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Multi-Level Shared Caching Techniques

for Scalability in VMP-MC*

David R. Cheriton, Hendrik A. Goosen and Patrick D. Boyle

Computer Science Department

St anford University

Abstract

The problem of building a scalable shared memory multiprocessor can be reduced to that

of building a scalable memory hierarchy, assuming interprocessor communication is handled by

the memory system. In this paper, we describe the VMP-MC design, a distributed parallel

multi-computer based on the VMP multiprocessor design, that is intended to provide a set of

building blocks for configuring machines from one to several thousand processors. VMP-MC

uses a memory hierarchy based on shared caches, ranging from on-chip caches to board-level

caches connected by busses to, at the bottom, a high-speed fiber optic ring. In addition to

describing the building block components of this architecture, we identify the key performance

issues associated with the design and provide performance evaluation of these issues using trace-
drive simulation and measurements from the VMP.

I Introduction

Our goal is to develop a buslding block technology from which components made from workstation-

class hardware can be composed into a spectrum of machines, ranging from single-processor per-

sonal computers to supercomputer configurations with thousands of processors. All configurations

should run the same software and be incrementally upgradeable from the smallest to the largest

configurations. The availability of high-performance low-cost microprocessors makes this feasible

from the standpoint of raw processing power. The problem lies in the interconnection. To address

this, we propose a scalable shared memory multiprocessor based on characteristics of the VMP

architecture (8, 7], extended by using multi-level, shared caches.
In this paper we present the overall design of VMP-MC, a distributed parallel multi-computer,

focusing on the design of the building block components and the novel techniques which support

scalability. We also identify the key performance issues with this design and investigate them using

trace-driven simulation and experience from the original VMP design. We argue that VMP-MC

provides a credible approach to a highly scalable architecture.

Novel aspects of the design include: (1) limited sharing of secondary caches to reduce miss rates

and cost; (2) a hierarchically structured, directory-based consistency mechanism; and (3) locking

and message exchange explicitly supported by the memory hierarchy.

The next section describes the function and interconnection of the VMP-MC components. Sec-

tion 3 investigates and evaluates the critical performance issues. Section 4 describes the current

status of the VMP-MC hardware and software. Section 5 compares our work to other relevant

projects. We close with a summary of our results, identification of the significant open issues, and

our plans for the future.

‘This work was sponsored in part by the Defense Advanced Research Projects Agency under Contract X00014-
88-K-0619.



2 VMP-MC Design

The basic VMP-MC design is shown in Figure 1.
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Figure 1: VMP-MC Overview

A VMP-MC configuration consists of one or more network nodes connected by a high-speed

network. The V kernel and its virtual memory system manage the caching of data at each node and

maintain consistency among nodes, relying on network file servers for non-volatile storage. The

Network Adapter Board (NAB) provides high-performance communication between the Memory

Modules (MMs) and the network. Consistency among Multiple Processor Modules (MPMs), Inter-
bus Caching Modules (ICMs) and NABs on the node bus is ensured by the MM. An ICM connects
a Multiple Processor Module Group (MPMG) to the node bus, providing caching and consistency

within the MPMG. The MPM recursively provides the same caching and consistency for the multiple

processors sharing the on-board cache.

The following sections describe these modules and their interaction in greater detail.

2.1 Memory Module (MM)

The memory module (MM) provides the bulk memory for the system, and is a physically-addressed

slave module on the node bus. It includes a directory, the Memory Module Directory (MMD), that

records the consistency state of each cache block (an aligned 128 byte unit of memory) that it

stores. Rapid data exchanges with the MPMs are achieved by block transfers using a sequential

access bus protocol and interleaved fast-page mode DRAMS.

For each 128 byte block of memory in the MM, the MMD has a 16-bit entry indicating the
block’s state:

(cc [L [Pup [Py] ... [Po
where CC is a two bit code, and L is the LOCK bit used for locking and message exchange (described

below). Each P; corresponds to one MPM or ICM, allowing up to 13 MPMs and ICMs to share

|



this memory board!. The meaning of the CC and P fields is summarized in Figure 2.

| CC] Meaning if P, set |
00 |lundefined

01 |MPMs/ICMs with a shared copy of block

10 MPM/ICM with private copy of block

11 |MPMs/ICMs requesting notification

Figure 2: CC Bit Interpretation

If the P, are all clear, then the block is neither cached nor in use for message exchange. Directory

entries can be written and read directly, but they are normally modified as a side effect of bus

operations. The MMD is designed to support the implementation of consistent cached shared

memory, memory-based locking and a memory-based multicast message facility, as described below.

2.1.1 Consistent Shared Memory Mode

The consistency protocol follows the same invalidation protocol used in VMP, ensuring either a

single writable (private) copy or multiple read-only (shared) copies of a block.

If the block 1s uncached, the P field of its MMD entry will contain zeros. A read-shared or read-

private bus operation by module ¢ on an uncached block returns the block of data. As a side-effect,

P, is set, and the CC bits are set to 01 (shared) or 10 (private). A read-shared operation on a

shared block returns the data and sets P;. A read-private or assert-ownership operation by module

¢ on a shared block changes the CC to 10 (private), interrupts all modules j for which P; is set,

clears all P;, and sets P,, When a block is private, the MM aborts read-shared and read-private
operations and interrupts the owner. A writeback operation by the owner : sets the CC to 01

(shared). Depending on the type of writeback, P; is either reset or left unchanged.

Using this MMD entry format, the MM requesting a block of memory knows exactly which

modules to interrupt, if any, to allow it to acquire a copy of the block in the desired mode. This

attribute of the design is important to its scalability.

2.1.2 Memory-Based Locking

The unit of locking in VMP-MC is the cache block (128 bytes). A lock bus operation by module

1 on an unlocked block (the L bit in the MMD entry is clear) succeeds and sets the L bit and P;.

Otherwise, the bus operation fails and P; is set. (Variants of the read-shared and read-private bus

operations include the locking action, and fail if the lock is already set.)

An unlock bus operation by module z clears the MMD entry’s lock bit, and all modules j for

which P; is set, where j # 1, are signalled that the lock has been released. This mechanism allows
different processes to set and clear the lock, as is required in some applications. Variants of the

write-back bus operation include the unlock action.

Read-shared and read-private operations without the lock action succeed independently of the

lock setting and do not change the lock setting. This behavior allows the application process that

sets a lock to migrate between processors.

The expected use of this facility is for the application to first attempt to lock a block corre-

sponding to some shared data. Once the block is locked, the application updates the logically

locked data structures and then releases the lock. Other waiting caches are notified of unlocking,

relying on the P field for notification.

The provision of locking as part of the consistency mechanism provides several optimizations

over a conventional lock mechanism using test-and-set operations and memory consistency. In our

'An MPM and an ICM appear identical to the MM on the node bus. We use MPM in the exposition for brevity.
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scheme, a processor needing to acquire a lock 1s forced to wait until it 1s unlocked, rather than

steal the block containing the lock away from the lock holder, as would occur in the original VMP

architecture. Thus, the locking mechanism serves as contention control on data structures. Used

in combination with the read operations that specify locking, this facility allows one to acquire

both the lock and the data in one bus operation, but not until the lock is free. In contrast, the

conventional approach may induce a high level of contention when, for example, processors spin on

locks while the lock holder is updating data in the same cache block.

2.1.3 Memory-Based Message Exchange Protocol

The message exchange protocol uses blocks of shared memory as message buffers. A separate

protocol is needed since the semantics of message exchange differs from that of consistent shared

memory. A receiving processor wants to be notified after a block (message buffer) has been written,

and not before it is read, as in consistent shared memory mode. A sending processor wants to be

able to write a block without having read it.

A Notify bus operation (i.e., notify me when the block is written) by module 1 on a given block

places the block in message exchange mode by setting the CC field in the corresponding MMD to

11, and setting P,. A subsequent writeback to that block causes every module specified in the P

field to be interrupted and the L bit to be set. The L bit indicates that the block has been written,

but not yet read. A read-shared operation then causes the L bit to be cleared and returns the data.

One use of this facility is for interprocessor messages, as part of the operating system kernel

implementation. A kernel operation on one processor that affects a process on another processor

sends a message to that processor. Each processor has one or more message buffers for which it

requests notification when they are written. One communicates with a processor by simply writing

to one of its message buffers. For synchronization, the write is aborted if the L bit of the block is

set (i.e., the block has been written and not subsequently read).

Another use is notification of memory mapping changes. A memory block is associated with

each portion of the kernel memory mapping information (e.g., one MM cache block per address

space). If an MPM is caching data from some virtual memory space, it requests notification of writes

to the corresponding message block. When a kernel memory management operation modifies the

virtual memory mapping, the changes are written to the associated message blocks. The affected

modules are notified and update their caches and memory mapping information. Gap-free sequence

numbers on the updates are used so a processor can detect that it missed an update (i.e., it failed

to read the message block before the block was overwritten), without requiring the hardware to

provide this level of synchronization. When a processor does miss an update, it invalidates all of

the cache data associated with that portion of virtual memory.

This scheme builds upon the memory coherency mechanism to provide interprocessor interrupts

and message data transfer, eliminating the need for a separate facility. It requires only two extra

bits in each directory entry and one additional type of bus operation.

In contrast, interprocessor communication implemented purely in terms of message buffers in

conventional shared memory would result in considerable extra cache and bus traffic for locking

and coherency, imposing unnecessary overhead on key system resources, and limiting scalability.

2.2 Multiple Processor Module (MPM)

The Multiple Processor Module (MPM) occupies a single printed circuit board, and is shown in

Figure 3. Multiple CPUs (microprocessors) are attached by an on-board bus to a large virtually

addressed cache and a small amount of local memory. The cache lines are large, and the cache is

managed under software control, as in VMP [8]. The local memory contains cache management code
and data structures used by a processor incurring an on-board cache miss. A FIFO buffer queues

requests from the node-bus for actions required to maintain cache consistency, and to support the

4
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Figure 3: MPM Board Layout

locking and message exchange protocols. One of the processors is interrupted to handle each such

request as it arrives.

Each CPU is a high-speed RISC processor with a large (16K or more) virtually addressed on-

chip cache with a moderate cache line size (32 bytes). Interference between processors is reduced

by transferring data (in 2 cycles) from the on-board cache to a wide per-processor holding register 2,
which then transfers the line to the on-chip cache in burst-mode. With each on-chip cache line,

in addition to the usual flags such as valid, modified and writable, we require locked, held and

requested. Encodings of the extra flags are summarized in Figure 4.

LHR | meaning

000 | on-chip cache does not hold the lock

001 | on-chip cache has requested lock from on-board cache

110 | on-chip cache holds the lock and it is locked

010 | on-chip cache holds the lock but it is unlocked

111 on-chip cache holds the lock, it is locked,

and the on-board cache has requested the lock

Figure 4: LHR Flags Encoding

The processor has a lock and an unlock instruction. The lock instruction specifies an address

aligned to a cache block. If the lock is held and not requested (LHR=110 or 010), lock and unlock
instructions execute locally (i.e., lock acquisition is done entirely in the cache, and locking has

low latency if the lock is held and unlocked). If’ the requested flag is set for a held lock, the lock

instruction returns a failure indication. If the lock is not held, the lock instruction causes the

request of the lock from the on-board cache (like a cache miss), which either returns the lock (110),
indicates the lock should be marked as requested (001) or causes the processor to handle an on-

board cache miss, as described below. The unlock instruction simply clears the lock flag unless the

requested flag is set, in which case it releases the lock to the on-board cache and clears the held

flag. Finally, the on-board cache can signal the processor to writeback and invalidate a specific

®This is an aggressive requirement. Slower transfers would degrade the MPM performance through increased
interference between processors, and further study is required to evaluate the cost/performance tradeoff.

*We also require a privileged tag bit so that kernel and user data can reside in the cache together. This eliminates
the need to flush the cache on return from a kernel call.

*A cache line may be removed from the cache even if the lock flag has been set. An unlock instruction then incurs
a cache miss, which causes the lock bit to be cleared at the memory module level, or some cache level in between.
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cache line, that a lock on a cache line has been granted, or that a particular lock has been requested.

The on-board cache implements the same consistency, locking and message exchange protocols

as the MM. The cache flag entry per cache line is the same as that of the MM except that it includes

4 additional control bits (replacing 4 P bits). An exclusively held bit indicates whether or not the

cache holds exclusive ownership of the block. This allows a block to be shared by processors within

the MPM, while it is exclusively owned by the MPM relative to the rest of the system. A dirty bit

indicates whether the entry has been modified since last being written to its MM. Finally, there are

the requested and held bits associated with the locking. The held bit allows the cache to hold the

lock even if no processor in the MPM has the lock set. The requested bit indicates that the lock

should be released to the lower level when it is released, rather than just held within the on-board

cache (in anticipation of a processor in the MPM requesting the lock).

Upon on-board cache miss, the faulting processor behaves like a VMP processor. It traps to

a software miss-handling routine, determines the physical address of the missing data and a cache

slot to use (writing out the data if modified), initiates a block transfer of the data into the cache

slot by the cache controller, and resumes execution when the block transfer completes. The cache

software is synchronized to allow multiple processors to incur cache misses at the same time. Cache

access from other processors may also proceed concurrently with miss handling except for when

actual bus transfers are taking place.

The block transfer can fail if the block is not available immediately, either because it is not

up-to-date in memory, it is not cached in the local ICM, or it is locked and a lock bus operation

was invoked. In the first two cases, the cache management software retries the transfer (perhaps

after a short delay to allow writebacks and the ICM to acquire the data) until it succeeds, up

to some maximum number of retries. The memory system takes the necessary actions to make

the requested block available. In the lock case, the processor marks the block as requested in the

on-chip cache, signals to the lock instruction that the instruction failed to acquire the lock and

resumes execution. If the processor spins on the lock, the instruction is handled entirely by the

on-chip cache until the on-board cache notifies the processor that the lock has been released.

The design of the MPM has several significant advantages. First, it recognizes and exploits the

trend of the increasing sizes of on-chip caches on microprocessors. The large line size of the on-

board cache is compatible with increasing on-chip line sizes. The inclusion of the locked, requested

and held cache flag bits in both the on-chip and on-board caches effectively improves the cache

and bus behavior by reducing latency, coherence interference, and contention. The bits impose a

modest space overhead which decreases with increasing cache line size. The virtually addressed

on-board cache eliminates the need for memory management on chip, thereby freeing chip area for

a larger cache. Absence of mapping on chip also simplifies the invalidation of on-chip cache lines.

The value of large cache blocks has been demonstrated by the VMP design.

Sharing the on-board cache has three major advantages. First, it results in a higher on-board

cache hit ratio due to the sharing of code and data in the on-board cache and by localizing access to

some shared data to the on-board cache. Compared to per-processor on-board caches, the sharing

reduces the total bus traffic imposed by the processors. The reduction in bus traffic contributes to

scalability, and hence performance®. Second, sharing the on-board cache reduces the total hardware
cost for supporting N processors, since only N/K MPM boards (and on-board caches) are required

if K processors share each on-board cache®. Finally, the increased hit ratio of the on-board cache
reduces the average memory access time of the processor, resulting in a higher instruction execution

rate. However, this effect is relatively small since the on-chip cache will typically have a high hit

ratio, limiting the possible improvement in the memory access time.

®For example, if the bus traffic is decreased by 50%, the number of processors on the bus may be doubled. For an
application with linear speedup, this will result in a doubling of performance.

‘Because sharing on-board cache significantly reduces the parts count and the number of connectors and thus

presumably improves the reliability, the sharing also contributes to scaling through improved reliability.
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The on-board cache exploits a number of ideas of the original VMP processor cache. First.

the cache is virtually addressed so there is a direct connection between the on-chip cache and the

on-board cache, i.e., no MMU. Thus, miss handling is fast and the complexity of virtual-to-physical

mapping is placed (in software) between the MPM and the inter-MPM bus, simplifying both the

processor chip and the on-board logic, and reducing the translation frequency. For example, with an

on-chip TLB one expects 0.004 TLB faults per memory reference [15] whereas we have measured
0.00004 translation misses [7] using the VMP cache, an improvement of a factor of 100. Also,
the cache miss software uses compact data structures to replace conventional page tables, thereby

reducing the memory space overhead of virtual memory implementations.

Second, the on-board cache minimizes replacements and flushing by using set-associative map-

ping and an address space identifier as part of the virtually addressed cache mechanism. Thus, the

cache can hold data from multiple address spaces and need not be flushed on context switch. The

on-board cache provides one address space identifier register per processor. Each off-chip reference

by a processor (cache miss) is presented to the on-board cache prepended with the address space

identifier. Thus, the on-board cache knows about separate address spaces but the processor chip
need not.

Third, the large cache block size makes it feasible for the on-board cache to be quite large (i.e.,

.> megabytes or more), reducing the replacement interference and thereby permitting multiple

processors to share the on-board cache even when running programs in separate address spaces.

With 8 processors per MPM, it is possible to configure up to 104 processors on a single bus as

13 MPMs and one or more MMs. To scale larger, we introduce extra levels of caching and busses

using the ICM and the NAB.

2.3 Inter-bus Cache Module (ICM)

The inter-bus cache module (ICM) is a cache, shared by the MPMs on an inter-MPM bus (an

MPM group or MPMG), which connects such an MPMG to a next level bus. It appears as an

MPM on the node bus and an MM on the inter-MPM bus. It caches memory blocks from the

MMs, implementing the same consistency, locking and message exchange protocols as the MPM:s.

These blocks are cached in response to requests from MPMs on its inter-MPM bus. The MMD

entry per block in the ICM is the same as that of the MPM, limiting the P field to 9 bits ”.
When an ICM receives a read transfer request for a block®, it determines whether it has the

block cached. If so, it responds in the same manner as an MM to the request. However, if the

operation is a read-private request, it may have to gain exclusive ownership of the block on the

node bus before responding. If the ICM does not contain the referenced block, it aborts the transfer

and then attempts to acquire the block from the MM on the node bus, in the same way an MPM
would.

To accommodate device access and uncached references, the ICM also provides direct uncached

references to the node bus. In particular, an MPM can write a block directly through to the node

bus, allowing it, for example, to transfer data to the NAB control register.

The ICM supports the message exchange facility by implementing the same states for its cached

entries as the MPM cache. In addition, the exclusive flag is used to indicate when the message

receivers are entirely local to the MPMG, automatically allowing the message activity to be localized

to the group when appropriate.

Several merits of the ICM are of note. First, as a shared cache, the ICM makes commonly shared

blocks, such as operating system code and application code available to an MPMG without repeated

access across the node bus. This contrasts with the cluster controller approach described by Wilson

[18]°, where repeated reads by MPM’s in one group would result in repeated read requests to another

‘The restriction of the entry to 16 bits is primarily to minimize the chip count for the board.

*The ICM has switches to indicate the range of physical addresses it should cover.

‘ Wilson also mentions the caching approach as used by the ICM.
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group if the block is not in a memory module local to the requesting group. The ICM shared cache

is important for scalability, for the same reasons identified for the MPM on-board cache. Second,

the ICM supports the hierarchical directory-based consistency, providing a complete record of cache

page residency, thereby minimizing consistency bus traffic and interprocessor interrupt overhead.

Finally, because the ICM appears the same as an MPM, one can mix MPM’s and ICM’s on the

node bus without change to the MMs.

A maximal configuration of 8-processor MPMs, ICMs and MMs would produce a 936-processor

machine. Even larger configurations can be achieved using multiple levels of ICMs and busses.

The address range switches on the ICM allow the memory load to be split below the MPM bus

level between two or more separate ICMs and separate node-level busses and MMs, as illustrated in

Figure 5. However, we see a more common configuration being a group of more modestly configured

machines, connected by a high-speed network using the NAB.

2.4 Network Adapter Board (NAB)

The NAB [11] provides reliable transport-level communication between network nodes connected
by a high-performance network. Thus, the NAB performs all packetizing, checksumming and

encryption required as part of transport-level transmission, and the reverse on reception. Several

aspects of the NAB are specifically relevant to multiprocessors. First, on-board processing and

“intelligent” DMA provided by the NAB imposes the minimal load on the node bus and MPMs

by performing a single block transfer to memory on reception and from memory on transmission.

Data is delivered page-aligned with headers removed, allowing the data to be mapped directly to

application memory without copying. Second, because the NAB performs the protocol processing,

the MPM caches are not polluted by packetizing and checksumming data to be transmitted or

received. It also reduces the network-related interrupt activity at the MPMs because the NAB

handles multi-packet segments on transmission and reception. Finally, the NAB transfers to and

from physical memory using the same bus operations used by the MPMs and ICMs so these block

transfers can be aborted by an MM to cause an ICM or MPM to writeback exclusively-owned

blocks. This approach avoids the cost of brute-force techniques to ensure that none of the data

being read or overwritten is cached, as would otherwise be required.

A NAB-style network interface is also required for pure performance reasons, now that networks

are available in the gigabit range. The serial, pipelined nature of protocol processing is not well-

suited to the multi-level cache architecture supporting the general-purpose processors in VMP-MC.

The VMP-MC building blocks described above allow a large parallel machine to be configured.

However, the feasible scale of configuration depends significantly on the actual speeds of the busses

and memories and the program performance characteristics. The following section provides an

initial evaluation of the design with a focus on identifying realistic parameters for this design using

hardware technology we see available in the foreseeable future.



3 Design Evaluation

This section describes the results of several studies undertaken to provide a preliminary evaluation of

key aspects of the design and aid in choosing certain design parameters. An important assumption is

that on-chip processor caches can reduce on-board cache misses to the extent that the performance

benefits of sharing the on-board cache, in terms of reduced bus traffic and reduced memory access

time, overwhelms the interference cost of multiple processors sharing the cache. We evaluated this

approach using trace-driven simulation.

3.1 Primary/Secondary Cache Parameters

In the simulations, each processor chip is assumed to have a virtually-addressed 16 kilobyte unified

cache with a cache block size of 32 bytes? Caches of this size will be feasible on microprocessors
in the near future.

The on-board cache is a 4-way set associative virtually addressed cache of .5 megabytes using

a 128 byte cache block size, the same as previous VMP on-board caches [7]. Upon a hit to the on-
board cache, the data is transferred to a 16 byte wide by 2 deep per-processor FIFO in 2 processor

cycles!! . The data is then transferred to the processor in 8 cycles. Similarly, a FIFO (16 bytes
wide, 8 deep) is used to reduce the cache busy time on a read and writeback on the inter-MPM

bus. An on-board cache block (128 bytes) is moved over the 64-bit wide inter-MPM bus into this

FIFO in 16 cycles (250 Mbytes/sec if the cycle time is 30 ns). Using this approach, we can write
16 bytes in parallel from the FIFO into the on-board cache, and fill the cache in 8 cycles.

On a miss in the on-board cache, the cache is busy for 1 cycle signalling the miss and then

another 8 cycles transferring data from the latch. During the software cache miss handling by the

faulting processor, the cache is busy only during the bus transfer, not during the entire processing

of the miss. The cache is also made busy by invalidations and writebacks that occur as part of

consistency interrupts. A slot invalidation makes the cache busy for 2 cycles (invalidation time plus

arbitration time). A writeback makes the cache busy for 8 cycles. The on-board cache signals

the affected processors to write-back or invalidate blocks as required by the ownership and locking

protocol that we use.

3.2 Cache Behavior

In this section we examine the tradeoff between the benefits of sharing the on-board cache (decreased

traffic on the inter-MPM bus), and the interference introduced by having more than one processor

share the on-board cache. We will refer to an on-chip cache as an LI cache, and to an on-board
cache as an L2 cache.

Simulations were run using several multiprocessor traces. The traces were collected using a

combined hardware/software method, using the VAX T-bit mechanism to single-step the processor

through each process in round-robin fashion. The traces do not include operating system references,

and all the traces are of 16-processor parallel executions. The characteristics of the following traces

are summarized in Table 1 [17]:

Locusroute: This is a global router for VLSI standard cells. Each processor removes a wire from

the task queue and selects the best route for that wire. No locks are used in the cost data structure.

Mp3d: This is a three-dimensional particle simulator for rarefied flow. During each time step,
the particles are moved one at a time. One lock protects an index into the global particle array.

The actual processor chip will probably have split instruction and data caches to increase the available bandwidth.
“In this discussion, time is expressed in terms of processor cycles, which will be 20-30 ns for the processors we

consider.
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Distributed Csim: This is a distributed logic simulator which does not rely on a global time

during simulation. The trace does not include references to locks.

Name [references in| i-fetches| reads |writes

mp3d 7.05 61 33 6

locusroute 7.70 50 38 12

Table 1: Trace characteristics

The 16-processor traces were run against different MPM configurations, obtained by varying

the number of processors sharing the L2 cache. The L1 and L2 cache sizes were the same for all

the simulations. We compensate for start-up effects by keeping track of the blocks that a cache has

accessed, and ignoring the first access to a block when calculating miss ratios and bus traffic. This

approximates the stationary behavior of a cache.

Table 2 shows the L1 miss ratio for different numbers of processors sharing each L2 cache. The

miss ratios for Zocusroute are comparable to those reported in [16] for a similar size cache, considering
that we compensate for start-up effects. The higher miss ratios for the other applications reflect

a higher degree of coherence activity. Significantly, the L1 miss ratios stay almost constant as we

increase the degree of sharing. This means that we can optimize the degree of sharing without

impacting the L1 cache performance.

Name| Processors per MPM

1] 2] 4] 6] 8
mp3d | 76 | 76 | 76 | 76 | 7.6

desim | 2.5 {25 | 252625

Table 2: L1 miss ratio (% of references)

Table 3 shows the decrease in the L2 miss ratio as we increase the number of processors sharing

an L2 cache from 1 to 8. The improvements are 55% for dcsim, 57% for mp3d, and 61% for

locusroute. The lower miss ratios imply a reduction in the average memory access time. For the

system we described, this improvement in L2 miss ratio will double the instruction execution sate

for mp3d and dcsim, but result only in a 3% increase for locusroute. This is because the high L1

hit ratio measured for locusroute makes it difficult to tither decrease the average memory access
time.

Name [Processors per MPM

TS Te
mpdd | 77 | 67 | 54 | 43 | 33
desim | 20 | 17 | 14 | 11 | 9.3

Table 3: L2 miss ratio (% of L2 references)

Table 4 shows how the number of L2 cache coherence actions per processor decreases as we

increase the amount of sharing. The coherence actions consist of block invalidations, changes in

ownership mode from private to shared, and writeback transactions if an invalidated or downgraded

block was dirty.

The simulations show a decrease in the number of coherence actions of 50% for mp3d, 65% for

desim, and 67% for Zocusroute as we move from no sharing to 8 processors sharing an L2 cache.
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This supports our claim that L2 cache sharing reduces coherence activity. The shared L2 cache

allows fewer invalidations to propagate beyond the MPM.

Name | Processors per MPM

CT] 2] 4] 6] &
mpdd | 7.8 | 715949 3.9
dcsim | .88 | .72 | .54 | 43 | .31

locusroute | .06 | .05 | .04 | .03 | .02

Table 4: Number of coherence actions (% of processor references)

The decrease in the L2 miss ratio (shown in Table 3) should directly result in sharply lower

traffic on the inter-MPM bus. This is supported by Table 5, which shows how the number of block

move transactions (read and writeback) on the inter-MPM bus change as we increase the sharing.

The seduction in block move traffic is 44% for mp3d, 46% for dcsim, and 59% for Zocusroute.
The block move transactions constitute more than 90% of the traffic on the inter-MPM bus. This

reduction in traffic on the inter-MPM bus means that we can put roughly twice as many processors

on the inter-MPM busses when sharing the L2 caches by 8 processors, compared to the case where

we do not share the L2 caches. This enables us to double the performance of an MPM group, while

seducing the cost of the system at the same time.

Name | Processors per MPM

— 1] 2] 4] B[ ®
mp3d | 72 | 69] 59 | 53]| 4.0
desim | 81 | .75 | 60 | .61 | .44

locusroute | .005 | .005 | .004 | .004 | .002

Table 5: Block move transactions (% of references in trace)

3.3 Loading of shared resources

The on-board cache and the on-board bus are the two bottlenecks in the MPM. The utilization of

these resources limit the number of processors that can share the L2 cache: if they are too busy,

a processor may have to wait when handling an L1 cache miss. In the following evaluation, the

utilization is approximated by counting the total number of processor cycles that the resource is

occupied, and dividing that by the number of cycles that the processors will take to execute the
trace.

Table 6 shows the utilization of the on-board bus. We see that the utilization starts out low

and increases linearly as the number of processors is increased. Mp3d shows a slight superlinearity

due to the increased on-board bus traffic caused by the coherence traffic confined to the L2 cache.

For all three traces, the on-board bus utilization is fairly low up to 8 processors sharing the L2

cache. This suggests that the on-board bus will probably not be a bottleneck in the system.

Name

Sei
mpdd | 2.8 | 56 | 13 | 22 | 34
desim | 2.6 | 5.5 | 11 | 18 | 25

locusroute | 1.1 | 2.2 | 43 | 6.8 | 8.5

Table 6: On-board bus utilization (% of available cycles)
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Next we look at the on-board cache utilization, shown in Table 7. The cache is occupied by the

following: cache hits (2 cycles), reads from the inter-MPM bus (8 cycles), writebacks (8 cycles),

and invalidations (2 cycles), as explained earlier. Requests to the cache are handled on a FCFS

basis. The cache management software is not a bottleneck since it is executed in parallel by the

on-board processors. We assume that contention for the cache data structures can be minimized

by fine-grain locking. The cache utilization is reasonably low for all the traces up to four processors

sharing the L2 cache. After that, the cache is very busy for both dcsim and mpdd.

Name | Processors per MPM

| 1] 2] 4] 6] 8
mpdd {| 8.3 | 19 | 40 59 | 78
decsim | 6.9 | 14 | 27 | 41 | 51

locusroute | 2.2 | 4.3 | 83 | 12 | 16

Table 7: On-board cache utilization (% of available cycles)

A first order estimate of the average length of the request queues at the cache can be obtained by

approximating the cache as an M/M/1 queueing system [12]. For the organization outlined above,
and using the measurements of utilization given in Table 7, this yields average queue lengths of

0.2 for Zocusroute (with 8 processors per MPM). For the other two applications it seems that 4

processors per MPM would be more appropriate. This organization yields queue lengths of 0.4 for

desim, and 0.7 for mp3d.

From these results we make the following conclusions:

1. The traffic on the inter-MPM bus is sharply seduced when the L2 cache is shared by 8

processors, each with its own L1 cache. We observe a 50% seduction in inter-MPM bus traffic

when we share an L2 cache among 8 processors. We speculate that it may be possible to

reduce the traffic even further by software techniques which attempt to localize interprocess
communication to an MPM.

2. The hardware cost of the system decreases significantly while increasing the scalability, and

therefore also the performance of the system.

3. The instruction execution sate of a single processor increases because of the decrease in the

[2 cache miss ratio. This effect is more pronounced when the L1 cache hit ratio is low.

4. The figures show that, for locusroute, 8 is seasonable number of processors to share an on-

board cache, given the constraints on board seal estate and the interference level introduced

by higher degrees of sharing. Programs with poorer cache behavior (dcsim and mp3d) will
not perform well if more than 4 processors share an L2 cache.

The traces deal only with running one single address space parallel program. If the processor

runs different applications in separate address spaces, replacement interference is not a problem

because the on-board cache is large and set associative. We conjecture that separate applications

will run with a higher miss ratio primarily because of lack of miss sharing, rather than replacement
int erfesence.

3.4 Inter-MPM Bus Loading

On the inter-MPM bus, each MPM used approximately 3% of the available bus bandwidth with our

preferred configuration of 8 processors per board, executing Zocusroute. Thus, it may well be feasible

to configure up to 16 or more MPMs per bus, yielding an 128-processor configuration. However,

it 1s optimistic to extrapolate our results to larger processor configurations. Further evaluation
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requires either traces for larger-scale parallel applications, or the realization of VMP-MC on that
scale.

The use of an ICM and another level of bus allows an even larger configuration, potentially up

to 1000 processors or more. Given our lack of data on this scale of system, we limit ourselves to

a few comments. First, the ICM allows one to (largely) isolate a computation node as part of an

extended workstation. It will share the MM, network adapter, and possibly local disks with the

workstation, but with only slightly greater loading than a single additional processor. For example,

an engineer might add such an expansion cabinet to his multiprocessor workstation, allowing him

to run compute-intensive simulations on the ICM-connected module while running normal CAD
software on the rest of the machine.

Second, if one can partition the application sufficiently well, these very large configurations

of VMP-MC would work well. This partitioning problems seems easier than that imposed by

distributed memory systems, such as the Cosmic Cube [13], since it is only an optimization. Most of
the references should be to data that is locally cached, although this is not required for correctness.

3.5 Hierarchical Latency

We estimate that it will cost the MPM 20 cycles to access a 128-byte block from the ICM. The

extra delay for accessing a block MPM-to-MM in this design (going through an ICM) is estimated

as another 20 cycles. This is assuming a copy into the ICM cache while passing it through to the

inter-MPM bus, with no consistency OS bus contention at the MM 0S inter-MPM bus level. Using

measured cache miss ratios of less than 0.05 percent (Zocusroute), the extra delay is about 1% of

the cycle time per memory reference on average. Thus, the extra delay is not significant in the
absence of contention.

With consistency contention, the faulting MPM must force a write-back in another MPMG.

This cost 1s estimated as an extra 65 cycles. Again, with the low expected frequency of these

events, the incremental cost on the average memory reference time is not significant.

The limited size of the ICM memory (compared to the total number of MMs) makes it feasible
to provide faster memory in the ICM than in the MMs. Thus, with a good ICM hit ratio, the lower

delay for ICM hits should compensate for the higher cost of the ICM misses. (This point was also

made by Wilson [ 18.)
Latency for page faults and contention with other networks nodes is significantly higher than

for MPMs within a single network node. For example, with a 100 Mb network and NAB, we expect

roughly 1.1 milliseconds for a 1 kilobyte page fault from a file serves without contention. With

file server contention, we expect the page fault time to be approximately 2.2 milliseconds in the

absence of packet loss.

Investigation is required to understand the trade-offs between the “height” and “width” of the

memory hierarchy. In particular, placing more MPMs on the same bus seduces the latency of

interaction between these MPMs as compared to placing them on separate busses and possibly

separate VMP-MC nodes. However, placing them on a common MPM bus imposes more load on

this bus. In essence, this says that sharing MPMs should be on the same MPM bus or at least the

same node, whereas non-sharing ones should be separated at the highest levels of the hierarchy.

3.6 Locking Performance Effects

To directly evaluate the benefits of the VMP-MC locking mechanism would require designing ap-

plications specifically for this architecture. While we plan to do this eventually, we approximate

the behavior by identifying memory locations used for locking, and ignoring these references in the
simulation.

Previously, we reported a 40% reduction in bus traffic when locks were ignored in a trace [7].

For the traces used here, only one (mp8d) contains access to locks. Although only 3.4% of the
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accesses in mpJ3d is to the lock, we observe substantial reductions in bus traffic when lock access

is ignored. There is a reduction of 20% in cycles on the inter-MPM bus, a reduction of 21% in

cycles on the on-board bus, and an increase of 18% in the L1 cache hit ratio. This substantial

seduction in the traffic supports the notion of a specialized locking mechanism that will reduce

memory contention for locks.

3.7 Message Exchange and Mapping Performance

A message send takes roughly 50 cycles, including the cost of a Notify and a Writeback. Message

reading time varies depending on the processor activity at the time of the message write. However,

if these 1s no miss or consistency handling active at the time the message is sent, the processor

receives the message in the time required to interrupt, transfer the block and continue, roughly 100

cycles.

If the action occurs between processors in the same MPM, no bus action is generated. If the

action is local to an MPMG, the ICM ensures that it does not result in traffic on the node bus.

The primary use at present for the inter-processor communication is to allow efficient notification

of processors when aspects of the memory mapping is changed, affecting the implicit mapping

represented in the caches. We draw on measurements done of Accent [9] to argue the acceptability
of this mechanism.

Measurements of Accent indicate a rather low level of mapping changes. Although no mem-

ory reference counts were given, we estimate these to be roughly 2600 million references in the

measurements (assuming an average instruction time of 3 microseconds for the Pesq). Using these

measurements as a sough guide, these was approximately 1 memory mapping change per 3 mil-

lion memory references. Thus, remapping imposes an overhead of .003 percent on each processor,

assuming one processor performs the remapping and the rest are interrupted. This figure does

not incorporate the cost of additional misses resulting from the remapping. Note that VMP-MC

normally remaps the memory when copy-on-write is performed, rather than simply invalidating the

cache entry. This technique reduces the number of cache misses resulting from mapping changes.

4 Status

The VMP-MC represents (and requires) the cumulation and focus of several projects with the V

software and VMP hardware. It would be very costly (in terms of time and money) to build a full-

scale VMP-MC configuration, so we are progressing incrementally in the development, evaluation
and construction of hardware.

The MM design and layout is complete. The transfer speed in the prototype (using the VME

bus) is approximately 40 megabytes per second. (Our board utilizes a two-edge handshake protocol,

not the VME standard block transfer protocol.) We expect to have working boards in mid-1989. We

plan to use existing VMP processor boards initially, since it will require only minor modifications to

work with the MM. The MPM is still in design as we evaluate the possible choices of microprocessor.

The ICM, combining the logic of the MM and MPM, is still at the initial design stage.

A NAB prototype (wire-wrap) board has been completed and we are now doing a PC board

version for FDDI. To get a prototype VMP-MC working quickly and build on our prior work, we

are using the VMEbus as the bus. However, future wide bus standards with more support for block

transfers will clearly be a better long-term choice.

The V distributed system has been posted and runs on the VMP. It is planned to be the

operating system for VMP-MC. V supports light-weight processes, symmetric multiprocessing,

distributed shared memory and high-performance interprocess communication. We are currently

reworking the V kernel to provide cleaner and faster parallel execution within the kernel. In related

work on distributed operating systems, we have been investigating a distributed virtual memory
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system [6] that provides memory consistency of virtual memory segments shared across a cluster
of workstations.

5 Related Work

Most work on scalable architectures to date has resulted in machines that do not support shared

memory OS that require a high initial investment, machines with limited general computation flex-

ibility, and machines with large numbers of relatively slow or limited processors. For example,

the Connection Machine [10] provides a large number of processors of limited power and is unable

to sun a conventional operating system. Similarly, the Cosmic Cube [13] does not run a general-
purpose operating system and thus is not usable as a workstation OS general-purpose computing

node. From our experience, we view the shared memory multiprocessor as the most desireable form

of general-purpose machine.

The extension of the VMP design to a hierarchically structured memory system is similar to the

design described by Wilson [18] with the ICM corresponding to his cluster cache. However, we have
provided a detailed design for handling coherency and caching that was lacking in his description.

Also, we focus on using a cache module to interconnect busses rather than a simple bus interconnect

(routing switch in his terminology). All the VMP-MC memory is attached to the lowest level bus,

the node bus, rather than distributed across the clusters, OS bus groups. We believe that the ICM

caching eliminates the extra bus traffic one might otherwise expect from locating all the memory
on the node bus and in fact leads to a lower level of traffic on non-local MPM busses.

In general, we believe that the caching approach to bus interconnect is superior to using routing

switches and distributing the physical memory among the MPMGs (as suggested by Wilson). First,

the caching approach avoids the need to optimize the allocation of physical memory relative to

processors on a bus. Memory effectively migrates to an MPMG based on demand. Thus, the system

must concern itself only with locating interacting processes within the same MPMG. Allocating

physical memory for these processes from within their MPMG is not required. Second, it avoids

multiple transfers by the MPMG to move a given data block into several MPMs. Third, the ICM

knowledge of data blocks in its MPMG allows it to selectively filter out irrelevant invalidation

operations from the bus.

We argue that sharing the on-board cache is necessary given the low hit ratio, and the resulting

low hardware utilization, also predicted by other studies [14].
Merits of software control and additional performance evaluation for VMP have been described

elsewhere [7]. In summary, the three major changes to the MPM from the original VMP design
axe:

« Multiple processors share the on-board cache, rather than a single processor, assuming sizeable

on-chip caches.

e The bus monitor and action table of VMP have been replaced by the MM directories (and the

equivalent on the ICMs). The elimination of the action table makes the MPM configuration
independent of the amount of physical memory in the system.

e¢ Support for locking and message exchange has been added.

These changes do not detract from the relative simplicity of the VMP design.

The memory-directory based consistency scheme has been described and studied in various

forms by a number of researchers (4, 1, 2]. The use of large cache line size in VMP-MC makes it
feasible to store a processor bitmask per directory entry while keeping the space overhead around 2

percent. (This corresponds roughly to the DirallB scheme of Agarwal et al. [1].) The hierarchical
distribution of the cache directory information minimizes space cost while avoiding unnecessary

broadcasting of coherency-induced traffic. Our approach contrasts with that of Archibald and Baer
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[2], who use 4 bits per directory entry to keep the space overhead reasonable, using 32-bit cache
line sizes. Their scheme leads to a node-wide broadcast whenever a cache page frame appears to

be shared with another processor node.

The locking scheme bears some similarity to that proposed by Bitar and Despain [3]. Although
our scheme also uses cache flags, we are free to discard locked cache blocks from the cache, relying

on the memory module to record locking. Since they do not use a directory scheme, they require

a separate lock bit that has to be written to memory. We view our scheme as more consistent

with uses of locks at the application level, especially when processes may migrate between different

processors.

VMP-MC is designed to work well with the virtual memory and transaction management system

that we are developing for the V distributed system. VMP-MC appears well suited to support the

Mach virtual memory system [19] as well as the 801 transaction software [5], both of which reflect
current directions in operating system design.

6 Concluding Remarks

The VMP-MC design is a simple but powerful extension of the basic VMP design we have been

investigating for a number of years. We propose it as a building block technology for configur-

ing workstations and parallel machines with 1 to several thousand powerful (50 OS more MIPS)

processors.

Several aspects of the VMP-MC design are of particular interest. First, secondary-level cache

sharing 1s exploited to reduce the miss ratios of these caches, the hardware costs of these caches,
and the contention between caches. Our simulation results indicate that the seduced miss and

contention activity from cache sharing allows more than twice as many modules loading the next

level bus. This sharing also significantly seduces the amount of hardware required to support

a large-scale configuration, particularly at the MPM level. The reduction in cost and reliability

problems makes the architecture practically scalable. The sharing also reduces the average memory
reference cost.

Second, the hierarchical directory-based consistency scheme allows coherency, locking and mes-

sage traffic to be selectively broadcast, if not unicast, to just the affected processor(s). In contrast

to the original VMP design, the memory directory-based consistency scheme eliminates the per-

processor action table from each processor module, making this module independent of the physical

memory size. The large cache line size of VMP allows this scheme to be implemented with less than

2 percent space overhead. The hierarchical extension of VMP is transparent to the software except

for various scheduling controls and heuristics that we are introducing to improve the inter-MPM
cluster behavior.

Finally, VMP-MC provides explicit support for locking and message exchange, reducing the

cost of these operations, particularly for large-scale configurations. The locking facility essentially

provides a contention control mechanism, allowing the software to synchronize with little contention.

The message facility allows the operating system to avoid contention as part of implementing

int esprocess and memory management operations.

Our work to date has developed the design and implemented several of the components of

VMP-MC as well as provided an initial performance evaluation of the design based on trace-driven

simulation. Further work is required to fully evaluate the feasibility of this design, including con-

struction of the multiple processor board. This is the next focus of our hardware effort. Considerable

software effort will be required along the way to properly exploit this architecture.

Overall, we see the VMP-MC as providing a credible approach to building a scalable mul-

tiprocessor without using costly technology or giving up the availability of shared memory, an

important facility for many parallel applications. As a building block technology, it provides a

means of configuring a wide range of general-purpose parallel machines, ranging from a moderate
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scale multiprocessor to a teraop multi-computer configuration. This approach offers a lower entry

cost, greater generality and easier extensibility than the approaches to large-scale parallel machines

proposed by many other research projects. We hope to further substantiate these conclusions by

the construction and experimentation evaluation of a VMP-MC configuration following the design

described in this paper.
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