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Abstract

We perform an analytic and experimental study of line iterative methods for solving
linear systems arising from finite difference discretizations of non-self-adjoint elliptic par-
tial differential equations on two-dimensional domains. The methods consist of performing
one step of cyclicreduction, followed by solution of the resulting reduced system by line
relaxation. We augment previous analyses of one-line methods, and we derive a new con-
vergence analysis for two-line methods, showing that both classes of methods are highly
effective for solving the convection-diffusion equation. In addition, we compare the exper-
imental performance of several variants of these methods, and we show that the methods
can be implemented efficiently on parallel architectures.
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1. Introduction.

We consider iterative methods for solving linear systems of the type that arise from
two-cyclic discretizations of t-dimensional elliptic partial differential equations. Such
systems can be ordered using a red-black ordering so that they have the form

D C u(" v(")
where D and F are diagonal matrices. If block elimination is used to decouple the “red”
points u(") from the “black” points u(”, the result is a reduced system

(1.2) [F - ED7'CJu® = v® — ED~14(",
Let
(1.3) S=F-ED™'C, s=v®_-ED 1y,

In [4], we showed that the coefficient matrix S is also sparse, and we analyzed a class of
iterative methods for solving (1.2) when (1.1) comes from a finite-difference discretization
of the constant coefficient convection-diffusion equation

(1.4) Au = —-Au+ou, + Tu, = f

with Dirichlet boundary conditions. In particular, we showed that although S is typically
nonsymmetric, it can be symmetrized in a wide variety of circumstances. The symmetrized
form was used to analyze the convergence properties of a splitting operator based on a block
Jacobi splitting of S, using a one-line ordering of the underlying grid.

In this paper, we refine and augment the analysis of [4]. We show that if (1.1) is
derived from the convection-diffusion equation (1.4), then the reduced system is itself a
discretization of the differential equation. We consider a variety of orderings of the rows
and columns of S and examine their effects on the convergence of iterative methods for
. solving (1.2), and on implementation. In particular, we present several variants of the one-
line ordering of [4] based on red-black and teretdal groupings of unknowns. In addition,
we present an analysis of twe-line ordering strategies for solving (1.2); such orderings have
been studied for self-adjoint problems in [6], [12]. In all of these cases, the reduced matrices
have block Property A so that Young’s analysis of iterative methods [18]is applicable. We
use this analysis to determine the convergence properties of block Jacobi, Gauss-Seidel
and successive overrelaxation (SOR) methods for solving the discrete convection-diffusion
equation, in terms of discrete cell Reynolds numbers ah/2 and rh/2. In addition, we
present the results of numerical experiments showing some effects of ordering strategies
not revealed by the analysis. Together, the analytic and numerical results show that
the two types of orderings are very effective for solving (1.4), with the two-line orderings
somewhat more effective than the one-line orderings. The variants of the methods based on
red-black orderings of the reduced system are typically slightly slower (in terms of iteration
counts), but they can.be implemented more efficiently on parallel architectures.
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An outline of the paper is as follows. In §2, we describe two discretization schemes
for (1.4), and we present an analysis of the truncation error associated with taking the
reduced system as an approximation of (1.4). In §3, we present several variants of the
one-line ordering for the unknowns of (1.2), and we show how the results of [4] are used to
derive a convergence analysis of all the associated one-line iterative methods when the linear
system comes from (1.4). In §4, we present the two-line orderings and the convergence
analysis of the corresponding two-line iterative methods applied to (1.2). In §5, we outline
an analysis due to Parter [12] and Parter and Steuerwalt [14] that complements our results
in the limiting case & — 0. In §6, we describe numerical experiments that confirm and
supplement the convergence analysis, including tests in which the block iterative methods,
with various orderings, are used to solve a set of nonsymmetric problems derived from
(1.4). Finally, in §7 we draw some conclusions.

2. The convection-diffusion equation and the reduced system.

Consider the two-dimensional convection-diffusion equation (1.4), posed on the unit
square 2 € (0,1) x (0,1) with Dirichlet boundary conditions u = g on 9. Discretization
by a five-point finite difference operator leads to a linear system

Au-v

where u now denotes a vector in a finite dimensional space. We discretize on a uniform
n x ngrid using standard second order differences for the Laplacian [17),[18], and either
centered or upwind differences for the first derivatives. With u ordered lexicographically
in the natural ordering as (uy,1,%2,1,.. . ,u,.,,.)T, the coefficient matrix has the form

(2.1) A =tri[ Ajj-1; Ajj, Ajjn |

Here, tri [ Xj j-1, Xjj, Xj,j+1]is the (block) tridiagonal matrix whose j’th row contains

Xj,j-1 Xj; and Xj j41 on its subdiagonal, diagonal and superdiagonal, respectively. The
subdiagonal of the first row and the superdiagonal of the last row are not defined. The
*subscripts will be omitted when there is no ambiguity. The entries of (2.1) are

Ajj-1=0bI, Ajj=tri[c,a,d], Ajjp =el,

where I is the identity matrix, @, b, c, d and e depend on the discretization, and all blocks
are of order n.Let h =1/(n + 1). After scaling by h?, the matrix entries are given by

a=4, b=—(1+6), C=-(1+7)’
d--(1 -7), e=—=(1-9),

for the centered difference scheme, where 4¥=0h/2 and § =Th/2; and

a=4+2(v+6), b=—(14+268), c=—(1+27),
d= -1, e =-1,



for the upwind scheme. At the (i, j) grid point, the right hand side satisfies v;; = h? f;;
where fij = f(ih, jh).

In [4], we showed that the reduced matrix S is a skewed nine-point operator. At all
grid points except those bordering 8, the computational molecule has the form (after
scaling by a) given in Fig. 2.1. For grid points next to 8, the diagonal entries of S
(center point of the computational molecule) are different. These values are

a*~2be~cd for points with one horizontal and two vertical neighbors

in the original grid

(22) a?-be —2cd for points with one vertical and two horizontal neighbors
a® —be—cd for points with just two neighbors.
—e3
—2ce —2de
—2——q? — 2be — 2cd— -d?
| N
.
(1 = 8)3 -1
| A I I
-1+ 19134 2 —-_(1‘ -7y -(1 + 21)’—-;2-;(?-(:6-;’6)— -1
-2 (-ll- I)s) ':( ;r) —(21(1-;62)7)/ -2(1+26)
‘1 + 8)2 ‘1 + 28)

Fig. 2.1: Computational molecules for the reduced system. Top: general case. Bottom
left: centered differences. Bottom right: upwind differences.

Suppose centered differences are used to discretize the firSt derivative terms. At
the (i, j) grid point, the discrete-operator, satisfies gr[Aulij = [Au)ij + O(h?), i.e. the
truncation error of the discretization is of order h2. The following result shows that the

3



reduced system (1.2) can also be viewed as a discretization of (1.4) with truncation error of
order h2. When (1.2) arises from the centered difference discretization of (1.4),let S and
8 denote the reduced matrix and right hand side resulting from multiplying the reduced

system by a (=4).

TueoreM 1. For 2 €1, j £ n = 1, the reduced operator S satisfies satisfies

h2
1 = 98 h?
szl = - [(1 +73 Jueet(1 + I§-)u.,.] + oug + Tu, + O(h?),

and the reduced right hand side § satisfies

)
anadii=fij + O(h?).

Proof. The proof follows directly by taking the first five terms of the Taylor series for
each of the quantities 442 5, %4,j+2 and ui+1 j+1, expanded about u;5. Multiplying each
entry of S (e.g. fromrFig. 2.1) by the appropriate expanded value of u and summing the
coefficients for each partial derivative gives

~ 2 2
[Sui; =8h%[ous + Tuy — (1 + %)“‘,"— (I + T=)uyy = Zh?u,,
+ 15—20,32“::, + %Thzugg' + %ahzug" + %Thzu"'

= feh?tzezs = thUsayy — Srh uyyyy + O(RY)].
The reduced right hand side is given by
§ij =4vij + 0+ 8)vijoy + (14 YVVim,j + (1 = Mvig1,i + (1 = 8)vi j41-

Using the fact that v;; = hzf.'j for all (4, j) and expanding fi j+1 and fiz1,j in Taylor series
about fi; gives
: 8;= 8h2 fij — h‘(—Af + Oft + Tf,) + 0( hs). 0

The expression for [s'u],-,- in this proof was computed by hand and checked using MAC-
SYMA [9]. The perturbation of the Laplacian (which is also of order h?) can be thought
of as an addition of artificial viscosity, see [16]. A similar analysis shows that the reduced
system for the upwind scheme approximates (1.4) with truncation error O(h).

In the following, we use the symbols S and 8 to represent the reduced matrix and
right hand side, respectively, after scaling by the diagonal entry a. Our analysis of it-
erative methods for solving the reduced system (1.2) is based on the fact that in some
circumstances, S can be symmetrized by a real diagonal similarity transformation.

THEOREM 2. There ezists a real diagonal matriz Q such that Q~*SQ s symmetric if
the product bede $8 positive.

See [4] for a proof. For the centered difference scheme, be =1 — 62 and ed = 1 — 72, s0
that S is symmetrizable if both |y] < 1 and |6] ¢ 1 or if both |y]> 1 and || > 1. .For the
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—be
-(1-8) —(1+26)
~(-P)—12+ 2 ::, -a-v) -Q + 21)—--1;12("{,6) —_——(1+27)
/7 1\. . -;4(7“)\ |
-1-8) ~(1+26)

Fig. 2.2: Computational molecules for the symmetrized reduced system. Top: general
case. Bottom left: centered differences. Bottom right: upwind differences.

upwind scheme, S is symmetrizable for all nonnegative 94 and 6. Computational molecules
.for the symmetrized matrix are shown in Fig. 2.2.

3. One-he orderings.

.The performance of iterative methods for solving (1.2) depends on the ordering of
the underlying grid. In this section, we describe and analyze several one-line orderings, in
which grid points are grouped by diagonal lines oriented at a 45° angle with the horizontal
and vertical axes. For the purpose of discussion, we fix the orientation to be along the
NW-SE direction. We consider four orderings.

In the natural one-line ordering, the n — 1 diagonal lines are numbered starting from
one comer (e.g. the SW) from 1 to m= 1, and individual points are numbered from bottom
to top along the lines. An example for #= 7 is shown in the left side of Fig. 3.1 where the
line indices are shown outside 8. The corresponding matrix S is block tridiagonal. In the
red-black one-line ordering, the lines with odd indices from the natural ordering are ordered
first, followed by those with even indices. The individual grid points are renumbered to
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be consistent with this reordering. An example for n = 7 is shown in the right side of Fig.
3.1. Here, the reduced matrix has the form of the coefficient matrix of (1.1), where the
block diagonal matrices D and F consist of uncoupled tridiagonal blocks.*

Xis . X22 . X4 . 6 X222 . X122 . X4 6
X12 . X317 . X1 . Xgz3 Xg . X1 . Xn1 . Xa3
X112 . X1 . X20 . - Xy . X220 . Xio
X¢ * X0 . X155 * Xi9| 5 X166 . Xe ° X199 . Xg9| 3
x5 - = . X14 . - X5 . X5 . Xis .
X2 + X4 + Xg . X3 X2 . X4 . Xg¢ . Xi7
X1 . x3 . x7 . 4 - X1 . X3 . X3 . S
1 2 3 | 4 2

Fig. 3.1: The reduced grid derived from a 7 X 7 grid, with natural one-line (left) and
red-black one-line (right) orderings.

Note that the individual lines in the reduced grid, and therefore the associated tridi-
agonal matrices, vary in size. For the natural ordering, the lines have sizes

2,4 ...,n-1,n-1, ....-4,2 for odd n
2,4, ..., n=2 nn=2 ...,4 2 foreven n.

The other two orderings are defined so that lines of less than maximal size are paired up
to form sets of fixed size. This will be of use on parallel architectures (see §6). In the
torus one-line ordering, each line of less than maximal size from one corner of the grid is
followed by the line from the opposite comer that would be obtained by continuing the
grid periodically; these pairs of lines then are organized as in the natural ordering. For
example, for odd n, the first four lines are the one in the SW comer containing 2 mesh
- points, followed by the line closest to the NE corner containing n = 3 points, the line of size
4 in the SW comer and then the line of size n = 5 closest to the NE comer. The ordering
for n = 7 is shown in the left side of Fig. 3.2. Thus, the reduced grid can be grouped
together into [n/2] sets consisting of either one or two lines, each containing a total of
n — 1 mesh points. For even n, the analogue produces n/2 sets of points, each of size n.

We define the fourth ordering in terms of these fixed sized sets. Suppose first that they
are listed consecutively-according to their appearance in the torus ordering. For example,
for the grid on the left side of Fig. 3.2, the listing 18

{1,2}, {3,4}, {5}, {6},

where these integers are those outside the domain in the left side of Fig. 3.2. Now let this
listing be permuted in alternating fashion,

{1,2}, {5},{3,4}, {6},
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and assign indices of increasing value to these sets. As above, let the grid point indices be
assigned so that they are consistent with this ordering of lines. We refer to the result as
the alternating torus one-line ordering. An example is shown in the right side of Fig. 3.2.
This ordering is well-defined for all n, but we will show below that it is most useful when

[n/2] is even, where it corresponds to a red-black ordering.

X24 Xe . Xi2 X24 Xe X18
X18 X23 Xs . Xn X12 X23 Xs X17
X17 X22 Xs . X1 X22 Xq .
X10 . Xie X21 X3 X1e X10 . X21 X3
X9 . Xis X20 X1s X9 . Xz
X2 Xs X14 X19 X2 X14 Xs X19
X1 x7 X113 X1 X113 X7
| 3 5 1 3 2

Fig. 3.2: The reduced grid derived from a 7 x 7 grid, with torus one-line (left) and
alternating torus one-line (right) orderings.

For all four orderings, the reduced matrix has the form

(3-1) S = D - C s
where D is a block diagonal matrix whose individual blocks are tridiagonal matrices.
Consider the block Jacobi iterative method

(¥

Uppr = Bu?) + D7 1s,

where B = D™1C is the block Jacobi iteration matrix. The standard measure of the
effectiveness of this method is the spectral radius p(B); the iteration is convergent provided
"p(B) < 1, and convergence is more rapid if p(B) is closer to 0 [ 17] (cf. $6). We have left
unspecified the particular ordering determining (3.1); the iteration matrices for the various
ordering strategies are all similar to one another, so that p{(B)is independent of ordering.
In [4], we derived bounds on p{B) for the version of B arising from the natural ordering.
The results are summarized as follows; see [4] for proofs.

TueoreM 3. For the one-line orderings, if be >0 and cd > 0, then

_ 2(vVbe + Ved)?
a? — 2(v/be + Ved)? + 4v/bede (1 — cos(rh))’

p(B) <

Ifbe <0, cd <0, then

max (4vbede, 2Vbede -+ |be|, 2Vbede + |cd], |be| + |cd]) + 2(|be| + lcd|)

p(B) < “a? + 2(3/Tbe] — V/led])? + 4V/bcde(1 — cos(xh))

7



whenever a2/2 + (V—cd — V=be)? - 2Vbede > 0.

CoroLLARY 1. For the centered difference scheme, if |¥| ¢ 1 and |6] < 1, then the
one-line Jacobi iteration matrices satisfy

(ViI-72+v1-8)
8§ - (VI—V+V1I-8)2+ 2y/(1-2)(1-86%)(1 - cos(h))

p(B) <

If Iy] > 1. 161 > 1 and /(72 = )BT - 1) < 4. then

(B) € ———— $0(1,6) + -1+ 621
S S (A1 VE -1+ 2/ - D - D (1 - cos(nh))’

w here

u(y,6) =max /(- 1)(62=1), 2/(7*- 1)(82-1)+ ¥* - 1,
20— - D+ 8 -1, =1+ 86—

For the upwind difference scheme,

(VIFT + VITR)

p(B) < 22+7 + 67— (VIF 7+ VIT B )2 +2/(T+ 27)(L + 28) (1 - cos(wh))’

We now show that Young’s analysis of relaxation methods also applies to these split-
tings. Let C = L + U, where L and U are strictly lower triangular and upper triangular,
and let £, = (D—wL) [(1-w)D+wU]denote the block SOR iteration matrix. Recall the
definition of block-consistent orderings from [18]: 8 block matrix M = M;j,{ 1 <4,j <m}
is block-consistently ordered if the integers 1,..., m can be partitioned into disjoint sets
{Sk}i=; such that if M;j # 0, then & € Sk implies j € Sg—y for j < 4, and j € Sg41 for
j>1. We have the following result:

LEMMA 1. For the natural, red-black and torus orderings, the reduced mairiz is block-
consistently ordered for all n > 0. For the alternating torus ordering, the reduced matriz
is block-consistently ordered If and only If [n/2]is even.

Proof. The coefficient matrix for the natural ordering is block tridiagonal; the analysis
for this ordering and its red-black analogue is classical, see [18)]. In discussing the torus
and’ alternating torus orderings, it will be convenient to refer to the line indices of the
natural ordering (i.e. from the left side of Fig. 3.1). Let $ be a mapping of these indices
to those of the torus ordering? Then 8¢ = {¥(k)} determines & consistent ordering. For
the alternating torus ordering, note that its block structure is different than for the other
orderings, because pairs of lines are grouped together: using the indices of the natural
ordering, lines j and [n/2] + j are coalesced into one set. If [n/2] i8 even, then j and
[n/2] + j have the same parity, and the ordinary red-black coloring of lines determines a

1 for exampk, for Figs. 3.1-3.2, ¢(1)=1, $(2)=3, ¥(3)=8, ctc. It i8 possible to derive a precise expression
for ¥, but we do not believe it adds insight.



red-black coloring of the alternating torus ordering. A consistent ordering is determined
by the partitioning

81 ={{1,[n/21 +1},{3,[n/2] +3},...}, S ={{2,[n/2] +2},{4,[n/2] +4},...}.

If [n/ 2]is odd, then lines 1 and [n/2]+ 1 have the same color, since they comprise one
set, but line [n/2] must share this same color, since (proceeding form the SW comer)
alternating lines are assigned opposite colors (see Fig. 3.3). As a result, the alternating
torus ordering does not have block Property A, and it therefore cannot be consistently
ordered (see [18], §5.4). 0

X12 Xe . Xis 5 (B)
X1 Xs . X7
X16 X10 X4
X185 X9 . X3| 4(R)
X2 X14 Xs .
X1 X13 X7 3 (R)
1(R) 2(B).

Fig. 3.3: The alternating torus ordering for odd [n/2]. Line indices correspond to the
natural one-line ordering. Terms in parentheses indicate that the associated matrix does
not have block Property A.

THEOREM 4. The eigenvalues {u} of B and {\} of L. are related by

(3.2) A +w —=1) = Wl

- Moreover, If p(B) < 1 and either be > 0 and cd > 0 holds or be < 0 and cd < 0 holds,
then the choice

(33) w* =

2
1+v1-p(BR

minimizes p(Lw) with respect to w, and p(Lur) = w* — 1.

Proof. The first assertion follows directly from [18], Chapter 14, Theorem 3.4. For
the second assertion, it was shown in [4] that if either condition on be and cd holds, then
Disa symmetric positive definite M-matrix. Consequently, all eigenvalues of B whence
those of B, are real. Therefore, the choice of optimal SOR parameter follows from [18],
$5.2 and §14.3. O

Remarks. When be > 0 and ed > 0, a sufficient condition to ensure that p{(B) < 1 is
a’ < 4(\/6_;-1- \/CTi)z,

9

(3.4)



which holds for the two difference schemes. In this case, experiments described in [4]
indicate that the bounds of Corollary 1 of Theorem 3 for |v|,|6] < 1 are good indicators
of spectral radii. The bound for |¥], |6] > 1 of Corollary 1 does not always guarantee
that p(B) < 1. However, experimental evidence and Fourier analysis [4] suggest that the

smaller bound
(V¥ -1 + V62 —1)?
8+ (VY2 -1+V8 —1)2

applies in this case, and this bound is always less than one. Finally, the results of [5],
[10] imply that the Chebyshev semi-iterative method applied to the reduced system, with
preconditioning by the block diagonal D, has the same asymptotic convergence behavior
as the block SOR method with w = w*.

p(B) <

4. Two-line orderings.

An alternative to the ordering strategies of the previous section is to group the points
of the reduced grid by pasrs of horizontal or vertical lines. Such two-line orderings also
result in matrices that have block Property A. Examples with horizontal lines, for n =6,
axe shown in Fig. 4.1. The left side of the figure shows a natural two-line ordering, and the
right side shows a red-black two-line ordering. In the following, we perform an analysis of
two-line orderings for the case of horizontal lines. We use the natural ordering to motivate
the analysis; as above, the results also apply to the red-black ordering.

The reduced matrix S for the natural two-line ordering has block tridiagonal form

S =tri[ Sj,j-1 Sjj» Sjj |-

Within the line pairs, points are ordered from left to right (a8 in Fig. 4.1), so that the
submatrices on the block diagonal are banded. For even n, the block diagonal consists of
n/2 uncoupled pentadiagonal matrices of order B of the form

*+ -2bd -d? \
2ce * —2de —d?
-2 —2b¢c * -2bd -d?
Sji = c2 -2ce * -2de —d? ’

\

)

1< j<n/2. Here, “*”. i8 defined as in the center point of Fig. 2.1, or by (2.2) for points
next to . The off-diagonal blocks have the irregular tridiagonal form

b? (€ 2de \
{26c ® 2bd ) e?
b _ 2ce e? 2de
Sij-1=- 2bc b 2bd - Siitr = e?
b 2ce €2 2de
\ ) |

10
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For odd n, the last ([n/2]’th) row and column have slightly different form, in which the
last diagonal block is the tridiagonal matrix of order |[n/2],
(4.1) tri[ —c? x, —d?),
and the neighboring off-diagonal blocks are adjusted in an analogous manner.

Let D now denote the block diagonal matrix defined by Dj=Sjj,and let S=D ~C
denote the two-line Jacobi splitting. Consider the two-line Jacobi iteration

(b)

-1
Upir = + D™ %s,

Bu(")
for solving (1.2), where B = D~ C. Convergence again depends on p(B). Let §=Q! 5Q
represent the symmetrized reduced matrix when it exists, and let D=Q'DQand € =
Q~1CQ. We first bound p(B) in the case where be > 0 and ed > 0, i.e. for the centered
difference scheme when |y| < 1 and |6] < 1, and for the upwind scheme. The analysis
essentially consists of the following two results, which bound the minimum eigenvalue of
D and maximum eigenvalue of €. These will then be combined to bound p(B).

X13 X1s X17 x7 - X1

X14 X6 . Xis Xg X10 X12
x7 = X11 X13 X1s X17

Xs X10 X12 Xi14 X16 X18
X1 x3 x5 X1 x3 x5

X2 X4 Xe X2 X4 Xe

Fig. 4.1: The reduced grid derived from a 6 x 6 grid, with natural two-line (left) and
red-black two-line (right) orderings.

Lemma 2. When be > 0 and cd > 0, the minimum eigenvalue of the symmetrized
“two-line block diagonal matriz D is bounded below by

a? — 2(Ved + Vbe)? - 2¢d + 4Vbede (1 — cos xh) + ded (1 — cos? wh).

Proof. Examination of Figs. 2.2 and 4. 1reveals that all of the matrices on the block
diagonal of D, except the first and last, are identical pentadiagonal matrices of order n.
They have the form

—2vbede

—cd
—2vbede * -2V bede —cd

(4.2)

P=

—2vbcde

-cd

*

—2V/bcde

11

—2vbede

*

—cd
—ZM -cd ’




where “#” equals a® — 2&e — 2cd except in the first and last entry, where it is a? — 2be — cd.
If P' denotes either the first block, or for even n, the last block of D, then by (2.2),
we have P' > P with inequality only on the diagonal. Hence, Amin(P’) 2 Amin( P). A
straightforward argument also shows that for all small h,the minimum eigenvalue of D
does not correspond to an eigenvalue of the tridiagonal matrix (4.1). Hence, it suffices to
bound Amin( P) below.

For this, let T, denote the tridiagonal matrix tri [ 1, 0, 1] of order n. Then T2 is
a pentadiagonal matrix with O’s on the first subdiagonal and superdiagonal, I’s on the
second subdiagonal and superdiagonal, and 2’s in all diagonal entries except the first and
last, where the values are 1. Then we have

(4.3) P = (a® — 2be) I, — 2Vbcde T, — cd T2,

where In is the identity matrix of order n. But the eigenvalues of Ty, are (2 cos (jxh)}},,

so that those of P are {a? — 2be — 4V/bcde cos(jmh) — 4cd cos? (jxh)}7.;. The minimum
corresponds to the choice j=1. D

Lemma 3. The mazimum eigenvalue of the symmetrized two-line block off-diagonal
matriz C 8 bounded by

2 |be| cos 2wh + 4Vbcde cos wh + o( h?).

Proof. Assume n is even; modifications to the argument for odd n are straightforward.
Let R denote the block tridiagonal matrix 7ri [R, 0, R], with m = n/2 block rows, where
R = be I,. Let VY denote the block tridiagonal matrix trs [VT, 0, V], of the same order,

where
(0 v \
0

v 0 v

V= 0

VO \

\ )

and v = 2vVbede. Then (:‘ =R + Y. Since é is symmetric, we have
#(C) = ICllz < IRz + [V

To bound ||R}|2, note that R is similar to the block diagonal matrix

bediag {Tm,. o Tm}

with n block rows, so that its eigenvalues are {Zbe co8 m+1 } j=1" .Hence

27h )

(4.4) IRls = p(R) = 2lbelcos (15 )-

12



For ||V||2, we have
2
Vlla = IVTVIR" = V21",

V?is the block pentadiagonal matrix

vvT 0 v:
0 VIv4ivvT 0 V2
(VT)? 0 vIv+vvT o \%&
(VvT)? 0 VIv4+vvT o

(VT)? 0 %%

But V2 = 0, so that in fact V?is a block diagonal matrix, and we need only bound the
spectral radii of VVT, VTV + VVT and VTV. We have

/vz 0 v? \ 0 0 0 \
0 0 0 (0 202 0 v?
v2 0 2v® 0 v? 0o 0 0 0 0
vvT = o 0 0 0 0 , VIv = :
v2 00 202 0 v?
v o0 288 0 - 0 0 0 0
\ 0 0 0) \ v 0 v?)
Consequently,
v 0 o2 \
0 2v? 0 v?
v2 0 202 0 v?
VIv+vvT = . = v*T2.
v2 0 20 0
\ v 0 v? }
Thus,
(4.5) p(VIV L VVT) = v?[p(T))? = 16 bede cos? wh.

Moreover, by permuting VVT and VTV so that nonzero entries lie on a tridiagonal band
in the upper left comer, we find that

Bounds (4.5) and (4.6) are essentially the same as B — 0, which gives the asymptotic result

xh
1+h

(4.6) H(VTV) = p(VVT) < 0*p(2 + Tm) = 16 bede cos? (

47 IVll2 € 4 Vbede coswh + o h?).

13



The conclusion then follows from (4.4) and (4.7). O

The idea used in both these proofs of squaring the tridiagonal matrix T, to generate
a pentadiagonal matrix appears in [13], for analyzing line iterative methods applied to
discrete biharmonic problems. A simpler argument than the proof of Lemma 3, based on
Gerschgorin’s theorem, gives the weaker bound p(C) < 2|be| +4vbede. This bound is close
to the result of Lemma 3, but it is less useful for asymptotic analysis as b — 0.

THEOREM 5. When be > 0 and cd > 0, the spectral radius of the two-line Jacobi
iteration matriz s8 bounded by
2 be cos 2wh + 4V/bcde cos Th

a? — 2(Ved + Vbe)? = 2¢d + 4Vbede (1 — cos wh) + 4cd (1 — cos? wh) + ok

Proof. Using the similarity transformation D=1C = QD~1€Q~1, we have
a -~ LY - a~ p(é)
AD1C) = (D6) < 1D alICh = £,
miu( )

where the last equality follows from the symmetry of D and €. The result then follows
immediately from Lemmas 2 and 3.0

Substitution of particular values ofa-e¢ gives the following bounds for the two difference
schemes under consideration.

COROLLARY 2. For the centered difference scheme, if |y| < 1| and |6] < 1, then
the spectral radius of the two-line block Jacobi iteration matriz for the reduced system is
bounded by

(1 — 6%)cos2xh + 24/(1 — 42)(1 — 62) cos7h
8- (VI- P +V1-87-1-7) -
2y/(1 = 72)(1 - 62) (1 = cos wh) + 2(1 —~?) (1 — cos® 7h)
For the upwind difference scheme, the spectral radsus s8 bounded by
(1 + 26)cos2xh + 24/(1 + 27)(1 + 26) cosxh

22+7+6)2 - (V1+27+V1+26) —(1+27) +
2v/(1 + 27)(1 + 26) (1 — cos wh) +2(1 + 27) (1 — cos® wh)

+ o(h?).

+ o(h?).

If (3.4) holds, then the bounds of Theorem 5 are smaller than those of Theorem 3 for the
one-line orderings. Consequently, the two-line bounds of Corollary 2 are smaller than the
one-line bound8 of Corollary 1.

Now consider the case be < 0 and ed < 0, which corresponds to the centered difference
scheme when |y] > 1 and |6] > 1. To bound p(B), we require an alternative to Lemma 2.
Consider the case of odd n.2 Ler P be as in (4.2), where “*” now represents

(48) min(a® - be — 2cd,a® — 2be — cd) ( = min(13 + 29* + 62,13 + % +26%) ).

2 In this case, only the first two terms of (2.2) occur. For even n, a somewhat weaker bound can be
derived by replacing “s” with a?—be—cd.
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For any pentadiagonal matrix P’ on the block diagonal of f), the diagonal entries of P’ are
greater than those of P, SO that Amin(P') 2 Amin(P). If (4.8) is minimized by a? -be — 2¢cd
(i.e. v < 62), then P satisfies

P = (a® — be) I, — 2Vbede Ty — ed T2,

(This differs from (4.3) in the coefficient of I,..) Consequently, all eigenvalues of P have
the form

a? — be - 4Vbedecos 8 - 4cdcos? 6,
for @ € (0, 7). By elementary calculus, we find that this expression is minimized at 8 =
arccos (% |"°| The minimum value, a2, i8 a lower bound for z\,,.,-,.(b). If (4.8) is
minimized by a2 - 2be - cd (¥* 2 62), then

P = (a® — 2be + cd) I, — 2Vbede T, - cd T2.

The same argument shows that its minimum eigenvalue is bounded below by a2 - be + cd.
As above, these bounds for Amin(P) are smaller than the minimum eigenvalue derived
from (4.1). Combining these observations with Lemma 3, we have the following result.

THEOREM 6. For be < 0 and cd < 0 and even n, the spectral radius of the two-line
Jacobi iteration matriz 88 bounded by :

2 |be| cos 2xh + 4V bede cos wh
a?
2 |be| cos 27k + 4v/bede cos Th
- be + cd

when (4.8) 8 minimized by a® - be - 2cd,

when (4.8) i8 minimized by a® — 2be - cd.

For the centered difference discretization when |y| > 1 and |6] > 1, the bounds are

2 _ V(¥ -1)(# - 1) h

(62 — 1) cos 2rh + 2 é‘r 1)(6% - 1)cos for ¥* < 82,
2 _ 2 __ 2

(62 — 1) cos 2mh +2/(72 —1)(6% — 1) cos wh for v > &2,

8 + 362 7)

As we show in §6, the bounds from Theorem 5 and Corollary 2 appear to be tight, whereas
the results of Theorem 6 are pessimistic.

Finally, the analysis of [4] implies that for both difference schemes, when be> 0 and
cd > 0, the block pentadiagonal matrix D i8 a symmetric positive definite M-matrix.
Hence, we have the following result for the two-line SOR iteration matrix Lq.

COROLLARY 3. For the two-line orderings, the eigenvalues {u} of B and {1} of L.
are related by (3.2). For the two difference schemes under consideration, if be > 0 und
cd > 0 holds, then (3.3) minimizes p( L,,) with respect to w, und p( Lyo ) = w* - 1.

15



5. Asymptotic analysis.

In this section, we outline the results of Parter [12] and Parter and Steuerwalt [14] that
reveal asymptotic convergence rates as h — 0 for fixed & and 7 in (1.4). (See also [11].)
We emphasize that we are only filling in some minor details; all the analysis is contained
in [12], [14]. Assume that S is a matrix such that S/h? is a discrete approximation to d
with truncation error o(1) at all mesh points of & not next to the boundary, and O(1) at
points next to Q. Let S = D —C be a splitting. The following result is proved in [14]):

THEOREM 7. Suppose the following condstions hold for all small h:
. (PS1) p(D~1C) < 1.
(PS2) p(D~1C) is an eigenvalue of D™'C.
(PS3) |IC|l2 38 bounded independent of h.
(PS4) There i8 a smooth function g satisfying ¢(z,y) > go> 0 on R, such that

(5.1) (Cu,v)=(qu,v)+ E

w here in (8.1), q refers to the vector of mesh values, und E = hey(u, v)+h2ez(u,v)
depends on o und T.
Then as h = 0, (D™1C) = 1 — Agh® + o(h?), whete Ag 18 the smallest eigenvalue of 1he
problem

(5.2) Au = Aqu in Q, u =0 on 9.

In assumption (PS4), e; is a function of first order differences in u and u and ez is a
function of second order differences; sce [14] for a more precise statement.

By Theorem 1, the reduced matrix is an appropriate approximation to A. Condition
(PSI) has been established in §3 and §4. For both the one-line and two-line Jacobi split-
tings, condition (PS2) follows from the Perron-Frobenius theory, using the fact that D is
an M-matrix for all small enough # [4). Condition (PS3) follows from Lemma 3. Thus,
" it remains to determine g for condition (PS4). Much of [12] and [14] is concerned with
how to do this. In particular, §7 of [12] and §9 of [14] imply that ¢ = 1 for the one-line
Jacobi splitting for the reduced system and g = 3/4 for the two-line Jacobi splitting. It is
straightforward to verify that the eigenfunctions and eigenvalues of (5.2) for g = 1 are

) 2 2
(k) = ecz/? sin( jxz) e"/’sin(kwy), Aj = UT+ Tr +( §2 + k2)7r2,

for integers j, k2 1. The minimum eigenvalue is Ag = L:- + -": + 2x2. Hence, we have the
following asymptotic result (which applies for both difference schema):

COROLLARY 4. The spectral radii of the block Jacobs iteration matrices for the one-line
orderings of the reduced system are bounded by

o 1 2\ 12 2
1—(T+T+2‘n’)h + o(h®),
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and the spectral radii of the block Jacobi iteration matrices for the two-line orderings are
bounded by

o2 1 B 5\, 2
1—(-§-+?+§1r)h + o(h*).

For large ¢ and 7 (and small enough h), these bounds are essentially of the form 1 — ¢(v? +
82).
The analyses of §3 and §4 give asymptotic bounds of

0.2 1.2 7[.2 9 0.2 .’.2 2 2
1-(F+7, D 1= (Fryee)w

for the one-line and two-line block Jacobi iteration matrices, respectively. These results
agree with those of Corollary 4 except in the coefficient of #2. They are pessimistic
because the numerators and denominators come from separate bounds, and (for the one-
line case) because Gerschgorin’s theorem is used for the numerator. However, it may be
more important to know the spectral radius in the nonasymptotic regime, i.e. for particular
values of 7 and 8§ not close to zero. The numerical experiments of §6 below indicate that
the bounds of §3 and §4 are good indicators of spectral radii in such cases.

Note that smaller values of ¢ in Theorem 7 produce smaller spectral radii. The analysis
of [14] shows that for the 1-line Jacobi splitting of the unreduced system (which gives rise
to methods comparable in cost to both methods considered here for the reduced system),
g=2.Thus, the asymptotic value of the spectral radius is smaller for the reduced system.
An alternative proof of this fact, derived from regular splitting arguments (which are less
dependent on asymptotics) is given in [6]. This observation is in agreement with results
on spectral radii in [4]. Thus, asymptotic convergence behavior will be worse for the full
system.

6. Numerical experiments and implementation.

In this section, we present the results of numerical experiments that confirm and
supplement the analysis of §§3 — 4. For the two-line ordering, we compare the bounds on
spectral radii of iteration matrices with computed spectral radii, and for all the orderings
considered, we examine the performance of the Gauss-Seidel and SOR methods for solving
the reduced system arising from the centered difference discretization of the convection-
diffusion equation. Except where indicated, all computations were performed on a VAX-
8600 in double precision Fortran. The reduced matrices were computed using PCGPAK
[15]. All spectral radii were computed using the QZ algorithm in EISPACK [7), [8].

6.1. Spectral radii for the two-line methods.

Tables 6.1 — 6.3 show the computed values of the spectral radii of the Gauss-Seidel
iteration matrices for the two-line orderings, for three values of & and different choices of
the parameters 7 and . In addition, the last column of each table shows the asymptotic
limits (as 7 — 0) of the bounds on these spectral radii, when such a bound exists./.For |7|,
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7 h=1/8 h=1/16 h=1/32 Asymptotic
Bound

2 42 .74 .86 .90
4 .33 .55 .63 .66
.6 22 34 .38 .40
8 11 16 18 19
1.0 .01 .02 .063 .02
1.2 .03 .04 .04

1.4 .05 .06 .06

1.6 .06 .06 .07

1.8 .07 .07 .07

2.0 .07 .07 07

3.0 .07 .07 .07

Table 6.1: Spectral radii and bounds for the two-line Gauss-Seidel iteration matrices,
centered differences, § = 0.

|6] < 1, these quantities are the squares of the limiting values from Corollary 2, where the
values for y or § = 1 are the limits as 9, § = 1. For Table 6.3 when |y| > 1, we use Theorem
7. As in [4], the experimental results show that the bounds are good approximations to the
limits as B = 0 when |y| <1and |6|]<1, and the bounds for |y], |6] > 1 are pessimistic.
For values of 7 and 8§ where the analysis does not apply, the computed spectral radii are
very close to zero. Note that the asymptotic results are expressed in a nonstandard way.
In contrast to the analysis of §5, ¥ and é are fized here as i — 0, so the continuous problem
(1.4) is varying.

6.2. Performance of the block iterative methods.

Figs. 6.1 — 6.3 summar® ¢ the performance of the block iterative methods for solving
. various examples of the discrete convection-diffusion equation (1.4) with Dirichlet bound-
ary conditions. In all cases, centered differences were used to discretize the first derivative
terms, and the mesh size was h = 1/32, so that the order of the linear system was N = 961.
The curves in the figures represent the average iteration counts for three test problems, de-
termined by three initial guesses with random values in the interval [=1,1]). In all cases, the
right hand side 8 was identically zero. The convergence criterion was ||ri|l2/||roll2 < 1078,

where r; = s — Susb) = .--Sus') is the residual at the i’th iteration.

The left side of each of these figures contains results for the one-line orderings, and
the right side contains results for the two-line orderings. Experiments were run for values
of 4 or & equal to multiples of 0.2 in [0,2], plus 7 (or 6) = 3. Fig. 6.1 corresponds to

the case § = 0 (i.e. only the u, first order term was present in (1.4)), Fig. 6.2 to 7 = 0

3 This computed spectral radius exceeds the analytic bound. Computations on & Sun 3/60 gave the
same results. We believe that this eigenvalue computation is aff'ted by ill-conditioning, although we do not
understand the difficulty. ’
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) h=1/8 h=1/16 h=1/32 Asymptotic
Bound

2 42 14 .85 .90
4 32 .54 .62 .65
.6 .19 30 - 34 .36
.8 .07 A1 12 12
1.0 0 0 0 0
1.2 .03 .04 .04

1.4 .06 .08 .09 -
1.6 .09 13 13 -
1.8 12 .16 .18 -
2.0 14 .20 .22 -
3.0 .21 .36 41 -

Table 8.2: Spectral radii and bounds for the two-line Gauss-Seidel iteration matrices,
centered differences, ¥ = 0.

¥ h=1/8 h =1/16 h=1/32 Asymptotic
Bound

2 39 .67 .7 81
4 23 37 42 44
.6 .09 14 .16 .16
8 .02 .03 .03 .03
1.0 0 0 0 0

1.2 .01 .02 .02 .03
1.4 .04 .05 .05 13
1.6 .08 .09 .09 34
1.8 12 12 12 .7
2.0 .16 .16 .16 1.27
3.0 32 .33 33 9.00

Table 6.3: Spectral radii and bounds for the two-line Gauss-Seidel iteration matrices,
centered differences, y=6.

(only u,), and Fig. 6.3 to ¥ = 6 (ug and u,). The results are for the block Gauss-Seidel
method with the natural, red-black and torus orderings. (The iteration matrices for the
alternating torus ordering are similar, via permutation matrices, to those for the one-line
red-black ordering, so that these orderings produce identical iterates.) In addition, results
for the block SOR method with the natural ordering are shown for some choices of 4 and
6. For SOR, we used the optimal value of w determined by (3.3), where p(B)2 is taken
from Tables 6.1 - 6.3 and analogous results from [4], using the values far h =1/32.

We make the following observations concerning these results:

19



One-line, ux only Two-line, ux only
v 80, - - - ——
G Seidel, nat'l 10} Gauss-Seidel, nac'l -
- ®G Seidel, torus G Seidel, r/b
G Seidel, r/b J 60} ———e——+ SOR, nat'l h
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1 50 1
§ Iy ﬁ
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. 20 1
e ‘ i 3 0 0s 1 15 2 23 3
Gamme Gemma
Fig. 6.1: Average iteration counts, h = 1/32, 6 = 0.
Two-line, uy only One-line, vy only
80 v v v 80 r - r v
—————— Gauss-Seidel, nat'l & Gauss-Saidel, nat'l -
) Gauss-Seidel, r/b :
i —— SOR, nat'l 9

Ocvcergee-=--0 Gauss-Seidel, torus
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‘
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‘
3
\
1] G
1]
.
.
.
[}
L]
.
1]
+
.
)
.

Seidel, /b 1
e SOR, nat'l

Delia
Fig. 8.3: Average iteration counts, 1 =1/32, y=0.

(1) In most cases, the Gauss-Seidel method requires thirty or fewer iterations to reach
the stopping criterion. In general, fewer iterations are required with the natural
orderings than with the red-black orderings; a rough estimate is that the red-
black orderings entail at most twice as many iterations a8 the natural orderings.

An exception iswhen § =0, where the performances of the natural and red-black
two-line orderings are very close (see the right side of Fig. 6.1).

(2) The best results are obtained when 4 or § are near one, and performance typically
improves a8 |y| or |§] = 1. For all values of 7 and § tested, the self-adjoint case
(¥ = 6 = 0) required the largest number of Gauss-Seidel iterations. In these
cases, for which ‘the results are not shown on the figures, the stopping criterion
was typically’not reached after 150 iterations. In general, performance is in

20



One-line, ux and vy Two-line, ux and uy

%0
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60F | © v . eemscesscves Geuse~-Seidel,r/b at — sol' nat'l

$=———-——* SOR, nat'l

Fig. 6.3: Average iteration counts, h =1/32,7 = 6.

accordance with the results on spectral radii from Tables 6.1 = 6.3 and [4].

(3) The best results for large 7 or § are for the two-line orderings with § =0 (Table
6.1 and Fig. 6.1). This is because as |¥] grows, S essentially consists of its block
diagonal D plus a small perturbation. For large § and 7 = 0, a vertical two-line
splitting would give better results than the horizontal splitting used.

(4) SOR was much more effective than Gauss-Seidel when the latter was slow. We
examined SOR only in cases where the spectrum of the block Jacobi iteration
matrix is real, i.e. where either || < 1 and |6] < 1 or (for the one-line ordering
[4]) |¥] > 1 and |8] > 1. Thus, (3.3) applies. In variable coefficient problems of
a similar character, it would be realistic to use an adaptive method to estimate
the optimal value of w (see e.g. [18]). For other values of 7 or 6, the spectral
radius of the Gauss-Seidel iteration matrix is already very small, and we did not
experiment with SOR. To keep the graphs from being too detailed, the SOR
results are shown only for the natural orderings. Like Gauss-Seidel, with the red-
black orderings SOR typically required somewhat more iterations, but it displayed
the same general character a8 it did with the natural ordering (i.e. graphs of
iteration counts have similar slopes).

(5) The performance of the Gauss-Seidel method with the torus ordering is very close
to its performance with the natural one-line ordering.

The error ej = u — u; at the j’th step of each of the methods under consideration
satisfies ej = Mej—1, where M is the iteration matrix. Thus, for large enough j, the
error will be dominated by the eigenvector corresponding to the spectral radius, and the
asymptotic (in terms of iteration counts) analysis of §3 and §4 can be used to predict
behavior. However, this does not say anything about how other components of the error
affect performance, and it also does not explain the effects of different orderings. Figures
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6.4 — 6.6 examine the question of when the asymptotic behavior takes effect, in the Gauss-
Seidel method. Each figure graphs the ratio ||ejlla/||ej=1]l2, for the natural and red-black
versions of both the one-line and two-line orderings, for two problems, one where 7 or 6 is
less than one, and one where 7 or § is greater than one. Figure 6.4 shows the case where
7 = .6 and 1.6 and § =0; Figure 6.5 shows the case where 7 = 0, and § = .6 and 1.6;
and Figure 6.6 shows the case where 7 = § = .8 and 1.6. These results are for one of the
initial guesses used in the experiments described above. In all cases, the iterations were
performed until the (stringent) stopping criterion ||e;||2/]leolla $107® was satisfied.

The results show that the behavior of the Gauss-Seidel method is typically closer
to that predicted by the asymptotic analysis when the natural ordering is used, and that
fewer iterations are required before the asymptotic performance is seen. The one exception
in these examples is Where § = Q with the two-line ordering (Fig. 6.4); in this case the
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Fig. 6.6: Approach to asymptotic performance, h =1/32, 7 = é.

natural and red-black orderings display similar asymptotic behavior. Recall that this was
the one case where the performances were similar. We also remark that the asymptotic
performan ce is typically displayed only after the stopping criterion used for Figs. 6.1 - 6.3
is satisfied.

One-line Two-line
Natural R/B Natural R/B
6=0 7=0.6 .86 1.38 1.12 1.35
7=16 27 1.40 1.00 1.27
¥y=0 6§=0.6 .86 1.38 .92 1.47
§=16 27 1.40 1.57 1.65
y=46 7=0.6 .53 1.40 87 1.46
T=1.6 .53 1.40 1.14 1.65

Table 6.4: Euclidean norms of the Gauss-Seidel iteration matrices.

I With M = Ly, the errors for the Gauss-Seidel iteration satisfy ej = C{eo, so that

13|l would give more precise predictions of the behavior of the errors. Table 6.4 shows
|1 ||2 for the twelve examples of Figs. 6.4 = 6.6. These norms were computed by taking
the maximum singular value, acquired using LINPACK [3] (in double precision Fortran)
on a SUN 3/60 . The results show that the norms for the natural orderings are typically
less than one, and the norms for the red-black ordering are typically greater than one as
well as greater than those for the natural ordering. Thus, the results are largely consistent
with the numerical behavior described above. There are cases, however, where "Cl ||3 > 1
but the asymptotic behavior is good, e.g. 7 = 0, § = 1.6, two-line natural ordering (see
Fig 6.5).
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6.3. Implementation and parallelism.

We now outline the implementation costs of the block iterative methods for solving the
reduced system. We focus on the block SOR iteration, of which the Gauss-Seidel method
is a special case. Assume that the reduced matrix has the form S;j, where the indices
refer to the blocks associated with the lines of the ordering in use. For example, for the
natural two-line ordering, ¢ and j vary between 1 and n/2 and S;; = 0 for |§ — 7| > 1.
Let S = D —(L+ U)yhere D, L and U are blocked in an analogous manner, and let s
and z = u(® be indiced in an analogous manner. Note that each block of D is a banded
matrix of total bandwidth either three (for the one-line orderings) or five (for the two-line
orderings). Assume for simplicity that the LU-factorization of each D; can be computed
without pivoting. (This is the case whenever D diagonally dominant.)

The block SOR iteration has the form

(61) ™ = 2™ —w[e{™ ~ D71 (3] L™ + 3 U2{™)] 4D,
I<i J>i

where ¢ varies from 1 to the number of blocks in the matrix. Consider the computations
involving the matrices D, L and U. Each step requires a matrix-vector product by the i’th
block row of U and a matrix-vector product by the i’th block row of L, followed by a linear
solve in which the coefficient matrix is the $’th block of D. The cost of the matrix-vector
products (in terms of multiply-adds) is essentially. equal to the number of nonzeros in the
i’th block rows of L and U. Moreover, assuming that D; has been factored, the cost of
the linear solve is equal to the number of nonzeros in Dj;. Consequently, for any of the
orderings, the total cost of the matrix computations on a serial computer is approximately
9n2/2, the number of nonzeros in S. All the other computations (vector adds and scalar-
matrix products) are clearly independent of ordering. The factorization of the blocks of D
is slightly more expensive for the two-line ordering than for the one-line ordering, but both
are of the order of the cost of one iteration, so that the difference is negligible. Pivoting will
have a somewhat more detrimental effect on the two-line orderings than on the one-line
- orderings.

Both the natural and red-black orderings have efficient implementations on parallel
computers with k = O(n) processors. The architecture need not have a more complex
topology than a linear array (or a ring for the torus orderings), and our discussion applies
as well to shared memory machines. It is straightforward to show that the construction of
the reduced system is fully parallelizable. In examining the iterative methods, we assume
for simplicity that the ordering is such that all block rows of the reduced matrix are of the
same size. This is the case for the torus one-line ordering and for the two-line ordering
when niseven; the size is approximately n. Let B, denote the number of block rows;
for all orderings, By & n/2. Assume further that k divides ny, and let the processors be
indexed from 1to k.

The iterations for the natural versions of these orderings can be pipelined using the
methods of [1]yhere a (block) step of the computation is defined by the following rule:

at the #’th step, Processor j is performing the (§ = j + 1)’st iteration on the first
j x nyfkblock rows.
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That is, at step one, Processor 1 performs the first iteration on the first n,./k block rows.
Then, at step 2, Processor 2 performs the first iteration on the second n,-/k block rows, and
Processor 1 performs the second iteration on the first n,/kblock rows. The first iteration
is completed by Processor k after k such steps, and every subsequent step results in the
completion of one more iteration. All processors are busy except during the first and last
k — 1 steps. For ¢t iterations, the speedup (&arithmetic) is
k
1+ k/t

Thus, the pipelined implementation is efficient whenever ¢ is large relative to k. For archi-
tectures with distributed memory, neighboring processors must exchange vectors of length
(approximately) n between step, and some overlap of communication and arithmetic is
possible.

The alternating torus ordering requires that [r/2] be even in order to correspond to
a red-black ordering; no additional assumptions on n are needed for the two-line red-black
ordering. Both red-black orderings are then fully parallelizable on up to n/4 processors.
For all indices ¢ with red color, the computation (6.1) consists of a set of independent block
matrix-vector products by the nonzero blocks of U, followed by a set of independent block
matrix solves. Then, for all indices ¢ with black color, the steps of (6.1) consist of a set
of independent block matrix-vector products by the nonzero blocks of L, followed by a set
of independent block matrix solves. Unidirectional communication between neighboring
processors of vectors of length n is needed twice, prior to the multiplications by L and U.
Overlap with arithmetic is possible.

In §6.2, we found the methods to be very effective on model problems. For the
small values of ¢ observed, it appears that the inefficiency of the natural orderings due to
pipelining will often be similar in scale to the somewhat slower performance displayed by
the red-black orderings. Consequently, we expect the performance of the two classes of
orderings to be comparable on parallel architectures.

7. Concluding remarks.

In this paper, we have continued the analysis begun in [4] of block iterative methods
for solving cyclically reduced linear systems derived from the convection-diffusion equa-
tion. We showed how the discrete reduced system is related to the underlying continuous
problem, and we derived bounds on the spectral radius of the block Jacobi iteration ma-
trix associated - with two-line orderings of the reduced grid. These bounds, together with
analogous ones from [4}, were combined with the Young theory to analyze the asymptotic
convergence behavior of the Gauss-Seidel and SOR block iterative methods derived from
several variants of both two-line orderings and one-line orderings. The results express con-
vergence behavior in terms of discrete cell Reynolds numbers oh/2, Th/2, and they are
confirmed and supplemented by numerical experiments. The analytic and experimental
results (as well as those of [2] and [14]) show that the nonsymmetric discrete problems
arising from (1.4) are in some ways easier to solve than the symmetric ones.

Acknowledgements: The authors wish to thank Dianne O’Leary and Seymour
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