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ABSTRACT among the various inheritance schemes in this respect.

We investioate the complexity of reasonine with Beside the basic ISA type of arc, denoting class inclu-

monotonic heritance hierarchic that contain. beside Do and commonoy a SL Ea(other NETIONS).
ISA edges, also ROLE (or FUNCTION) edges.A ROLE RELATIONS, and IDENTITYs. In the past few years
edge is an edge labelled with a name such as much attention has been paid to the issue of cancella-
spouse-of or brother-of. We call such networks tion of inheritance, that is, to systems which allow an
ISAR networks. Given a network with n vertices and object to override some property that it would other-
m edges, we considertwo problems: (P,) determining wise inherit from another object higher in the hier-
whether the network implies an isa relation between archy. These systems have been called nonmonotonic
two particular nodes, and (P,) determining all isa (since the set of properties does not increase
relations implied by the network. As is well known, monotonically as one descends the hierarchy); in con-
without ROLE edges the time complexity’ of P, is trast, systems without cancellation have been called
O(m), and the time complexity of P, is o(n®). monotonic. Most recent research in inheritance
Unfortunately, the results do not extend naturally to systems has been concerned with the semantics of
ISAR networks, except in a very restricted case. For inheritance. In particular there have been several
general ISAR network we first give an polynomial results relating cancellations to nonmonotonic logics
algorithm by an easy reduction to proposional Horn (Etherington, 1987), (Touretzky, 1986), (Touretzky et
theory. As the degree of the polynomial is quite high al., 1987).

(O( mn?) for P,, O( mn®) for P,), we then develop a Our concern in this paper is different, as we look at
more direct algorithm. For both P, and P, its com- the complexity of reasoning with inheritance net-
plexity is on’ + md). Actually, a finer analysis of works. Consider a network with vertices V and edges
the  algonthm reveals a complexity of E, and let [V| =n and |E| = m. As is well known, if
O( nr(log r) + nr + n%), where r is the number of dif- all the edges are ISA edges (such simple networks
ferent ROLE labels. One corolary is that if we fix the have been called ruxonomic) then in time O(m) one
number of ROLE labels, the complexity of our algo- can determine whether the network implies an ISA
rithm drops back to O(n?). relation between two particular nodes, and in time

O( nm) (and therefore in time O( n*)) one can find all
1. INTRODUCTION the implied ISA relations in the graph. If E contains

other types of edge or if cancellation is allowed then
Inheritance systems are a common framework for the problem becomes harder. We know of relatively
representing knowledge, in both AI and the database few results in this direction, including ones by
community. In these systems objects are organized Touretzky (1986) and Borgida (1989). Some relevant
hierarchically, and properties of objects are inherited results involving negative and positive links are found
by those below them in the hierarchy. For example, if in Thomason (1986). There are also results involving
it 1s recorded in this knowledge base that mothers are RELATIONS and IDENTITYs in Thomason (1989). We

parents and that parents are responsible people, it know of no results on the particular problem we con-
may be concluded that mothers too are responsible. sider, which is to allow E to contain ROLES as well as
As 1s well known, an inheritance system may be ISA edges, and to prohibit cancellation; we call these

represented by a directed graph. The vertices in the ISAR networks. We preclude cancellation not
graph are all of the same kind, and they each repre- because we consider it unimportant, but because we
sent a class of objects. Arcs, on the other hand, come would like to understand the monotonic case first. As

in several varieties, and there has been less uniformity will be seen, it is by no means straightforward. The
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problem lies in a new closure rule that is provided by 2. THE SYNTAX AND SEMANTICS OF ISAR
the interaction between ROLES and ISA edges. Con- NETWORKS

sider for example the following graph:

parent  spovce-of In order to be able to define our problem we first
present the syntax and semantics for monotonic ISAR
networks. Their syntax is defined as follows.

mother | 8 e.ot
Intuitively, since mothers are parents, spouses of Definition I: Let V and L be two disjoint sets. An
mothers are also spouses of parents. In other words, ISAR network is a triple < V,E,E, > where
an ISA relation is implied about the two right nodes. ECV XV, E.cV XV X L and it satisfies:
Of course, this intuitive claim needs to be formal- ! R

1zed, and we will indeed do that. We will then con- 1) If (a,b,p)ek, and (a,c,p)ek, then b = c;
sider the complexity of determining the implied ISA 2) If pel then there are aeV and beV such
relations in such a network. In a very restricted type that (a,b,p)eE,.
of ISAR networks we will be able to salvage the O(m)

, : V is the set of vertices, L is the set of ROLE
and O( nm) results from the simple taxonomic case.
For general ISAR networks we will offer a slightly labels, E, is the set of ISA edges and Ey is the set
costlier O(n® + m?) algorithm to find all the implied of ROLE edges.
ISA relations. Actually, a finer analysis of our general The second condition in the above definition is not

algorithm reveals a complexity of O( nr( log r) + nr essential, but it guarantees that any ROLE label
+n), where! r is the number of ROLE labels in the indeed labels at least one ROLE edge, which is con-
network (we distinguish ROLE labels which are dis- venient. We now define their semantics.
tinct, like brother-of and spouse-of, and actual

ROLE edges, in which ROLE labels may be repeated). Definition2: Let N = <V,E,E.> be an ISAR
Note that we have r < m, but we do nor have m < n?, network and L the set of ROLE labels of N A
since, unlike ISA edges, we may have multiple ROLE model for N is a pair < Dj > where D is a set
edges between two nodes (the spouses of mothers are and ¥ is a (total) function on VUL such that:
exactly the joint-tax-payers of mothers). Among other

things, this finer analysis takes us back to O(n®) for 1) If aeV then V(a)eD;
an I bounded by a constant. As this is close to the 2) If pel then ¥(p) is a partial function from
best known algorithm for simple taxonomic networks D to D;
it seems unlikely that this result can be significantly 3) if (a,b)eE, then Y(a)sy(b);
improved. 4) if (a,b,p)eE, then Y(b) = Y(p)(¥(a)).
The remainder of the article is organized as follows.

In section 2, we briefly define the semantics of ISAs Next we define two isa relations, one semantic and
and ROLES, and based on these we provide provably one syntatic.
complete conditions for determining all the implicit
ISAs entailed by a given ISAR network. In section 3, Definition3: Let N= <V,E,E, >be an ISAR
we formally define the graph theoretic problem. In network. The binary relation isa, on V is
section 4, we briefly recall the results on taxonomic defined by: isa,(a,b) iff for every model
hierarchies, all well known. In section 5, we finally < D> for N, it is the case that Y(a)cy/(b).
turn to the complexity of reasoning with ISAR net- We will denote the fact that isa,(a,b) holds by
works. In section 5.1, we extend the results of N  isa(a,b).
section 4 to a restricted kind of ISAR networks which

we call “equi-multiple inheritance”-ISAR (EMI-ISAR) Definition4: Let N= <V,E.E.>be an ISAR
networks. We then turn to the general case. First, in network. The binary relation isa, on V is the
section 5.2, we provide a polynomial algorithm which smallest set satisfying: 2
reduces the problem to that of determining entailment
by a propositional Hom theory. The degree of the D) If (a,b)eE, or a = b then (a,b)eisa,;
polynomial turns out to be quite high, and so, in 2) (Rulel) If (a,b)eisa, and (b,c)eisa, then
section 5.3, we give another, more direct algorithm, (a,c)eisa,;
whose complexity was discussed above. Finally, in 3) (Rule2) If (ab)eisa, (a,c,p)eE, and
section 6 we summarize our results, compare them to (b,d,p)eE, then (c,d)eisa,.
previous results of which we are aware, and point to
some open questions. We will denote the fact that isa,(a,b) holds by
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Ni-isa(a,b). There is also the well known direct algorithm for P,:

The next theorem esablishes that Isa, and isa, are Theorem 3: There exists .» O(n%) algorithm for P..
actually the same relation. : lk

Proof. Usc the dynamic programming algorithm of,

Theorem I: (Soundneas and Completeness) Let c.g. (Aho etal. 1974).

N. AAfii" o by i Neia(e by. every In fact, there exists a theoretically even better algo-an 1sa 15a : . LT .rithmfor P,, wh lexit bout th,

Proof (—)Note that if (a,b)€E, then Ni=lsa(a,b); and However, this theoretical result has not en ne
also that Rulel and Rule2 are sound with respect to lated to a practical advantage.
our semantics. («-)We omit this part of the proof; it We mention these results for two reasons. First, as
will be included in the long version of this paper. these are the best known results for taxonomic net-

Note that if E, is empty then the ISAR network works (and of course the linear result for P, is“Rr Hie : provably optimal) they form a lower bound for what
reduces to a simple tax»nomic inheritance network. we might oxpect for 3AR networks, and are good ref-

erence points against which to test our results.
3. FORMAL PROBLEM DEFINITION Second, the details of the algorithms mentioned above

provide good insight into the qualitative increase in

Given the syntax and semantics of ISAR networks, we difficulty of ISAR networks. In the next section we
now formally define the two problems we will be discuss the DFS algorithm, and why it can be
addressing. extended only to a limited class of ISAR networks.

P,. Input: an ISAR network N = < V,E, E> The dynamic programming algorithm, on the other
and a pair of vertices xy in V hand, does not extend at all as far as we can see.

Coa? ne Briefly, it relies on the property that if a path is
Output: “yes” if N f= isa(xy), ‘no’ otherwise decomposed at any vertex then each component is

P,. Input: an ISAR network N=< VEE, > itself a path; that is true for simple taxonomic hierar-
Output: an ISAR network N = < VEE,> chies, but not for general ISAR networks.

such that E;” = {{xy): N f= isa(xy)}
5. ALGORITHMS FOR ISAR NETWORKS

If [V|] = n and COMP, is the time complexity of P,

(i = 1,2), then clearly we have COMP, < n*COMP,, We now address the two problems defmed in
since we solve P, by solving P, for each pair of nodes. section 3, P, and P,, in the context of general ISAR

In the rest of this paper, the number of vertices, networks. We start with a very efficient algorithm for

[VI], will be n, the number of edges, |E,| + |E, |, will a restricted class of ISAR networks. We then give an
be m and the number of ROLE labels, |R], will be r. easy algorithm for the general case whose complexity,
Note that r <m and m < rn though polynomial, is uncomfortably high. Finally,

we give a low polynomial algorithm for the general

4. SIMPLE TAXONOMIC HIERARCHIES: A case.

REVIEW
5.1 EMI-ISAR networks

In this section we briefly review the well-known oo
results for the case in which the network contains The DFS algorithm for taxonomic hierarchies extends
only ISA edges. paths into the graph, backtracks chronologically when

a path is blocked, and never traverses the same edge

Theorem 2: There exists an O(m) algorithm for P,. twice. In (hs section we extend the algorithm toProof. Use, e.g., the depth-first search (DFS) algo- ISAR networks, introducing two major modifications.
rithm for directed graphs (Aho et al., 1974). First, paths are extended in a way that 1s more com-

plicated than simply following ISA edges. Second, in

in fact, DFS may be used to find in O(m) time all the order to guarantee that we do not lose completeness
nodes reachable from a given node. We therefore have by not traversing edges [OTE than Once (Which guar-
the following: antees linearity) we will need to impose a strong

restriction on the network. Given the space limita-

Corollary 1: There exists an O(nm) algorithm for P tions on this paper, we will only illustrate the algo-
Proof Run a DFS from each node z rithm through an example. Consider the simple

network in Figure la.

-3-



~-

SE TUN Sgt = 5 2 E3 Definition 6: An ISAR network is an equi-multiple
53 2 i { inheritance-1SAR network (EMIHISAR network) if
a X Te for any two nodes x and yp, all path8 from x to y

wa “ig . t RN have the same label.z z : Pp

Ma { Theorem 4: In the c~se of EMIFISAR networks there
{13} x {289} pp Bil LES exists an O(m) algorithm for P,.

a b Proof. Develop paths of the sort described above in a
I x xd depth-first fashion, backtracking chronologically,

OE xr XE gt x2 never traversing an edge twice.
C d S f 4 h i ] In fact, just as in the simple taxonomic case, this

Z:integers, Z *:nonnegative Z, extended DFS can be used to discover all nodes to
Q:rationals,  Rireals,  R*:nonnegative R, which a path exists from a given node. We thus get
|x|: the absolute value function,  x* squaring function the following:

Figure 1

Now consider the query ‘isa({289},R*)". This query Corollary 2: In the case of EMI-ISAR networks there
should succeed due to the path shown in Figure Ib, exists an O( nm) algorithm for P,.
which consists of three types of edge traversal: going Note that our results hold also when the network

back on ROLE edges (e.g., Zt to 7), going up ISA contains cycles.
edges (e.g., Z to Q), and going forward on ROLE
edges (e.g., R to R*). We will call these respectively 5.2 Reducing general ISAR networks to
left, up and right traversal. Left and up traversals have propositional Horn theory
no preconditions. Right traversal has a precondition
that it not immediately follow a left traversal, and that We now start to look at the general case of ISAR net-
the last left traversal to precede it was along a ROLE works. In this section we pursue an easy way out,
with the same label. To implement this we maintain a namely to reduce the graph theoretic problem to the
stack as we develop a path: up traversal does not problem of deciding a query about a propositional
affect the stack, back traversal pushes the ROLE label Horn theory, which is known to be decidable in linear
onto the stack, right traversal pops the stack (and has time (Dowling and Gallier, 1984). Unfortunately, the
the precondition mentioned above). Figures Ic-1] resulting datalog theory will not be linear in the size
illustrate the stack at all the .vertices along the path in of the ISAR network.

Figure 1b. Let N = < V,E ,E_.> be an ISAR network. We
construct a Horn theory Th(N) as follows. First, for

Lemma I: Let N be an ISAR network. Then each three vertices xy,z in N, we construct a clause
N £ isa(xy) iff there is a path of the sort
described above that starts at x with an empty isa(xy) < - isa(x,z) A isa(z,y)
stack and ends at y with an empty stack. Then, for each four vertices v,xy,z in N and each

The only question that remains is how to determine ROLE label / we construct a clause
efficiently whether such a path exists. Unfortunately, isa(xy) < - isa(v,z) A role(/,v,x) A role(l,z,y)
in ISAR networks with multiple inheritance we will in |
general need to traverse some edges many times. A Finally, for every pair (a,b) in E, we add a predicate
simple example exists already in Figure la: if the first isa(a,b), and for every triple (a,b,p) in E, we add a
path developed is {289}{ 17}Z+*QR, then at that predicate role(p,a,b).
point backtracking must occur. If we are not allowed

to traverse the edge QR twice, then we will not dis- Theorem 5: There exists an O(rn) (and thus
cover the path {289}{17}Z+ZQRR*R*, and thus O(mn*) algorithm for P,.
miss a solution. In special case, however, it is safe to Proof. From Theorem 1 we have that N E isa(xy)
not traverse an edge twice: iff Th(N) § isa(x,y). The latter can be decided in

time linear in Th(N). The number of clauses in Th(N)

Definition 5: The label of a path is the sequence of is O(n*+rn*) = O(rn%).
ROLE labels appearing in it, ignoring all ISA

edges. Corollary 3: There exists an O(rn®) (and thus
O( mn®)) algorithm for P,.
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5.3 An efficlent algorithm for general ISAR Lemma 3: It can bc determined in time O(m’) simul-
networks tancously for all vertices in EVID(N) whether

there is a grounded path rooted at them, where

The degree of the polynomial in the previous algo- m’ is the number of edges in EVID(N).
rithm is a bit too high for comfort. We now offcr a Proof. (outline) Conduct a breadth-first search
more direct algorithm whose complexity is much (BFS) starting frm all nodes (i,}) such that (1,)) is in
lower. E,, moving backwards on edges, and extend a path

. beyond a vertex only when at least one of its
Defmition 7: A directed AND/OR graph is one in AND-sets has all its members originate in previously-

which the set of edges emanating from each node reached nodes.
1s partitioned into sets, each set called an
AND-set of that node (single edges arc viewed as The last lemma points to the reason for constructing
singleton sets). A path in such a graph is a rooted the evidence graph. We now note that m’ is bounded
tree such that the set of edges in the tree ema- by the complexity of generating EVID(N). To com-
nating from each vertex forms an AND-set of that plete the story, then, it remains to estimate this com-
vertex in the AND/OR graph. Searching an plexity. We first show an easy bound, and then look
AND/OR graph from a given vertex means more closely at the algorithm to improve the com-
starting with a path consisting of the node itself, plexity.
and iteratively extending it.

Theorem 6: There exists an O(n*® + m?) algorithm for
Definition 8: Let N = <V,E,E, > be an ISAR P,.

network. = The evidence graph of N is the Proof. The construction of the edges in EVID(N) that
AND/OR directed graph EVID(N) = < V3 E'> are due to the transitive closure is done in time O(n?).
where To construct the other edges, we look at all pairs of
E'= {((k,D(i,))): for some Pp, (i,k,p) and ROLE edges (i,j) and (k,l), and, if their ROLE labels

(.l,p) are both in E_} agree, add to EVID(N) the edges ((ik),(j.l)) and
U { {((i,k),(1,))((,K),(,k)}: i,j,k in V}. ((J,H,(i,k)). The total number of edge-pairs is O(m?).

The first type of edge is shown pictorially below: Thus the total complexity of the algorithm is
| Px kw (Gi, O(n” + m’).
: > Recall that in ISAR networks there is no necessary
FS SY (NS PU———,| TY relation between the number of vertices and the

N EVID(N) number of edges. However, if it happens that
The intuition behind the construction is the fol- m = O(n®), we have that the algorithm is of com-

lowing: an AND-set of a vertex (i,j) in the evidence plexity O(n‘). We now improve on this by a more
graph is evidence that (i,j) is in the isa relation. More careful construction of the evidence graph.
precisely, we have the following:

Theorem 7: There exists an O(nr(logr) + n’r + n°)

Definition 9: Let N = < V,E,E, > be an ISAR algorithm for P,, where r is the number of dif-
network. A path rooted at (a,b) in EVID(N) is ferent ROLE labels.
said to be grounded if a = b or for all terminal Proof. We create the first n® edges as before. Then,
nodes (k,1) in that path it is the case that (k,l) is rather than blindly compare all pairs of edges, we do
in E,. the following.

1) Create a list for each vertex of all the ROLE edges

Lemma 2: Let N = <V,EE_ > be an ISAR network emanating from it and their associated label. A
and i,j in V. Then Nisa(i,j) ff there is a typical list will have the form i: (l,,i,),(l,i,), - - - -
grounded path in EVID(N) rooted at (i,j). (where i, i, and i, are vertices, and I, and |, are

Proof. (outline) By theorem 1, Nisa(i,j) if and ROLE labels);
only if N{isa(i,j). By induction on the number of 2) Sort each of these lists by the label component;
applications of Rule 1 and Rule2 (Defmition 4) we 3) For each pair of vertices i,j, scan their lists in par-
have that if N}isa(i,j). then there is a grounded path allel to see which role labels they share. If you
rooted at (i,j) in EVID(N). By induction on the the encounter the pair (p,k) in i's list and the pair
size of the path we may prove that if there is a (p,l) in j’s list, add the edges ((k,!),(i,j)) and
grounded path rooted at (i,j) in EVID( N) then (1K),3,1).
Ni-isa(i,j).
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Complexity of the steps: although at first glance it seems that P, is much

1) O(m); easier. Actually, our experience with the problem
I Co : leads us to conjecture that P, is not any easier, but jt

2) om 0g") (note that each list is of length r at would be nice to have a result on that. Then there ismost);
: Cy : . a question about other ways to salvage the

3) O(n'r) (scanning the sorted Jists 5 lincar in their om) O(nm) results from the dimple axonomic case:
length, ¥, and there are 0" pairs of vertices). do there cxist interesting classes of networks which

complexity of creating the evidence graph is what happens when we add other features to the
7, ? ’ network, such as RELATIONS or cancellation? We(nr(logr) + n°r + n’). VOIR,

conjecture that at least in the latter case the problem

Corollary 4: If the number of ROLE labels is bounded mn genaral bedomes Iniacianis, whieh seems to agree
by a constant, there is an O(n®) algorithm for P,. with Borgida's result mentioned above.

We note that as this is realistically the low.:st com- Adkmowledgments. The authors te stdteful +O
plexity known for transitive closure, we hould not a d fo h De200, Who "tbed the
hope to improve on this. hia. or helpful suggestions on a first version
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