers, C-34(2):174-180, February 1985.

[5] William J. Dally and Charles L. Seitz. Deadlock-free message routing in
multiprocessor interconnection networks. IEEE Transactions on Comput-
ers, C-36(5):547-553, May 1987.

[6] P. Kermani and L. Kleinrock. A tradeoff study of switching systems in
computer communication networks. JEEE Transactions on Computers, C-
29:1052, December 1980.

[7] William J. Dally. Wire-efficient VLSI multiprocessor communication net-
works. In Paul Losleben, editor, Advanced Research in VLSI—Proceedings
of the 1987 Stanford Conference, pages 391-415, MIT Press, 1987.

[8] Richard W. Watson. Distributed system architecture model. In B. W.
Lampson, M. Paul, and H. J. Siegert, editors, Distributed Systems—
Architecture and Implementation, chapter 2, pages 10-43, Springer-Verlag,
1981.

[9] Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. An
Instrumented Architectural Simulation System. Technical Report KSL-86-
36, Knowledge Systems Laboratory, Stanford University, January 1987.

[10] Sonya Keene and David Moon. Flavors: object-oriented programmingon
Symbolics computers. In Common Lisp Conference, 1985.

23

