June 1990 Report No. STAN-CS-90-1313

Book Review:
IToTokoBrie AnropurMmsl (Flow Algorithms)

by G. M. Adel’son-Vel’ski, E. A. Dinic, and A. V. Karzanov

by

Andrew V. Goldberg and Dan Gusfield

Department of Computer Science

Stanford University
Stanford, California 94305

Book Review:
[ToroxoBrie Anropurmer (Flow Algorithms)
by G. M. Adel’son-Vel’ski, E. A. Dinic, and A. V. Karzanov

Andrew V. Goldberg”
Computer Science Department

St anford University
Stanford, CA 94305

and

Dan Gusﬁeld'
Computer Science Division

University of California
Davis, CA 95616

June 1990

*Research partially supported by NSF Presidential Young Investigator Grant CCR-8858097 with matching funds
from AT&T, IBM Faculty Development Award, and a grant from 3M Corporation.
tResearch partially supported by grant CCR-8803704 from the National Science Foundation.

Introduction

This is a review of the book Flow Algorithms by Adel’son-Vel’ski, Dinic, and Karzanov,” well-known
researchers in the area of algorithm design and analysis. This remarkable book, published in 1975,
is written in Russian and has never been translated into English. What is remarkable about the
book is that it describes many major results obtained in the Soviet Union (and originally published
in papers by 1976) that were independently discovered later (and in some cases much later) in the

West. The book also contains some minor results that we believe are still unknown in the West.
The book is well-written and a pleasure to read, at least for someone fluent in Russian. Although

the book is fifteen years old and we believe that all the major results contained in it are known in
the West by now, the book is still of great historical importance. Hence a complete review is in
order.

The apparent fact that, until recently, no Western researcher had looked closely at the book
and the underlying papers serves as an important reminder for Western researchers to be aware
of the work outside of their normal circles. This fact is especially embarrassing because Dinic and
Karzanov were well known in the West for their work on network flows by at least 1976, when the
theoretical superiority of their network flow algorithms [10, 16], compared to contemporary ones
available in the West, was recognized by Western researchers. (The general feeling at the time was
that the significance of this work should have been recognized sooner.) After that, these algorithms
became the object of intense studies in the West as well as in the Soviet Union. The book in
question, however, remained unknown in the West until recently, when it was “discovered” by the
second author.?

Except for this introduction, we try to keep the review objective; we give a section-by-section
summary of the book. All attributions in the review are as the authors of the book make them.3
As it is not our purpose to attempt a definitive history of network flow algorithms in the framework
of this review, we do not explicitly point out which results appeared fist in the Russian literature,
nor who independently discovered them in the West. We believe that the information and ref-
erences provided here will enable informed readers to make their own historical comparisons and
attributions.

Although the style of the book is contemporary, some of the material is quite dated because
of the progress made during the fifteen years since the book was written. The body of our review
simply reflects the book’s contents. No statements or conjectures from the book have been altered
to reflect current knowledge.

In preparing this review, we also read additional papers in Russian that contained valuable
results which were new to us, and which we believe will be new to other Western researchers.

‘The exact reference is Agpembcon-Bemnckuit, Juuny, Kapsanos, Tomoxoste Aazopummu, Hayxa, Mocksa
1975. English transcription: Adel’son-Vel’skii, Dinic, Karzanov, Potokovye Algoritmy, Science, Moscow. Title trans-

lation: Flow Algorithms.

2f[t should be noted however, that the book was not widely circulated in the West; after an extensive search, we
found only four U.S. libraries that have it in their catalogs.

JWe believe, however, that the references in the book are very complete and accurately reflect the literature, both
Russian and Western, at the time the book was written.

We invite the Western algorithms community in general, and the network flow community in
particular, to actively read the Russian literature and widely disseminate what you find to be new
and interesting.

Notation

Next we state some basic definitions that are needed throughout the review. Our definitions are
quite standard, and we assume that the reader is familiar with the concepts discussed here.

A network G is a graph (directed unless explicitly stated to be undirected) where each arc (u, v)
has an assigned capacity ¢(u, v). We use U to denote the maximum arc capacity, and we use n and

m to denote the number of nodes and arcs, respectively, in the network. We use lg to denote the
base-two logarithm.

Given two nodes s and ? (called the source and sink nodes, respectively) of a directed network
G, an s, tflow fis an assignment of nonnegative real values to the arcs such that the following two
properties hold:

(1) Capacity Constraint. For any arc (v, w), 0 < f (v, w) < ¢(v, w).

(2) Flow Conservation. For any node v # 5, t, fin(V) = fout (v) where fin(v) is the total flow on

arcs directed into v, and feye(v) is the total flow on arcs directed out of v.

The value of the flow f is the total flow entering t,i.e., >, f(v,?). A maximum s, t flowin G is
an s, t flow whose value is maximum over all s, ¢ flows. For a given s and ¢, we use M(G) to denote
the value of the maximum flow in G. We use ef(v) to denote the excess of flow f at a node v; the

excess is equal to the difference between the incoming and outgoing flows.

When G is undirected, the maximum flow problem on G is obtained by replacing each edge
(u, v) with two arcs (u,v)and (v,u), each with capacity ¢(u,v).

An st cut (X,Y) in G is a partition of the nodes into two sets X and X such that s € X and

t € X. The capacity of the cut, denoted ¢(X, X), is z c(u,v).
uex,vef

The edge-connectivity of an undirected graph (where all edges have capacity 1) is the smallest
capacity of any cut in G. The node connectivity is similarly defined for nodes.

In a multicommodity flow more than one type of commodity simultaneously flows on the network,
and each commodity has a given source and sink. The total flow (of all commodities in both
directions) on an arc must obey the capacity constraints, and each commodity must obey the
conservation constraints. The multicommodity flow problem comes in two variants, the feasibility
problem and the maz-y, problem. In the feasibility problem each source has a given supply of each
commodity and each sink has a given demand for each commodity (a node may be a source for one

commodity and a sink for another); the problem is to determine whether there is a feasible flow

that satisfies all the stated demands for all the commodities. In the max-)_ problem, the objective
is to find a flow which maximizes the total amount of all commodities which reach their sinks.

In the minimum-cost flow problem each arc (u, v) is given a number k(u, v) (called the cost of
arc (u,v)), and the objective is to find a maximum s,t flow ofminimum total cost, i.e., a maximum
s, t flow minimizing ¥ k(u, v) f (u, v).

Final Remarks

Before giving the section-by-section review of the book, we would like to remind the reader that
the body of the review simply reflects the book’s contents. In particular, the attributions are as
the authors of the book made them and no statement from the book has been altered to reflect
today’s state of knowledge.

We also would like to make a comment on citations. Understandably, many citations are to
the Russian books and journals; regrettably, most of these do not have English translations. We
organize the citations in two groups: English and Cyrillic. Each group is sorted according to
the corresponding alphabet. For each Cyrillic reference, we also provide either a reference to the
corresponding translation (if we are aware of one), or an English transcription and an English
translation of the title. Although our title translations are accurate, we cannot guarantee that they
will be identical to those of “professional” translators (if a paper will be translated in the future,

or if a translation already exists but is unknown to us).

1 The Maximum Flow Problem

1.1 Networks and Network Flows

This section of the book defines the basic concepts, such as flows, cuts, etc. It also states a flow
decomposition theorem, and gives an algorithm to decompose a flow into a collection of paths and
cycles.

1.2 Ford-Fulkerson Algorithm for the Maximum Flow Problem

The section starts by introducing several fundamental facts about the maximum flow problem.
In particular, it shows that the maximum flow value is equal to the minimum cut capacity (the
max-flow, min-cut theorem) and that a flow is maximum if and only if it admits no augmenting
path (the augmenting path theorem). Then the authors introduce the Ford-Fulkerson augmenting
path algorithm (FFA) [2], and give its implementation using the labeling method. They use the
algorithm to prove the integrality theorem, which states that a maximum flow problem with integral
arc capacities has an integral optimal solution.

1.3 The Shortest Augmenting Path Algorithm

This section introduces the shortest augmenting path algorithm (SPA) of Edmonds and Karp [1] and
Dinic [10]. It is shown that the augmenting path length in SPA is monotone and non-decreasing,
and at most m augmenting paths of length k£, 1 <k <n — 1, are found by the algorithm. Thus the
number of iterations of the algorithm is at most (n —1)m = O(n®). This bound is tight [9]. The
section concludes with a discussion of the implementation of the SPA using breadth-first search

labeling for finding shortest augmenting paths. The complexity of the resulting method is O(nm?).

1.4 The Layered Network Algorithm

In the SPA algorithm, the work spent looking for augmenting paths dominates the work spent on
augmenting the flow and determines the running time of the algorithm. This motivates the layered
network algorithm (LNA) of Dinic [10], which can be viewed as a variation of the SPA algorithm.
This variation finds shortest augmenting paths in a more efficient way using layered networks. The
LNA runs in O(n?m) time, which is better then the O(nm?) time for the SPA algorithm. This
bound is tight, as shown in [11] (and implicitly in [9]).

The section ends with a discussion of the optimized version of the layered network algorithm.
Each phase of this algorithm starts with the correct layered network, but the layered network is
not updated after each augmentation. Instead, the network is updated only if a “dead end” is
discovered during a search for an augmenting path.

1.5 The Blocking Flow Algorithm

This section describes the blocking flow method (BFM) due to Karzanov [16, 17]. This method is
based on the notion of a blocking flow; the task of finding a maximum flow in a network is reduced
to the task of finding at most n — 1 blocking flows in layered networks. The preflow method (PM)
uses the concept of a preflow to find a blocking flow in such a network in O(n?) time [16, 17]. This
method allows flow excesses at nodes in the middle of the execution of the algorithm, giving it
more flexibility compared to the augmenting path method. PM solves the maximum flow problem
in O(n?) time.

1.6 Algorithms with Bounds Depending on Logarithms of Capacities

This section describes two algorithms whose running time is a polynomial in n, m, and 1gU.

The first algorithm, due to Edmonds and Karp [1], is a variation of FFA that at each iteration
selects the highest capacity augmenting path. At each iteration of this algorithm, the residual flow
value decreases by at least a factor of (1 — 1/ m). For real-valued capacities, the flow computed

by the algorithm converges to a maximum flow. For integral capacities, the algorithm terminates

in mlg U iterations. An O(n?)algorithm for computing the highest capacity augmenting path is
also described. Combined with an O(nz) algorithm for computing the highest capacity augmenting
path, this yields an O(n?mlg U) bound on the entire algorithm.

The second algorithm is due to Dinic [12] and uses capacity scaling, an idea that was developed
independently by Edmonds and Karp [1] and Dinic [12]. The algorithm works by maintaining the
parameter K, which starts at 2l8U] and decreases by a factor of two at each scaling iteration.
During such an iteration, all capacities are rounded down to the nearest multiple of K, and the
maximum flow in the resulting network is computed starting from the flow obtained at the previous
iteration, except during the first iteration which starts with the zero flow. If the capacities are
integral and LNA is used in the m&mum flow computations, then the algorithm runs in O(nm)

time per scaling iteration, for a total of O(nmlgU) time.

2 Combinatorial Flow Problems

This chapter addresses combinatorial problems that can be reduced to network flow problems.
Below, the layered network algorithm and the blocking flow method are referred to as auxiliary
network algorithms (ANA). Hopcroft and Karp [4] discovered ANA independently of [10] for the
special case of the problem of finding systems of distinct representatives.

2.1 Flow Formulation of Combinatorial Problems

Problem of distinct representatives The classical problem of distinct representatives [3] is as
follows: given a collection of n subsets V; of a set V of size 7 = n, find a collection of representa-
tives v; € V; so that representatives of different subsets are distinct. In the problem of restricted
representatives n and 1 may be different, and the goal is to find a; representatives for each V;, so
that each v; € V represents b; subsets.

The book describes a reduction of the generalized problem to a special kind of network flow
problem. On this network, FFA is equivalent to the classical alternating path method. Results of

Section 2.3 imply that ANA solves the problem of distinct representatives in 0(n5/2) time and the

generalized problem in O(ns/ar) time.

Another problem reducible to a special case of the maximum flow problem is that of common
restricted representatives [2]. In this problem, the input contains two collections of subsets of V,
{Kl} and {V,-z}, for 1 <i < n<r,and the goal is to select representatives from each subset in such
a way that for each collection, the representatives are distinct, and the same set of representatives

is used for both collections. Results of Section 2.3 imply O(na/zr) time bound for the problem.

Minimum cut problems The notion of an edge-cut and a node-cut of a graph are defined, as
well as the edge and node connectivity problems. It is shown that these problems can be reduced

to the maximum flow problems on special kinds of networks. Results of Section 2.3 imply that
ANA finds a minimum edge-cut between two subsets of nodes in O(min(m3/2, n?/3m)) time and a
minimum node-cut between two subsets of nodes in O(y/nm) time. The algorithm of Section 2.5
solves the edge-connectivity problem in O(nm)time; the node connectivity problem can be solved
in (k+1)(n—1) maximum flow computations [20] ¢here k is the node connectivity of the network).

2.2 Combinatorial Networks

This section introduces concepts which are used later to analyze ANA on special networks which
model combinatorial problems. Such combinarorial networks have unit capacities on internal arcs
or nodes (where node capacity is defined as a minimum of the total incoming and the total outgoing
arc capacity). An arc-combinatorial network is a network with unit capacities on internal arcs. The
characteristic x of a network is the sum of arc and node capacities over all internal arcs and nodes.
A general combinatorial network is a network with characteristic of O(m).

2.3 Analysis for Combinatorial Networks

This section analyses the performance of ANA on combinatorial networks as a function of n, m,
and x. The material of the section is based on [4, 12, 14, 15].

1. A phase of ANA takes O(x + m) time on networks with integer capacities and O(m) time on
general combinatorial networks.

2. The number of ANA phases is less than 2,/x + 2.

3. ANA runs in O(x + m),/x time on networks with integer capacities and in O(m,/x) time on

general combinatorial net works.

4. The number of ANA phases on an arc-combinatorial network is less than 2n2/3 4 2.

5. Suppose G is an arc-combinatorial layered network of length I. Then the number of phases

of ANA is less than \/8lMiGj + 1.

6. Suppose all arcs in a layered network of length I have unit capacities. Then the number of
iterations of ANA is O(min(v/nl, n?/3,n%/1?)).

2.4 A Difficult Example

This section describes a (parameterized) instance of the problem of finding a system of distinct

representatives. The ANA takes Q(ns/z) time on this instance. For the proof, the reader is referred
to [15].

2.5 Efficient Algorithm for Finding Edge Connectivity of a Graph

This section is devoted to the problem of finding edge connectivity of a graph with no multiple
edges. It is shown that n — 1 maximum flow computations are sufficient to solve the problem. An
algorithm of Podderugin [20] does this in O(nm) time. The algorithm solves the maximum flow
problem using a slight variation of FFA, which differs from the standard FFA in the way augmenting
paths of length one and two are handled. The cost of processing such “short” augmenting paths is
O(n) per one maximum flow computation and O(nz) overall. The number of other augmentations
done by the algorithm (along “long” paths) is n overall, and the cost of these augmentations is
O(nm).

3 Multiterminal and Multicommodity Problems

3.1 Multiterminal Problems and Solution Methods

The section defines the notion of multiterminal single-commodity flow. This notion leads to several
flow problems, in particular the max-¥ problem (where the objective is to maximize the sum of flows
out of the sources), the feasibility problem (for capacitated sources and sinks), and the problem of
finding maximum flows in networks with lower bounds on arc flow in addition to upper bounds.

These problems reduce to the maximum flow problem [2].

The following theorem is from [7,11]: For any pair of maximum flows fi and fa, there is a
maximum flow f which takes the same amount of flow as fj from every source and puts the same
amount of flow as f into every sink. (This statement is not true for non-maximum flows.)

3.2 Problem with Priorities of Terminals. A Common Layered Network

This section deals with the following version of the multiterminal single-commodity flow problem
that was studied independently in [7, 11]. Given an ordering 81, ..., sk of the network sources, define
a source-maximal flow to be a flow f for which the tuple (ef(s1), ... ef(sk)) is lexicographically
maximal. The sink-maximal flow is defined in a similar way. A flow that is both source- and sink-
maximal is called bimaximal. Source- and sink-maximal flows are maximum flows, and a bimaximal
flow always exists.

A bimaximal flow can be constructed from a source-maximal and a sink-maximal flows. The
rest of the section is devoted to algorithms for finding a sink-maximal flow. (The problem of finding

a source-maximal flow is symmetric). Several algorithms to find such a flow are described.

The most efficient algorithm is based on LNA and runs in O(nzm) time. The algorithm con-
structs a “common” layered network that contains all nodes of the input graph and all residual
arcs that are on shortest paths from s. Using the layered network, the algorithm repeatedly finds
shortest paths from s to ¢y until no s-t; augmenting path exists; the same procedure is repeated

for i3, t3, etc. It is shown that distances to nodes from the source in the residual graph are nonde-
creasing, and the work involved in augmentations is O(nzm). The section concludes by describing

a way to construct and maintain the layered network at O(nm) cost.

3.3 Directed Multicommodity Problems

This section defines the directed k-commodity flow problem and the corresponding demand graph.
It also discusses special cases of the problem with known efficient solutions: the case of a unique
source (or unique sink), and the case in which the demand graph is a complete bipartite graph.
In these cases the problem reduces to a maximum flow problem. The section concludes with a
discussion of a decomposition algorithm for the directed multicommodity problem.

3.4 Undirected Two Commodity Problem

This section introduces the undirected multicommodity flow problem, and comments that the
solution methods described in Section 3.3 for the directed problem carry through in the undirected
case.

The main result of the section is an algorithm that solves the undirected two-commodity prob-
lem. Algorithms for this problem were fist studied by Hu [5, 6]. Cherkassky [21] gave a polynomial-
time variant of Hu’s algorithm. Then the problem was reduced to a constant number of maximum
flow computations, by Dinic based on [21] and by Sakarovitch [8] based on linear programming
techniques. The section describes an algorithm that reduces the problem to four maximum flow
computations. If the input is integral, then each value of the solution produced by the algorithm
is either an integer or an integer plus a half.

3.5 Solved Cases of the Undirected Feasibility Problem

Consider the case of the feasibility problem for undirected graphs, such that every commodity has
one of two distinguished nodes as a terminal. In this case the problem can be solved using the
two-commodity flow algorithm of Section 3.4 and the flow decomposition algorithm of Section 3.3.
A generalization of this is the fact that an Z-commodity feasibility problem, where the edges of its
demand graph can be covered by k star graphs, can be reduced to k-commodity max-¥ problem,
where the objective is to maximize the total flow of commodities; the reduction adds k edges and
l arcs to the original network.

The following results are due to Papernov [19]. Note that given a cut, the capacity of the cut
must be at least as big as the sum of demands for pairs of terminals separated by the cut in order
for the problem to be feasible. We call this the cur condition. For what graphs is the converse true?
That is, for which graphs is it true that when the cut condition is satisfied for every cut, then there
is a feasible multicommodity flow ? It is true precisely when the graph is either

1. a union of two star graphs,

2. acycle of length five, or

3. acomplete graph on four nodes.

3.6 Solved Cases of the Undirected Max-X Problem

This section discusses special cases of the undirected max-¥ multicommodity problem with known
efficient solutions.

The fist result of the section is a reduction from a class of the problems for which demand
graphs are a union of two complete bipartite graphs to the two-commodity multiterminal problem.
This reduction, which uses the decomposition algorithm (see Section 3.3), is due to Cherkassky
[23].

The following is a conjecture of Cherkassky, which is an analog of the max-flow, mm-cut theorem
for the case of multiterminal undirected two-commodity flow problem. Let S and T be the sets of
sources and sinks of commodity 1, respectively, and let P and Q be the sets of sources and sinks of
commodity 2. Let ¢c(N) denote the capacity of a minimum cut separating the terminals in N from

the remaining terminals. Then the value of the maximum two-commodity flow is equal to
1 .
S min(e(X) t e(Y) + e(2) + (W),

where the minimum is taken over all partitions of terminals such that X C SUP, Y C T |J P,

ZcSUQ,and W ¢ TUQ.

Now consider an instance of the problem for which the demand graph is a complete graph;
in other words, there is a commodity for every pair of terminals. Let c; be the capacity of the
minimum cut separating the ith terminal from the remaining ones. Then the maximum flow value
is equal to1/2 3, ¢;. This theorem was stated in [18]. Cherkassky [22] found an error in the proof
of [18], gave a correct proof, and presented a polynomial-time algorithm for this class of problems.
The section concludes with an outline of the algorithm.

3.7 Completeness of a Multicommodity Flow Problem for a Class of Linear

Programming Problems

This section shows that the multicommodity flow problem is complete for a class of linear program-
ming problems; the problems in this class appear to be as hard as the general linear programming
problem. The problems in this class have two special properties: the variables in the problems are
bounded and the matrix has integral coefficients. This result is due to Dinic.

4 Minimum-Cost Flow Problem

This chapter is devoted to the minimum-cost flow problem and the transportation problem reducible
to it. Although no strongly-polynomial time algorithm are known for these problems, polynomial-

time algorithms (whose running time depends on logarithms of input numbers) are known. These

are scaling algorithms due to Edmonds and Karp [1] and Dinic [12].

The main goal of this chapter is to describe instances of the minimum-cost flow problem resulting

in exponential number of iterations of the currently known methods. These results are from [9,13].

4.1 Minimum-Cost Augmenting Path Method for Finding a Maximum Flow of
Minimum Cost

The minimum-cost augmenting path method (MAPM) starts with a zero flow and iteratively aug-
ments it along a cheapest augmenting path. The method works under the assumption that the
input network does not have negative cycles. It is shown that the computation of MAPM can be
partitioned into phases; each phase finds a maximum flow in the network of minimum-cost aug-
menting paths using FFA. Since FFA need not terminate [2], MAPM need not terminate either.
A variation of MAMP which uses a polynomial-time maximum flow algorithm to find maximmm
flows in networks of minimum-cost paths always terminates. This variation is called the generalized
method (GM). For integral capacities, MAPM terminates in time bounded by the sum of all arc
capacities.

4.2 Exponential Example for the Minimum-Cost Augmentation Method

This section describes a parameterized instance such that the number of phases of GM on an

instance with 2k nodes is 2%-1,

4.3 The Imbalance Canceling Method for the Transportation Problem

The section introduces the transportation problem and describes a class of imbalance canceling
algorithms for it. The imbalance at v is the difference between the supply and the current deficit
at v if v is a source, and between the demand and the current excess if v is a sink. An imbalance
canceling algorithm constructs a sequence of flows such that imbalances monotonically decrease
and each flow is optimal for the natural choice of supplies and demands.

A common algorithm in this class is the Hungarian method (HM). The method maintains a
feasible price function and either augments flow on a residual path of zero reduced cost arcs from
a supply node to a demand node, or updates the price function if no such path exists. As in the
algorithm of Section 4.1, a finite maximum flow algorithm can be used to guarantee termination.
There are two variations of HM. The regular HM starts with a zero flow and price functions. The
HM with a preprocessing stage first goes though the sources s, finding for each one the arc (s, w)

of minimum cost, sets the price of s to the cost of (s, w), and sends as much flow as possible along

(s, w).

4.4 The Network Simplex Method for the Transportation Problem

This section describes the primal network simplex algorithm for the transportation problem. The
particular version described chooses the minimum reduced cost arc to enter the basis and applies
the perturbation method to avoid cycling.

4.5 A Relationship Between the Network Simplex Method and the Regular
Hungarian Method

This section shows that the network simplex method is equivalent to HM on a slightly modified
network.

4.6 Exponential Examples for the Network Simplex Method and the Hungarian
Method

This section gives an example of a k x k transportation problem on which HM takes 2%—1iterations.
A modification of this example gives an exponential lower bound on HM with preprocessing. Results

of Section 4.5 imply the 2%=1 Jower bound on the number of iterations of the network simplex
method.

Acknowledgments

We would like to thank Dick Karp, David Shmoys, Eva Tardos, and Bob Tarjan for comments on
a draft of this review.

References

[1]J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network
Flow Problems. J. Assoc. Comput. Mach., 19:248-264, 1972.

[2] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton,
NJ, 1962.

[3] P. Hall. On Representatives in Subsets. J. Lond. Math. Soc., 10:26-30, 1935.

[4] J. E. Hopcroft and R. M. Karp. An n%/2 Algorithm for Maximum Matching in Bipartite
Graphs. SIAM J. Comput., 2:225-231, 1973.

[6] T. C. Hu. Multi-Commodity Network Flows. J. ORSA, 11:344-360, 1963.
[6] T. C. Hu. Integer Programming and Network Flows. Addison-Wesley, Reading, MA, 1969.

(7] E. Minieka. Maximal, Dynamic and Lexicographic Flows. Oper. Res., 21, 1973.

11

[8] M. Sakarovitch. Two-Commodity Network Flow and Linear Programming. Math. Prog., 5:1-
20, 1973.

[9] N. Zadeh. A Bad Network Problem for the Simplex Method and Other Minimum Cost Flow
Algorithms. Mathematical Programming, 5:255~266, 1973.

[10] E. A. Mumwmn. AaropmrM Pemermmsa 3amaam o MakcmmaasnoM Iloroke = CeTm co Cre-
negHo# Omenkoit. Joxaadw AH CCCP, 194:754-757,1970. English translation: E. A. Dinic,
“Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation,”
Soviet Math. Dokl., 11:1277-1260, 1970.

(11 E. A. Iumun. Sxonomnse Aazopumms Pewenus 3adaw Tpancnopmmuozo Tun a. Kamg.
mace., M.I.Y., 1973. English transcription: E. A. Dinic, “Ekonomnye Algoritmy Resheniya
Zadach Transportnogo Tipa”, PhD dissertation, Moscow State University. Title translation:
Efficient Algorithms for Solving Transportation Problems.

(12] E. A. Huawn. Meton Ilopaspsammoro Cokpamerus HeBs3ox m Tpamcmoprrnle 3anavn.
C6. Hccaedosanus no Juecxpemnot Mamemamure. Hayka, Mocksa, 1973. English transcrip-
tion: E. A. Dinic, “Metod Porazryadnogo Sokrashcheniya Nevyazok i Transportnye Zadachi,”
Issledovaniya po Diskretnot Matematike, Science, Moscow. Title translation: The Method of
Scaling and Transportation Problems.

[13] E. A. Hmamng = A. B. Kap3agos. 06 9kcuorernuaapaoi Croxsoctr AaropmtmoB Pem-
egma O6meid m TparcmopreO#t 3anmau Jlmmedtmoro IIporpammposamma. C6. Tpydu XIX
Kongepenyuu Moarodwz Yuennz HAT. Mocksa [poranpmur|, 1974. English transcription:
E. A. Dinic, A. V. Karzanov, “Ob Exponentsial’'noi Slozhnosti Algoritmov Resheniya Ob-
shchei i Transportnoi Zadach Lineinogo Programirovaniya,” Trudy XIX Konferentsit Molodykh
Uchenykh TAT, Moscow. Title translation: On Exponential Complexity of Algorithms for the
General and Transportation Linear Programming Problems.

[14] A. B. Kapsanos. 0 Haxoxnernmm Makcmmaasgoro Ilotoka = Cersx Cnenmamsroro Bmma
7 Hexoroprix IIpmnoxemmax. C 6. Mamemamunecxue Bonpocw Ynpasaenus IIpoussod-
cmeom, rou 5. WsmaremsctBo M.F.Y., Mocksa, 1973. English transcription: A. V.
Karzanov, “0 Nakhozhdenii Maksimal’'nogo Potoka v Setyakh Spetsial’nogo Vida i Neko-
torykh Prilozheniyakh,” Matematicheskie Vopros y Upravleniya Proiavodstvom, Moscow St ate
University Press, Moscow. Title translation: On Finding Maximum Flows in Network with
Special Structure and Some Applications.

(15] A. B. Kap3sanmos. Omemka Anropmrma Haxoxnmesms MakcmMansHoro Ilotoka, Ilpmme-
HeEHOro K 3amade o IlpemcraBmremsx. C6. Bonpocw Kubepnemuxu. Tpyow Cemunapa no
Kombunamopnoti Mamemamuxe. (Mocrea 1971). CoBerckoe Pammo, Mocksa, 1973. English
transcription: A. V. Karzanov, “Otsenka Algoritma Nokhozhdeniya Maksimal’'nogo Potoka,
Primenennogo k Zadache o Predstavitelyakh,” Voprosy Kibernetiki, Trudy Seminara po Kom-
binatornoi Matematike, Soviet Radio, Moscow. Title translation: A Bound on a Maximum
Flow Algorithm Applied to the Problem of Distinct Representatives.

[16] A. B. Kap3aros. Haxoxnerme MakcuMansroro IToroka s Cetn Meromom IlpemmoTokos.

Hoxaadw AH CCCP, 215:49-53, 1974. English translation: A. V. Karzanov, “Determinimg
Maximal Flow in a Network by the Method of Preflows,” Soviet Math. Dokl., 15:434-437,1974.

12

[17]

(18]

[19]

[21]

[22]

A . B. KapsamoB. YxomoMEH# AaropmtM Haxoxmesms Makcmmannpsoro IloToka =
Cerax. I9xomomuxa u Mamemamuvecxue Memodw, 11, 1975. English transcription: A.
V. Karzanov, “Ekonomnyi Algoritm Nakhozhdeniya Maksimal’'nogo Potoka v Setyakh,”
Ekonomika i Matematicheskie Metody. Title translation: “Efficient Algorithm for Finding a
Maximum Flow in a Netowrk”.

B . JI. Kymepmrox. 0 6 OpmaoM O60o6mernn Teopemm Popna u Pankepcoma ma Mmo-
ronomocusie Cern. Kubepremuxa (Kuee), 3, 1971. English translation: V. L. Kupershtokh,
“The Generalization of Ford-Folkerson Theorem to Multipole Networks,” Cybernetics, 3:494—
502, 1973.

B. A. ITanepros. Peamm3yemocts Muoronpomaykrosuix Ilorokos. C6. Hccaedosanus no
Luckpemnoi Onmumusayuu. Hayra, Mocksa, 1976. English transcription: B. A. Paper-
nov, “Realizuemost’ Mnogoproduktovykh Potokov,” Issledovaniya po Diskretnoi Optimitatsii,
Science, Moscow. Title translation: “Feasibility of Multicommodity Flows”.

B. I. Iognepiorma. AaroputM Onpenenenus Pebepmoit Csazmoctm I'pada. C6. Bo-
npocs Kubepnemunu. Tpyos Cemunapa no Kombunamopnot Mamemamure. (Mocxea 1971).
Coserckoe Pammo, Mocksa, 1973. English transcription: B. D. Podderyugin, “Algoritm
Opredeleniya Rebernoi Svyaznosti Grafa,” Voprosy Kibernetiki, Trudy Seminara po Kombina-
tomoi Matematike, Soviet Radio, Moscow. Title translation: “An Algorithm for Determining
Edge Connectivity of a Graph”.

B. B. Yepracckmii. Konegnrsii AnroprtMm Pemenms 3amaum o IIsByxmpoxykroBoM Ilo-
Toke. Ixonomura u Mamemamunecxue Memoow, 9:1147-1149, 1973. English transcription:
B. V. Cherkassky, “Konechny Algoritm Resheniya Zadachi o Dvukhproduktovom Potoke,”
Ekonomika i Matematicheskie Metody. Title translation: A Finite Algorithm for Solving the
Two Commodity Flow Problem.

B. B. Uepkacckmid. Pemenme Ommoit 3amawm o Muoromponykrosuix Ilorokax B Cern.
Ixonomura u Mamemamuuecxue Memo&, 11, 1975. English transcription: B. V. Cherkassky,
“Reshenie Odnoi Zadachi o Mnogoproduktovykh Potokakh v Seti,” Ekonomika i Matematich-
eskie Merody. Title translation: A Solution of a Problem of Multicommodity Flows in a Net-
work.

B. B. Yepracckuid. MEOromomocasie [IByxnpoaykrosue 3amaum. C6. Hecaedosanus no
Hucxpemnott Onmumusayuu. Hayka, Mocksa, 1976. English transcription: B. V. Cherkassky,
“Mnogopolyusnye Dvukhproduktovye Zadachi”, Issledovaniya po Diskretnoi Optimizatzii, Sci-
ence, Moscow. Title translation: Multiterminal Two Commodity Problems.

