
ot March 1988 Report No. STAN-CS-88-1196

Ce

Motion Planning With Uncertainty:

The Preimage Backchaining Approach

by

Jean-Claude Latombe

Department of Computer Science

Stanford University

Stanford, California 94305

gS a

“)Lt! 35
Nad * Ly

8



Motion Planning With Uncertainty:
The Preimage Backchaining Approach

Jean-Claude Latombc

Robotics Laboratory, Computer Science Department

Stanford University

Abstract

This paper addresses the problem of planning robot motions in the presence of uncertainty.

It explores an approach to this problem, known as the preimage backchaining approach.

Basically, a preimage is a region in space, such that if the robot executes a certain motion

command from within this region, it is guaranteed to attain a target and to terminate

into it. Preimagc backchaininy consists of reasoning backward from a given goal region,

by computing prcimages of the goal, and then recursively prcimages of the prcimages,

until-some preimages include the initial region where it 1s known at planning time that

the robot will be before executing the motion plan. In the paper, we first give a rigorous
formalization of the problem of planning motions in the presence of uncertainty; such

a formalization is necessary because in many regards reasoning with uncertainty is not

reducible to straightforward intuition. Then, we investigate in detail the theory of the

| preimage backchaining approach; we give a new presentation of preimages, we explore
the notion of maximal preimages, and we extend the framework to the generation of

conditional motion strategies. Finally, we describe a complete set of algorithms that makes

it possible implementing the approach in a simplified two-dimensional world, which we

call the mini-world. The restrictions imposed on the mini-world arc essentially aimed

at reducing the conceptual and computational complexity of the geometric computations

required by the preimage backchaining approach. Ncvertheless, the mini-world is still

appropriate to handle realistic navigation problems with omni-directional mobile robots.

Key-Words: Spatial Reasoning, Robot Planning, Motion Planning, Planning in the Pres-

ence of Uncertainty, Preimagc Backchaining.
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1 Introduction

In this paper, we address the problem of planning robot motions in the presence of uncer-

tainty. In principle, the robot may be any kind of rigid or articulated object capable of

controlling its motions within a workspace. In particular, it may be a manipulator arm,

a multi-joint multi-finger hand, a wheeled vehicle, or a free-flying vehicle. In practice,

however, the complexity of the motion planning problem augments exponentially with the

number of degrees of freedom of the robot system [45,48,6].

Motion planning in the presence of uncertainty 1s one of the important problems that we

have to solve in order to create autonomous robots [20]. By autonomous robots we mean
robots that are both automatic - 1.e., that can execute tasks in the physical workspace

without human intervention —, and taskable - 1.e., that accept high level task descrip-

tions. Such a description typically specifies what the user wants done rather than how

to do it. Therefore, at some level of reasoning, an autonomous robot has to plan the

motion commands and the sensing acts that are appropriate to achieve the goals, and it

must monitor their execution. Examples of sub-tasks that usually require motion plans

taking uncertainty into consideration are: grasping an object with the end-effector of a

manipulator robot, mating two mechanical parts in an assembly process, and navigating

from one location to another in an in-door environment. In this paper, we consider the

generic task of planning the motions of a single controlled object (i.e., the robot) among

fixed, un-movable, and rigid obstacles, from an initial region (a single location if there was

no uncertainty), where it 1s known that the moving object will be before executing the

plan, to a goal region. We distinguish among three types of uncertainty: uncertainty on

robot control (the robot does not execute motions exactly as they are specified), uncer-

tainty on dimensions and locations of obstacles in the initial world, and uncertainty on

on-line sensing. However, most of the paper concentrates on uncertainty on control and

. on sensing.

The solution to a motion planning problem without uncertainty is the geometrical descrip-

tion of a collision-free path of the robot from its initial location to a goal one. The solution

to a motion planning problem with uncertainty is a mofion sirategy. Typically, a motion

strategy 1s an algorithm including motion and sensing commands, which takes advantage

of various sources of information (e.g., model of the motions, prior model of the world,
on-line sensing) in order to reduce uncertainty and lead the robot to the goal position.

Thus, a strategy may include motion commands merely aimed at acquiring new pieces of

information. However, reaching a goal position 1s the only imposed goal. Reducing uncer-

tainty 1s important only when it 1s a prerequisite to achieving this goal. Although in this

paper we consider motion strategies using sensing, this 1s not always a requirement. For

instance, Erdmann and Mason [18] investigate sensorless strategies capable of dealing with
uncertainty. However, such strategies require reasoning about operations, such as pushing

and sliding, which involve several independent moving objects. Planning sensory-based
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strategies requires reasoning at planning time about pleces of information that will be
known (with some uncertainty) only at execution time.

In this paper, we focus on an approach to motion pianning with uncertainty known as

the preimage backchaining approach. Basically, a preimage of a target for a given motion

command 1s a region in space, such that if the robot executes the motion command from

within this region, it is guaranteed to attain the target and to terminate into it despite un-

certainty; terminating the motion in the target typically requires sensory-based recognition

capabilities. Preimagc backchaining consists of reasoning backward from a given goal. A

search graph 1s built and explored by computing preimages of the goal for different motion

commands, and then preimages of the prcimagts, until some preimages include the initial

region. The preimage backchaining approach has been first introduced by Lozano-Pérez,

Mason and Taylor [35], with subsequent contributions by Mason {39], Erdmann [17,18],
and Donald [10,12].

The contribution of this paper is threefold. First, it gives a rigorous formalization of

the problem of planning motions in the presence of uncertainty (Sections 2 through 5);

such a formalization 1s necessary because in many regards reasoning with uncertainty is

not reducible to straightforward intuition. Second, it brings new fundamental insights in

the theory of the preimage backchaining approach (Sections 6 through 13, and Section

17); in particular, it introduces a new formal definition of preimages (Section 8), which,
we believe, is clearer than the one used in previous papers; based on this definition, it

explores the notion of maximal preimage (Sections 9 through 12); it also extends the

formal framework of preimage backchaining to the generation of conditional strategies

(Section 17). Third, the paper describes a complete set of algorithms that makes it possible
implementing the approach in a simplified two-dimensional world, which we call the min:-

world (Sections 14 through 16); although rather simple, the mini-world 1s still realistic

enough for some applications: for instance, it can be the world of an omni-directional

mobile robots with a polygonal outline moving among obstacles bounded by polygonal

outlines. Throughout the paper, we use examples in the mini-world to illustrate our

presentation; the restrictions imposed on the mini-world are essentially aimed at reducing

the conceptual and computational complexity of the required geometric computations. A

final section (Section 18) relates our presentation to previous work.

During the last five years, a trend in research on autonomous agents interacting with a
dynamic and/or uncertain external world has been toward “reactive planning” (e.g., see

[22]). This trend grew up in reaction against the more traditional approach to planning,
which tends to decompose planning and execution between two successive phases. A new

extreme position related to this trend 1s to use no prediction of future states at all. A

criticizable effect Of such a position 1s to produce planners that produce plans with no

provable properties relative to their correctness (but 1s there any more a plan?). We

think that planning 1s an essential capability of an autonomous agent in order to display
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intelligent behavior, and whether it is performed off-line or on-line, it should produce plans

with well-defined properties, so that if their execution fails, it is possible to diagnose why.
Such a diagnosis 1s not important for correcting the plan (since it already failed), but to

determine the assumptions which were wrong, l.e. to learn from failure.

In. this paper, we concentrate our presentation on the planning of strongly guaranteed
strategies. Strategies of this class arc guaranteed to succeed whenever errors on control,

model, and sensing remain within predefined bounds specifying uncertainty. If such a

strategy fails, it means that one error exceeded these bounds during execution. Despite

some drawbacks (e.g., some motion planning problems may admit no strongly guaranteed

solution, or only complex ones), these strategies are most appropriate when off-line plan-

ning is prefered (e.g. in the context of industrial manufacturing [28]), or when on-line
interaction between the controller and the planner is limited (e.g. by the bandwidth of a

radio link). They also can be used on-line to plan motions to achieve short-term goals.

In addition, from a theoretical point of view, strongly guaranteed strategies raise many

interesting questions leading to study theoretical concepts with broader relevance. In the

conclusion, we will introduce a weaker (i.e., larger) class of motion strategies, which still

has provable properties, while being more adapted to reactive planning.

2 Modeling Task Geometry

Let us consider an object, .A!, moving in a euclidean space called workspace. Any list of
parameters that completely specifies the position of every point on .A at any instant { with

. respect to a fixed Cartesian coordinate system VV in the workspace defines a space called

the configuration space of A [34]. Any point in this latter space (1.e., any instantiated
list of parameters) 1s called a configuration of A.

There 1s an infinity of possible configuration spaces for A. We assume that one of them,

denoted C, has been arbitrarily selected as the configuration space of A. At every instant,

the mapping of A into C is a point, P, called the effector point. In the following, d(c)

denotes the region occupied by A in the workspace, when P’s position in C (i.e., d’s

configuration) 1s Cc.

Example 1: Figure 1 shows several examples of configuration spaces:

- Figure 1 a: The configuration space of a two-dimensional rigid object A that can only

translate in the plane is R? (more precisely, it is isomorphic to ®?). A configuration (z, y)
consists of the coordinates of a fixed reference point on A with respect to W.

- Figure 1 b: The configuration space of a two-dimensional rigid object A that can both

translate and rotate in the plane is R% x S’, where S! is the unit circle. A configuration
(z, y, 8) consists of the two coordinates of a fixed reference point on .A4 and the orientation

‘A table of symbols is given in Appendix at the end of the paper.
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Figure 1: Configuration Space Examples

of a fixed reference axis with respect to W. Similarly, if A is a three-dimensiona. rigid

object allowed to translate and rotate without restriction, C = R* x SO(3), where SOQ) is
the three-dimensional Special Orthogonal Group. Then, if orientation 1s represented using

the Euler angles (¥, 8, ¢), a configuration is the list (z, y, z, ¥, 6, ¢).

- Figure 1 ¢: The configuration space of an articulated object with N rotating joints 1s a

subspace of (S')¥ = S' x... x S’. A configuration is a N-dimensional list (gy, qa, . . . . qn),
each parameter ¢; specifying one joint angle. |

At this stage, a trajectory of 4 in the workspace can be described as a mapping 7 :

t € RR — c € C. It can also be represented as a curve in configuration space x time

c x R.

Now, let us assume that d’s workspace includes fixed obstacles B;, : = 1,2, .... The region

occupied by each obstacle B; in the workspace maps into C as another region called a

C-obstacle and denoted CB;2. By definition, CB; = ¢c € C / dc) N B; # 0}.

Example 2: Figure 2 illustrates the case where both A and B; are convex polygona.

regions, A being only allowed to translate. The configuration of A is defined as the

coordinates of point P (when A is a rigid object only allowed to translate, the effector

point and the reference point coincide). The curve followed by P when A slides in contact

with B;’s boundary, without overlapping of d’s and B;’s interiors is the boundary of CB;.

It can be proved that CB; is also a convex polygon [34].

If we also allow A to rotate, then CB; is a volume in R? x S' = {(z, y, 8)}. Each cut through
CB; perpendicular to the f-axis of C is a convex polygon. However, CB; is bounded by

curved surface patches (more precisely, ruled surfaces) [34]. 1

2A connected region B; may map into C as a non-connected region CB.
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Figure 2: Mapping an Obstacle in Configuration Space

Several practical methods exist for computing either the exact or an approximate rep-

resentation of a C-obstacle, when both d and B; are polyhedral (or polygonal) objects
(34,3,23,9,30]. In particular, Donald [9] describes a method for computing the mapping of
polyhedral obstacles, when A is a rigid polyhedral object allowed to both translate and
rotate.

If the obstacles B; are mobile obstacles, then it is possible to map the regions they occupy

in d’s workspace into regions of configuration space x time C x R. Each cut C x {¢}
perpendicular to the time axis includes the C-obstacle CB; at time {. In the rest of the

paper, we only consider fixed un-movable obstacles.

Let Cpe = Ic € C [ Ale)N(UB;) = 0} = C-UCB;. Cy, is called free space. Whenever
the effector point P is in free space, it means that A has no contact with any obstacle B;.

Let Ceontaet = ic € C / dc) N(U Bi) # 8 and d(c) Nn (U B;) C 8(U B;)}, where dS denotes
the boundary of the closed region S 3. Contact is called contact space. Whenever P is
in contact space, it means that .A has made a contact with one or several obstacles B;.

We always have 9(UCB;) C Ceontact, but, as illustrated by Figure 3 (there is no clearance
between A and B’s hole), it may happen that Ceontaer 7 (UCB;).

Mapping the geometry of the task into configuration space allows us to transform the

problem of planning the motion of a dimensioned object into that of planning the motion

of a point, P, from an initial region 7 to a goal region G. Both Z and G are subsets

" 3We assume that physical objects occupy closed bounded regions in the workspace. We use the same
symbols, A and B;, to denote both the physical objects and the regions they occupy.
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of C. The motion path of P is constrained to lie entirely in Cfree U Ceontact- Thus, config-
uration space makes explicit the geometrical constraints imposed on the motion of A by

the obstacles. However, it 1s easy to verify that different geometries in the workspace may

result in the same geometry in configuration space; so, the mapping between workspace

and configuration space 1s not a bijective one.

In the rest of this paper, we mainly consider a simple two-dimensional (2D) configuration

space (z, y), called the mini-world, to which some restrictions apply. In particular, there
1s a finite number of C-obstacles in C, and every C-obstacle CB; 1s a polygonal region;

Ceontact COnsists of a finite number of finite straight segments. The other restrictions will be

stated when relevant in further sections. Our presentation of the preimage backchaining

approach directly applies to the mini-world, and all the illustrating examples take place

in the mini-world (eventually with slight indicated differences). Although most of this
presentation remains valid in higher-dimensional configuration spaces, certain modeling

aspects and geometrical computations, not treated in this paper, are made considerably
more complex by increasing C’s dimension. Some geometrical computation problems in

higher-dimensional spaces are even still completely unexplored.

3 Modeling Task Physics

We are interested in planning motions with uncertainty. In particular (see Section 5),

the motion of the effector point P may not be controlled perfectly. In addition, the
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escometry of the workspace, and so the geometry of C, may not be known exactly. Due
to uncertainty, it may be useful (or necessary) to include sensing acts other than position
sensing in motion plans. I[lowever, the use of some sensors requires dealing with more

that just geometry. Certain physical properties of the workspace have to be modeled, and

mapped into constructs in configuration space. For instance, using visual sensing may

entail representing reflectance properties of obstacle surfaces.

In this paper, we assume that the robot is equiped with two sensors only, the position

sensor, which gives the current configuration of .4, and the force sensor, which measures the

reaction force generated by obstacles when d pushes on them. Using force sensing requires
mapping forces into configuration space. The rest of this section describes how wrenches

(combination of forces and moments) resulting from the contact of 4 with actual obstacles

can be mapped into C as generalized force vectors resulting from the corresponding contact

of P with C-obstacles. Our description is inspired from Erdmann’s work [17], where more
detail can be found.

A wrench (F, M) applied to (or by) .A is mapped into C as a force vector f applied to (or by)
P. The component of f along each parameter axis of C 1s proportional to the acceleration

of A caused by the wrench along the degree of freedom corresponding to this axis. For

instance, in the configuration space C = (z, y, 8) of a rigid 2D object, a force vector is

made of three components respectively proportional to the linear acceleration of .A along

the x- and y-axes, and to the rotational acceleration about the Q-axis.

Let us assume that d’s and B;’s boundaries are both frictionless. When there is no contact

between A and any of the B;, then A cannot exert any force on its environment, so the

reaction force on A is null. Correspondingly, when P is in free space, the reaction force

on P is null. When there is a contact between A and an obstacle B;, if A pushes on B;,

then B; pushes back. It turns out that, in configuration space, P and CB; behave in the

same manner. The generalized force exerted by A on B; is mapped into C as a vector f,,,
applied by P. It can be proved that the reaction wrench exerted by B; on .A maps into

C as a force vector, f,..ce, Which is perpendicular to the boundary of CB; at the current

position of P. We say that CB; reacts to f,,u by generating f,..ct. If {opp is perpendicular
to the boundary of CB;, then feat = —foppi-

Let us now consider the case when the surfaces produce friction. A classical model of

friction on a surface in the workspace, based on Coulomb’s law, 1s known as the friction

cone (in fact, it is a half-cone). The cone’s axis is normal to the surface at the considered

point (see Figure 4 a); its extreme rays make an angle tan ~'p with this axis, where g is the
coefficient of friction (we assume the same value for the static and dynamic coefficients).

An applied force that points toward the surface inside the cone causes the generation of an

opposite reaction force having the same intensity (see Figure 4 6). An applied force that

points toward the surface outside the friction cone results in a reaction force along one
extreme ray of the friction cone (see Figure 4 c); then, the resulting net force is tangent to
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Figure 4: Illustration of the Friction Cone

the surface.

The notion of friction cone in the workspace extends easily to the configuration space

of a translating object A. In such a space, at any point on the surface of a C-obstacle

CO:;, friction can be modeled using a friction cone. The angle of this cone derives from

the friction coefficients of the actual surfaces in contact. The applied force, the reaction

force, and the friction cone in configuration space are related in the same fashion as in the

workspace. The friction cone at a point on a C-obstacle boundary thus specifies the range

of possible orientations of the reaction force on P at that point. Erdmann [17] discusses
friction representation when d can also rotate. VC' € Cfree U Contact, we denote F=(c*)
the range of reaction force that can be generated at position c* *. If ¢* € Cy, then
F*(c*) = {0}.

In our mini-world, the friction coefficient 1s constant along every edge of every C-obstacle.

Thus, both the angle and the orientation of the friction cone remain constant along an

edge. If the edge is frictionless, then pr = 0 and the cone reduces to its axis. The friction

cone associated with every C-obstacle vertex is the cone, the sides of which are the two

most extreme rays of the cones associated with the adjacent edges. Thus, WC assume

that when P is in Cine at a C-obstacle’s vertex, the reaction force generated by the

C-obstacle can be any non-negative linear combination of the reaction forces that can be

generated by the two adjacent edges. Figure 5 illustrates friction cones in the mini-world.

Vc* € Contact: v(c*) denotes the unit vector pointing along the axis of the friction cone,
and 2¢(c*) denotes the angle of the friction cone. Let £ be an edge in Ceontace; ¥(€) denotes
both the unit outgoing normal vector to &, and the unit vector pointing along the axis of

the friction cone at any position on £. In the mini-world, V¢* € Contact; F*(c¥) 1s the set
of all vectors included in the friction cone at c”.

As it will be explained further, ¢* denotes an actual position of P in C, while ¢ denotes a measured
position.
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We denote f the value of the reaction force on P, which 1s measured by the force sensor.

4 Motion Commands .

A solution to a motion planning problem in configuration space 1s a plan including motion

commands expressing intended motions of the effector point P. If there were no uncer-

| tainty, one could consider formulating motion commands as geometrical paths (continuous

sequence of configurations) to be followed by P at execution time. However, since we

address the motion planning problem in the presence of uncertainty, we consider slightly

more sophisticated commands, called generalized motion commands.

A generalized motion command M is one of the form M = (CS, TC), where:

oe CS 1s the control statement specifying the (possibly infinite) trajectory along

which the controller executing the command has to move P,

oe TC 1s the termination condition specifying the condition upon which the con-
troller should terminate the motion of P.

The concept of control statement 1s illustrated by the following two examples.

Example 3: One type of control statement is pure velocity conirol A velocity v is

specified, and executing the motion command causes P to move along a straight line in

C, with constant velocity v, when P 1s in free space and when P 1s in contact space with

v either pointing toward the outside of the C-obstacle or tangent to its boundary. The
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motion command causes no motion of P when it 1s In contact space, with v pointing toward
the inside of the C-obstacle.

Example 4: Another type of control statement, which makes use of force sensing, is

| generalized damper control. The corresponding equation in C for this type of control is f =

B(Vv,e — Vv), where v is the specified commanded velocity, f is the reaction force on P, and
Va.ee 18 the net velocity of P; B 1s a constant, called the damper constant, which relates

velocities to forces. When P 1s in free space and when P is in contact space with v either

pointing toward the outside of the C-obstacle or tangent to its boundary, f = 0, so that

vnet = V. Then, as with pure velocity control, generalized damper control along v causes P

to move along a straight line with constant velocity v. When P 1s in contact space with v

pointing toward the inside of the C-obstacle, f # 0, so that v,. 7 v. Then, two cases are

possible: either v points inside’ the friction cone at the current position of P (see Figure

6 a), and P sticks to the boundary of the C-obstacle (no motion); or v points outside the
friction cone (see Figure 6 6b), and P slides tangentially to the C-obstacle boundary. i

Notice that both pure velocity control and generalized damper control, as we described

them, are ideal approximations of the behavior of actual controllers. Indeed, both suppose

that the controller can change the robot’s velocity instantaneously. Obviously this is

impossible with an object that has non-null mass. This approximation 1s one source of

error resulting in control uncertainty.

There are many other possible types of control statements than those presented in the

above examples. However, in our mini-world, we only consider those two. We denote pure

velocity control with commanded velocity v by V(v), and generalized damper control

 5We say that v points inside the friction cone if the vector —v originating at the cone’s apex is contained
in the friction cone.
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with commanded velocity v by GD(v). Generalized damper is one sort of f{orce-based
compliance, which has received considerable attention in the Robotics literature (e.g.,

see [14,38,55,26] for more detail). In particular, Mason [38] analyzes generalized damper
control in configuration space. I(hatib [26] trad uccs the concept of “operational space”,
which 1s similar to configuration space in the case of a rigid moving object, and formalizes

the dynamic equations of a manipulator arm in this space; he applies this formalization

to define a hybrid position/force motion controller. Buckley [5] investigates generalized
spring control, another type of force-based compliant control, in configuration space; he

applies this type of control for planning motions of objects from contact to contact.

The termination condition TC is an expression of the general form tp(d¢, C10,5¢] fi0.6¢1),
where: tp is a predicate; 6¢ is the elapsed time since the beginning of the motion; cpgg
and fio 5 are the records of position and force sensing since the beginning of the motion.
Examples of termination conditions are [6¢ > Tpland [c(6¢) € S and angle(ng, £(6t)) = O].

[6¢t > 15] means that the motion has to be terminated when its duration exceeds Tp.
[c(8¢t) € S and angle(ng, £(6)) = 0] means that the motion has to be terminated when the
measured configuration is in region S and the measured force makes a null angle with the

given vector ng.

Notice that a termination condition may not be guaranteed to ever terminate a motion.

“A particular case occurs when the motion physically stops by sticking against an obstacle,

while the termination condition does not recognize this situation (because it was not an-

ticipated at planning time). Then, although there is no more motion in the physical sense,

the controller does not know it and does not execute the next step in the motion plan.

5 Modeling Uncertainty

When considering a real robot operating in a real world, one has to take into account

possible errors arising from many different sources. It has become rather common to

group possible errors into three different types: control errors, model errors, and sensing

errors. Control errors result from the fact that no robot controller 1s perfect; for instance,

executing a motion command with CS = V(v) does not cause P to move exactly along v

+ in free space. Model errors arise from our inability to have an exact model of the workspace

(e.g., we cannot know the exact dimensions of the objects in the workspace). Sensing errors

are inherent to the fact that sensors are measuring devices that have limited precision.

Let us consider that every error applies to the value of a parameter. Given the nominal

value p of a parameter p, the actual value p* of this parameter belongs to a set U,(p). We
call this set the uncertainty on the value of p. The set may be bounded or not, discrete

or not, finite or not. We assume a uniform probabilistic distribution of the actual value of

p over this set’. In our notations, we distinguish the actual value of a parameter from its

$This assumption is directly related to our focus on (strongly) guaranteed strategies. Other types of prob-
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nominal value by using a star (*) as exponent.

In the following, {cs{CS), UcA(C), U.(c), and UU, (f) dcnotc the functions specifying uncer-
tainty on control, model, position sensing, and force sensing. Below, we specify a possible
representation of these functions in the mini-world. In the rest of the paper, however, we

will assume no model error, i.e. Uc(C) = {C}.

Control uncertainty: Let v be the specified (i.e., nominal) commanded velocity in either

V(v) or GD(v). At any instant durin? the execution of the motion command, the actual
commanded velocity v* € U,(v), such that:

- angle(v*, v) < 4,,

-|lv*]| € A,(v), an interval including ||v|],
where angle(v™, v) evaluates to the angle between v* and v, and [|v|| evaluates to the

module of v. (Note that v* may not he constant during the motion.)

Thus, at each instant, the orientation of v* is within a half-cone, called the velocity cone.

This cone’s apex is at the current position of P; its axis points along the direction of v;

its extreme rays make an angle #, with this axis.

If CS = V(v) or GD(v) and P is in free space, the actual velocity of P is v=.

If CS = GE)(V) and P is in contact space, the actual velocity of P is v>_, = f*/B+Vv™ (see

Example 4). Let the negative veloctly cone be the half-cone symctrical to the velocity cone

with respect to the apex. If the negative velocity cone is contained in the friction cone

at P’s current position, sticking is guaranteed (i.e., Vi. = 0), because P is guaranteed to
push against the C-obstacle within the friction cone; if the two cones have no intersection

[except their common apex), then sliding or moving away 1s guaranteed; in all other cases,

sticking is possible, but not certain. Notice that testing whether P may slide or stick

on a C-obstacle’s edge in the mini-world is made particularly simple by the fact that the

orientation of the friction cone remains constant along the edge. The test 1s illustrated by

Figure 7.

In the mini-world, both Ucs(V(v)) and Ues{GD(v)) arc denoted U,{V).

Model uncertainty: Consider the configuration space with a single C-obstacle CB, as

shown at Figure 8 a. Assume that one of the dimensions of CB, d, is not precisely known.
Uncertainty on d can be defined by U; = [dmin, dmaz). One way to represent such un-
certainty is to extend the configuration space into a generalized configuration space (see

Figure 8 6) by adding one extra-dimension corresponding to the d parameter. Each cut

perpendicular to the d-axis corresponds to a possible configuration space. The problem is

still to move a point, P. However, the difference with regular configuration space 1s not so

abilistic distributions have been used to model uncertainty in Robotics (e.g., see [16,49]). More sophisticated
distributions could be used in addition to the uniform one in order for example to evaluate the probability

that a strongly guaranteed strategy will perform correctly or to guide trouble-shooting if the guaranteed

strategy happens to fail.

14



velocity | ~ane woe velocity

8 7

negative Tv ;
velocity |i

y negative
velocity

cone

NNANN ANN

a b

Figure 7: Sticking Test With Control Uncertainty

much that the new space is three-dimensional (z, y, d); it is that P can only be controlled
along two of its axes (z and y). Indeed, as long as C-obstacles are rigid and un-movable,
P 1s constrained to move within one single plane perpendicular to the d-axis; but we do

not know the d-coordinate of this plane within the range [dmin, @maz]-

This technique for representing uncertainty on configuration space geometry can be applied

to N parameters (N>1), by adding N axes to configuration space. Parameters need not be
continuous ones. They may also take their values from discrete and finite sets. Let GC be

the resulting generalized configuration space; Ue(C) = GC.

As investigated’ by Donald [10,12], most of the preimage backchaining approach can be
extended to such a generalized configuration space. However, in the rest of the paper, and

in the mini-world in particular, we assume that C’s geometry 1s perfectly known.

It 1s easy to model uncertainty on the friction cone, by defining a small cone and a large

cone. The only impact 1s on the sticking test illustrated by Figure 7. Sticking is guar-

i anteed only if the negative velocity cone 1s contained in the small friction cone; sliding

1s guaranteed only if the negative velocity cone and the large cone have null intersection.

: In the following, we only consider cases where sliding has to be guaranteed. Therefore,

we assume no uncertainty on friction cones (alternatively, we can think of using the large

friction cone only).

Sensing uncertainty: Let ¢ and { be the position and force measured by the sensors at

some instant. At the same instant, the actual position and force, c* € U.(c) and f* € U,(f),

. 15
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such that:

- Uc) = C,(c), the closed disk of radius p. centered at c,

- 1°11 € [IFN] — &4, [IE] 4&4],
- If {|f]| > E;, then angle(f*,f) < 8; otherwise, the orientation of f has no significance.

Throughout the paper, we assume that time measurement 1s perfect. This 1s not quite

exact, because a real controller discretizes time. We also assume that the termination

condition of an executed motion command is continuously monitored, and that the motion

1s instantaneously stopped (both in the control sense and the physical sense) when the

condition becomes true. Again, this 1s not exact. In fact, in first approximation, errors

on time measurement and on motion termination can be blended with other errors, by

enlarging control and sensing uncertainties. However, a more realistic approach would

be to treat them differently. An approach to the representation and the treatment of

uncertainty on time measurement, in the context of motion planning, can be found in [41].

6 Preimage Backchaining

Let 7 be a region in configuration space C. Let M = (CS, TC) be a generalized motion

command. Let 7 be the target of M, that is we want to bring the effector point P into 7

by executing M. Uncertainty on control and sensing is specified by Ucs, U., and Us. WC
assume no model error.

We call preimage of 7 for M any region P in C such that: if the effector point P is

actually in P at the time when the execution of M starts, then, despite uncertainty, it is

guaranteed both that the resulting motion will terminate and that P will be in 7 when
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the motion terminates. In other words, if the precondition P € P holds before executing

M, then the postcondition P € 7 will hold after executing the motion command. We will

give a more formal definition of a preimage later in Section 8.

Example 5: Figure 9 (a; and a,) shows examples of preimages of a target 7 for velocity
controlled motion command with two commanded velocities vy; and Vy. Figure 9 (b, and ba)
shows examples of preimages of 7 for generalized damper motion commands with the same

two commanded velocities. In every example, a possible termination condition is: [c(ét) €
7 & L,.(0) and angle(f(6t), 47)) < ¢(T) + 04], where @ is the Minkowski’s operator for
set addition’. Preimages for generalized damper control are larger than those obtained

with velocity control, because generalized damper control has some limited capabilities to

"Te XZ, (0) is the edge 7 grown by pe.
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comply with the obstacle geometry, by sliding along edges. |

Now, suppose that an algorithm is avaiiabie for computing prcimages of a target 7 for a
motion command M (we will investigate preimage computation in Sections 13 through 16).

Let us consider a motion planning problem specified by §, the goal region in which P has

to be moved, and Z, the region that is guaranteed to contain the initial position c;,;, of P.

Preimage backchaining consists of constructing a sequence of preimages Py, P,, .... FP,
such that:

- P;, Vi € [1, q], is a preimage of P;_ for a selected motion command M; (with Py = G);
- I CP,

The inverse sequence of the motion commands which have been selected to produce the

prcimages, [Mg, M,_1,....M,], is the generated motion strategy. We say that this strategy
1s strongly guaranteed because its execution 1s guaranteed to achieve the goal success-

fully, whenever the control errors and sensing errors remain within the ranges determined

by Ucs, U., and U;. As mentioned in the introduction, this paper focuses on this type of
strategy.

A motion planner 1s said to be strongly complete if it is guaranteed to generate a strongly

guaranteed strategy whenever such a strategy exists. At the eventual expense of strong

completeness, the problem of generating the sequence of preimages can be transformed

into’ the combinatorial problem of searching a graph by selecting motion commands from a

predefined discretized set. The root of this graph is the goal region ¢, and each other node

1s a preimage region; each arc 1s a motion command, connecting a region to a preimage for

this command. Construction of this graph requires discretizing the set of possible control

statements. For instance, with velocity control and generalized damper control, it requires

discretizing the set of velocity orientations.

Example 6: Figure 10 illustrates the application of the preimage backchaining approach

to a simple example. Figure 10 a displays the initial region Z and the goal region G. Figure

10 b shows a preimage P; of G for the motion command M, = (GD(v,), TC,), where v,
is as shown in the figure and TC, detects contact against G by measuring the horizontal

component of the measured reaction force. P; has no intersection with the initial region

Z. Assume that we consider edge &, which is a subset of P;, as an intermediate target.

Figure 10 ¢ shows a preimage Pa of & for My = (GD(v,), TC,). v4 is shown in the figure.
TC, detects contact against £& by measuring both the vertical component of the reaction

force. Since &£ is part of Py, Py is also a preimage of Pi. P; includes I; so the problem is

solved. The generated strategy is [Ma, M,]. i

Some motion planning problems only admit conditional strategies (i.e. strategies with

conditional branching statements), or are more easily solved by generating such strategies.

The application of the preimage backchaining approach to the generation of conditional

strategies does not raise major difficulties, and will be considered in Section 17.
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A strategy with no iteration or recursion can only result in the execution of a bounded

number of motion commands. It may bc insufficient in the prcscnce of infinitely many

C-obstacle algebraic surfaces. lowever, since this is unlikely to happen in real world
problems, WC will not consider strategies with iteration or recursion in the rest of the

paper. The completeness of a planner restricted to the class of motion problems that

can be solved by executing a bounded number of motion commands is called bounded
completeness.

Notice that the preimage backchaining approach can also bc useful to plan motions even

when there is no uncertainty. Although there exists more efficient path planning techniques

applicable to such situations, the approach may still present some interest. Indeed, since

the outcome of the planner is a channel formed by successive preimagcs, which is less

constrained than a unique path, it leaves the controller more opportunities for facing

contingencies (e.g., unexpected obstacles) [8]. Ilowever, WC will not explore this aspect of
the approach further in this paper.

Note also that the relevance of the preimage backchaining approach is not limited to motion

planning. The principle of the approach may also be of interest for other types of action

planning problems, including the “robot planning” problems traditionally considered in

Artificial Intelligence [42]. Indeed, a preimage is nothing else than a precondition of a given
postcondition (ideally, 1t 1s the weakest precondition). In motion planning, it has a strong
geometric flavor; but, in other domains, it may well have a more logic-oriented flavor. In

particular, goal regression, as presented in [54] and in [42] (Chapter S), is a similar technique
for planning in worlds represented as sentences in the first-order predicate language. It

resembles prcimage backchaining in that it consists of propagating goals backward by
computing the weakest logical conditions whose satisfaction before executing a sequence

of actions guarantees the achievement of each of the goals after the actions have been
executed.

In the following sections, we explore in detail the theory of the preimage backchaining

approach applied to motion planning. One of our underlying preoccupations is to attempt

to reduce the cost of searching the preimage graph, by analyzing the notion of maximal

preimage (with respect to set inclusion). Indeed, intuitively, a large preimage has more

chance to include the initial region Z than a small one; in addition, if it is considered

) recursively as an intermediate target, a large prcimage has more chance to admit large

preimages than a small one. Thus, considering larger preimages may reduce the size of

the search graph; in addition, it may have the side-effect of producing simpler strategies

(i.e., strategies with less motion commands). Another way of dealing with combinatorial

complexity would be to use heuristics for guiding the search; We will not explore it in this

paper because, except for simple cases, it seems that motion planning with uncertainty

tends to defy intuition and straightforward heuristics.
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7 Actual and Observed Trajectories

Given a starting position c;, the control statement CS in a motion command M =

(CS, TC) specifies a nominal trajectory of P. liowevcr, due to control errors, executing the
motion command may produce another trajectory, 7°, called the actual trajectory. Fur-
thermore, due to sensing errors, the termination condition TC may observe 7° as another
trajectory, T, called the observed trajectory.

We represent an actual trajectory, 7°, as (ci., fI.), where cf. and I. are functions mapping

the elapsed time 6t since the beginning of the motion into the actual position of P and the

actual reaction force on P at this instant. Notice that this representation 1s redundant.

For example, in the mini-world, if CS = GD(v), f:.(6¢) is completely determined by the
actual velocity ¢:. (the first derivative of c}.), the friction cone on each C-obstacle edge,
and the damper constant. In particular, Vét > 0:

- c:.(6t) € Cy... = £1.(62) = 0,
C5 (81) € Commtace = [I£-(88)]] = 0 or angle(u(e:(61)), £1. (51) < (ez-(80)).

We represent an observed trajectory, 7, as (c, f,), where c¢, and f, are functions mapping
the elapsed time since the beginning of the motion into the measured position and the
measured force at this instant.

When planning ¢ motion command to achieve some target, the motion planner has to

consider the set of possible actual trajectoriesthat can result from the execution of the

command, since they must all attain the target. It also has to consider the set of possible

. observed trajectories, so that it can plan termination conditions that will guarantee the

controller to terminate the motion when the goal is attained.

This leads us to introduce several notions, which are useful to formalize and explore the

preimage backchaining approach.

One notion is the directory of actual trajectories, which contains a description of all the

possible actual trajectories that can be generated by executing a motion according to a

commanded control statement CS from a region S [39]:

-DEFINITION 1: The directory of actual trajectories for a region S in C and

y a control statement CS is the set, denoied D*(S, CS), of all the trajectories t° of P
that would be generated by an ideal coniroller executing every motion command M* =

(CS*, false), with CS* € Ucs(CS), according to the exact specification of CS”, starting
from every position ¢% in S (i.e., ¢c*(0) = ¢; € S). (The termination condition ‘false ’ is
the constant iermination condition which 18 never satisfied.)

The second notion 1s consistency between actual and measured data:

DEFINITION 2: A pair (¢’, 1°) of actual posiiion and force, and a pair (c, f) of measured

21 I



position and force are consistent tf and only tf (c¢™, f*) € U.(c) x U/(f).
An actual trajectory 7° and an observed trajectory 7 arc consistent if and only if, Vot > 0:

(ci. (8t), (61) € Uc (68) x U;(£.(81)). Keraj(7T7) Ea {r / 7° and T arc consistent).

Since the range of possible reaction forces at a position ¢* is F=(c¢*), WC can also define the

consistency between an actual position and a pair of measured position and force:

DEFINITION 3: An actual position ¢* and a pair (c, f) of measured position. and force

are consistent if and only if 3f° € F*(c”) : (¢', £9) and (c, f) are consistent.

Koos (c, T) def {c* / ¢ and (¢, ) are consistent} .

In the mini-world, K> (c, f) can be computed as follows:

- if |||] £ eg then: XK; (c, ) = E,(€) N(Cree U Coontact);
- if [fl] > ef then: K;,,(c,f) = Z, (c) N{c"€ Ceontact / angle(v(c™), I) < $(c") + 0,}.

The third notion is confusability between actual data:

DEFINITION 4: Two pairs (ci,f) and (c5,f;) are confusable if and only it I(c, f)

such that (3,1) € Uc) x Us(f) and (<5, £5) € Uc) x UE). Otherwise they are distin-
guishable.

Two actual trajectories T; and T, are confusable tf and only if, V6t > 0: (c;. (61), f7.(61))
and (cz, (61), f.(61)) are confusable. Otherwise they are distinguishable.

In the mini-world, two actual trajectories 7, and 75 are confusable if and only if the
following two conditions hold simultaneously, Vét > 0:

- distance(c:.(61), c:.(61)) < 2p,
- if ||£: (51)]] > 2¢, and IE. (68)]] > 2<4, then angle(f:.(6t),f:.(8t)) < 26TS ~f Ty “fs Ly A = f-

If two trajectories are confusable, the motion planner cannot be certain that the controller

will be able to distinguish between them at execution time.

8 Formal Definition of Preimages

Given a target’ 7 in C and a motion command M = (CS, TC), a preimage P is such

that any possible motion of P executed according to CS, starting from within P, follows a

trajectory T that is guaranteed to attain 7 (target attainment) in such a way that TC stops

8We use two different words, target and goal, which the reader may consider rather indistinctively. How-
ever, our convention is to use the world target when we are only interested in a single step of preimage
backchaining. We use the word goal when we are interested in a complete motion planning problem, which
may, or may not, require multiple-step recursion.



P into the target (target recognilion). We formalize these two concepts — target attainment
and target recognition — below, by defining two predicates, Attain and Achieve.

Let us denote Attain(7,CS,S) the condition that a motion executed according to CS is
guaranteed to attain 7 if the initial position of P is in S. This condition can be formalized
as follows:

DEFINITION 5: Attain(7, CS, S) E (Vr* € D(S,CS),3t>0: c..(t) eT).

Obviously: Attain(7,CS,S) & [Ve € S : Attain(7, CS, {cH

A preimage P of 7 for M = (CS, TC) must satisty Attain(7, CS, P), since any motion
from within P must attain 7. However, it is only a necessary condition. A region S

satisfying Attain(7, CS, S) may not be a prcimage of 7 for M because executing M
from within § may not be guaranteed to terminate in 7 (it may even not be guaranteed

to terminate at all!). Appropriate termination of M 1s under the responsability of the

termination condition TC, which plays no role in the definition of Attain.

The termination condition TC = tp(dt, Cio,5¢] fi0,59) only applies to observed trajectories.
D*(S, CS) contains possible actual trajectories. Each such trajectory, 7°, may be observed
by TC as any trajectory 7 in Kyq;(7°)-

Let us denote Achieve(7, M, P) the condition that the execution of M is guaranteed to
terminate in 7 if the initial position of P is inside P. It is formalized as follows:

’ DEFINITION 6:

Achieve(T,M,P) [Vr € D*(P, CS), Vr € Kraj(77) :
dt> 0: tpld, co. fro.) = true;
let tg = Inf {L/tp(2, coe], flot]) = true}; ci.(to) € T].

The formal definition of a preimage derives directly from the specification of Achieve:

*DEFINITION 7: A preimage of 7 for the motion command M is any region P such

that Achieve(7, M, P).

This formal definition does not provide an immediate practical method for constructing

preimages. However, we can easily derive the following properties:

PROPERTY 1:

a- Achieve(7, M, P) & Vc: € P: Achieve(7,M, {c]}).

b- If ‘P is a preimage of 7 for M, then any subset of P is also a preimage of T for M.
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c- If P, and Py are both preimages ofT jor M, then Py U Py 1s a prcimage ofT for M.

These properties naturally lead to the notion of maximal preimage:

DEFINITION 8: The region P™*(T, M) ae! {c;/Achieve(T, M, {c;})} is the maximal
preimage of 7 for M.

As mentioned in the preceding section, the size of preimages is an important factor to
consider both for reducing the cost of searching the preimage graph, and for producing

simpler strategies. Since every prcimage of a target 7 is included in a maximal prcimage

Pme=(T,M), for some M, we arc conducted to investigate the parameters in M influencing

the size of P™e*(T, M).

The size of P™**(7, M) depends on both the ability of the control statement CS to attain 7

and the ability of the termination predicate TC to recognize achievement of 7. Dependence

on CS 1s an 1mportant topic relating motion control to motion planning. Because there

is currently no substantial results (either theoretical or practical), we will not discuss it

further in this paper. In the next four sections, we address the dependence of the maximal

preimage on the termination condition.

9 Power of a Termination Condition

The following definition specifies a partial ordering on termination conditions for a given

target 7 and a given control statement CS:

DEFINITION 9: Let M; = (CS, TCy) and My = (CS, TC2) be two motion commands
that only differ by their termination conditions. TC, is said to be more powerful than

TC, for CS and 7 it and only it P™**(T, My) C P™e(T, M,).

Therefore, if TC, is more powerful than TC, for CS and 7, then VP C C: P is a preimage
of 7 for M5, implies that it is also a preimage of 7 for M,;.

Example 7: Consider the point-into-hole example shown at Figure 11 a. The two hori-

zontal edges on the sides of the hole are semi-infinite lines”. The target 7 is the edge at the
bottom of the hole and CS = GD(v). Assume perfect control (v’ = v), but no position

feedback (p. = oo) and no force feedback (ey = oo). The termination condition can only
recognize achievement of the target by measuring the elapsed time since the beginning of

the motion. Therefore, any finite region P inside the shaded area displayed in Figure 11

a is a preimage for the termination condition ét > T, where T is the maximal amount

‘Since some of the edges are not finite, this example occurs in a space that slightly differs from the
mini-world. However, all the other mini-world specifications apply.
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Figure 11: Illustration of the Power of a Termination Condition

of time required for attaining 7 from within P. Consider the maximal preimage P, with

TC, = [6t > Ti], and the maximal preimage P, with TC, = [§t > 13], where T5 < Tj
(Figure 11 b). Clearly, TC; is more powerful than TC, for CS and 7. |

‘ The power of a termination condition depends on both its arguments — 1.e. the information

it has access to during motion — and the knowledge embedded in its predicate — i.e. the

information that is transmitted by the planner. We analyze these dependences in the

following two sections.

10 Role of Arguments in a Termination Condition

The general form of a termination condition includes the following arguments: &f, the

elapsed time since the beginning of the motion; cos, the record of position sensing since

the beginning of the motion; and fi0,64, the record of force sensing since the beginning of
the motion. However, a particular termination condition may use only a subset of these

arguments. The following definition characterizes several types of termination conditions

depending on the arguments they actually use [17]:

DEFINITION 10:

“Actually, our terminology slightly differs from the definition given by Erdmann.
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A termination condiiion using ¢(§t) and/or f(8t) is called a ierminaiion condition with
instantaneous sensing.

A terminafibn condiiion using St is called a termination condition with time.

A lerminalion condition using c(t) and/or f(t), for some t € (0, 6t], is called a termination
condition with history.

In Example 5, we used a termination condition with instantaneous sensing, but without

time and history to illustrate the notion of preimage. Indeed, instantaneous position and

force measurements were sufficient to reliably recognize entry into the target. However, as

we show below, there are situations where time and history are useful (or needed!).

For instance, consider Example 7 again. Since no position and no force sensing are avail-

able, the motion command can only rely on the elapsed time &f to recognize achievement

of the target. Note that in this case the only termination conditions without time are

the constant conditions {rue and false. Only true can stop the execution of the motion

command, and the largest preimage of 7 for (CS,true) is 7 itself!

The example below illustrates the role of history in a termination condition:

Example 8: Consider the motion planning problem depicted at Figure 12 (this example

is extracted from [39]): the region Z of possible initial positions of P consists of two points
1, and 1,5; the region G of goal positions of P consists of two points ¢g; and ¢g;. Assume that

CS = GD(v), with v pointing downward, perfect control, imperfect position sensing (p. is
as shown in the upper right corner of the figure), and no force measurement. Thus, there

are two possible actual trajectories depending on the initial position of P. Uncertainty on
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position sensing makes the two trajectories distinguishable only during . interval where

they arc distant from each other by more than 2p.. Thus, by remembering sensing history,

the termination condition can terminate the motion inside the target. A specification for
. such a termination condition is the following:

if §t < Ty

then if xc(6t) - xc} < 2p.
then flag « 1;

else flag — 2;

else if ((flag=1)A (6t =T\))V ((f Zag =2) A (6t = T3))
then rcturn(true);

else return(false);

where:

- xc(é1) is the z-coordinate of the measured position of P along the horizontal z-axis;

- xc; is the s-coordinate of the actual position of 2; along the z-axis;
- Ty is the amount of time to attain point ky or k, (see Figure 12), depending on whet er
the motion starts from 2, or from tis;

-T; (i = 1 or 2) is the amount of time necessary to travel from i; to g;. -

Notice that the above example could not be solved by a three-motion strategy (left-down-

right) avoiding all the obstacles, because the relative position of 1, and g, is different from

the relative position of z; and g¢;. It could also be solved, however, by generating a con-

ditional strategy (see Section 17) with two motion commands, none of them including a

termination condition with history. However, the important event (that the two possible

trajectories become distinguishable) 1s used to build the branching statement in the strat-

egy. Thus, history 1s incorporated in the control structure of the motion strategy rather

than in the termination condition. In fact, this seems to be a general way of remembering

sensing history, removing the absolute need for termination conditions with history.

Termination conditions with instantaneous sensing, but without time and history, can be

at best as powerful as termination conditions with instantaneous sensing and either time,

or history, or both. Nevertheless, they seem sufficient for solving many realistic motion

-planning problems.

11 Termination Conditions With State

In this section, we explore how the planner can transmit some knowledge to the controller

in the termination predicate.

Remember that given a goal region G and an initial region I, preimage backchaining

consists of constructing a sequence of preimages Py, Pz, .... P, such that: (1) P; is a preimage
of P;—y for a selected motion command M;; and (2) ZT C P,. When P; is constructed, it is
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known by rccurrcncce that if the recursion upwinds successfully, P will be inside P; before

M; is executed. Thus. if the planner was able to construct P; and M; simultaneously, it.

could embed this knowledge into the termination predicate tp; of TC, (the termination

condition of M;). This knowledge might contribute to augmenting the power of TC,.

This is the idea analyzed in this section. Although the outcome is not a practical means

for constructing the resulting termination predicate, 1t 1s useful to establish limits on
termination conditions and preimages, before we explore techniques for constructing them.

Let us introduce the notion of termination condition with state:

DEFINITION 11: Let S be a region in C, T a largel, and CS a conlrol slalecment.

TC: = tp¥ (6, C{o,6t] fi0,6¢)) is specified as follows:

1. L — D*(S, CS).

| 2. For every 6t > 0 do:

o For every T in L, if (ci.(6t),f:.(6t)) & U.(c(6t)) x U(£(62)), then remove T°
from L.

° 0) — {ci.(6t) [|  € near If Q CT, then evaluate TC? to true; otherwise
evaluate lo false.

TC is calleda termination condition with state, and tps a termination predicate
with state. We denote MI = (CS, TCI).

TCI embeds in its predicate the knowledge that the only possible actual trajectories are
those which may be produced by CS starting from within S. Indeed, the evaluation of

the termination condition does not consider trajectories that are not in D*(S, CS), while
some of these trajectories might be confusable with trajectories in D*(S, CS). Thus, there
may be cases where a termination condition not embedding the above knowledge 1s not

able to recognize achievement of 7, while TCY can.

Now suppose that the planner considers a region P as a candidate preimage of 7 for a
motion command whose control statement is CS. Using the termination condition with

state, it may attempt to construct the preimage of 7 relative to P:

DEFINITION 12: The region Hp(T, MJ) = {c; € P/Achieve(T, M}, {c:})} is called
the preimage of T relative to P (for the control statement CS in M3).

Obviously,if P= Ip (7, M3), then P is a preimage of 7 for M3. Furthermore, we prove
the following lemma:
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LEMMA 1: [fP # p(T, MJ), then there exists no termination condition TC such fhaf
P 1s a preimage of T for M = (CS, TC).

Proof: First, note that by definition: IIp(7, M3) C P. So, if P # p(T, M3), it implies
that P—Ip(7, M3) # 0.

Now assume the existence of a termination condition TC = tp(é¢, Cro.5¢], ff0.6¢]) such that P
is a preimage of 7 for M = (CS,TC), while P 3 »(7, M3). Consider a sample motion,
commanded according to CS from an initial position inside P — I1p(7, M3). Assume that
TC terminates this motion (in 7), while TC would not have terminated it. Such a sample
motion necessarily exists, otherwise P = IIp(7, M3). Let us denote 7 the observed trajec-

tory and {o the instant when TC becomes true. Thus to = Inf {t/tp(dL, c0,6, frost) =
true).

Since TC} would not have terminated the motion at {,: 37; € D*(P, CS) such that

T € Kio(mi), hile c;- (to) ¢ 7. This falsifies the condition Achieve(7, M, P), and
therefore contradicts the initial assumption that P is a preimage of 7 for M. i

An immediate consequence of the above lemma 1s the following theorem:

‘THEOREM 1: A region P is a preimage of a target 7 for a conlrol slalement CS if

and only if P = lp (7, M3), where M3 = (CS, TCJ}). The equation P = p(T, MJ) is
called the characteristic equation of preimages.

| This theorem means intuitively that there is no way to provide a termination condition

with more useful knowledge than is in TC. Note however that we cannot say that TCJ}
is the most powerful termination condition for CS and 7. Indeed, TC3 does not denote
just one termination condition, but an infinity of them (one for each region in C). This is

due to the fact that the termination predicate tp; is the value of a function of P. This
value (i.e. the predicate itself) is fixed only when P is known.

The notion of termination condition with state can easily be generalized to termination

conditions without instantaneous sensing, history or time. For instance, a termination

condition TCs with state and time, but without sensing, i.e. without history and instan-

taneous sensing, 1s specified as follows:

1. £L «— D*(S, cs).

2. For every 6t > 0 do:

eo Q «— {ci.(6t)/r € L}. If Q C T, then evaluate TCs to true; otherwise
evaluate to false.

In Example 7, the termination condition 6f > T' is equivalent to TCs for a certain S easily
related to 6¢.
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Figure 13: The Point-onto-Point Problem

12 Maximality of Preimages

Consider two regions P; and P, that satisfy the characteristic equation of preimages for

a target 7 and a control statement CS. In general, their union 1s not a preimage of

7. Indeed, P; and P, may be preimages for different termination predicates, and there

may exist no termination predicate capable of recognizing achievement of 7, if the initial

position of P is only known to be within P, U Ps.

In correlation with this fact, preimages of a target 7 for a given control statement CS

do not admit a unique maximal element (with respect to set inclusion) over all possible

termination condifions (as we saw in Section 8, a unique maximal preimage exists when

the termination condition 1s given in addition to the control statement). The following

two examples show that: (I) there may exist no maximal prcimage, and (2) if there exists

one, there may be an infinity of them.

Example 9: Let us consider again the point-into-hole problem under the same conditions

as in Example 7. There exists a non-countable infinity of preimages, none being maximal.

The union of all these preimages, which is an un-bounded region, is not a preimage; indeed,

no termination condition can terminate reliably a motion starting from anywhere in this

region, just by waiting a predefined finite amount of time. |

Example 10: Now consider the point-onto-point problem depicted at Figure 13, with per-

fect generalized damper control, commanded velocity pointing downward, and no position

sensing. The goal region consists of a single point g. Each point on the vertical half-line

above g 1s a maximal preimage. There 1s a continuous infinity of them. i
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[t is reasonable however to expect that if [ree space 1s bounded and if there are « finite num-
ber of algebraic constraints on the motion of P imposed by the surfaces of the obstacles!
then there exists at least one maximal prcimagc over all possible termination conditions.

13 Preimage Computation

Within the prcimage backchaining framework, WC would like to be able to compute a

complete description of the preimagcs of a target 7 for a control statement CS, i.e., a finite

description of all the preimages. For example, if there exists a unique maximal preimage,

then its description subsumes all other preimagcs, since any prcimage is a subset of the
maximal preimage; thus a description of the maximal preimage 1s a complete description

of the prcimagcs. If there exist no maximal prcimagcs or several of them, then we may

hope that the set of preimages still admit a finite description usable by the preimage

backchaining algorithm for building the search graph; for instance, in Example 9, it would

be “every region included in the infinite shaded area”; in Example 10, it would be “every

point along a half-line drawn upward from the goal point g¢”.

Unfortunately, neither the specification of the predicate Achieve, nor the characteristic

equation of preimages, provide an algorithm for computing preimages, maximal or not. In

fact, we know no generally applicable algorithm for computing a complete description of
preimages, at least for a realistic type of control statement. We even do not know whether

it 1s possible to produce such an algorithm. In order to realize the difficulty of computing

preimages, one may consider the supposedly simpler problem of constructing an algorithm

| for verifying that an input candidate region P is a preimage of a target 7 for a motion
command M. Even this problemstill has no known general solution. In principle, it requires

to check that when any observable trajectory 7 in {r / 37° € D*(P, CS) : 7 € Kpra;(77)}
terminates, then every actual trajectory 7° in {7* € D*(P, CS) [/ 7 € Kio;(7*)} has
attained 7; but, there may be a non-countable infinity of possible actual and observable

trajectories. In general, it is not kndwn how to characterize them finitely.

Despite the above remarks, there exist algorithms for constructing preimages. Some obvi-

ous ones work under very restrictive assumptions on control and/or sensing, for example

"that control is perfect. We will describe no such algorithms, but it is easy to imagine

simple ones by looking to some of the examples given above. Their applicability 1s very

limited. Instead, in the next three sections, we present an algorithm, which imposes no

such limitative assumptions, but which does not usually produce complete description of

preimages. Using this algorithm may result in a non-optimal overall backchaining preim-

age program. It may also augment the incompleteness of this program!?. However, its

HErdmann [17] gives an example showing that in the presence of an-infinite number of C-obstacle algebraic
surfaces in a bounded free space there may exist no maximal preimage.

}2 Another source of incompleteness is the discretization of control statements (see Section 6).
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applicability is quite general.

14 Backprojection from Target Kernel

This section and the next two present a technique for constructing pretmages, which may

not be maximal. Below, we introduce and formalize the basic ideas underlying this tech-

nique. The two subsequent sections describe algorithms performing the required geometric

computations in the mini-world.

The technique presented consists of: (1) identifying a subset of the target (the kernel)

such that if it 1s attained then achievement of the target is recognizable by a computable

termination condition without state, history, and time; and (2) determining a region (the

backprojection) from which a given motion command 1s guaranteed to attain that subset.

We already used F*(c*) to denote the range of reaction forces that can be generated at
position ¢*. Let us now denote F&g(c®) the range of reaction forces that can be generated
at position c¢* when the specified control statement is CS. VCS : Fgg(c®) C F*(c”). In

particular, let CS = GD(v); if ¢* € C4,.., then F&pwyle™) = {0}; if ¢* € Ceontact, then
Fae?) = (17 / 30° € Uy(v) : £* = Fuel, BV')}, where £,0(c”, BY") is the reaction
force to Bv= at c*. fF (c*, Bv") depends on the friction cane at c¢* as follows (see Figure
4): if Bv® points inside the friction cone, then ff,_, = —Bv"; otherwise f° __ is equal to
the projection of —Bv*, perpendicular to the cone’s axis, onto the closest extreme ray of
the cone.

We can define the confusability of two actual positions for a given control statement as
follows:

DEFINITION 13: Let cf and <5 be two actual positions in Cree U Coontact, and CS
a control statement. cj and c5 are CS-confusable tf and only if 3M] € Fig(cr) and
f; € F&g(c3) such that (ci,1]) and (c3, £5) are confusable. Otherwise they are CS-
distinguishable.

Notice the role of CS in this definition. If both ci and ¢3 are in Contact, We may expect

detectable reaction forces, which may make the two positions distinguishable. However,

a position in Contes entails a detectable reaction force only if P is guaranteed to push

sufficiently hard on the C-obstacle’s boundary at that position. In order to know if it

is the case, CS must be taken into consideration. For instance, if CS = GD(v), the
reaction force on P at a position €° in Ceonaee 1S guaranteed to be detectable if and only if,

Vv € U,(v) : [If (c*, Bv*)|]| > 2¢4. Thus, two positions ¢; and ¢3, which are closer than
2p. from each other, are GD( v)-distinguishable if and only if, Vv’ € U,(v), the following
three conditions hold:

faceless BVI] > 265,
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Figure 14: Kernel of a Rectangular Region in Free Space

- [face C3, Bv)|| > 2ey,
- angle(f;. (ci, Bv®), Sl (4 Bv®)) > 20.
The third condition is equivalent to: angle(v(cy), v(c3)) > 26, + ¢(c]) + o(c3).

If two positions are CS-distinguishable, then it 1s guaranteed that the controller will be

able to distinguish between them during a motion according to CS.

The kernel of a region for a given control statement is defined as follows:

DEFINITION 14: Let S be a region in Cfree U Ceoontact and CS a control staiement. The

kernel ofS for CS is the subset of S defined as: Xcs(S) qe! [cc €S / Vc" e€eC-S:¢
and ¢"™ are CS-distinguishable).

Thus, Xcs(S) is the subset of S which consists of every point in S that, given CS, cannot
produce a measured position and a measured force consistent with those produced by a

point outside S. The dependence of the kernel of a region on the control statement must

be emphasized, since it seems to have been ignored by previous authors (e.g., [17]).

Example 11: Consider the target 7 in Figure 14. It 1s a rectangular region in free space.

Av)(T), Vv, is obtained by shrinking 7 by 2p.. Note that it is important that 7 be
shrunk by 2p., and not just by p.. Indeed, as illustrated by the figure, any position c*

closer than 2p. from the boundary of 7 may produce a measured position consistent with

that produced by a position ¢; outside 7. i

Example 12: The target 7 in Figure 15 a is an edge in contact space adjacent to two

other edges & and &;. The angle between 7 and &; is smaller than 26,, while the angle
between 7 and &, is greater than 26;,. CS = GD(v), with v pointing downward. Assume

that, Vv* € U,(v), Ve* € TUE UE: (If. (c*, Bv)|| > 2¢4. Xgpv)(T) is drawn in bold
line in Figure 15 6. The portion of 7, which is closer from &, than 2p. has been removed
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Figure 15: Kernel of an Edge 1in Contact Space

because actual reaction forces generated by contacts with 7 and with &; can produce the
, same values on the force sensor. -

PROPERTY 2:

-V Sand S,C Cree U Ceontact : Xcs(St) WXes(S2)C Xeos(S; U S,).
- If 8S, and S, are non-connected, then Xcs(Sy) UXcs(Sq) = Xeos(S U Ss).

If a motion command 1s guaranteed to attain a point in the target kernel, then it is possible

to reliably recognize achievement of the target when the only positions that are consistent

with instantaneous sensing are in the target. This 1s illustrated by the following example
and formalized further.

Example 13: Let us consider Example 11 again. If a motion is guaranteed to enter the

kernel Xv (v)(7T), then it is also guaranteed that at some instant 6 > 0 during the motion,
the measured position c(ét) belongs to the region denoted 7_,, in Figure 16. This region is

obtained by shrinking 7 by p.. When c(6t) € 7_,_ is true, it is guaranteed that the target
7 has been achieved, since no actual position of P outside 7 is consistent with c(6t) (do
not confuse consistency and confusability!). I

Now, in order to characterize the motions which are guaranteed to attain the target kernel,

let us introduce the notion of backprojection:
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Figure 16: Recognition of Achievement of a Target in Free Space

DEFINITION 15: Let 7 be a target in C and CS be a control statement. A back-

projection from 7 for CS is any region B such that Attain(7, CS, B). B™**(7T, CS) def
{ci/Attain(T, CS, {c:H)} 1S the maximal backprojection from 7 for CS.

The notion of backprojection differs from the notion of preimage because it does not address

-the target recognition issue. In the following, we only consider backprojections that are

maximal. Thus, often, we do not mention that they are maximal.

Example 14: Figure 17 a shows the backprojection from a segment'® 7 in free space.
Any motion according to V(v) starting from within the backprojection is guaranteed to

attain the target segment, although, due to position sensing uncertainty, no termination

condition will be able to recognize it. Figure 17 6 shows the backprojection from an edge

7» in contact space, for GD(v). I

The following theorem can easily be proven from the previous two definitions:

THEOREM 2: B™*(Xcs(T), CS) is a preimage of T for M = (CS, TC), where TC

— (Ks, (c(81), f£(6t)) C 7].

‘Proof: According to the definition of a backprojection, any execution of M from within

B™*(Xcs(T), CS) is guaranteed to enter Xcs(7). In addition, whenever the effector
point P is actually in Xcg(7), the termination condition TC specified in the theorem is

guaranteed to be satisfied. Thus, any execution of M from within B™**(Xcs(7), CS) is
guaranteed to terminate before the motion has traversed the target. Since the termina-

tion condition cannot be satisfied as long as P 1s not actually in 7, no execution of M

can terminate before entering 7. Thus, B™**(Xcs(7), CS) is a preimage of 7 for M =

130Qur convention is to use the word segment in free space and the word edge in contact space.
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Figure 17: Examples of Backprojections

(cs, tC). |

It 1s interesting to remark that the termination predicate is independent from the control
statement.

If we have at our disposal an algorithm for computing target kernels (see Section 15),

another one for computing backprojections (see Section 16), and a third one for computing

K..(c, f) (see Section 7), the above theorem directly provides a technique for computing
preimages. Obviously, however, the technique is not guaranteed to construct a prcimage

whenever one exists. For instance, in example 10, the goal region consists of a single point

g in free space. Xvv)({g}) = 8 and B™**(Xv(v)({g}), V(v)) = 0. More generally, in the
mini-world, any target in free space having one of its dimensions smaller than 2p. has an

empty kernel. Furthermore, when this technique generates a preimage, this preimage may

not be-maximal as illustrated by the following example.

Example 15: Let the target 7 be the edge in contact space shown in bold line at Figure

18 a. Assume CS = GD(v), where v points vertically downward. Figure 18 » displays
the backprojection P; (shaded region) from the kernel of 7. Figure 18 c displays the

backprojection P, (shaded region) from 7. P,, which includes P,, is a preimage for M =

(GD(v),[IE(80)Il > &]).

One ad-hoc way to improve the backprojection-from-kernel technique 1s to complement
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Figure 18: Backprojection from the Kernel of an Edge in Contact Space

it by predcfined solutions for well-identified particular cases such as those presented in

the above two examples. Whenever such a case is identified, the corresponding solution

is retrieved and selected; in all other cases, the more general backprojection-from-kernel

technrque is applied.

In the next two sections, we give two algorithms, one for computing the kernel of a region,

the other for computing the maximal backprojection from a region. The applicability

of both algorithms 1s limited to the mini-world with generalized damper control. The

. computation of Kos (c, f) in the mini-world has already been presented in Section 7.

15 Computation of Region Kernels

In this section we describe an algorithm for computing the kernel Ay(S) = Xgp(v)(S) of
a closed polygonal region § in the mini-world for generalized damper control. Examples

11 and 12 shown above already illustrated the c&es of a region in free space and an edge

in contact space. Here, Figure 19 is used to illustrate the computation carried out by the

algorithm with a region lying both in free space and in contact space.

The algorithm consists of the following two major steps. Comments are printed in italics.

The example shown at Figure 19 is commented next to the description of the algorithm.

Algorithm TK:

1.. (See Figure 19 b)

« Decompose S into convex polygonal regions S; (i = 1,2, ...) such that U; S$; = S.
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o Represent every S; as the conjunction of the linear constraints imposed by m«mom

line supporting a segment of S;’s contour, i.e.

S: = Awlz cosar, +y sin ap, < di]

oe Ek; — segment of S;’s contour supported by the line {z cos ax, + y sin ax, =
dy.)

* Si — Ax, [2 no Ok, + om dg, < dy, - Be], where Bk, = 2p. if Eiki GC Crrees and
Bk, = 01f Ek: C Ceontact-

(This operation results in shifting in by 2p. every segment of Si ’s contour, tf
it lics in free space. Indeed, every position in S; closer than 2p. from such

a segmeni is confusable with a position in free space on the oiher side of the

segmeni. This 1S not the case If the segment is an edge In contact space, since the

oiher side of such an edge is inierior to a C-obstacle and so, is nol accessible”.

2. (See Figure 19 ¢)

eo Mark every edge & C Contact such that:

Ver € & = Vv € U,(V) : |fpee(c”, BVT) > 2¢4.

o£, (=1,2,. ..) « edges of the polygon bounding S, which are in C,yptee and
are marked.

« Compute &! as follows:

- Eg
- for every marked edge £& C Ceontact -S, such that angle(v(&), v(&;)) < 26, do:

Ee -C0 Yo, (0).

oe X,(S) — A(S) U (U; E)).

Example 16: Consider Figure 19. The region S is a triangle (Figure 19 a) and v is

pointing downward.

‘At step 1, a single region S; = S is considered. Two segments of S;’s contour, & and &,,

are situated in free space; the other segment, £3, 1s an edge in-contact space. Step 1 shifts

£, and & in by 2p. while it leaves &; unchanged (the thickness of the obstacle is greater

than 2p.). Figure 19 b displays S;.

At step 2, three edges in contact space, £3, & and &s are marked; indeed, given v, they

are the only ones guaranteed to produce a detectable reaction force. The angle made by

Ey and &4 is less than 28; the angle made by £3 and &s is greater than 28,. Step 2 removes
the portion of &; that is closer from &4 than 2p. (see Figure 19 c).

“*Actually, this 1s true only if the thickness of the C-obstacle is greater than 2p..
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Figure 19 d shows the computed kernel of § for GD(v). a

Let n be the number of vertices in contact space, and ¢ the number of vertices of &. The

time complexity of Step 1 of algorithm TK is the complexity of the decomposition of S

into convex polygons. The complexity of a non-optimal decomposition is O(q loggq) [52].

The time complexity of Step 2 is O(n x ¢q). In general n >> gq, and the overall complexity

of TK is O(n x gq).

16 Computation of Maximal Backprojections

In this section we describe an algorithm for computing the maximal backprojection from a

region S in the mini-world for generalized damper control. We first present an algorithm

applicable when § is either an edge in contact space or a segment in free space. Then, we

propose an algorithm for treating the case when S 1s a collection of edges and segments,

or a two-dimensional region. The first algorithm is basically a more detailed version of the

algorithm described by Erdmann [17,18].

Let us first consider a region S, which is either an edge in contact space!®, or a seg-

ment in free space. The control statement is GD(v). The algorithm below computes

B™e*(S, GD{v)). It consists of five major steps. Step 1 eliminates some non-interesting
cases. Steps 2 through 5 actually compute B™**(S, GD(v)) and they are illustrated by
Figure 20.

Algorithm MBI:

1. (This slep is here for completeness. It treats some non-interesting cases, resulling in

B-¢(S, GD(v)) = S.)

If one of the following two conditions is not satisfied:

(1) the negative velocity cone at any position on S lies entirely in one of the two

sides (open half-planes) of the line supporting S,

(2) if S C Ceontact, then the negative velocity cone at any point on S lies within the
side pointed out by the outgoing normal to S,

then B™**(S, GD(v)) « §, and exit.

2. (This steps consists of marking every C-obstacle’s verlex where P could etther stick,

or slide away from S. [lis illustrated by Figure 20 a.)

If we want S to be a portion of an edge, we first partition the edge into shorter colinear edges, such that
one of the new edges is exactly S.
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eo Mark every vertex .X of every C-obstacle, which satisfies either one of the fol-

lowing two conditions:

(1) 3v* € U,(v) = v° points inside the friction cone at .X, and .X is not an
extremity of S,

(2) X is the extremity of both S$ and another edge &, and dv™ € UU, (v) : v°

points outside the friction cone at any position on &, and its projection on &

points away from §.

eo If S is a segment in free space, then treat its extremities as fictitious vertices,
and mark both of them.

3. (The contour of the backprojeciion from S is made of S itself, portions of C-obstacles ’

edges, and poriions of the exlreme rays of the negaiiue velocily cones erecled at the

marked verlices. This step contributes in building lhe contour by erecting the extreme

rays and determining their interesting poriions. Ii is tllustrated by Figure 20 6.)

e Erect the two extreme rays of the negative velocity cone at every marked vertex;

LR « list of erected rays; activate every ray in LR.

(Portions of a ray can be active or inactive. Aclivaling a ray makes the whole
half-infinite line aciive.)

e While LR # 8 do:

— R + first ray in LR; remove R from CR.

— If R intersects either S, or the active portion of another ray, or a C-

obstacle’s edge, then:

- Z, « nearest intersection point from the marked vertex;

- inactivate R beyond Zy; denote Z; as an extremity of R; if the intersection

at Z, occurs with a ray R’, remember R' as the reason for inactivating RR

beyond Zi;

- if R is remembered as the reason for inactivating a ray R"” beyond point

: Z,, and if Z, is situated on the now inactive portion of KR, then: erase Z-

as an extremity of R"; reactivate R"” beyond Z5; and reinsert R"” into LX.

e Whenever the extremity Z of the active portion of a ray is located on a C-

obstacle’s edge, partition this edge into two colinear edges adjacent at Z.

(Figure 20 b shows the erected rays. The aciive portions of them are represented

as bold lines. The lowest edge of the upper C-obstacle is decomposed into smaller

colinear edges.)
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4. (This step gives an orienlation lo each of the lines that may pariicipate to the contour

of the backprojcciion from S. [l prepares step 5, which consists of tracing along these

lines. See Figure 20 c.)

e Orient S in such a way that any v* € l,(v) points toward the right of this
orientation.

e Orient each ray so that the interior of the negative velocity cone lies on the

right-hand side.

e Orient every edge of every C-obstacle’s contour so that the ingoing normal to

the edge points toward the right.

5. (This’ slep consisls of tracing oui lhe backprojection region by tracing along some
of the lines according to their orientafion. During this process, the backprojeclion

always lies on the left side of the line that 3 currently traced. We get a list of the

successive vertices on the contour of the backprojection; this list is denoted 0B. See

Figure 20 d.)

e F, «— initial extremity of S (according to the orientation given to S);

: Fy; « final extremity of S;

| E — s;

eo While F; # Fy do:

- £ t first active portion of a ray or C-obstacle’s edge starting from F; on the

left of &;

-i1ti¢+4 1; F; « final extremity of &; insert F; at the end of JB.

oe B™=(S, GD(v)) « Polygon(0B), where Polygon(dB) is the function that eval-
uvates to the closed polygonal region bounded by the contour linking the vertices

listed in 8B'®.

‘Let n be the number of vertices in contact space. Step 2 of MB1 marks O(n) vertices.

At Step 3, Of )ays are erected. Each one has O(n) intersections with other rays. These
intersections can all be computed at the beginning of the iteration in the second operation

of Step 3. During the iteration, each ray is reinserted O(n) times in CR. Thus, the
complexity of Step 3 is @(n?). This is also the complexity of the overall algorithm.

Consider now a region S = S; U...U S,, where S;, Vi €[1, ¢J, is either an edge in contact
space, or a segment in free space. For all i = 1 to g, we can compute B™**(S;, GD(v)) using

“Computing the maximal backprojection as a closed polygonal region results in inserting some portions
of rays abutting at sticking edges. However the probability that a motion reaches such a vertex is zero.
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Figure 21: U; B™*(S;, GD(v)) # B™=(U; S;, GD(v))

algorithm MB1. Obviously, U; B™**(S;, GD(v)) is a backprojection from S for GD(v).
But, as shown by the following example, it may not be the maximal one. Indeed, there may

exist positions in C from where we are certain that a motion according to GD(v) will attain

either one of the S;, without knowing which one. Such positions are in B™**(S, GD(v)),
but in none of the B™*(S;, GD(v)).

Example 17: Consider the case where Cs. = C. Let S be made of two segments S; and
S, as shown in Figure 21 a. Obviously the maximal backprojection from S&S; U S, with v

pointing downward (shaded region in Figure 21 b) is larger than the union of the maximal

backprojections from S; and S, (shaded regions in Figure 21 c). a

When a region S consists of several edges and/or segments S;, the backprojection from

S for some commanded velocity v 1s a strict superset of the union of the backprojections

from the individual edges/segments S;, if and only if there exist : and j such that: a
portion X;X, of a right ray!” bounding B™**(S;, GD(CS)) and a portion Y Ya of a left
ray bounding B™**(S;, GD(v))intersect at a point Z, within the two portions or at one
of their extremities X, and/or Yi (see Figure 21 c). Let us denote X;ZY5 the combination

of the two segments X;Z and ZY,, which do not lie in the interior of B™**(S;, GD(v))
and B™**(S;, GD(v)). In order to obtain the maximal backprojection from S, we have to
complete the union of the maximal backprojections from the individual edges/segments S;

by the maximal backprojection from X,ZY> (white region in Figure 21 c), for every such
intersections.

"We can always distinguish between the right and left extreme rays of the negative velocity cone.
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The computation of the maximal preimage of X,ZY, is achieved by the algorithm MB?2
oo below, which is a direct adaptation of MB1.

- Algorithm MB2:

L. e Mark every vertex of every C-obstacle as in Step 2 of MB1.

e Mark X, and Y-.

2. Erect rays, activate portions of rays, and partition edges exactly as in Step 3 of
MB1.

3. Orient lines exactly as in Step 4 of MB1.

E — FyFy;

i —2;08B — (Fy, Fy, Fs);

e While F; # Fj; do:

- £& « first active portion of a ray or C-obstacle’s edge starting from F; on the

’ left of &;

-t — 1+ 1; F; « final extremity of I; insert F; at the end of JB.

o Bm (X,ZY,, GD(v)) «— Polygon(0B), where Polygon(%) is the function that
evaluates to the closed polygonal region bounded by the contour linking the

vertices listed in 0B.

The complexity of MB2 is the same that the complexity of MB1, i.e. O(n?), where n
is the number of vertices in contact space. However, since MBI 1s applied before MB2,

results of computations done by MB1 can be saved, and re-used at Steps 1, 2, and 3 of
MB2.

Let S = US; be a finite union of segments in free space and edges in contact space. The

- maximal backprojection from S is computed by the algorithm MB3 below.

Algorithm MB3:

1. Compute B = B™*=*(S;, GD(v)) using MB1.

| 2. While the boundary of B includes two successive segments X;Z and ZY, such that

XZ is supported by a right ray and ZY, by a left ray, do:

B — Bu B™=(X,2Y,, GD(v))

where B™*(X|ZY,, GD(v)) is computed using MB2.
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Figure 22: Illustration of Algorithm MB3

When MB3 terminates, B = B™**(S, GD(v)). Let n be the number of vertices in contact

space and gq the number of edges and segments in S. The time complexity of MBj is

O(q x n?).

Example 18: Figure 22 illustrates the computations performed by MB3. The region §
consists of three edges S;, S2, and S53. The commanded velocity points downward. Step

1 computes the’ regions marked I, 2 and 3; these are the backprojections from S;, S,,

and Sj, respectively. Step 2 first computes the regions marked 4 and 5. This creates two

intersecting right and left rays, so that Step 2 iterates and produces the region marked 6.

The resulting backprojections 1s the union of regions 1 through 6. |

Finally, if S is a closed region bounded by straight edges and/or segments S;, tz = 1 to gq (see

for instance the kernel region at Figure 19), then B™**(S, GD(v)) = B™**(US;, GD(v)),
and can be computed using MB3.

Remark: MB3 is to be applied to a region S, even if it is made of a single segment/edge,

as 1llustrated below. Figure 23 a shows the backprojection from a single edge S computed

by MB1, and Figure 23 b shows the backprojection computed by MB3. In this example,

the-difference between the two backprojections 1s computed at Step 2 of MB3. This case

can happen only when a vertex 1s the extremity of two edges along which the motion is

guaranteed to slide. Including the difference into the backprojection 1s consistent with

computing backprojections as closed regions.
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Figure 24: The Point-onto-Hill Problem

17 Generation of Conditional Strategies

The simple kind of graph searching algorithm used in Section 6 to introduce the preimage

backchaining approach can only generate linear strategies, i.e. sequences of motion com-

mands. However, some motion planning problems only admit conditional strategies for

solutions. In addition, as suggested in Section 10, conditional strategies are an alternative

to the use of termination conditions with history. In this section, we extend the original

framework in order to make it possible generating conditional plans.

Let us start with an example illustrating the need for conditional strategies. We use

this example to sketch an approach for planning such strategies. We give a systematic

presentation of the approach next to the example.

Example 19: Consider the two-dimensional point-onto-hill problem depicted in Figure

24 a (this example is drawn from [39]). The “hill” consists of three edges, the top edge
G, the left edge &;, and the right edge &,;. Both the left and the right edges are infinite
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half-lines abutting to the top edge? The problem is to move the reference point, P onto

G. The initial region I is all free space. We assume perfect generalized damper control
(v® = v), no position feedback (p. = cc). perfect force sensing (ef = 0 and dy = 0), and
frictionicss edges (Vc* € Cepntact : @(C”) = 0).

A motion of P with a commanded velocity pointing downward until contact (i.e. until f

> 0) is guaranteed to terminate in G U &; U&,. Then, the orientation of the reaction force

makes it possible determining which of the three edges has been actually attained. If it is

the top edge, the goal is achieved; if it is the left edge, then P must be moved by sliding
along &, towards the right until the orientation of the measured force shows that P 1s in

Gg; if it 1s the night edge a sliding motion towards the left 1s needed.

A conditional strategy is necessary for solving this problem. Ideally, it may be generated
as follows:

- First, the planner considers the goal G and generates two preimages of ¢, P, and Ps,

for two motion commands, M; and M, (see Figure 24 b); M, = (GD(v,), TC), where v,
points toward the right, slightly downward, as shown in the Figure. M, = (GD(v,), TC),
where vo points toward the left, slightly downward. In both motion commands, TC =

[angle(f(6t), v(G)) = O]. It turns out that & C P; and & C P,. So, & is a preimage of G
for Mj, and &; is a preimage of G for Ms.

- Then, the planner considers {G, &;, £2} as a set of targets. It generates a preimage P of
GUE UE, for the motion command M = (GD(v),||[f(é¢)]| > 0), where v points downward.
Not only P = Z, but the three conditions angle(f, n) = 0, with n = v(G), v(&;), and v(&,),
are guaranteed to make it possible recognizing which target has actually been achieved at

execution time. Thus, the planner can generate the following strategy:

execute M = (GD(v), [|f|| > 0);
if angle(f, v(&;)) = 0

then execute M; = (GD(v1), [angle(f(6t), v(G)) = 0]);
else if angle(f, v(&)) = 0

then execute My = (GD(v2), [angle(f(6¢), v(G)) = 0]);

RC, = [angle(f, v(£,)) = 0], RC, = [angle(f, v(&;)) = 0], and RC; = [angle(f, v(G)) = 0]
are called recognition conditions. They allow the robot controller to identify which target

has actually been achieved after the first motion in the strategy. (RCj3 does not appear in

the strategy because, if it evaluates to true, no action has to be taken.) E

Let us now formalize the approach outlined above. We define the preimage of a set of

targets as follows:

“This example occurs in a space that slightly differs from the mini-world.
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if R4 then execute M4;

if R1 then execute M1 ;

else execute M2;

exit;

if RS then execute M5;

execute M3;

exit;

Figure 25: Representation of a Conditional Strategy as a Graph

DEFINITION 16: Let ST = {7\, I>, . . . . T,} be a set of targets, M = (CS, TC) a
motion command, and RC, RC,, . . . . RC, n conditions, called recognition conditions.

TC = tp(dt, cps, flo.) RC; = rp;(A, C[o,A]; fi0.a]), where A is the argument evalualing
to the duration of the ezecuiion of M, when the execution terminates.

A preimage of ST forM and {RCy,....RC,} is any region P in C such thai ezeculing
M from within P is guaranteed to attain and terminafe in U; T;, in such a way that when

the motion terminates the following lwo conditions are satisfied:

-3di €[1, n]: RC; evaluates lo ‘true’,

-Vi e 1, n] : RC; evaluates to ‘true’ = 7; has been achieved.

The definition does not impose that the 7; be disjoint, so that several conditions RC; may
evaluate to rrue when the motion terminates.

In the following, we represent a conditional motion strategy as a labeled graph. Figure 25

shows an example of such a graph and the corresponding strategy. Nodes are alternatively

region nodes and motion nodes. Each motion node Np has a single parent Np (a region

node), and one or several children Ng; through Np, (region nodes). Every arc connecting

Np to Np, is labeled by a recognition condition RC;. The region P labeling Np is a
preimage of { 71,.... 7.} (the regions labeling Nz, through Nz.) for M (the motion command
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| labelingVag) and {RC,,.... RC,}. The graph has a root labeled by the initial region Z,
with a unique child labeled by the null motion (the fictitious motion that does not move

P). This node makes it possible selecting the first motion command from the sensory data
at the initial position c¢;,; of P. If every motion node in the graph has a single child, then
the strategy is a linear one. We assume that the graph contains no cycle, but several nodes

may have the same label.

Note that this graph may not define a unique strategy. Indeed, the conditions labeling

the arcs originating at the same motion node need not be exclusive (i.e., Vi # j : RC;

evaluates to {rze # RC; evaluates to false). We assume however that the arcs are scanned

sequentially by the conditional branching statement according to some prcdefined order,

as illustrated in Figure 25.

Now we can reformulate the preimage backchaining search algorithm as follows:

Algorithm PB:

1. Create the region nodes Ny; and Ng labeled by the initial region Z and the goal region

G, and the motion node N,.u labeled by the null motion. Create an arc connecting

Nr to Nour.

2. ST — {G}; T' — TI.

3. While Z' # 0 do:

eo Sclect a subset st of ST, a motion command M = (CS, TC) and n recognition

conditions RC;, where n is the number of targets’in sf. Compute a preimage

P of st for M and {RCy, . . . . RC).

e Create a motion node Np labeled by M, n region nodes Np. labeled by the

targets in ts, and a region node Np labeled by P. Create an arc labeled by RC;

from Np to every Nz, and an arc from Np to NM.

| oe 2 —{crel’'NP [Ve €C—-T'NP 4c, c" € Uc) and c* € U(c)}.

| (We assume thal we do nol know how P has reached I, or will reach I. Thus,

even if a poriion of IT is in contact space, it is not guaranieed to produce a

detectable reaction force. Since posiiion sensing is the only sensing-dais, wilh

which we can reliably plan, we define 2 as the subset of the posiiions in I'N P

that cannol be confused wiih posiiions ouiside I' N P using position sensing

Only.)

o If 2 #£ 0 then create an arc from N,.,u to Np, and label it by the condition

K3,.(c(0), £(0))CT  P]

: (The argumenta of Kio are ¢(0) and f(0) since the duration of the null moiion
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4. Return the strategy described by the subgraph made of all the nodes and arcs ac-
cessible from Nt.

At this point it remains the problem of computing the preimage of a set of targets. This

problem requires being able both to compute the preimage of the union of the targets and to

generate recognition conditions. Thus it is at least as diflicult as the problem of computing

the preimage of a single target. However, the backprojection method presented in the

previous section can easily be adapted to handle a set of targets. Given the algorithms

described in Section 15 and 16, the following theorem, which is an extension of Theorem

2, directly provides a technique for computing the preimage of a set of targets in the
mini-world:

THEOREM 3: Lel {T;, 7, . cy Tn} be the set of targets and CS a control statement,
B™e=(U; Xcs(7Z:), CS) is a preimage of {Ty, . . . . T.}forM = (CS, TC) and {RCy, . ... RC,},

where RC; = [K,.(c(82), f(6t)) C Ti] and TC = [V; RC}].

The technique provided by this theorem consists of backprojecting from the union of the

kernels of the targets. Note that backprojecting from the kernel of the union of the targets

could produce a larger preimage of the union of the targets, but then there would be no

guarantee that the targets are distinguishable from each other.

This technique combined with the PB algorithm significantly augments the range of motion

planning problems in the mini-world that we can solve automatically.

18 Bibliographical Notes

Research on robot motion planning has become active in the mid-seventies, when the goal

of automatically programming robots from a geometrical description of the task was first

considered attainable [32,33,50]. Since the early eighties, a great deal of effort has been
devoted to this domain. Part of this effort was motivated, on the one side by the diffi-

culties encountered in using explicit robot programming systems [28,29], and on the other
side by the goal of introducing autonomous robots in hazardous environments (e.g. nu-

clear sites, space, undersea, mines). Although automating robot programming has turned

out much more difficult than 1t first appeared, significant results with practical relevance

have recently been obtained. Mazer’s thesis [40] includes a chapter detailing why robot
programming 1s difficult.

During the last ten years, most of the effort has been oricnted toward solving the path
finding problem, 1.e. the problem of planning motions without uncertainty. Over the last

few years, it has produced several major results, both theoretical and practical. Theoretical
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results mostly concern lower and upper bounds of the complexity of multiple variants of the

path finding problem (e-g., see (48,6]). In particular, it has been shown that planning the
motion of a robot with arbitrarily many degrees of freedom is PSPACE-hard [45], and that
its time complexity is polynomial in the number of algebraic surfaces bounding the objects

if the number of degrees of freedom is fixed [47]. Some path-finding methods have been
produced as a side-effect of these results, but most of them involve very large constants

and polynomial exponents. Another important result is the development of the notion
of Configuration Space used throughout this paper, both as a conceptual tool and as a

technique for exploring motion planning problems. This notion was popularized by Lozano-

Pérez in the early eighties [34] and has given birth to many techniques for computing C-
obstacles and finding collision-free paths among obstacles (e.g., (3,23,30,12,37]). Finally,
relatively fast path-finding algorithms have been defined and implemented. Although these

algorithms are not complete (they may fail to find a path while one exists), they can solve

many practical problems. In particular, Faverjon and Tournassoud [21] reports a system
using an adaptation of Khatib’s Potential Field method [25] for planning the motion of
a manipulator with eight degrees of freedom, operating in the complex environment of a

nuclear reactor. Lozano-Pérez et al. [36] and Mazer [40] describe an impressive system,
Handey, capable of planning all the motions required for assembling two polyhedral parts,

in the absence of significant uncertainty. These practical techniques could bring substantial
improvement to the programming of opkrations such as painting, welding, and riveting.

The problem of planning motions in the presence of uncertainty is conceptually more

difficult than the path finding problem. It has attracted less attention so far, and less

results have been produced. Three basic approaches to this problem have been developed
to some extent.

The first has been proposed simultaneously by Lozano-Pérez [33] and Taylor [50], and is
known as the skeleton refining approach. It consists of: first, retrieving a plan skeleton

appropriate to the task at hand; and second, iteratively modifying the skeleton by inserting

complements (typically sensor-based readings). Complements are decided after checking

the correctness of the skeleton, either by propagating uncertainty through the steps of

the plan skeleton [50], or by simulating several possible executions [33]. Subsequent con-
‘tributions ro the approach has been brought by Brooks [2], who developed a symbolic
computation technique for propagating uncertainty forward and backward through plan

skeletons, and by Pertin-Troccaz and Puget [43], who proposed techniques for verifying
the correctness of a plan and amending incorrect plans. Backward propagation of uncer-

tainty in this approach can be regarderd as a particular case of preimage backchaining

with known motion commands.

The second approach to motion planning with uncertainty has been proposed by Dufay and

Latombe | 15], and is known as the induclive learning approach. It consists of assembling
input partial strategies into a global one. First, during a training phase, the system uses

53



| the partial strategies to make on-line decisions and execute scverai instances of the task
at hand. Second, during an induction phase, the system combines the execution traces

) generated during the training phase. and generalizes them into a global strategy. In fact,
the training phase and the induction phase arc interweaved. The generation of a strategy

for the task ends when new executions do not modify the current strategy. A system based

on these principles has been implemented, and experimented successfully on several part

mating tasks. Some aspects of this approach have been extended by Andreae [I].

Both the skeleton refining and inductive learning approaches deal with uncertainty in a

second phase of planning. The plan skeleton and the local strategies used during the

first phase could be produced using path-finding methods assuming null uncertainty. The

second phase takes uncertainty into account, either by analyzing the correctness of the

current plan, or by directly experimenting with the local strategies and combining them

into execution traces shaped by actual errors. In contrast, the rationale of the third

approach, preimage backchaining, 1s that uncertainty may affect the overall structure of

a plan, in such a way that a motion strategy may not be generated by modifying or

composing plans generated assuming no uncertainty. This can be illustrated by several

examples. Consider the task of inserting a peg into a hole; in the absence of uncertainty

(or equivalently with large clearance), the best strategy 1s to position the peg above the

hole, to align the two axes, and to move the peg downward; in the presence of uncertainty,

and with no chamfer, the best strategy is to tilt the peg before insertion, in order to be
certain to generate a contact between the tip of the peg and the entrance of the hole. In

a navigation task, with no uncertainty, the shortest route 1s the best; with uncertainty, a

route providing enough landmarks to make execution monitorable 1s necessary; it may be

very different from the first one.

In addition to be based on a different rationale, preimage backchaining 1s a much more

rigorous approach to motion planning with uncertainty, than the other two approaches.

Consequently, 1t 1s natural to expect that preimage backchaining raises new theoretical

issues, which were not considered in the other approaches. It does not mean that these

issues are not present in the other approaches, but that they are hidden by their ad-

hocness. Conversely, solving these issues is a prerequisite to implementing the preimage

backchaining approach, but not to implementing the other approaches. This expresses the

fact that in general it 1s easier to build ad-hoc implementations of ad-hoc approaches than

ad-hoc implementation of rigorous approaches. It explains why preimage backchaining

has not yet been implemented, although as shown in this paper an implementation in a

two-dimensional world 1s possible.

The preimage backchaining approach was first presented by Lozano-Pérez, Mason, and

Taylor [35]. This paper set up most of the basic framework. It directly introduced a
definition of preimages based on the use of termination condition with state. We think

that our definition 1s simpler. It allows us to analyze theoretical issues related to the
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| maximality of preimages in a step-by-step fashion. Key concepts prior to this definition
are the directory of actual trajectories and the notions of consistency between actual and

measured data. The concept of trajectory directory was previously used by Mason [39] as
a tool to specify a termination condition with state.

Mason [39] investigated several control schemes for searching the graph of preimages. He
proved the strong bounded-completeness of the original scheme presented in {35].

Erdmann [17,18] contributed to the approach in several ways. He separated the problem
of computing « preimage into two sub-problems, reachability and recognizability. By con-

sidering reachability alone, he introduced the notion of backprojection, and used it for

computing non-maximal preimage. Algorithm MBI1 1s a detailed variant of Erdmann’s

algorithm. Algorithms MB2 and MB3 are improvements allowing to backproject from
multiple edges/segments and from a polygonal region. Donald [12] presents another tech-
nique based on a plane sweep algorithm for computing the backprojection from a polygonal

region. In order to compute preimages as backprojections, Erdmann introduced the notion

of first entry set, which seems to be more powerful than the notion of target kernel. It is

not clear however how this notion could be implemented in a program. An extension of

the algorithm for computing backprojections to a three-dimensional configuration space

is proposed in [17]. An investigation of friction modelling in configuration spaces with
"rotational axes is made in the same publication.

Donald {10,12] extended the preimage backchaining approach to model uncertainty by
introducing the notion of generalized configuration space. He also inroduced the notion of

: Error Detection and Recovery (EDR) strategies, which may fail. Such strategies, however,

either succeed or failed recognizably.

Buckley [5] proposed an application of preimage backchaining to the analysis of the correct-
ness of a given motion plan. He also described a procedure for planning motion strategies

in the forward direction. This procedure is based on the notion of forward projection (a

more appropriate terminology would probably be posi-tmage). The procedure requires to
discretize configuration space into atoms and builds a transition graph between the atoms.

It 1s not clear however how to select the resolution of the discretization. Buckley imple-

: mented a planner operating in a three-dimensional configuration space with translational
axes.

Hopcroft and Wilfong [24], Valade [53], Laugier and Théveneau [31], and Koutsou [27]
analyzed motions In contact space, without paying special attention to uncertainty. Within

the preimage backchaining approach, their work could contribute in defining heuristics for

searching the preimage graph.

The complexity of problems of planning compliant motions with uncertainty have been  -

analyzed in a few papers (see [41,13,6,7]). Canny and Reif [6,7] have proven that the
three-dimensional compliant motion planning problem 1s non-deterministic exponential
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| time hard. Donald [13] has shown that planning a guaranteed planar multi-step strategy
~ with sticking termination conditions can be done in time polynomial in the number of

vertices in the polygonal environment, and roughly simply exponential in the number of

~ steps in the strategy. The method prcscntcd in this paper corroborates this theoretical
result.

19 Conclusion

| In this paper, we have addressed the problem of planning motions with uncertainty. Au-
tonomous robots need motion planning capabilities, and subtasks such as part mating and

navigation in cluttered environments require Icing able to deal with uncertainty.

WcC have focused the paper on the preimage backchaining approach to motion planning in

the presence of uncertainty. First, we have given a detailed formalization of the class of

problems we are interested in (models of task geometry, task physics, motion commands,

and uncertainty). Then, we have defined preimage backchaining and analyzed several

underlying theoretical issues related to the power of termination conditions and the maxi-

mality of preimages. Finally, we have proposed the first complete set of algorithms making

possible implementing preimage backchaining in a simplified world, the mini-world. These

algorithms are based on the two concepts of target kernel and backprojection. These

algorithms are certainly the most important outcome of this paper.

Although rather simple, the mimi-world 1s still realistic enough for some applications. For

instance, it can be the world of an omni-directional mobile robot, with a polygonal out-

line (typically a rectangular or hexagonal vehicle), moving among obstacles bounded by

polygonal outlines (e.g., pieces of furniture, machines). Possible application tasks for such

a robot 1s the transferring of objects in office, clean room, and shop-floor environments.

We are currently implementing the proposed algorithm for a similar robot. Our goal with

this implementation is not only to give an experimental validationof these algorithms. It

1s also to show that sophisticated methods for dealing with uncertainty, such as preimage

backchaining, can make it possible building low-cost smart robots.

There-are many directions in which the prcimage backchaining approach could bc usefully

. extended. These are some of the questions we would like to answer in the future. How

to build practical procedures for computing prcimages and solve realistic motion planning

problems in spaces of dimension higher than 2 with rotational axes? What control schemes

are the most appropriate to the preimage backchaining approach (for instance, Shekhar

and Khatib [46] proposed a compliant scheme with selectable compliance center, which
might result in larger preimages, but in a higher-dimensional space)? How to efficiently

generate weak guaranteed strategies such as those proposed by Donald [12,14], in order -to
build a reactive motion planner with provable properties? How to associate a monitoring

plan to a motion plan, so that if during the execution of the motion plan an error exceeds
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uncertainty bounds, possible failure of the motion plan can be recognized by the monitoring
; plan executed in parallel? Answering these questions will require a lot more research.
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Appendix: Table of Symbols

A Moving object

B; Obstacle (1 = 1, 2, . ..)
C Configuration space of A

P Effector point (mapping of A in C)

Alc) Region occupied by A when P’s position in C is c
CB; C-obstacle (mapping of B; in C)

Ctree Free space
Contact Contact Space

iA Intial region of P in a motion planning problem
G Goal region of P in a motion planning problem

TT Target of a motion command

Cire Initial actual position of P before executing a motion plan
c; Initial actual position of P before executing a motion command
M Generalized motion command

: CS Control statement

TC Termination condition

V(v) Pure velocity control statement
GD(v) Generalized damper control statement
B Damper constant (in generalized damper control)

A Net velocity (in generalized damper control)

tp(6t, close, flo.sey) General form of the termination condition
Ucs(CS) Control uncertainty

UAC) Model uncertainty
v Specified commanded velocity

v*® Actual commanded velocity

U,(v) Uncertainty on commanded velocity
C Measured position of P (configuration of A)

c* Actual position of P

U.(c) Uncertainty on position sensing
f Measured reaction force on P

f° Actual reaction force on P

Uy(f) Uncertainty on force sensing
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v(c*) Unit vector pointing along the friction cone at ¢* (V¢* € Coontact)
oo v(E) Unit outgoing normal vector to edge &

- 2¢(c”) Angle of the friction cone at ¢* (VYc* € Coontact)
26(E) Angle of the friction cone along edge &

a 4, Uncertainty on the orientation of the commanded velocity

Pe | Radius of the position uncertainty disk

£ Uncertainty on the module of the measured force
fd, Uncertainty on-the orientation of the measured force
T Observed trajectory

| T* Actual trajectory

D*(S, CS) Directory of actual trajectories
ot Elapsed time since the beginning of the execution of a motion

C, Function mapping 0f into the measured position along trajectory Tt

| f, Function mapping 6¢ into the measured force along trajectory Tr

cl. Function mapping t into the actual position along trajectory 7°
f:. Function mapping St into the actual force along trajectory 7°

Kiera; (77) Set of observed trajectories consistent with actual trajectories 7°
p(T, M3) Preimage of 7 relative to P
Prex(T, M) Maximal preimage of 7 for M
F*(c*) i Range of reaction forces that can be generated at position c*

Feslcr) Range of forces that can be generated at position ¢® under CS

SN (aS July Reaction force to f ; at position c”
Xcs(S) Kernel of region S for CS

Kso.(c,f) Set of actual positions of P consistent with measurements c¢ and f
Bme=(7, CS) Maximal backprojection from 7 for CS

distance(cy,c) Euclidean distance between two points c¢; and c,

angle(vy,v,) Un-signed angle between two vectors v; and vy

lv] Module of vector v

X,.(c) Position uncertainty disk centered at ¢
as Minkowski’s operator for set addition
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