

July 1990

Report No. STAN-CS-90-1324

On the Complexity of Montonic Inheritance with Roles

by

Ramiro A. de T. Guerreira, Andrea S. Hemerly, Yoav Shoham

Department of Computer Science

**Stanford University
Stanford, California 94305**

On the Complexity of Monotonic Inheritance with Roles

Ramiro A. de T. Guerreiro

Rio Scientific Center
IBM Brazil
I? 0. Box 4624
20.00 1, Rio de Janeiro, RJ

Andrea S. Hemerly

Rio Scientific Center
IBM Brazil
P.O. Box 4624
20.001, Rio de Janeiro, RJ

Yoav Shoham

Computer Science Dept
Stanford University
Stanford, CA 94305

ABSTRACT

We investigate the complexity of reasoning with monotonic inheritance hierarchies that contain, beside **ISA edges**, also **ROLE** (or **FUNCTION**) **edges**. A **ROLE** edge is an edge **labelled** with a name such as **spouse-of** or **brother-of**. We call such networks **ISAR networks**. Given a network with n vertices and m edges, we consider two problems: (P_1) determining whether the network implies an **isa** relation between two particular nodes, and (P_2) determining **all isa** relations implied by the network. As is well known, without **ROLE edges** the time complexity of P_1 is $O(m)$, and the time complexity of P_2 is $O(n^3)$. Unfortunately, the results do not extend naturally to **ISAR** networks, except in a very restricted case. For general **ISAR** network we **first** give an polynomial algorithm by an easy reduction to propositional **Horn** theory. As the degree of the polynomial is quite high ($O(mn^4)$ for P_1 , $O(mn^6)$ for P_2), we then develop a more direct algorithm. For both P_1 and P_2 its complexity is $O(n^3 + m^2)$. Actually, a finer analysis of the algorithm reveals a complexity of $O(nr(\log r) + n^2r + n^3)$, where r is the number of different **ROLE** labels. One **corolary** is that if we fix the number of **ROLE** labels, the complexity of our algorithm drops back to $O(n^3)$.

1. INTRODUCTION

Inheritance systems are a common framework for representing knowledge, in both AI and the database community. In these systems objects are organized hierarchically, and properties of objects are inherited by those below them in the hierarchy. For example, if it is recorded in this knowledge base that mothers are parents and that parents are responsible people, it may be concluded that mothers too are responsible.

As is well known, an inheritance system may be represented by a directed graph. The vertices in the graph are all of the same kind, and they each represent a class of objects. Arcs, on the other hand, come in several varieties, and there **has** been less uniformity

among **the** various inheritance schemes in this respect. Beside the basic **ISA** type of arc, denoting class inclusion and common to all systems, other types that have been mentioned are **ROLES** (or **FUNCTIONS**), **RELATIONS**, and **IDENTITYs**. In the past few years much attention has been paid to the issue of *cancellation* of inheritance, that is, to systems which allow an object to override some property that it would otherwise inherit from another object higher in the hierarchy. *These* systems have **been called nonmonotonic** (since the set of properties does not increase monotonically as one descends the hierarchy); in contrast, systems without cancellation have been called **monotonic**. Most recent research in inheritance systems has been concerned with the semantics of inheritance. In particular there have been several results relating cancellations to nonmonotonic **logics** (Etherington, 1987), (Touretzky, 1986), (Touretzky et al., 1987).

Our concern in this paper is different, as we look at the *complexity* of reasoning with inheritance networks. Consider a network with vertices V and edges E , and let $|V| = n$ and $|E| = m$. **As** is well known, if **all** the edges are **ISA** edges (such simple networks have been called *tuxonomic*) then in time $O(m)$ one can determine whether the network implies an **ISA** relation between two particular nodes, and in time $O(nm)$ (and therefore in time $O(n^3)$) one can **find** all the implied **ISA** relations in the graph. If E contains other types of edge or if cancellation is allowed then the problem becomes harder. We know of relatively few results in this direction, including ones by Touretzky (1986) and Borgida (1989). Some relevant results involving negative and positive links are found in Thomason (1986). There are also results involving **RELATIONS** and **IDENTITYs** in Thomason (1989). We know of no results on the particular problem we consider, which is **to allow E to contain ROLES** as well as **ISA** edges, and to prohibit cancellation; we call these **ISAR** networks. We preclude cancellation not because we consider it unimportant, but because we would like to understand the monotonic case **first**. As will be seen, it is by no means straightforward. The

problem lies in a **new** closure **rule** that is **provided by** the interaction **between ROLES** and **ISA edges**. Consider for example the following graph:

parent spouse-of

mother I s e-of

Intuitively, since mothers are parents, spouses of mothers are **also** spouses of parents. In **other** words, an **ISA** relation is **implied** about the two right nodes.

Of course, this intuitive claim needs **to be** formalized, and we will indeed do that. We will then consider the complexity of **determining** the **implied** **ISA** relations in such a network. In a very restricted type of **ISAR** networks we will be able to salvage the $O(m)$ and $O(nm)$ results from the simple taxonomic **case**. For general **ISAR** networks we will offer a slightly costlier $O(n^3 + m^2)$ **algorithm to find** all the implied **ISA** relations. Actually, a finer analysis of our general algorithm reveals a complexity of $O(nr(\log r) + n^2r + n^3)$, where r is the number of **ROLE** labels in the network (we distinguish **ROLE** labels which are **distinct**, like **brother-of** and **spouse-of**, and actual **ROLE** edges, in which **ROLE** labels may be repeated).

Note that we have $r \leq m$, but we do *not* have $m \leq n^2$, since, unlike **ISA** edges, we may have multiple **ROLE** edges between two nodes (the spouses of mothers are exactly the joint-tax-payers of mothers). Among other things, this finer analysis takes us back to $O(n^3)$ for an r bounded by a constant. As this is close to the best known algorithm for simple taxonomic networks it seems unlikely that this result can be **significantly** improved.

The remainder of the article is organized as follows. In section 2, we briefly define the semantics of **ISAs** and **ROLES**, and based on these we provide provably complete conditions for determining all the implicit **ISAs** entailed by a given **ISAR** network. In section 3, we formally **define** the graph theoretic problem. In section 4, we briefly recall the results on taxonomic hierarchies, all **well known**. In section 5, we finally turn to the complexity of reasoning with **ISAR** networks. In section 5.1, we extend the results of section 4 to a restricted kind of **ISAR** networks which we call “equi-multiple **inheritance**”-**ISAR** (EMI-**ISAR**) networks. We then turn to the general case. First, in section 5.2, we provide a polynomial algorithm which reduces the problem to that of determining entailment by a propositional Horn theory. The degree of the polynomial turns out to be quite high, and so, in section 5.3, we give another, more direct algorithm, whose complexity was discussed above. Finally, in section 6 we summarize our results, compare them to previous results of **which** we are aware, and point to some open questions.

2. THE SYNTAX AND SEMANTICS OF ISAR NETWORKS

In **order** to **be** able to define our problem we **first** present the syntax and semantics for monotonic **ISAR** networks. Their syntax is **defined** as follows.

Definition 1: Let V and L be two disjoint sets. An **ISAR network** is a triple $\langle V, E_I, E_R \rangle$ where $E_I \subseteq V \times V$, $E_R \subseteq V \times V \times L$ and it satisfies:

- 1) If $(a, b, p) \in E_R$ and $(a, c, p) \in E_R$ then $b = c$;
- 2) If $p \in L$ then there are $a \in V$ and $b \in V$ such that $(a, b, p) \in E_R$.

V is the set of **vertices**, L is the set of **ROLE labels**, E_I is the set of **ISA edges** and E_R is the set of **ROLE edges**.

The second condition in the above definition is not essential, but it guarantees that any **ROLE** label indeed labels at least one **ROLE edge**, which is convenient. We now **define** their semantics.

Definition 2: Let $N = \langle V, E_I, E_R \rangle$ be a **ISAR** network and L the **set** of **ROLE** labels of N . A **model** for N is a pair $\langle D, \psi \rangle$ where D is a set and ψ is a (total) function on **VUL** such that:

- 1) If $a \in V$ then $\psi(a) \subseteq D$;
- 2) If $p \in L$ then $\psi(p)$ is a partial function from D to D ;
- 3) if $(a, b) \in E_I$ then $\psi(a) \subseteq \psi(b)$;
- 4) if $(a, b, p) \in E_R$ then $\psi(b) = \psi(p)(\psi(a))$.

Next we define two **isa** relations, one semantic and one **syntactic**.

Definition 3: Let $N = \langle V, E_I, E_R \rangle$ be a **ISAR** network. The binary relation isa_1 on V is **defined** by: $\text{isa}_1(a, b)$ iff for every model $\langle D, \psi \rangle$ for N , it is the case that $\psi(a) \subseteq \psi(b)$. We will denote the fact that $\text{isa}_1(a, b)$ holds by $N \models \text{isa}_1(a, b)$.

Definition 4: Let $N = \langle V, E_I, E_R \rangle$ be a **ISAR** network. The binary relation isa_2 on V is the **smallest** set satisfying:

- 1) If $(a, b) \in E_I$ or $a = b$ then $(a, b) \in \text{isa}_2$;
- 2) (Rule1) If $(a, b) \in \text{isa}_2$ and $(b, c) \in \text{isa}_2$ then $(a, c) \in \text{isa}_2$;
- 3) (Rule2) If $(a, b) \in \text{isa}_2$, $(a, c, p) \in E_R$ and $(b, d, p) \in E_R$ then $(c, d) \in \text{isa}_2$.

We will denote the fact that $\text{isa}_2(a, b)$ holds by

$N \vdash \text{isa}(a, b)$.

The **next theorem establishes** that **Isa**, and **isa₂**, are actually the same **relation**.

Theorem I: (Soundness and Completeness) Let $N = \langle V, E, E_R \rangle$ be an **ISAR** network. For **every** a and $b \in V$, $N \vdash \text{isa}(a, b)$ iff $N \models \text{isa}(a, b)$.

Proof (\rightarrow) Note that if $(a, b) \in E$, then $N \models \text{isa}(a, b)$; and also that **Rule1** and **Rule2** are sound with respect to our semantics. (\leftarrow) We omit this part of the proof; it will be included in the long version of this **paper**.

Note that if E_R is empty then the **ISAR** network reduces to a simple **taxonomic** inheritance network.

3. FORMAL PROBLEM DEFINITION

Given the syntax and semantics of **ISAR** networks, we now formally **define** the two **problems** we will be addressing.

P₁: Input: an **ISAR** network $N = \langle V, E, E_R \rangle$ and a pair of vertices x, y in V
Output: 'yes' if $N \models \text{isa}(x, y)$, 'no' otherwise

P₂: Input: an **ISAR** network $N = \langle V, E, E_R \rangle$
Output: an **ISAR** network $N' = \langle V, E', E_R \rangle$ such that $E' = \{(x, y) : N \models \text{isa}(x, y)\}$

If $|V| = n$ and **COMP**, is the time complexity of **P_i**, ($i = 1, 2$), then clearly we have **COMP**, $\leq n^2 \text{COMP}$, since we solve **P₂** by solving **P₁** for each pair of nodes.

In the rest of this paper, the number of vertices, $|V|$, will be n , the **number** of edges, $|E| + |E_R|$, will be m and the number of **ROLE** labels, $|R|$, will be r . Note that $r \leq m$ and $m \leq rn^2$.

4. SIMPLE TAXONOMIC HIERARCHIES: A REVIEW

In this section we briefly review the well-known results for the case in which the network contains only **ISA** edges.

Theorem 2: There exists an $O(m)$ algorithm for **P₁**.
Proof. Use, e.g., the **depth-first search (DFS)** algorithm for directed graphs (Aho et al., 1974).

in fact, **DFS** may be used to find in $O(m)$ time **all** the nodes reachable from a given node. We therefore have the following:

Corollary 1: There exists an $O(nm)$ algorithm for **P₂**.
Proof. Run a **DFS** from each node.

There is also **the** well known direct algorithm for **P₁**:

Theorem 3: There exists an $O(n^3)$ algorithm for **P₁**.
Proof. Use the dynamic programming algorithm of, e.g., (Aho et al., 1974).

In fact, there exists a **theoretically** even better **algorithm** for **P₁**, whose complexity is about $O(n^{2.7})$. However, this **theoretical** result **has** not been translated to a practical advantage.

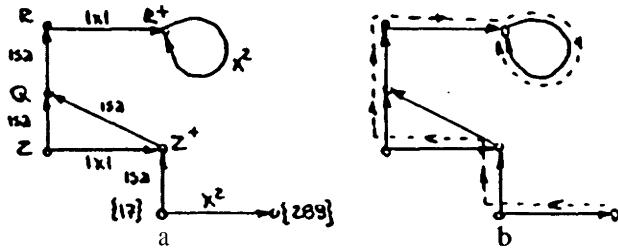
We **mention these** results for two reasons. First, as these are the best known results for taxonomic networks (and of course the linear result for **P₁**, is provably optimal) they form a lower bound for what we might expect for **ISAR** networks, and are good reference points against which to test our results. Second, the details of the algorithms mentioned above provide good insight into the qualitative increase in **difficulty** of **ISAR** networks. In the next section we discuss the **DFS** algorithm, and why it can be extended **only** to a limited class of **ISAR** networks. The dynamic programming algorithm, on the other hand, does not extend at all as far as we can see. Briefly, it relies on the property that if a path is decomposed at any vertex then each component is itself a path; that is true for simple taxonomic hierarchies, but not for general **ISAR** networks.

5. ALGORITHMS FOR ISAR NETWORKS

We now address the two problems defined in section 3, **P₁** and **P₂**, in the context of general **ISAR** networks. We start with a very efficient algorithm for a restricted class of **ISAR** networks. We then give an easy algorithm for the general case whose complexity, though polynomial, is uncomfortably high. Finally, we give a low polynomial algorithm for the general case.

5.1 EMI-ISAR networks

The **DFS** algorithm for taxonomic hierarchies extends paths into the graph, backtracks chronologically when a path is blocked, and never traverses the same edge twice. In this section we extend the algorithm to **ISAR** networks, introducing two major modifications. First, paths are extended in a way that is more complicated than simply following **ISA** edges. Second, in order to guarantee that we do not lose completeness by not traversing edges more than once (which guarantees linearity) we will need to impose a strong restriction on the network. Given the space limitations on this paper, we will only illustrate the algorithm through an example. Consider the **simple** network in Figure 1a.



Z :integers, Z^+ :nonnegative Z ,
 Q :rationals, R :reals, R^+ :nonnegative R ,
 $|x|$:the absolute value function, x^2 :squaring function
 Figure 1

Now consider the query ' $\text{isa}(\{289\}, R^+)$ '. This query should succeed due to the path shown in Figure 1b, which consists of three **types** of edge traversal: going back on **ROLE** edges (e.g., Z^+ to Z), going up **ISA edges** (e.g., Z to Q), and going forward **on ROLE** edges (e.g., R to R^+). We will call these respectively left, up and right traversal. Left and up **traversals** have no preconditions. Right **traversal** has a precondition that it not immediately follow a left **traversal**, and that the last left traversal to precede it **was** along a **ROLE** with the same label. To implement this we maintain a stack as we develop a path: up traversal does not **affect** the stack, back traversal pushes the **ROLE label** onto the stack, right traversal pops the stack (and has the precondition mentioned above). Figures 1c-1j illustrate the stack at all the **vertices** along the path in Figure 1b.

Lemma 1: Let \mathbf{N} be an **ISAR** network. Then $\mathbf{N} \models \text{isa}(x, y)$ iff there is a path of the sort described above that starts at x with an empty stack and ends at y with an empty stack.

The only question that remains is how to determine efficiently whether such a path exists. Unfortunately, in **ISAR** networks with multiple inheritance we will in general need to traverse some edges many times. A simple example exists already in Figure 1a: if the first path developed is $\{289\}\{17\}Z^+QR$, then at that point backtracking must occur. If we are not allowed to traverse the edge **QR** twice, then we will not discover the path $\{289\}\{17\}Z^+ZQRR^+R^+$, and thus miss a solution. In special case, however, it is safe to not traverse an edge twice:

Definition 5: The **label** of a path is the sequence of **ROLE** labels appearing in it, ignoring all **ISA** edges.

Definition 6: An **ISAR** network is an **equi-multiple inheritance-ISAR** network (**EMI-ISAR network**) if for any two nodes x and y , all paths from x to y have the same **label**.

Theorem 4: In the **case** of **EMI-ISAR** networks there exists an $O(m)$ algorithm for P .

Proof. Develop paths of the sort described above in a depth-first fashion, backtracking chronologically, **never** traversing an edge twice.

In fact, just as in the simple taxonomic **case**, this **extended DFS** can be used to discover **all** nodes to which a path exists from a given node. We thus get the following:

Corollary 2: In the **case** of **EMI-ISAR** networks there exists an $O(nm)$ algorithm for P .

Note that our results hold also when the network contains cycles.

5.2 Reducing general **ISAR** networks to propositional Horn theory

We now start to look at the general **case** of **ISAR** networks. In this section we pursue an easy way out, namely to reduce the graph theoretic problem to the problem of deciding a query about a propositional Horn theory, which is known to be decidable in linear time (Dowling and Gallier, 1984). Unfortunately, the resulting **datalog** theory will not be linear in the size of the **ISAR** network.

Let $\mathbf{N} = \langle V, E, E_R \rangle$ be an **ISAR** network. We construct a Horn theory $\text{Th}(\mathbf{N})$ as follows. First, for each three vertices x, y, z in \mathbf{N} , we construct a clause

$$\text{isa}(x, y) \leftarrow \neg \text{isa}(x, z) \wedge \text{isa}(z, y)$$

Then, for each four vertices v, x, y, z in \mathbf{N} and each **ROLE** label l we construct a clause

$$\text{isa}(x, y) \leftarrow \neg \text{isa}(v, z) \wedge \text{role}(l, v, x) \wedge \text{role}(l, z, y)$$

Finally, for every pair (a, b) in E , we add a predicate $\text{isa}(a, b)$, and for every triple (a, b, p) in E_R we add a predicate $\text{role}(p, a, b)$.

Theorem 5: There exists an $O(rn^4)$ (and thus $O(mn^4)$) algorithm for P .

Proof. From Theorem 1 we have that $\mathbf{N} \models \text{isa}(x, y)$ iff $\text{Th}(\mathbf{N}) \models \text{isa}(x, y)$. The latter can be decided in time linear in $\text{Th}(\mathbf{N})$. The number of clauses in $\text{Th}(\mathbf{N})$ is $O(n^3 + rn^4) = O(rn^4)$.

Corollary 3: There exists an $O(rn^6)$ (and thus $O(mn^6)$) algorithm for P .

5.3 An efficient algorithm for general ISAR networks

The degree of the polynomial in the previous algorithm is a bit too high for comfort. We now offer a more direct algorithm whose complexity is much lower.

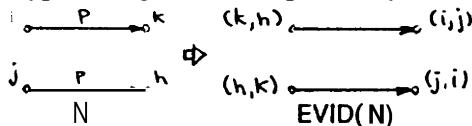
Definition 7: A **directed AND/OR graph** is one in which the set of edges emanating from each node is partitioned into sets, each set called an **AND-set** of that node (single edges are viewed as singleton sets). A *path* in such a graph is a rooted tree such that the set of edges in the tree emanating from each **vertex** forms an **AND-set** of that **vertex** in the **AND/OR** graph. Searching an **AND/OR** graph from a given vertex means starting with a path consisting of the node itself, and iteratively extending it.

Definition 8: Let $N = \langle V, E, E_R \rangle$ be an ISAR network. The *evidence graph* of N is the **AND/OR** directed graph $EVID(N) = \langle V^*, E' \rangle$ where

$$E' = \{((k, l), (i, j)) : \text{for some } p, (i, k, p) \text{ and } (j, l, p) \text{ are both in } E_R\}$$

$$\cup \{ \{((i, k), (i, j)), ((i, k), (j, k))\} : i, j, k \text{ in } V\}.$$

The first type of edge is shown pictorially below:



The intuition behind the construction is the following: an **AND-set** of a vertex (i, j) in the evidence graph is evidence that (i, j) is in the **isa** relation. More precisely, we have the following:

Definition 9: Let $N = \langle V, E, E_R \rangle$ be an ISAR network. A path rooted at (a, b) in $EVID(N)$ is said to be *grounded* if $a = b$ or for all terminal nodes (k, l) in that path it is the case that (k, l) is in E .

Lemma 2: Let $N = \langle V, E, E_R \rangle$ be an ISAR network and i, j in V . Then $N \models \text{isa}(i, j)$ iff there is a grounded path in $EVID(N)$ rooted at (i, j) .

Proof. (outline) By theorem 1, $N \models \text{isa}(i, j)$ if and only if $N \not\models \text{isa}(i, j)$. By induction on the number of applications of Rule 1 and Rule2 (Defmition 4) we have that if $N \not\models \text{isa}(i, j)$, then there is a grounded path rooted at (i, j) in $EVID(N)$. By induction on the the size of the path we may prove that if there is a grounded path rooted at (i, j) in $EVID(N)$ then $N \not\models \text{isa}(i, j)$.

Lemma 3: It can be determined in time $O(m')$ simultaneously for all vertices in $EVID(N)$ whether there is a grounded path rooted at them, where m' is the number of edges in $EVID(N)$.

Proof. (outline) Conduct a **breadth-first** search (**BFS**) starting from all nodes (i, j) such that (i, j) is in E , moving *backwards* on edges, and extend a path beyond a vertex only when at least one of its **AND-sets** has all its members originate in **previously-reached** nodes.

The last lemma points to the reason for constructing the evidence graph. We now note that m' is bounded by the complexity of generating $EVID(N)$. To complete the story, then, it remains to estimate this complexity. We **first** show an easy bound, and then look **more** closely at the algorithm to improve the complexity.

Theorem 6: There exists an $O(n^3 + m^2)$ algorithm for P_2 .

Proof. The construction of the edges in $EVID(N)$ that are due to the transitive closure is done in time $O(n^3)$. To construct the other edges, we look at all **pairs of ROLE edges** (i, j) and (k, l) , and, if their **ROLE** labels agree, add to $EVID(N)$ the edges $((i, k), (j, l))$ and $((j, l), (i, k))$. The total number of edge-pairs is $O(m^2)$. Thus the total complexity of the algorithm is $O(n^3 + m^2)$.

Recall that in ISAR networks there is no necessary relation between the number of vertices and the number of edges. However, if it happens that $m = O(n^2)$, we have that the algorithm is of complexity $O(n^4)$. We now improve on this by a more careful construction of the evidence graph.

Theorem 7: There exists an $O(nr(\log r) + n^2r + n^3)$ algorithm for P_2 , where r is the number of different **ROLE** labels.

Proof. We create the first n^3 edges as before. Then, rather than blindly compare all pairs of edges, we do the following.

- 1) Create a **list** for each vertex of **all** the **ROLE** edges emanating from it and their associated label. A typical list will have the form $i: (l_1, i_1), (l_2, i_2), \dots$ (where i, l, i_1, l_2 are vertices, and l, l_1, l_2 are **ROLE** labels);
- 2) Sort each of these lists by the label component;
- 3) For each pair of vertices i, j , scan their lists in parallel to see which role labels they share. If you encounter the pair (p, k) in i 's list and the pair (p, l) in j 's list, add the edges $((k, l), (i, j))$ and $((l, k), (j, i))$.

Complexity of the steps:

- 1) $O(m)$;
- 2) $O(nr(\log r))$ (note that each list is of length r at most);
- 3) $O(n^2r)$ (scanning the sorted lists is linear in their length, r , and there are n^2 pairs of vertices).

We also note that we have $m \leq n^2r$, and so the total complexity of creating the evidence graph is $O(nr(\log r) + n^2r + n^3)$.

Corollary 4: If the number of **ROLE** labels is bounded by a constant, there is an $O(n^3)$ algorithm for P_2 .

We note that as this is realistically the **lowest** complexity known for transitive closure, we should not hope to improve on this.

6. SUMMARY AND DISCUSSION

We have offered new results on the **complexity of** reasoning with inheritance hierarchies with **ROLES**, or **ISAR** networks. We defined two problems, P_1 (determining whether a **ISAR** network implies an **isa** relation on two nodes) and P_2 (finding the closure of the **isa** relation). Let n be the number of vertices of an **ISAR** network, m the number of edges, and r the number of distinct **ROLE** labels. To somewhat crudely summarize our results, we have the following.

	no ROLES	EMI- ISAR	Horn alg	direct alg	fixed labels
P_1	n	n	mn^4	$m^2 + n^3$	n^3
P_2	nm	nm	mn^6	$m^2 + n^3$	n^3

The only results bearing directly on **ISAR** networks with which we are familiar are due to **Borgida** (1989). His results include NP-Hardness for networks with cancellation, and polynomial results for two other problems. We do not yet understand well the relation between his results and ours. There appear to be few other complexity results. We are aware of Touretzky's (1986) polynomial algorithm for parallel networks with **RELATIONS**, but do not see an interaction with our work.

Our results leave open some interesting questions. Our general result for P_2 is somewhat worse than the $O(nm)$ of transitive closure; can it be improved? Another striking feature of our result is that in the general case we have identical results for P_1 and P_2 ,

although at first **glance** it seems that P_1 is much easier. Actually, our experience with the problem leads us to conjecture that P_1 is **not any** easier, but it would be nice to have a result on that. Then there is a question about other ways to salvage the **O(n), O(nm)** results from the simple taxonomic case: do there exist interesting classes of networks which permit that other than **EMI-ISAR** networks? Finally, what happens when we add other features to the network, such as **RELATIONS** or cancellation? We conjecture that at least in the latter case the problem in general becomes intractable, which seems to agree with Borgida's result mentioned above.

Acknowledgments. The authors are grateful to Richmond H. Thomason, who described the problem, and for helpful suggestions on a **first** version of this paper.

REFERENCES

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. eds. 1974. *The Design and Analysis of Computer Algorithms*, Addison Wesley.

Borgida, A. 1989. Type Systems for Querying Class Hierarchies with Non-Strict Inheritance. In Proceedings of PODS-89.

Dowling, W. and Gallier, J. 1984. Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae. *Journal of Logic Programming*, 1(3):267-284.

Etherington, D. W. 1987. More on Inheritance Hierarchies with Exceptions. In Proceedings of American Association for Artificial Intelligence, 352-357.

Thomason, R. H., Harty, J. F., and Touretzky, D. S. 1986. A Calculus for Inheritance in Monotonic Semantic Nets Relations and Identity., Technical Report CMU-CS-86-1.138, Computer Science Department, Carnegie-Mellon University.

Thomason, R. H. 1989. Completeness Proofs for Monotonic Nets with Relations and Identity. In Proceedings of the Fourth International Symposium on Methodologies for Intelligent Systems, 523-532.

Touretzky, D. S. 1986. *The Mathematics of Inheritance Systems*. Morgan Kaufmann.

Touretzky, D.S., Harty, J. F., and Thomason, R. H. 1987. A Clash of Intuitions: current state of nonmonotonic multiple inheritance. In Proceedings of the Tenth International Joint Conference on Artificial Intelligence, 476-482.