September 158§ Report No. STAN-CS-88-1227

Finding Minimum-Cost Flows by Double Scaling

by

R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan

Department of Computer Science

Stanford University
Stanford, California 94305

Finding Minimum-Cost Flows by Double Scaling
Ravindra K. Ahuja 12
Andrew V. Goldberg 3
James B. Orlin!
Robert E. Tarjan 4

September, 1988

ABSTRACT

Several researchers have recently developed new techniques that give fast
algorithms for the minimum-cost flow problem. In this paper we combine
several of these techniques to yield an algorithm running in
O(nm log log U log(nC)) time on networks with n vertices, m edges, maximum
arc capacity U, and maximum arc cost magnitude C. The major techniques used
are the capacity-scaling approach of Edmonds and Karp, the excess-scaling
approach of Ahuja and Orlin, the cost-scaling approach of Goldberg and Tarjan,
and the dynamic tree data structure of Sleator and Tarjan. For nonsparse graphs
with large maximum arc capacity, we obtain a similar but slightly better bound.
We also obtain a slightly better bound for the (noncapacitated) transportation
problem. In addition, we discuss a capacity-bounding approach to the

minimum-cost flow problem.

T Sloan School of Management, M.LT., Cambridge, MA 02139. Research partially supported by an NSF Presidential
Young Investigator Fellowship, Contract 8451517ECS, and grants from Analog Devices, Apple Computer Inc., and Prime
puter.
On leave fmm IndianInstitute of Technology, Kanpur, India.
Department of Computer Science, Stanford University, Stanford, CA 94305. Research partially supported by an NSF
idential Y oung Investigator Award.
Department of Computer Science, Princeton University, Princeton, NJ 08544 and AT&T Bell Laboratories, Murray Hill,
NJ 07974. Research partially supported by National Science Foundation Grant DCR-8605962 and Office of Naval
ResearchContractN00014-87-K-0467.

Finding Minimum-Cost Flows by Double Scaling
Ravindra K. Ahuja 1.2
Andrew V. Goldberg 3
James B. Orlin!
Robert E. Tarjan 4

September, 1988

1. Introduction

The minimum-cost circulation problem calls for finding a circulation of minimum cost in a
network whose arcs have flow capacities and costs per unit of flow. Our framework for studying
this problem is as follows. See e.g. [9,11,13,17,21]. Let G = (V, E) be a directed graph with ver-
tex set V and arc set E. We require G to be symmetric, i.e. (v,w) € E if and only if (w,v) € E.
Graph G is a network if each arc (v,w) has a nonnegative real-valued capacity u(v,w) and a real-
valued cost c(v,w). We require that the cost function be antisymmetric, i.e. c(v,w) = —c(w,v) for
all arcs (v,w) € E. We denote by n, m, U, and C the number of vertices, number of arcs, max-.
imum arc capacity, and maximum absolute value of an arc cost, respectively. Time bounds con-
taining U or C are subject to the assumption that all arc capacities, or all arc costs, respectively,
are integral. For ease in stating time bounds, we assume (without loss of generality) that C 12

and U 2 4. All logarithms in this paper are base two unless an explicit base is given.

A pseudofiow fon a network G is a real-valued function on the arcs satisfying the following

two constraints:

fv,w) Su(v,w) for all (v,w) € E (capacity constraint) 1)

! Sloan Schoal of Management, M.LT., Cambridge, MA 02139. Research partially supported by an NSF Presidential

Young Investigator Fellowship, Contract 8451517ECS, and grants from Analog Devices, Apple Computer Inc., and Prime
Computer.
2 On leave fran Indian Institute of Technology, Kanpur, India

3 Department of Computer Science, Stanford University, Stanford, CA 94305. Research partially supported by an NSF
Presidential Young Investigator Award.

Department of Computer Science, Princeton University, Princeton, NJ 08544 and AT & T Bell Laboratories, Murray Hill,

NJ 07974. Research partially supported by National Science Foundation Grant DCR-8605962 and Office of Naval
ResearchContractN00014-87-K-0467.

-2

f (v,w) =-f (w,v) for all (v,w) € E (antisymmetry constraint). 2)

For a pseudoflow fand a vertex v, the balance by(v) at v, is the net flow into v:

bv)y= ¥ fuv). (3)
(wv)e E

The cost of a pseudoflow f is defined as follows:

cost(f)= 3 cvw)fv,w) C))
fvw)>0

A pseudoflow fis a circulation if the following constraint is satisfied:

b(v) = O for every vertex v. 5)

The minimum-cost circulation problem is that of finding a circulation of minimum cost in a

given network.

The minimum-cost circulation problem has been intensively studied for over thirty years.
See e.g [9,11,13,17,21]. Among the known algorithms for this problem, there are three that have
the best worst-case time bounds. Each of these algorithms is best for a different range of the
parameters n, m, U, and C. The algorithms are the O((m log UXm + n logn))-time method of
Edmonds and Karp [6], the O(nm log(nzlm) log (nC))-time method of Goldberg and Tarjan [11],
and the O((m logn) (m + n logn))-time method of Orlin [16]. The last of these methods is

strongly polynomial * .

One important idea is common to all three of these algorithms, that of scaling or successive
approximation. Scaling methods work by solving a sequence of more-and-more accurate approx-
imations to the original problem. The approximations are obtained either by relaxing some of the
numerical constraints or by ignoring some of the precision of the numeric parameters. Scaling
was introduced by Edmonds and Karp, whose algorithm scales capacities. Orlin’s algorithm is a

refinement of that of Edmonds and Karp that combines capacity scaling with repeated arc-

* A network algorithm is strongly polynomial if its running time is polynomial in n and m, assuming arith-
metic operations take unit time, and also polynomial in n , m, logU, and logC, assuming arithmetic operations
take time polynomial in the number of bits of the operands. See [20].

-3-

shrinking. The algorithm of Goldberg and Tajan scales costs. It relies crucially on the notion of

€-optimality, introduced by Tardos [20] and independently by Bertsekas [3,4].

Consideration of these algorithms suggests the question of whether capacity scaling and
cost scaling can be combined to yield an algorithm faster than any algorithm obtainable using
either technique alone, at least for a suitable range of n, m, U, and C. A first result along these
lines was obtained by Gabow and Tarjan [8], who developed an O(nm logn logU log(nC))-time
algorithm. Although this time bound is never less than that of Goldberg and Tarjan [11], the
algorithm does not require sophisticated data structures, whereas the Goldberg-Tarjan algorithm
uses both dynamic trees [18,19,21] and finger trees [14,22].

Our work is a continuation of efforts in this direction. We obtain an
O(nm log logU log (nC))-time algorithm for the minimum-cost circulation problem. Our result

combines four known ideas:

(1) Elimination of arc capacities by transforming the minimum-cost circulation problem into a

transportation problem.
(2) Cost scaling within the e-optimality framework as proposed by Goldberg and Tarjan.
(3) A variant of the Edmonds-Karp approach relying on excess scaling, as developed by Orlin.

(4) The dynamic tree data structure of Sleator and Tarjan.

A simpler version of our algorithm that does not use the dynamic tree data structure runs in
O(nm logU (1 + log(nC)/log logl)) time. We obtain slightly better bounds for nonsparse graphs
with very large arc capacities. We also obtain improved bounds for the (uncapacitated) transpor-

tation problem.

Step (1), the elimination of arc capacities, is crucial to the efficiency of our algorithms. An
alternative approach is to bound the arc capacities by adding an extra outer capacity-scaling loop,
as suggested by Gabow and Tarjan [8]. Our explorations of this approach lead to algorithms with
time bounds worse than those mentioned above, but the analytical methods we develop are of
independent interest. Our results using this approach are described toward the end of the paper.
For example, we obtain a polynomial-time algorithm for the problem that uses a classical net-

work simplex algorithm inside a scaling loop.

This paper consists of six sections in addition to the introduction. In Section 2 we define
the transportation problem and discuss its relationship with the minimum-cost circulation prob-
lem. In Section 3 we develop a generic algorithm for the transportation problem based on cost
scaling and €-optimality. In Section 4 we refine the generic algorithm to use excess scaling, and

we analyze the resulting method. In Section 5 we add the use of dynamic trees. In Section 6 we

-4.-

consider the use of capacity bounding as an alternative way of dealing with arc capacities. In
Section 7 we summarize our results, comment on the possible practicality of our algorithms, and

mention some open problems.

2. The Transportation Problem

" The minimum-cost circulation algorithms we develop in Sections 3-5 will be stated in terms
of a related problem, the transportation problem. In order to discuss this problem, we need some
terminology. We call G bipartite if V can be partitioned into two sets S and T
(SUT =V,SnT =¢)such that every arc has exactly one vertex in S and one in T. We call ver-
tices in S sources and those in T sinks, we denote by n yand nj the sixes of S and T, respectively.
We call a bipartite network uncapacitated if u(v,w) = oo for each arc (v,w) with v € S and
u(v,w) = 0 for each arc (v,w) with v € T. A supply-demand vector d on a bipartite network is a
mapping from V to the real numbers such that d(v) £ 0 if v € S (—d(v) is the supply at vertex v),
d(v)20if veT (d(v) is the demand at vertex v), and ¥, d(v) = O (total supply equals total

veEYV

demand). Given an uncapacitated bipartite network G and a supply-demand vector d, the tran-
sportation problem is that of finding a minimum-cost pseudoflow f satisfying the following con-
straint:

bs (v) = d(v) for all v € V (supply-demand constraint) ©)

We call a pseudoflow feasible if it satisfies (6). We call a transportation problem feasible if
it has some feasible pseudoflow. Checking the feasibility of a transportation problem can be done

using any maximum flow algorithm, e.g.[1,2,9,10].

There is a well-known, simple transformation that will convert any minimum-cost circula-
tion problem into an equivalent transportation problem [17,23]. Given a network G = (V,E) we
construct another network G’ = (VU E,A), where A contains arcs ((v,w),v), (v,w),w) and their
reversals for every arc (v,w) € E. The arcs ((v,w),v) and ((v,w),w) have infinite capacity; their
reversals have zero capacity. Arc ((v,w),v) has cost zero and arc ((v,w),w) has cost c(v,w). We

define a supply-demand vector don G’ by

d((v,w))=—u(v,w) for all (v,w) e E, @)

dv)= Y u@w)foralveV.
(vyw)e E

.5-

Any circulation f on G corresponds to a feasible pseudoflow f on G such that cost(f) =
cost(f), given by f((v,w),w)= f(v,w), £ (v,w),v) = u(v,w) —f(v,w) for each arc (v,w) € E.
This correspondence is invertible. Thus a solution to the transportation problem on G’ gives a
solution to the minimum-cost circulation problem on G. Observe that if we regard E as being the
set of sources of G” and V as being the set of sinks, G’ has n; =m, and n; = n; arc set A has size
4m.

We shall derive time bounds for the transportation problem and translate them into time

bounds for the minimum-cost circulation problem based on the above transformation.

3. A Generic Algorithm for the Transportation Problem

We obtain a generic algorithm for the transportation problem by translating the minimum-
cost circulation algorithm of Goldberg and Tarjan [9,11] into the setting of the transportation
problem. We modify the algorithm to be an augmenting path method; the time bounds we derive
depend on this modification. We omit proofs of many of the basic results, since they are direct
translations of the proofs of Goldberg and Tarjan.

Let G =(V =S UT, A) be an uncapacitated bipartite network with source set S of size n,,
_sink s&t T of size n 2, arc set A of size m, and supply-demand vector d. We denote the total size of
V, i.e., ny + n2, by n, and min {ny,n3} by no. We denote by U the maximum supply, i.e. U =
max {—d(v)|v e S}, and by C the maximum absolute value of an arc cost. Note that U and C are
defined so that the transformation of Section 2 from a minimum-cost circulation problem to a

transportation problem preserves the values of U and C.

For a pseudoflow fon G, we define the excess e«v) of a vertex v by
er(v) = b(v)—d(v). ®8)
Thus a pseudoflow is feasible if every vertex has zero excess. We shall assume that the transpor-

tation problem to be solved is feasible, i.e. there is some feasible pseudoflow.

Given a pseudoflow f, the residual capacity of an arc (v,w) with respect to fis
ug(v,w) = u(v,w) =f(v,w). 9)
Arc (v,w) is unsaturated if ugv,w) > 0 and saturated otherwise.

A price function p on G is a real-valued function on the vertices. Given a price function p,

the reduced cost of an arc (v,w) is

-6-

cp(v,W) = c(v,w) +p(¥) -p(w). (10)

Lete> 0, let f be a pseudoflow, and let p be a price function. Pseudoflow f is &-optimal
with respect to price function p if

¢p (v,w) 2 —€ for every unsaturated arc (v,w) (€-optimality constraint). (11)

Pseudoflow [is optimal with respect top if it is €-optimal for € = 0. The following theorem is a
classical result of network flow theory and follows from the duality theorem of linear program-

ming.

Theorem 3.2 [11]. A feasible pseudoflow is of minimum cost if and only if it is optimal with

respect to some price function p.

As Bertsekas [4] discovered, a weaker condition suffices if all arc costs are integers:

Theorem 3.2. If all arc costs are integers and € ¢ -2—'1;-, then a feasible flow is of minimum cost if
0

and only if it is c-optimal with respect to some price function p.

Proof. Analogous to the proof of Theorem 2.3 of [11], using the fact that G is bipartite and hence

any simple cycle contains at most 2ng vertices. Cl

In the remainder of this paper (except in some of the concluding remarks of Section 7), we

shall assume that all arc costs are integers; thus Theorem 3.2 applies.

Our algorithm applies cost scaling based on Theorem 3.2. It uses a cost-scaling factor
k 2 2. It maintains a price function p and an error parameter &. Initially € = C and p is identi-
cally zero. The algorithm consists of repeating the following step until the termination condition

is satisfied.

Cost-Scaling Step. Let f be the identically zero pseudoflow. By modifying f and p, find a feasi-
ble pseudoflow f* and a price function p’ such that f’ is e-optimal with respect to p’. If

€< —2’i , stop. Otherwise, let p be defined by p(v) =p’(v)+¢€ifveS, p(v) =p'w)ifveT,
0

replace € by €/k.

-7-

Note that only the price function p is carried over from iteration to iteration; the pseudoflow

is reset to zero after each iteration.

Lemma 3.3. At the beginning of a cost-scaling step, f (the zero pseudoflow) is ~-optimum with
respect to p.

Proof. Any arc (v,w) that is unsaturated with respect to fhas v e S and w e T. Suppose that the
current cost-scaling step is the first. Then ¢,(v,w) = ¢(v,w) 2 —C =—€. Suppose on the other
hand that the cost scaling step is not the first. Let £ be the pseudoflow and p’ the price function
computed in the previous step. Then (v,w) is unsaturated with respect to f*, since u(v,w) = oo,
but any pseudoflow has all arc flows finite. Thus c,(v,w) = ¢, (v,w) + k& 2 —ke + ke 2 0, since f’
is k€ optimal with respect top’, and p(v) =p’(v) + k&, pw) =p’(w).O

Theorem 3.4. The transportation algorithm is correct and terminates after 0 (1 + log g(ng C))

iterations.

Proof., Correctness follows from Theorem 3.2. The bound on the number of iterations is obvi-
bus. O

The heart of the algorithm is the conversion of an e-optimal pseudoflow into an ~-optimal
feasible pseudoflow and the corresponding modification of the price function. We call this the.
refinement computation. Our generic refinement algorithm consists a sequence of two kinds of
local transformations, one of which modifies the pseudoflow and the other of which modifies the
price function. To define the transformations, we use the following terminology. A vertex v is
active if eg (v) > 0. An unsaturated arc (v,w) is eligible if ¢, (v,w) ¢ 0. The refinement algorithm

consists of repeating the following steps, in any order, until no vertex is active, and then defining

f=fp=p

push (v,w):
Applicability: Vertex v is active, us (v,w) > 0, and ¢f (v,w) < €.

Action: Push up to 8 = min{ er (v), ug (v,w) } units of flow from v to w by increasing f(v,w)

by an amount up to 6.

relabel (v').
Applicability: Vertex v is reachable from some active vertex by a path of eligible arcs, and

there is no eligible arc (v,w).

-8-
Action: Replace p(v) by max { p(w) —c(v,w) —€}.

Lemma 3.5. Any pushing or relabeling step preserves e-optimality. A relabeling of a vertex v
decreases p(v) by at least €.

Proof Analogous to the proofs of Lemmas 5.2 and 5.3 of [11].0

Lemma 3.6. The price of a vertex v decreases by O (kno€) during refinement. Hence v is rela-
beled O (kng) times.

Proof. Analogous to the proof of Lemmas 5.7, 5.8, and 5.9 of [11]. The bound on price changes
in Lemma 5.7 of [1 1]is O (n€), where the cost scaling is by a factor of two. Revising the argu-
ment to include a cost scaling factor of k yields an O (kn€) bound. Observing that G is bipartite,

and hence that any simple path in G contains at most 2nq arcs, reduces the bound to 0 (kno€). O

Now we describe a version of the refinement algorithm that is based on the idea of finding
augmenting paths. The algorithm uses a fixed incidence list 7(v) for each vertex v. This list con-
tains each arc (v,w). One such arc is designated the current arc out of v. Initially the current arc
out of v is the first arc on I(v). The algorithm repeatedly attempts to find a path of eligible arcs
from an active vertex to a vertex of negative excess. When such a path is found, flow is pushed
along it. To find such paths, the algorithm uses depth-first search, implemented using a stack S.
During a search, vertices are relabeled as necessary to extend the path. The algorithm consists of

initializing S to be empty and repeating the following steps until termination occurs in Step 1.

Step I (start new path). If there are no active vertices, stop. Otherwise, select some active vertex

v and push it onto S. Go to Step 2.

Step 2 (extend path). Let v be the top vertex on S. While the current arc of v is not eligible,
replace the current arc by the next arc on I(v). If this eventually produces an eligible current arc
(v,w), push w onto S and go to Step 4. If the end of /(v) is reached without finding an eligible
arc, go to Step 3.

Step 3 (relabel). Relabel v, the top vertex on S. Reset the current arc of v to be the first arc on

I(v). If v is not the only vertex on S, pop it from S. Go to Step 2.

Step 4 (augment). Let w be the top vertex on S. If ew) 20, go to Step 2. Otherwise, let 8 be

any positive quantity not more than the minimum of es (v) and min {ug(x,y) I xis on S, x # w, and

-9-

(x,y) is the current arc out of x}. For each current arc (x,y) such that x is on S and x # w, increase
f(x,y)by 6. Empty S and go to Step 1.

We call this method the augmenting path version if the refinement algorithm, or the aug-
menting path algorithm for short. We call an execution of Step 4 that actually moves flow an
augmentation.

Lemma 3.7. The augmenting path algorithm maintains the invariant that there is no cycle of eli-

gible arcs.

Proof. Analogous to the proof of Corollary 5.6 of [11]. Cl

Remark. The proof of Lemma 3.7 uses the fact that pushes take place only along eligible arcs. Cl
Lemma3.8. The maximum size of S is at most 2ng.

Proof., The vertices on S always define a path of eligible arcs. By Lemma 3.7 such a path is sim-
‘ple. The fact that G is bipartite gives the claimed bound on the size of S. CI

Theorem 3.9. The augmenting path algorithm is correct and runs in Q(knom) time plus O(ng)

time per augmentation.

Proof. Correctness follows from Lemma 3.5. We bound the running time as follows. The
number of additions to S equals the number of pops from S. The number of pops from S is O(ng)
per augmentation by Lemma 3.8 plus at most one per relabeling. The time to relabel a vertex v is
O(L I(v) I), which is also the time spent in Step 2 changing current arcs of v between relabelings.
By Lemma 3.6, the relabeling time and time spent changing current arcs, summed over all ver-
tices, is O(knom). An execution of Step 2 that does not change the current arc of v causes an

addition to S. The time to do an augmentation is O(ng). The claimed time bound follows. CI

4. Bounds for the Augmenting Path Algorithm

In this section we derive time bounds for various versions of the augmenting path algo-
rithm. Observe that there are two kinds of freedom in this algorithm, in the choice of starting ver-

tices for augmenting paths in Step 1, and in the amount by which the flow is augmented in Step 4.

Let us first analyze the simple method in which each augmentation is by an amount that is

as large as possible; that is, in Step 4, & is selected as follows: & = min { ef(v), min {ug(x,y) I x is

- lo-

on S, x # w, and (x,y) is a current am}). With this method, each augmentation either reduces the
number of active vertices by one, reduces the number of vertices of negative excess by one, or
saturates an arc. Lemma 3.6 implies that the total number of arc saturations is O (knom) (see
Lemma 5.10 of [11]); hence the total running time of the augmenting path algorithm is O (kn3m),
or O(ndm) if k is chosen equal to two. This bound is analogous to Dinic’s bound of 0 (n%m) for
the maximum flow problem [5]; indeed, the augmenting path algorithm itself can be viewed as an

analogue of Dinic’s algorithm.

We obtain a better bound (if all arc capacities are integral and not too large) by using excess
scaling. This method is based on the capacity-scaling algorithm of Edmonds and Karp [6] for the
minimum-cost circulation problem and is also analogous to the maximum flow algorithm of

Gabow [7]. Henceforth (except in Section 7) we shall assume that all arc capacities are integral.

The excess-scaling algorithm maintains an estimate A of the maximum excess. Initially A

is the largest power of two not exceeding U. The algorithm maintains two invariants:

@) The sum of all positive excesses is at most 2nA;
(ii) The residual capacity of any arc is either infinity or an integer (possibly zero) multiple of
A.

In Step 1, the algorithm always chooses a starting vertex v with e¢ (v) 2 A; if no such vertex
exists, the algorithm replaces A by A/2 and tries again. In Step 4, the algorithm always pushes A
units of flow along the augmenting path. The choice of starting vertices guarantees that invariant
(i) is maintained; immediately after A changes, the sum of all positive excesses is at most 2nA.
Augmenting by A preserves invariant (ii), which in turn guarantees that A units of flow can actu-
ally be pushed each time an augmentation occurs. When A first becomes less than one, all
excesses are zero, and the algorithm terminates. We call a maximal period of time during which

A stays constant a phase of the algorithm.

Lemma 4.1. The total number of augmentations done by the excess-scaling algorithm is
O(n log U).

Proof. Each augmentation either reduces the number of vertices with negative excess by one or
reduces the sum of positive excesses by A. By (i), the latter case can occur only O(n) times dur-

ing a phase. The number of phases is O(log U). The bound follows. O

Theorem 4.2. The excess-scaling version of the augmenting path algorithm runs in

-11-

O(no(km + nlog U)) time. Using this method in the transportation algorithm gives a bound for
the transportation problem of O(ng(km + n log U) logy (nC)) time for any k such that 2< k < nC.

Choosing k = min {2+ -:—l log U, nC } yields the following time bounds for the transportation

problem:

O(nom log (nC)) if logU <2m/n;

O(ngn logU (1 +log (nC)/log (% log U))) if logU 2 2m/n.

Proof. Immediate from Lemma 4.1 and Theorem 3.4.0

Corollary 4.3. The excess-scaling version of the transportation algorithm combined with the
transformation of Section 2 will solve a minimum-cost circulation problem in
O(nmlog U (1 + log (nC)/1og log U)) time.

By changing the excess-scaling algorithm slightly, we can obtain a bound of
O(nglogU + n log min{ n, U}) on the number of augmentations. This is an improvement on the
bound of Lemma 4.1 only if log U = @ ((n/ng) logn), which only holds if U grows nonpolynomi-
ally with n. Nevertheless, we shall present the result, since it suggests the possibility of obtaining
an 0 (n logn) bound on the number of augmentations for some suitable modification of the algo-
rithm. We shall assume that ny 2 n,, i.e. ng = n3, which is without loss of generality: if 7, < n,,

exchange the source set and the sink set and negate the supply-demand vector.

We modify the excess-scaling algorithm by changing Step 1 to the following:

Step 1’. 1f there are no active vertices, stop. Otherwise, if some active vertex v € S has an outgo-
ing arc (v,w) such that f (v,w) > 7nA4, increase the flow on (v, w) by e (v) and repeat Step 1 "
(We call this a special push.) Otherwise, if some active vertex v has er (V) 2 A, push vertex v
onto S and go to Step 2. Otherwise, replace A by A/2 and repeat Step 1°.

Before analyzing the modified algorithm in detail, we make several observations. A special
push is actually a push, since iff (v,w) > 0 then uy (w,v) > 0, which implies by €-optimality that
cp (W,v) 2 —€ and by cost antisymmetry that ¢, (v,w) < €. A special push maintains the invariant
that there is no cycle of eligible arcs. Once a vertex v € S has zero excess, its excess remains

zero until the end of the algorithm. The excess on any vertex v € S never exceeds 26. The total

-12-

flow moved by special pushes is thus at most 2nA. The total flow moved during augmentations
that decrease the number of vertices with negative excess is at most n A. The total flow moved by
other augmentations during a single phase is at most the sum of the positive excesses, which is at

most 2nA. Thus the total flow moved from a given time until the end of the algorithm is at most

3nA + po 2nA/2' =7TnA. Tt follows that once an arc (v,w) has flow exceeding 7nA, its flow
i=0

remains positive until the end of the algorithm, and (w,v) can never be saturated. We call an arc
(v,w) that can never be saturated open. The modified algorithm maintains invariant (i) (the sum

of all positive excesses is at most 2nd) and, in place of invariant (ii), the following:

(i))” Every arc (v, w) is either open or has a residual capacity that is an integer (possibly zero)

multiple of A.

We can verify invariant (ii) * by induction on the number of steps taken by the algorithm,

simultaneously showing that every augmentation in Step 4 can actually move A units of flow.

Lemma 4.4. The total number of augmentations made by the modified excess-scaling algorithm

is 0 (no log U + n log min{ n,U}).

Proof. Consider a vertex v € S. There are at most two augmentations starting from v per phase.
Suppose that the first augmentation from v is during phase i. This augmentation moves A units of
flow. Henceforth until the end of the algorithm there is always an arc (v,w) with f (v,w) 2 A/n.
After 2 log n + 3 more phases, the current value of the excess estimate is A’ = A/8n2, and there is
some arc (v,w) with f(v,w) 2 8n A’. When such an arc exists, if not before, the excess at v is
reduced to zero by a special push. Hence v can have positive excess only during
0 (log min{ n, U }) phases, and there are O(n log min{ n, U }) augmentations starting from ver-

tices in S.

Now consider a vertex v € T. If v does not receive additional flow from special pushes dur-
ing a phase, there can be at most two augmentations starting from v during the phase. A special
push can move up to 2A units of flow to v, which can account for at most two augmentations
starting from v during the phase. We charge such augmentations to the corresponding special
pushes. Since there are only 7 special pushes, the number of augmentations starting from vertices

in T, summed over all phases, is O (n + ng log U). This gives the desired bound. CI

In presenting time bounds for the modified method, we assume that
log U = Q((n/ng) log a), since otherwise the bounds are the same as those in Theorem 4.2 and

Corollary 4.3.

13-

Theorem 4.5. Assume that logU = Q((n/ng) logn). Then the modified excess-scaling version
of the augmenting path algorithm runsin ~ O(ng (km + ng log U)) time. Using this method in
the transportation algorithm gives a time bound for the transportation problem of
O(notkm +ng log U) log, (ngC)) for any k such that 2< k < noC. The choice of

n
k=min { 2+ —mo— log U, noC} yields the following time bounds for the transportation problem:

O(ngm log (noC)) if logU < 2m/nyg;
n
O(nd log U (1 + log (ngC)/ log (—’-'-? log U))) if log U 22m/ny.

Corollary 4.6. IflogU =Q(L:- logn), the modified excess-scaling version of the transportation

algorithm combined with the transformation of Section 2 will solve a minimum-cost circulation

problem in 0 (n2 log U(l + log (nC)/ log logU)) time.

" Remark. Every bound derived in this Section remains valid if each occurrence of the parameter U
is replaced by another smaller parameter U°. For the transportation problem,

U'=4+ Y. (=d(v))/n. For the minimum-cost circulation problem, U ‘=44 S, u(vw).
veSs (vw)e E

The bound on the number of augmentations in Lemma 4.1 can be reduced to 0 (n logU™) by
observing that the sum of positive excesses is initially at most aU", which implies that the
number of augmentations during phases in which A > U" is 0 (n). Similarly, the bound in
Lemma 4.4 can be reduced to 0 (no logU" + n log min { n,U h. Corresponding improvements
in the bounds of Theorem 4.2, Corollary 4.3, Theorem 4.5, and Corollary 4.6 follow. These
improved bounds are analogous to the bound Edmonds and Karp obtained for their transportation

algorithm [6].

S. Use of Dynamic Trees

The algorithms discussed in Section 4 are quite simple and do not require the use of any
complicated data structures. By adding the use of dynamic trees [18,19,21], we can improve the
bounds derived in Section 4 by almost a logarithmic factor. Our use of dynamic trees is analo-

gous to their use in other network flow algorithms (2,9,10,11,12,18,21].

14 -

The dynamic tree data structure allows the maintenance of a collection of vertex-disjoint
rooted trees, each arc of which has an associated value. Each tree is an in-tree; that is, if vertex v
is a child of vertex w, there is a tree arc from v to w. Each vertex in a tree is regarded as being
both an ancestor and a descendant of itself. The data structure supports the following seven

operations:

find-root(v): Find and return the root of the tree containing vertex v.

find-size(v): Find and return the number of vertices in the tree containing vertex v.

jind-value(v): Find and return the value of the tree arc leaving v. If'v is a tree root, the

value returned is infinity.

find-min(v): Find and return the ancestor w of v with find-value(w) minimum. [n case

of a tie, choose the vertex w closest to the tree root.

change-value(v,x): Add real number x to the value of every arc along the path from v

to find-root(v).

link(v,w,x): Combine the trees containing v and w by making w the patent of v and giving
the arc (v,w) the value x. This operation does nothing if v and w are in the same tree or

if v is not a tree root.

cut(v): Break the tree containing v into two trees by deleting the edge joining v to its
parent; return the value of the deleted edge. This operation breaks no edge and returns

infinity if v is a tree root.

- A sequence of [tree operations, starting with an initial collection of singleton trees, takes

O(llog (z + 1)) time if z is the maximum tree size [10,17,19,21].

We use this data structure to represent a subset of the eligible current arcs. The value of an
arc is its residual capacity. The data structure allows flow to be moved along an entire path at

once, rather than along one arc at a time.

In applying this data structure to the transportation problem, we can improve the resulting
time bounds if we take advantage of the special structure of the problem, specifically the fact that
G is bipartite, and hence so is every dynamic tree. Let us assume that ny2n,,i.e. IST2ITI.

We redefine the size of a dynamic tree to be the number of vertices of T it contains. This changes

-15 -

the semantics of the find size operation, but does not affect its implementation significantly. We
also modify the data structure so that any dynamic tree contains at most twice as many vertices as
its size. To do this we introduce an extra layer of abstraction. We represent each of the actual
dynamic trees (the ones manipulated by the operations) by a virtual dynamic tree, which consists
of the actual tree with all leaves in S deleted. Each of the deleted leaves has a pointer to its parent
in the actual tree, and has stored with it the value of the outgoing tree arc. Every virtual tree con-
tains a number of vertices at most twice its size, since every virtual tree vertex in S has a virtual
tree child in T. Every operation on actual trees translates into O(1) operations on virtual trees. It
follows that a sequence of [operations on actual dynamic trees takes O(I log (z + 1)) time, where

z is the maximum tree size according to the new definition of size.

The following version of the excess-scaling algorithm uses these modified dynamic trees.
In addition to an excess estimate A, the algorithm uses a fixed bound z, 1 < z < ng, on the max-
imum size of a dynamic tree. The algorithm maintains a stack S that defines a path of eligible
current arcs as follows: if vertex v appears just below vertex w on S, then the tree path from v to
find-root(v) followed by the arc (find-root(v),w) is a path of eligible current arcs. Initially S is
empty and each vertex forms a one-vertex dynamic tree. The algorithm consists of repeating the

following steps until termination occurs in Step 1.

Step I (start new path). If no vertex has positive excess, stop. Otherwise, if no vertex has excess
at least A, replace A by A/2 and repeat Step 1. Otherwise, let v be a vertex of excess at least A..
Push v onto S and go to Step 2.

Step 2 (extend path). Let v be the top vertex on S. Compute w = find root (v). If ¢ (w) < 0, go
to Step 4. Otherwise, while the current arc of w is not eligible, replace the current arc of w by the

next arc on I (w). If the end of I (w) is reached without finding an eligible arc, go to Step 3. If an
eligible arc (w,x) is found, test whether fin&size(v) + find-size(x) < z. If so, perform
link(w,x, u(v,w) =f(v,w)). If not, push x onto S. Repeat Step 2.

Step 3 (relabel). Relabel w. For each tree arc (y,w), perform cut(y). If v = w and v is not the
only vertex on §, pop v from S. Go to Step 2.

Step 4 (augment). Add A to ef(w).

Step 4a. Perform change-value (v, -A). While find-value(find-min(v)) = O, perform
cut (find-min(v)). Go to Step 4b.

-16 -

Step 4b. Pop v from S. If S is empty, subtract A from ey (v) and go to Step 1. Otherwise,
let x = v and replace v by the new top vertex on S. Let w = find-root(v). Add A to f (w,x)
and go to Step 4a.

This algorithm stores flow explicitly for arcs that are not in dynamic trees and implicitly for
tree arcs. Whenever a cut is performed, the arc cut must have its flow restored to its correct
current value. When the algorithm terminates, every arc still in a dynamic tree must have its

correct flow computed. These computations have been omitted from the description above.

The analysis of this algorithm is similar to the analysis of other network flow algorithms
that use dynamic trees, e.g. [2,9,10,11,12,18,21]. Since with this method the time bound for the
transportation problem is not improved by using a non-constant cost-scaling factor, we shah
choose k = 2. The total number of links and cuts performed in the dynamic tree version of the
excess-scaling algorithm is O(nogm) (see e.g. Lemma 7.2 of [11]), taking time
O(nogm log (z + 1)). The proof of Lemma 4.1 is valid for this version of the excess-scaling algo-
rithm, which means that there are O(n logU) augmentations. The definition of the algorithm
guarantees that if v and w are consecutive vertices on S, and w is not the top vertex on S , then

find-size(v) + @d-size(w) >z, i.e. either the tree containing v or the tree containing w has size
exceedingz/2. Since every vertex on S is in a different dynamic tree, the maximum height of S is

O(no/z), and the time per augmentation is O((ng/z) log (z + 1)). Thus we obtain the following

result.

Theorem 5.1. The dynamic tree version of the excess-scaling algorithm runs in

O(ng (m+ Lz'- logU) log (z + 1)) time, for any z satisfying 1 £ z< ng. With this method, the tran-
_ sportation algorithm runs in O(ng (m + % logNlog (z + Dlog (noC)) time. Choosing

z =min {1+ 7’;— logU, ng } gives the following time bounds for the transportation problem:
O(nomlog (2 + -"i— logU) log (noC)) if logU <nom/n;

O(nlogU logng log (noC)) if log U 2 nom In.

Remark. The bound in Theorem 5.1 for the case log U 2 ngm/n is not an interesting one, since a
better bound of O(nom log ng log (noC)) can be obtained by implementing the generic augment-

ing path algorithm (without excess scaling) using dynamic trees.

-17-

Corollary 5.2. The dynamic tree implementation of excess scaling can be used to solve the
minimum-cost circulation problem in O(nm log logU log (noC)) time if log U S n. If log U > n,
a bound of O(nm logn log (noC)) is obtainable with a dynamic tree implementation of the aug-

menting path algorithm without excess scaling.

. We can reduce the bound on the number of augmentations to
O(np logU + n log min{ n,U}} by modifying the excess-scaling method as in Section 4. This
leads to the following results.

Theorem 5.3. Assume that log U = Q ((n/n¢) logn). Then the dynamic tree implementation of
n
the modified excess scaling algorithm runs in O(nqg (m + To log U) log (z + 1)) time, for any z
satisfying 1<z<ng. With this method, the transportation algorithm runs in
no . . . no .
O(ng(m + ~ log U) log (z + 1) log (n¢C)) time. Choosing z = min (1 + — log U, ng) gives

the following time bounds for the transportation problem:

n
O(nomlog (2 + —”% log U) log (noC)) if log U < m;

O(nglog U log ng log (noC)) if log U 2 m.

Corollary 5.4. If log U = Q (-’-:— logn), the minimum-cost circulation problem can be solved in

O(nmlog (2 + -"-"; log U) log (nC)) time.

Remark. Every bound derived in this Section remains valid if each occurrence of U is replaced
by U *, where U" is as defined in the remark at the end of Section 4. This follows from the

corresponding improvements in the bounds of Lemmas 4.1 and 4.4 discussed in that remark. Cl

6. The Capacity Bounding Technique

The results derived in Sections 3-5 depend crucially on the elimination of arc capacities via
the transformation to a transportation problem discussed in Section 2. One may ask whether
there is some more direct, or at least alternative, way to deal with arc capacities. A question that
turns out to be related is whether the Ahuja-Orlin excess-scaling algorithm for the maximum flow

problem [1,2] generalizes in a natural way to the minimum-cost flow problem via cost scaling, in

-18 -

analogy with the generalization of other maximum flow algorithms to this problem [9,10].

In this section we show that the answer to both these questions is a qualified “yes.” We
consider the minimum-cost circulation problem as defined in Section 1, with integer capacities
and costs. We propose a way of solving this problem using an outer capacity-scaling loop whose
effect is to convert the original problem into a sequence of O(log U) problems in each of which
the arc capacities are integers bounded by m. This idea was used by Gabow and Tarjan [8]. The
method requires a standard ““vertex-splitting” transformation. To solve the resulting capacity-
bounded problems, we propose a modification of the Ahuja-Orlin excess-scaling maximum flow
algorithm nested inside an e-scaling loop. The resulting triple scaling algorithm runs in
0((n210gm + nm) logU log(nC)) time using no fancy data structures. Although this algorithm
has an inferior complexity bound as compared to the bounds obtained in previous sections, the

method and its analysis has independent interest.

Now we give details. The outer capacity-scaling loop constructs two minimum-cost circu-
lation problems at each iteration, a target problem and a restricted (capacity-bounded) problem.
These are obtained from the current network as follows. First, the next bit of precision is added
to the arc capacities by doubling the current capacity and adding one to the capacity of each arc
(v,w) such that the current bit of u(v,w) is 1. We denote the resulting capacity function by u’.

The target problem is (G,u”,c), where G is the original graph and ¢ is the original cost function.

The restricted problem is obtained from the target problem by bounding the flow through
every vertex of the target problem by m. More formally, the restricted problem is obtained by
splitting each vertex v of G = (V,E) into two to obtain the graph G’ = (V’,E’), where V’ contains
vertices vy and v for each v € V, and E’ contains an arc (vy,v3) of capacity u(vy,v,) =m and
cost ¢(v1,v2) = 0 for each v € V and an arc (v2,w) of capacity u”(v,w 1) = u’(v,w) and cost
¢’(v1,w1) = c(v,w) for each arc (v,w) € E. (Network G’ also contains opposite-directed arcs of

- capacity zero.) The restricted problem is (G”,u”,c”). We call a vertex v in the restricted prob-

lem inner and a vertex v 5 outer, we call an arc (v 1,v4) a split arc.

Observe that every circulation f* in the restricted network corresponds to a circulation f in
the target network given by f(v,w) = f (vo,w1). By construction, the costs off and f" are the
same. Conversely, for every circulation fin the target network, there is a corresponding arc func-

tion f’ given by f'(v2,w1) =f(v,w), f(v1,v2)= Y, f(x,v). Function f is a circulation if and
@) eE

only if f'(v{,v,) < m for every split arc (v{,v3).

We assume (without loss of generality) that the original problem has no negative capacities,
i.e. the identically zero arc function is a circulation. At a high level, the algorithm consists of ini-
tializing fand u” to be zero on all arcs and repeating the following steps for each bit of precision

in the capacities, proceeding left-to-right through the bits:

-19 -

Step 1. (Construct the new target problem by introducing the next capacity bit.) For each
(v,w) € E, replace u’(v,w) by 2u’(v,w) if the current bit of u(v,w) is zero, by 2u’(v,w) + 1 if the

current bit of u(v,w) is one.

Step 2. Construct the restricted problem (G”,u”,c’).

Step 3. Find an optimal solution f* to the problem (G’,u”,c”).
Step 4. Construct the circulation fin (G,u’,c’) corresponding to f.

Step 5. (Modify the target problem so that the zero circulation is optimal.) For each (v,w) € E,

replaceu”(v, w) by u’ (v, w) =f(v, w).

The algorithm maintains the invariant that on entry to Step 1, the zero circulation is optimal
for the old target problem (as modified in Step 5). The following result is similar to a lemma of

Gabow and Tarjan [8].

Lemma 6.1. The circulation f computed in Step 4 is an optimal solution to the target problem
(G,u’,c").

Proof. By induction on the number of iterations. On the most recent entry to Step 1, the zero cir-
culation is optimal for the old target problem. This is true for the initial entry because of the ini-
tialization, and true for each subsequent entry by the induction hypothesis. Thus there is some
price function p for which the reduced costs of all positive-capacity arcs are non-negative in the
old target problem. By the construction in Step 1, all negative-reduced-cost arcs in the new target
problem have capacity one or zero. Let f be an optimal solution to the new target problem such
that f* contains no zero-cost cycle of positive flow (any such cycle can be eliminated by reducing
“itsflow). Circulation £~ can be decomposed into at most m simple cycles, each of flow value one.
(There is at most one such cycle for each negative reduced-cost arc). The arc function f” on the
restricted network that corresponds to f thus has f'(vy,v2) € m for each split arc (v 1,v3), i.e. f
is a circulation. Since f* is optimal for the target problem, f is optimal for the restricted prob-
lem. It follows that any optimal solution to the restricted problem corresponds to an optimal

solution to the target problem, and the lemma is true. Cl

We shall describe an implementation of Step 4 that uses the c-scaling approach of Goldberg
and Tarjan [9,11] (already discussed in Section 3 in the context of the transportation problem)

with an inner loop that is a modification of the Ahuja-Orlin maximum flow algorithm [1,2]. The

20 -

e-scaling loop starts with a zero circulation and a zero price function; the zero circulation is €-
optimal with respect to the zero price function for € = C. Then the method iteratively applies a

refinement subroutine that halves € and produces a circulation f* and a price function p such that
f is E-optimal with respect to p. When € < #. the method terminates with an optimal solution.

(Recall that the restricted network has 2n vertices.) The formal definition of the e-scaling loop is

as follows:
Step4.1. Letf =0, e=C, and p =0.

Step 4.2. For each outervertex vy, let p(v2) = max {¢’(v2,w1) 1 (vo,wy) € E’).

Step 4.3. While € 2 -51;, perform (e, f ,p) « refine (&, f ,p).

The special structure of the restricted network allows the maintenance of the following
invariant in Step 4.3: for all residual arcs (v,w) with negative reduced costs, v is an inner vertex.

Step 4.2-guarantees that this invariant holds on entry to Step 4.3.

The correctness of the &-scaling loop and the fact that it terminates after O(log(nC)) itera-
tions of refine follow from the results of Goldberg and Tarjan [9,11].

The following implementation of refine is based on the generic implementation of refine
described by Goldberg and Tarjan [9,11], specialized to use excess scaling as in the Ahuja-Orlin

maximum flow algorithm[1,2].

refine (¢,f .p).

Step R.1. (Saturate negative-cost arcs.) For each split arc (v ;,v2) such that

¢’ p(v1,v2)<0, let f(v1,v2) =u"(v1,v2).

Step R.2. (Initialize A,&.) Let A be the smallest power of two not less than m. Replace €
by €/2.

Step R.3. (Inner loop.) While A 2 1 repeat the following steps:

Step R.3.1. While there is a push or relabel operation that applies, perform such an

operation.

221 -
Step R.3.2. Replace A by A/2.
Step R.4. For each inner vertex vy, replace p(vy) by p(v) -¢/2.
Step R.5. Return (&,f,p).
The push and relabel operations are defined as follows:

push(v,w).
Applicability: eg (v) > A12,ep (w) S A2, ug (v,w) > 0, and cp(v,w) < —€/4.

Action: Send min {A/ 2,u'f' (v,w)} units of flow from v to w.

relabel(v).
Applicability: eg (v)>0 and cp(v,w) 2 —€/4 for each residual arc (v, w).
Action: Replace p(v) by max {p(w) =’ (v,w) —€/2}.

Some remarks are in order here. Step R.I saturates all negative reduced-cost arcs, thereby
making f” into an optimal pseudoflow but introducing excesses and deficits at vertices. Step R.3
moves the excess flow amounts to the vertices with deficits while maintaining €/2-optimality (for
the new value of €). Step R.4 is assures that for any residual arc (v,w) which has a negative

reduced cost, v is an inner vertex. After this step, f is no longer €/2-optimal but only ~-optimal.

Step 4.3 maintains a value A that is an upper bound on the largest excess. When no excess
exceeds A/2, A is halved. All excesses are integers; by the time A < 1, all deficits have been can-

celed.

Each pushing step moves excess from a vertex with excess exceeding A/2 to a vertex with
excess not exceeding A/2, and through an edge of cost between —€/2 and —€/4. Thus each push
is either saturating or it moves at least A/2 units of flow; in the latter case it reduces the cost off

by at least Ae/8. We shall use this cost reduction to bound the number of nonsaturating pushes.

We have omitted a description of how to determine push and relabel operations that can be
applied. These details can be found in [1,2]. The total time spent in such overhead in a single

execution of refine is O(nm).

The proofs of the following lemmas are easv modifications of proofs of analogous lemmas

in [9,10]:

Lemma 6.2. The push and relabel operations preserve €-optimality.

-2).

Lemma 6.3. (i) Each operation relabel (v) decreases p(v) by at least e/4. (ii) During an execu-
tion of r&e, the maximum amount by which p(v) can decrease is 6en, for every vertex v. (iii)
The total number of relabel operations during an execution of refine is o@n?), taking O(nm)

time. (iv) The number of saturating pushes during an execution of refine is O (nm).

Lemma 6.3 implies that the running time of refine is O(nm) plus O(1) per nonsaturating
push. We shall establish a bound of O(n? log m + nm) on the number of nonsaturating pushes,
thereby obtaining an o((n? logm + nm) log U log(nC)) bound on the triple scaling algorithm.

To bound the number of nonsaturating pushes, we define the cost of a pseudoflow f with

respecttoapricefunctionptobe

cost,(f)= F cpow)f W) = 3 cw) W+ T ep(v)p(v).

fvw)>0 fr.w)>0 ve vV

Observe that if f” is a circulation its cost does not depend on p, i.e. cost,(f') = cost(f") where

cost(f) = Y, ¢’(w)f(v,w) (as defined in Section 1).
fow)

As noted above, a nonsaturating push decreases cost,(f*) by at least Ae/8. A relabeling of a

vertex v that decreases p(v) by an amount x increases costp(f) by xeg (v).

We want to study how much cost,(f') can vary during an execution of refine. We do this
by relating cost,(f’) to the cost of an optimal circulation. This requires the following lemma,

which states a general result about circulations and pseudoflows.

Lemma 6.4. Let fbe a circulation, f” a pseudoflow, and p a price function on a network f with

capacity and cost functions # and c, respectively. Then

cost,(f') -cost(f) < p) —cp(v,w) up (v,w).
oW):e,mw)<0

Proof. Let f be the pseudoflow obtained from f by saturating all negative reduced-cost arcs.
Then

L}
~)
(WS)

1]

cost,(f) = cost,(f”) +) —,(v,W) ur (v,w).

w): g (v,w) < 0

But f can be obtained from f” by increasing flow along a collection of paths and cycles of arcs in
Gy, each of which has nonnegative reduced cost. Thus cost(f) 2 cost,(f”), and the lemma fol-

lows. cl

Consider a time during the execution of refine. For the current pseudoflow f” and price
function p, we define a potential ® by ® = (cost,(f") -cost (f")) /(Ag), where f" is any optimal
circulation. The following lemma bounding @ is the heart of the analysis of nonsaturating

pushes.
Lemma 6.5. <48 n® < ® < 4nm/A.

Proof. We shall prove that —48 Aen? < cost,,(f) —cost(f") € 4 enm. To obtain the upper bound,
we note first that f is €/2-optimal with respect to p. By decreasing prices on inner vertices by
€/2, we obtain a price function p’ with respect to which f” is e-optimal and for any residual arc
(v,w) that has a negative reduced cost with respect to p’, vis an inner vertex. Since no vertex has
excess exceeding A < 2m, cost,(f') S cost, (f') + enm. By Lemma 6.4,

costy (f) —cost(f") <)) (v,w) < 3enm.
(V,W)Ic','(v.w)<0

To justify the last inequality, we show that the sum of residual capacities of all arcs residual arcs
with negative reduced costs is bounded by 3nm. To see this, recall that if (v,w) is such an arc,
that v is an inner vertex. For an inner vertex v, the total residual capacity of arcs going out of v is
m—eg (v). Since the total excess is bounded by nA < 2nm, the total residual capacity of arcs
going out of inner vertices is bounded by 3nm; therefore the total residual capacity of arcs with

negative reduced costs is at most 3nm.

Combining inequalities gives cost,(f”) —cost(f") < 4enm.

To obtain the upper bound, we note first that we can assume that there is a price function p*
with respect to which f* is optimal and such that I p(v) -p*(v) I £12en for every vertex v. This is
since the repeated executions of refine in Step 4.3 of the E-scaling method will produce an

optimal circulation f* and a final price function p * such that f* is optimal with respect to p *; the

-24 -

total price change of any vertex over all the iterations of refine is at most ¥, 6ne/2° = 12en. We
i=0
have cost(f") —cost,(f') £ 0, since f" can be converted into f* by increasing flow on residual

arcs of Gf , all of which have nonnegative reduced cost. But

costy"(f') —cost,(f) S X 1 p*(v) -p(v) Il ep (v) | S 48 Aen?
V&V

since the sum of the positive excesses is at most 2n4, as is the negative of the sum of the negative

excesses. Combining inequalines gives cost(f) —cost,(f') < 48Aen?). 0

Lemma 6.7. The number of nonsaturating pushes during an execution of refine is

O(n?logm + nm).

Proof. Each nonsaturating push decreases @ by at least 1/8. Any saturating push also decreases

®. A relabeling that decreases the price of a vertex by x increases ® by at most x.

There are at most log m + 1 iterations of Step R.3 in refine. Consider the i** iteration. Sup-
pose that during this iteration the total decrease in vertex prices is x;. If p; is the number of non-
saturating pushes during this iteration, then the iteration causes a net decrease in @ of at least
pi/8—x;. Changing A between two iterations can increase ® by at most #2. Summing over all

phases and applying Lemma 6.5, we have

Y i/ 8—x;)<2nm+ 48n2 + n*Qogm + 1).

Since ¥ x;= O(n?), it follows that ¥ p; = 0(n® log m + nm). O
i

Theorem 6.8. The triple scaling algorithm for finding a minimum-cost circulation runs in

0((n? log m + nm) logU log(nC)) time.

Using dynamic trees in the inner loop of the triple scaling algorithm, as in [2], reduces the
time bound to O(nm log (1 + % logm) logU log (nC)). Further minor improvements might be

possible using additional ideas in [2]. We shall not pursue this possibility further, however, since

in any case the approach of Sections 3-5 produces better bounds.

.25

We conclude this section by noting that there is an alternative way to solve the sequence of
restricted problems generated in the outer capacity-scaling loop. Namely, we can use a simple
version of the network simplex rule, specifically Dantzig’s minimum reduced-cost pivot rule with
lexicography to avoid cycling. This rule was studied by Orlin [15], who obtained a bound of
O(nmU log (mUC)) on the number of pivot steps. In a restricted problem, U = m, and the
capacity-scaling method with Step 3 implemented using the network simplex method runs in
O(nm>1og U log (mC)) time, if the time to do one pivot step is O(m). In this algorithm, it is not
necessary to transform the graph by splitting vertices; it suffices to impose a capacity bound of m
on every arc in G. This time bound is not noteworthy; more interesting is the mere fact that com-
bining one scaling loop with a standard version of the network simplex algorithm gives a
polynomial-time algorithm. Without the scaling loop, the same version of the network simplex

algorithm can take exponentially many pivot steps [24].

7. Remarks
We have shown that the minimum-cost circulation problem can be solved in

O(nm log log U log (nC)) time, and even in O(nm log (2 + % log U) log (nC)) time if

logU=Q (-"—!- log n). We have derived analogous bounds for the transportation problem. Our
n

algorithms use scaling of both costs and capacities, combined with an augmenting path method
and an implementation based on dynamic trees. If dynamic trees are not used, the time bound for

the minimum-cost circulation problem is O(amlogU (1 +log (nC)/loglog U)), or
0(n? log U (1 +log (nC)/ loglog U)) if log U =Q (% logn). Under the similarity assumption
[7], namely log U = 0 (logn) and log C = 0(Qogn), our time bound with dynamic trees is

0 (nm logn loglogn), which beats the best previous bound of 0 (nm logn log(—':—:—)) [11] except
for very dense graphs (m = Q (—l-:—g—n—)

We expect that some version of our algorithm, probably without dynamic trees, will in prac-
tice be competitive with or superior to previously existing algorithms. We have not yet done the
required experiments to confirm or refute this hypothesis. Our experiments with similar algo-
rithms (see e.g. [9]) suggest that periodic scans to tighten prices may increase the practical,

though not the theoretical, speed of the algorithm.

We have discussed a capacity-bounding technique, which allows us to use a modification of
the Ahuja-Orlin maximum flow algorithm in the inner loop of the Goldberg-Tarjan minimum-
cost flow method. The analysis of this technique uses the cost of the current pseudoflow as a

measure of its quality. This makes the analysis very intuitive.

226-

A tantalizing open question is whether there is an 0 (nm log logn log (nC))-time algorithm
for the minimum-cost circulation problem. We believe that the answer is yes and that a
modification of our methods will lead to such a bound. Such a result would probably give a time
bound of 0 (nm log logn) for the maximum flow problem, which would also be an improvement
over known results. (See [2,10].)

8. References

(1] R. K. Ahuja and J. B. Orlin, *“A fast and simple algorithm for the maximum flow prob-
lem,” Technical Report 1905-87, Sloan School of Management, M.I.T., Cambridge, MA,
1987.

[2] R.K. Ahuja, J.B. Orlin, and R.E. Tarjan, ‘‘Improved time bounds for the maximum flow
problem,” to appear.

(3] D.P. Bentsekas, “A distributed algorithm for the assignment problem,” unpublished
working paper, Laboratory for Information and Decision Sciences, M.I.T., 1979.

[4] D.P. Bertsekas, “Distributed asynchronous relaxation methods for linear network flow
problems,” Technical Report LIDS-P-1606, Laboratory for Information and Decision Sci-
ences, ML.LT., 1986.

[5] E.A. Dinic, ‘Algorithm for solution of a problem of maximum flow in networks with
power estimation,” Soviet Math. Dokl. 11 (1970), 1277-1280.

(6] J. Edmonds and R.M. Karp, “Theoretical improvements in algorithmic efficiency for net-
work flow problems,” J. Assoc. Comput. Mach. 19 (1972), 248-264.

[71 H.N. Gabow, “Scaling algorithms for network problems,” J. Comput. System Sci. 31
(1985), 148-168.

(8] H.N. Gabow and R.E. Tarjan, “Faster scaling algorithms for network problems, *’ SIAM J.
Comput., submitted.

9] A.V. Goldberg, “Efficient graph algorithms for sequential and parallel computers,” Ph.D.

" Thesis, M.LT., 1987.

[10] A.V.Goldberg and R.E. Tarjan, “A new approach to the maximum flow problem,” J.
Assoc. Comput. Mach., 10 appear.

[11] A.V. Goldberg and R.E. Tarjan, “Fiiding minimum-cost circulations by successive
approximation,” Math. of Oper. Res., to appear.

[12] A.V. Goldberg and R.E. Tarjan, ‘ ‘Finding minimum-cost circulations by canceling nega-
tive cycles,” J. Assoc. Comput. Mach., submitted; also Proc. Twentieth Annual ACM
Sww. on Theory of Computing (1988). 388-397.

(13]
(14]
(15]
(16]
(17]
(18]
(19]
(20]
| (21]
(22]
(23]

(24]

27 -

EL. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Reinhart, and
Winston, New York, NY, 1976.

R. Mehlhom, Data Structures and Algorithms, Volume I: Sorting and Searching,
Springer-Verlag, Berlin, 1984.

J. B. Orlin, “On the simplex algorithm for networks and generalized networks,” Math.
Programming 24 (1985), 166-178.

J. Orlin, “ A faster strongly polynomial minimum costflow algorithm,” Proc. Twentieth
Annual ACM Symp. on Theory of Computing (1988), 377-387.

C.H. Papadimittiou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-
plexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

D.D. Sleator and R.E. Tarjan, ‘A data structure for dynamic trees,’’ J. Comput. System
Sci. 26 (1983), 362-391.

D.D. Sleator and R.E. Tarjan, “Self-adjusting binary search trees,” J. Assoc. Comput.
Mach. 32 (1985), 652-686.

E. Tardos, “A strongly polynomial minimum cost circulation algorithm,” Combinator-
ica, 5(1985), 247-255.

R.E. Tarjan, Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA 1983.

R.E. Tarjan and C.J. van Wyk, “An 0 (n log logn)-time algorithm for triangulating a
simple polygon, ** STAM J. Comput., 17(1988), [43-178.

H.M. Wagner, ‘‘On a class of capacitated transportation problems,” Management Science
5(1959).304-318.

N. Zadeh, “ A bad network flow problem for the simplex method and other minimum cost

flow algorithms,** Math. Programming 5(1973), 255-266.

