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Abstract

Many applicative programming languages are based on the call-by-value lambda
calculus. For these languages tools such as compilers, partial evaluators, and other
transformation systems often make use of rewriting systems that incorporate some
form of beta reduction. For purposes of automatic rewriting it is important to
develop extensions of beta-value reduction and to develop methods for guarantee-
ing termination. This paper describes an estension of beta-value reduction and
a method based on abstract interpretation for controlling rewriting to guarantee
termination. The main innovations are (1) the use of rearrangement rules in com-
bination with beta-value reduction to increase the power of the rewriting system
and (2) the definition of a non-standard interpretation of expressions, the generates
relation, as a. basis for designing terminating strategies for rewriting.

1. Introduction

The original motivation for this work came from a project to compile programs
by transformation to continuation-passing style [Steele 1976]. This program trans-
formation in its simplest form tends to introduce extraaeous lambda-applications.
Instead of complicating the transformation to avoid introducing these lambda-
applications it seemed preferable to use it in conjunction with a general purpose
simplifier. The idea being that such a simplifier could be shared by many automatic
program manipulation tools as well as being useful in interactive program manipu-
lation systems. For example, such a simplifier can be used for optimizing programs
built by combining many components, since inlining procedure calls (call unfold-
ing) and many peep-hole optimizations are instances of beta-reduction. It could
also serve as a tool for building semantics directed compilers and partial evaluators.

Our simplifier is composed of a reduction system and a method for limiting
application of reductions to insure termination. The basic reduction system can be
used in combination with other control strategies and the analysis underlying our
method for limiting reduction should work for variants of the reduction system.

The target language for our simplifier is that of the lambda calculus [Baren-
dregt 1981]. The reduction system consists of the beta--value (beta-v) reduction
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rule together with two rearrangement rules designed to create additional sites for
the beta rule. The beta-v rule is the restriction of the standard beta conversion
rule to applications in which the operand is a value expression, e.g. a variable, con-
stant, or lambda abstraction. Thus (Az.f z)z is a beta-v reduction site (reducing
to fz), while (Az.f z)(gz)is a beta reduction site but not a beta-v reduction site.
The beta-v rule corresponds to call-by-va.lue semantics for a programming language
and [Plotkin 1975] shows that this rule is adequate to evaluate closed expressions.
However there are many programs that are equivalent under a wide class of obser-
vations that cannot be proved equivalent in the lambda-v calculus. One example
is the evaluated position context theorem: C|[e] is equivalent to let{z := e}C|[z]
where C is any expression with a unique hole occurring in a position that will be
evaluated before any other serious computation takes place [Talcott 1989]. The
rearrangement rules of our reduction system are corollaries of this theorem express-
ing the fact that a let-binding (application of a lambda abstraction) occurring in
the function position of an application or in the argument position of a applica-
tion in which the function position contains a value can be moved outside of the
application. Thus (let{f := gz}Az.f x)y rearranges to let{f := gz}(Az.fz)y
and (Az.f z)let{g = h z}Ay.g y rearranges to let{g = h z}(Az.f z)(Ay.g y). Note
that in both cases the expression before rearrangement has no beta-v reduction site,
while the expression after rearrangement does have a beta-v reduction site. The
rearrangement rules have the effect of moving espressions that intervene between
a function and its argument to the outside. They define a canonical form in which
functions are more likely to appear directly applied to their arguments.

The rearrangement rules by themselves form a confluent, terminating system.
They are not derivable in the beta-v calculus and hence our reduction system is
more powerful than one based purely on beta-v reduction.

[Moggi 1989]introduces the notion of computational monad as a framework
for axiomatizing features of programming languages. Computational monads acco-
modate a wide variety of language features including assignment, exceptions, and
control abstractions. An extension of the lambda-v calculus called the lambda-c
calculus is presented and shown to be valid in all computational monads. Our re-
arrangement rules are derivable in the lambda-c calculus and thus are valid for any
language whose semantics can be modeled as a computational monad.

Writing a simplifier based on rules that include beta reduction is made difficult
by the fact that unrestricted application of these rules can lead to infinite reduction
sequences. Thus a strategy is needed for limiting beta reduction. One possible
strategy is to fix a maximum number of reduction steps and perform reductions
at random until this limit is reached. This strategy has the disadvantage that it
treats all reduction steps the same way, rather than favoring those which simplify
the expression over those which wander aimlessly. A second strategy is to beta
reduce a lambda-application (Az.e)v only if the bound variable T occurs free at
most once in the body e or if the operand v is atomic. Call this the reduces-size



strategy. It guarantees that each beta reduction step decreases the size of the overall
expression. This strategy can be overly conservative, since some expressions can be
simplified only by first performing steps which increase the size of the expression,
e.g. unfold and simplify. Note that neither of these strategies are confluent. This
is obvious in the case of limiting the number of steps. To see this for the reduces
size strategy we observe that for any lambda abstraction v (Az.Az.(Ay.y(y z))z)v
reduces to (Az.(A\y.y(y z))v)and to (Az.Az.2(x 2))v.

In this paper we describe a new strategy, statically limited rewriting, in which
we compute a subset B of lambda-nodes in the initial expression such that any
rewriting of that expression is guaranteed to terminate if beta reduction is restricted
to descendants of nodes in B. [The descendant relation is the natural relation
between nodes in an expression and nodes in the result of rewriting that expression.)

We use a form of abstract interpretation (cf. [Abramsky and Hankin 1987])
to compute a suitable set B. First we define a non-standard interpretation of
expressions, the generates relation xgen and the notion of a set of lambda nodes
being an xgen-cycle. We then show that limiting reduction to descendants of a
subset of lambda-nodes containing no xgen-cycle guarantees termination. Given an
initial expression einit, xgen is a relation on reduction paths and pairs of lambda-
nodes of ejnit defined as follows. Let a and b be lambda nodes in the initial
expression and let g be a reduction sequence beginning with ejnit. We say that a
generates b in the final step of ¢ (and write xgen(q, a, b)), if the final step of ¢ is a
beta-v reduction at a site whose operator is a descendant of a, and this reduction
step entails (in the case a # b) an increase in the number of descendants of b, or
(in the case a = b) no decrease. We say a generates b along p if xgen(q, a, b) for
some prefix g of p. A set of lambda nodes ag,.. ., @p in the initial expression is an
xgen-cycle if, roughly, there is a reduction sequence along which a; generates @;41
for 2 < n and a, generates Qo.

For example consider the expression
(\1. eV (\N2z.r 1
AMraz)(Ae.re)

where the superscripts are used to associate names with lambda-nodes. Here there
is a single reduction path along which 1 generates 2 and 2 generates 2. Limiting
beta-reduction to descendants of node 1 guarantees termination (after one step!).
As another example consider the expression

Mppp ) Ve Xy Mssay)

For this expression there are reduction paths along which 1 generates 2,3,4 and
there are no other generates instances. Since there are no cycles all reduction
sequences must terminate. Note that the reduces-size strategy mentioned earlier
does not, permit any reduction.



In general xgen can be an infinite relation. Thus we want to find a finite,
computable approximation that serves the same purpose. Using the methodology
of abstract interpretation we say that a relation together with a corresponding
notion of cycle is a safe approximation to xgen if it preserves the “no-cycles implies
termination” property. As a first step we define a binary relation gen on lambda
nodes that is a safe finite approximation of xgen using the usual notion of cycle
induced by a binary relation. gen is the set of pairs a, b such that for some reduction
sequence ¢ beginning with ejpjt, a generates b in the final step of g

We are still not done, as we have no general (uniformly terminating) algorithm
for computing gen. Instead we define a safe computable approximation gen’ of gen.
The computation of gen’ is based on computing upper bounds to the sets of nodes
in the initial expression whose descendants can occupy certain kinds of positions
(cf. control flow analysis [Shivers 1988] and closure analysis [Bondorf 1990]) and
on computing an upper bound to the set of lambda nodes in the initial expression
that are “doublers”, i.e. have a descendant with more than one free occurrence of
the bound variable in the body. Then gen’ is roughly the set of all pairs (a, b) of
lam nodes such that a is a doubler and there is some c such that a descendant of a
is applied to a descendant ¢, and a descendant of b can become a subexpression of
a descendant of c.

In addition to safety we need to show that the approximations we have defined
are non-trivial (note that the complete binary relation on lambda nodes is a safe
but useless approximation). In both of the examples above xgen, gen, and our
computable approximation gen’ give rise to the same classification of cycles, and in
particular gen and gen’ are non-trivial.

To summarize, given an expression to simplify, we proceed as follows: (i) com-
pute gen’: (ii) choose a set B with no gen’-cycles; (iii) perform B-limited reduction
until termination. Limited rewriting is in fact locally confluent. Thus we are free
to apply the rules in whatever order we like; the final outcome will be the same.

Although usually less conservative than the reduces-size strategy, the new strat-
egy is sometimes still overly conservative. A less conservative alternative strat-
egy, dynamically-limited rewriting, is the following. Instead of computing gen’, we
merely apply rules, accumulating a relation consisting of the pairs (a, b) such that a
has generated b in some step of the rewriting so far, and disallowing any step which
would cause this relation to contain a cycle. The alternative strategy guarantees
termination but fails to preserve the confluence property. Nevertheless it may be
the more appropriate strategy for a practical simplifier.

Our static and dynamic strategies have an analogue in two approaches to partial
evaluation. The static strategy corresponds to the use of binding time analyis and
other static analyses performed to determine which applications should be left to
run time and which are to be carried out at partial-evaluation time (cf. [Jones,
Sestoft, and Sgndergaard 1989], and [Bondorf 1990]). The dynamic strategy is



more in the spirit of [Weise and Ruf 1990] where a call stack is maintained during
partial evaluation and used for potential loop detection.

The rest of this paper is organized as follows. In Section 2 syntax and notation
are described. In Section 3 the rewrite system is presented. In Section 4 the relation
gen is introduced, two forms of limited rewriting are defined and shown to terminate,
and it is shown that one form of limited rewriting is confluent while the other is not.
In Section 5 we show that any superset of the relation gen is a safe approximation.
The approximation gen’ is defined and proved safe. In Section 6 we discuss possible
improvements and related work.

2. syntax

We use standard lambda calculus syntax [Barendregt 1981]. To define and
analyze reduction rules it is convenient to represent expressions as labeled trees
where each node of the tree corresponds to an occurrence of a subexpression. In
this section we define the set of expressions and their representation as labeled trees.

We assume given a countably infinite set Var of variables. Then the set Exp
of expressions is the least set containing the variables and closed under lambda
abstraction and application. That is, Exp is the least set satisfying the following
equation.

Exp = Var uAVar.Exp UExp Exp

We let x,zp,... range over Var and e, €0, . .. range over Exp. Expressions of the
form x, Xx. e, and e; ey are called atomic expressions, abstractions, and applications,
respectively. In an abstraction A\x. e, we call = the bound variable and e the body.
In an application e; ez, we call e; the operator and e; the operand. We let Vxp
be the set Var U AVar. Exp of atomic expressions and abstractions; expressions in
Vxp are called value expressions. We let v, vg, . . . range over VXP.

Free and bound variables are defined as usual and expressions identical up to
alpha conversion we regard as inclistinguishable. We write €1 {x := ea} for the
result of substituting ey for all free occurrences of x in e;. Here we assume that
alpha variants are chosen “hygienically* so that no trapping of free variables occurs.
let { T o= 60}61 abbreviates (/\w.el Jeg. We aclop t the usual conventions for disam-
biguating written expressions, namely that (1) application associates left, so that
€1 €3 €3 1S (el e2) ez, and (2) the body of an abstraction or let extends as far right
as possible, so that Xx. e} €3 is Az. (€1 €2). Parentheses may be used to override the
default grouping as in eg(eq €2) or (Az.€g) €1.

The tree structure of an expression is the abstract, syntax tree modified to re-
place each bound variables by a pointer to the node in the tree corresponding to
its binding lambda (cf. [deBruijn 1972]). Each node in the tree structure of an ex-
pression corresponds to a (unique) subespression occurrence. Nodes are labeled by



the constructor of the corresponding subexpression and edges are labeled by com-
ponent selectors. A pointer is represented by a path (sequence of edges) relative to
a top-level expression. To make this precise we define selectors, locations, and tags
as follows. A selector is an element of the set {L,, R, B} . Selectors name immediate
subexpressions of an expression and label the edges of a tree. B names the body of
an abstraction and 1 and R name the operator (left) and operand (right) compo-
nents of an application. The set Loc of locations is the set of finite sequences with
elements taken from the set of selectors.

Loc = [L, R, B}"

Locations represent paths or nodes of a tree and are used to name occurrences of
subexpressions. The set Tag of tags is defined by

Tag = {app, lam} U atx(Loc)

Tags label nodes of a tree. A nodes tag identifies the constructor of the correspond-

ing subexpression and in the case of a bound variable the location of its binding
abstraction.

We let ¢, ¢, ... rangeover {L, R, B}, I,lo,.. . range over Loc,and ¢, to,. .. range
over Tag. o is the empty sequence and selectors are considered to be singleton
sequences. We write 1.1’ for the concatenation of the sequences / and I’ and [.c for
the extension of 7 by c. If 1 = ly.l; then [y is called a prefix of I.

For simplicity we will assume outermost expressions are closed (by adding lamb-
das if necessary). This is not a serious restriction, it just eliminates the need for a
special case for free variables. For an outermost expression e, the locations, locs(e),
the subexpression (6)1 at location / and its tag tag(e, [) are defined by induction on
the construction of e as follows.

(top) o € locs(e) and (e)s = e. -

(app) If | € locs(e) and (e); = eg e; then tag(e,!) = app, l.L,.LR € locs(e),
(e)iL = eo, and (e);r = €.

(lam) If | € locs(e) and (€); = Ax.€eg then tag(e,l) = lam, [.B € locs(e), and
(e)iB = €o.

(atx) If I € locs(e), (6)1 =, I’ is a prefix of I, (e)p = Az.e/, and !’ is the longest
such prefix of [ then tag( e, 1) = atx(l')

Let / be a location in e. If [ has tag lam (i.e. tag(e,!) = lam), we say / is a lam-node

of e. If 1 has tag app we say / is a app-node of e. If / has tag atx(l') we say that!
is an atx-node bound at /' in e.

As an example let e = Af.Az.f x. The tree written as a term would be

lam(B : lam(B : app(L : atx(o),R: atx(B))))
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where component selectors are made explicit using key-word argument syntax. Fur-
ther we have

locs(e) = {o,B,B.B,B.B.L, B.B.R}
tag(e,n) = lam tag(e, B) = lam tag(e, B.B) = app
tag(e, BB.L) = atx(o) tag(e, BBR) = atx(B)

The following basic facts about the tree structure of an expression are simple con-
sequences of the definitions and will be used implicitly.

Lemma (tree.struc):

(app) If L.L € locs(e) or l.R € locs(e), then [.L € locs(e) and [.R € locs(e) and
tag(e,l) = app.
(lam) If [.B € locs(e), then tag(e,) = lam.

(atx) If I € 1ocs(e) and tag(e,l) = atx(!'), then tag(e,!') = lam and | = I'.[; for
some lp.

3. Reduction

An espression is simplified stepwise by applying one of three reduction rules.
(1) (X.1:. eg)eq €2 —1 (XX € €2) €1 provided T is not free in es.
(2) v((Az.eg)er) 2 (XX v €g) ey provided z is not free in v.
3), (Az.eg)v 3 e0{z := v}
LA e0) v g o

?I‘he stepwise reduction relation e — ¢’ is the congruence closure of the union
of the three reduction rules viewed as binary relations. That is, e — ¢’ just if for
some (r, 1) € {1,2,3} x Loc, and some €p. e we have that (e); = eg, eg — €y,
and e’ is obtained from e by replacing the occurrence of eg at | by e;. (Note that
this is replacement, not substitution, and free variables of e; may be trapped by
abstractions above 1.) Pairs (r, [) for » € { 1,2,3} and [ € Loc are called rule

applications. We write e (,,I! e to make the rule application explicit and we call {
a site (in e) for application of rule r.

A reduction sequence is a sequence of stepwise reductions. We let p, po, . .

q, Qo, . ..range over sequences of rule applications (r, [) and write e L e if p=
, (rili) .
(r1,01)y - o .y (rny ln) e = €p, € =€y, and €, A e; for 1 <1< n.

Rule 3 is the beta-v reduction rule [Plotkin 1975]. Rules 1 and 2, called left-
rearrangement and right-rearrangement respectively, would be superfluous in a sys-
tem with unlimited beta,-reduction and beta.-expansion. However with only call-
by-value beta-reduction, these rules can create sites for application of rule 3 which



would not otherwise be created. Rearrangement merely rearranges the nodes in a
tree, while beta-reduction may duplicate some subtrees and destroy others. The
reduction rules preserve operational equivalence (cf. [Plotkin 75]). with respect to
a call-by-value evaluator They are also valid in a wide range of extensions of the
basic language including control abstractions [Ta.lcott 1989] and memory operations
[Mason and Talcott 1989a,b] and are valid for the A, theory of [Moggi 1989].

Theorem (Rearrangement is canonical): The reduction system generated
by the rearrangement rules (the reflexive transitive congruence closure of —; U —3)

is terminating and confluent. Thus every expression has a unique normal form with
respect to rearrangement.

Proof: What we must show is
(termination) Every sequence of rearrangements terminates.

(confluence) If eg, e are two dis tinct expressions that can be reached from an
expression e by sequences of rearrangements then there is an expression e that
can be reached from both ey and e; by further sequences of rearrangements.

To prove termination, define the depth of a node as the number of lam’s it is
below. In each rearrangement ¢ — ¢’, the depth of the app node at the rearrange-
ment site in e, and the depths of each node in one of its subtrees, increases by 1,
while the depths of all other nodes remain constant. So the sum of the depths of
all nodes increases in each step. But this sum is bounded by n x m, where 12 is
the number of nodes, and m the number of lam nodes, in e;. So the sequence of
rearrangements must be finite.

Since we have termination, to prove confluence it suffices to prove local conflu-
ence [Huet 1977]:

(loca.l confluence) If eg, €1 are two distinct expressions that can be reached from an
espression e by a one-step rearrangement then there is an expression eg that
can be reached from both ey and e; by further sequences of rearrangements.

Instead of proving local confluence at this point we merely note that local
confluence for rearrangement is a special case of local confluence of limited rewriting
proved in the next section. U

In order to analyze properties of reduction sequences, we need to be able to
trace the ancestry of nodes in an expression resulting from applying a sequence of
reductions. For the direct application of a reduction rule e —, e’ there is a natural
predecessor in e of each node in e’. Consider an application of rule 1. Making the
relevanttreestruct ure esplici t we have

e = appl(appz(lamg(m,eo),el),eg) — appz(lam:'}(:l*, appl(eo,eg),el) =e.

The predecessor of a node in the subexpression €y, €1, or €2 of e’ is the corresponding
node the subexpression €y, €1, or €2 of e. The predecessors of the remaining nodes



of e’ are given by the superscripts. The predecessor function for applications of rule
2 or rule 3 is analogous. The precise definition is given below. For beta reduction
this definition coincides with that of [Wadsworth 1978].

’l .
Definition (predecessor): For e il e’ and I' € locs(e') we define pred(e, (r, 1), "),
the (r, I)-predecessor of 1’ in e, as follows. If [ is not a prefix of !’ then pred(e, (7, 1), 1’) =
I'. Otherwise pred is given by the following tables.

(1) If » =1 and (e); = (Az.eg)e1 ez then pred(e,(1,1),l') = [ is given by

I’ i conditions

I l.L

[.L l.L.L

[.L.B ]

I.R., [.L.R.l l1 € locs(er)
[.L.B.L.Iy [.L.L.B.ly lo € Llocs(ep)
[.L.B.R.I; [R.ly ly € locs(eg)

) if r=2,(e) =v ((A\r.eq)er) then pred(e, (2,1), I’) =1 is given by

! i conditions

] [.R

[.L [.R.L

[.L.B [

l.L.B.L.l, LL.l, l, € locs(v)
[.L.B.R.ly [R.L.B.lg lo € Locs(eg)
I.R.L [.R.R., I, € locs(ey)

(3) ifr=3,(e)i = (Ar.ep) v then pred( e, 3,1),!') = [ is given by

conditions

-~

])

110 l.L.B.lp lo € Locs(eo): tag(e,l.L.B.ly) # atx(l.L)
1.Ig.l, LRr.l, I, € locs(v); tag(e, [.L.B.ly) = atx(l.L)

The following lemma is a. direct consequence of the definitions. It expresses the key
structural properties of reductions and points out the crucial distinction between
rearrangements and beta reduction.

Lemma (pred): The predecessor function is I-1 and onto except in the case of
a rule 3 reduction where the application and abstraction nodes of the reduction site
have no successors and nodes of the value may have zero or more successors.
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The ancestor function anc generalizes the predecessor function to sequences of
reduction steps mapping locations in the final expression of a reduction sequence to
locations in the initial expression from which they derive.

Definition (ancestor): If e == ¢, and | € locs(e,) then anc.(p,!), the p-
ancestor in e of /, is defined by induction on the length of p as follows.

(mtj ance(g, 1) =1

(nmt) Ifp=p’,(r,1’) and e -2, ¢ then ance(p, 1) = ance(p',pred(e', (r, I’)).
If ance(p, ) = a then we say that [ is a p-descendant of a.

The following lemma shows that, via the ancestor relation, tag types and bind-
ing relations are preserved by reduction.

Lemma (tag preservation): Let e == ¢, I’ € locs(e'), and anc.(p, 1’) = 1.
If tag(e,!) € {app,lam} then tag,(p, 1’) = tag(e,l). If tag(e, 1) = atx(lp) then
tag,(p,!') = atx(lyWwhere [y is the (unique) location in ¢’ such that [y is a prefix
of 1’ and anc.(p, ) = lo.

Proof : An easy induction on the length of the reduction sequence. The prefix
requirement in the case of bound-variable tags distinguishes between copies of the
value substituted into the body of a lambda expression in rule 3. 4

4. Limited rewriting

In this section the relation gen is introduced, two forms of limited rewriting are
defined and shown to terminate, and it is shown that one form of limited rewriting
is confluent while the other is not. Finally we discuss limited rewriting as a basis
for a practical rewrite-control strategy.

To simplify the definitions, for the remainder of the paper we fix an initial
expression €init- A will denote the set of locations in ejnit (A = locs(ejnit))
and a, b, ag,... will range over A. Ajam will denote the set of lam locations in
€init (A1am = {{ € A l tag(einit) = lam}). Having fixed ejnit we specialize the
ancestor functions to ejpit and omit the subscript. We let Rseq be the set of rule
application sequences starting from ejnit, that is, sequences p such that einit £, e
for some e. For brevity, in situations where an. expression is required a sequence p
in Rseq may be used to denote the (unique) e such that ejniz —— e. In particular
we will write tag(p, 1) for tag(e, I).

4.1. The genrelation and limited rewriting

We begin by defining the generates relations xgen on Rseq x Ajam x Alam and
gen on Ailam X Ajan.
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Let a and b be lam nodes in Ajay and let ¢ be a rule-application sequence in
Rseq. We say that a generates b in the final step of ¢ (and write xgen(q,a,b)),
if the final step of ¢ is a rule-3 reduction at a site whose operator is a descendant
of g, and this final step entails (in the case a # b) an increase in the number of
descendants of b, or (in the case a = b) no decrease.

Definition (xgen):  xgen(q,a, b) just if a, b € Alam, ¢ € Rseq, and there are
p, e, €, [ such that ¢ = p.(3,1) and (i-iii) hold.

(i) einit 2o e S e
(i) anc(p,l.L)=a

(iii) np < nyif a# b and np < ny if a = b; where np is the number of locations [’
in e such that anc(p, I') = b and nj} is the number of locations I’ in e’ such that
anc(p.(3,1),1’) = b.

We say that a generates b (and write gen(a, b)) if a generates b in some step of
some reduction sequence beginning with €init.

Definition (gen):  gen(a, bj just if there is some g € Rseq for which xgen(q, a, b).
We now define two forms of limited rewriting.

Definition (R-limited rewriting): Given a relation R on Aiam x Aiam, We
define an R-limited rewriting to be any reduction sequence €init — €] — . . .

starting with €init, and satisfying the restriction that a step in which some node a

3,0
generates some node b is allowed only if (@ b) € R. That is, if ejnit L,e (—>) e’ is

an initial segment of such a sequence and xgen(p.(3, ), a, b), then (4 b) € R.

Definition (B-limited rewriting): Given a subset B of Ajam we define a B-
limited rewriting to be any reduction sequence ejnit —* €3 — . . . starting with

einit, and satisfying the restriction that a beta reduction step is allowed only if the
. . . . 3,0 . o
operator is a descendant of a location in B. Thus if €init £, e 0 ¢ is an initial

segment of such a sequence then anc(p, [.L) € B.

4.2. Termination of limited rewriting

In this subsection we show that under suitable conditions each of the two forms
of limited rewriting is guaranteed to terminate. We say that a binary relation R on
a set X has no cycles if there is no sequence g, . .., T, of elements of X such that
o =, and R(xi, @j41) for 0 <7 < n.

Theorem (R-limited rewriting terminates): Let R be a relation on Ajam x
Ajam With no cycles. Then any R-limited rewriting must be finite.
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Proof : Let ejnit — €1 — . . . be an R-limited rewriting, and let p be the
corresponding (possibly infinite) sequence of (r,l) pairs. Let R, be the set of (q b)
pairs such that a generates b in some step of this rewriting, that is,

R, = {(a, b) € Aran X A1an | (3¢, &1 € Rseq)(p = ¢.q1 A xgen(q, a, b))}.

Since R has no cycles, neither does R,, and we can linearly order the elements of
Aianm as a row ap,...,ap such that during this rewriting each element of the row
generates only elements to the right of that element. That is, for aj, ax € Aiam and
g a finite prefix of p, if xgen(q, a;, ax) then j < k.

Define the reasrangement potential for an expression e to be the number of steps
in the longest sequence of rearrangements beginning with e. Since rearrangement is
terminating the rearrangement potential is always a natural number, and decreases
with any rearrangement step.

For each expression e; in e€jpjit — €1 — . . ., let 7; be the (n + D)-tuple of
natural numbers whose first n components are the numbers of descendants in e; of
ai,...,an, respectively, and whose last component is the rearrangement potential
of e;. We show that the sequence of tuples Tinit, T1, . . . is in lexicographically
decreasing order. Hence both the sequence Tinit, T1,. . . and the sequence €injit —
ey — ... must be finite.

Suppose e; — €,4+1 is a rearrangement step. Since for rearrangements the
predecessor function is one-to-one and onto, 7; and T7;41 are equal in their first n
components. Since the rearrangement potential decreases in a rearrangement step,
the last component of T;47 is less than that of 7;. Suppose ¢; — €;41 is a beta-value
reduction step. Then the operator at the reduction site must be a descendant of a
node aj in Ajam. The jth component of T;4+1 must be less than that of 7;, and no
preceding component of 7,4 can be greater than the corresponding component of

7;. Otherwise, for ¢ the prefix of p corresponding to €ipit — . . . — €;41 and k the
offending position at or before position j, we would have xgen(q, a;, ax),.violating
the condition by which the elements al,. . . , ¢, were ordered. ¢ |

BeginNote

From the proof we see that (R-limited rewriting terminates) holds for any
extension of the beta-v rule by the addition of a terminating collection of rules with
the property that application of one of these rules never increases the number of
descendants of a node.

EndNote

Corollary (B-limited rewriting terminates): Let B be a subset of Ajanp such
that the restriction geng of gen to B has no cycles. Then any B-limited rewriting
must be finite.

Proof: Any B-limited rewriting is geng-limited (since if there is a step which
makes a rewriting not geng-limited, then the step must be a beta reduction step
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and the operator at the reduction site must be a descendant of an element of B, so
the rewriting is not B-limited.) Since geng has no cycles, any B-limited rewriting
must be finite by the preceding theorem. ¢ 1

4.3. Confluence of limited rewriting

In the previous section we showed that for certain subsets B of Ajam, B-limited
rewriting terminates. In this section we show that for any subset B of Ajam, B-
limited rewriting is locally confluent. R-limitecl rewriting, however, is not confluent.

Theorem (B-limited rewriting is locally confluent): If B is any subset of

A
A1an then B-limited rewriting is locally confluent. That is, if ejinit 2, e(rk—f)

er is a B-limited rewriting for k € {a, 3} then we can find px and e such that

(re k)
—) e

€init £, e k Pk, ¢ is a B-limited rewriting for k € {a, (}.

,1 . . . . .
Proof: Assume €jnit L2, e (r—k—‘f) ek is a B-limited rewriting for k € {a, 8}. We

want to find pr and e’ such that €init Lo Y €L P4, ¢ is a B-limited rewriting

for k € { a, B}. Note that if [ € locs( e) is a site for B application of rule 3 and ! is
a descendant of [ in e then [' is a site for B application of rule 3 in eg. If {4 is not
a prefix of {g and [ is not a prefix of Iy then [, is a site for rule ro in ep, lg is a site
for rule rg in eq, and applying the rules in either order gives the same result (call

y[ _71_ . . . ‘.
it e’). Thus einit —p>(g° i» ek(ru») e’ is a. B-limited rewriting for k € {a, ﬂ}

and k the opposite of k. Thus without loss of generality we may assume that [, is
a prefix of g and consider three cases according to whether 7o is 1, 2, or 3.

Case 1:  Let (e), = (A\v.eg) €1 e2. If lgis a location in eg, €1, or €2 then
application of the two rules commutes.

(rada)  (ralg) | (roulg)  (raila)
e — @ — ¢ and e — eg — ¢

where pred(eq, l;;) = lz and we are done. Otherwise (by the form of the rules) we
have lg = l4.L and rg =2 or rg = 3.

Case 1.2: e; = (Ay.e3) ey
(/\;L‘.Co) €1 €2 M1 (/\z.eg 62) €1
= (Az.egeg) (( Ay.e3) es) —2(Ay.(Az.eger)es)ey
(/\.L'.eo) «( )\y.63)64) €2 (2'—1—‘)) (/\y.(/\;l'.eo) 63) €4 €2

—1 (Ay.(Az.eg) e3 e2) 4 (li}}) (Ay.(Az.eger)es)ey
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Case 1.3: e; = v € Vxp

(Az.€0)v1 ez =1 (Az.eg €2) V1 3 eo{T = v1} €2
3,L
()\:z:.eo)vl €9 (—->) eo{.'L‘ = vl} €9

Case 2: Let (e);, = v ((Az.eo) e1). Again if lg is a location in v, eg, or ey
then application of the two rules commutes (modulo relocation) and we are done.
Otherwise (by the form of the rules) we have lg = [4.R and rg=2orrg =23

Case 22: e1 = (M\y.e2)es

v((Az.eg)er) —2 (Az.veg) e

= (Az.v eg) ((Ay.e2) e3) —2 (Ay.(Az.veq) e2) €3

v((Az.€0)((Ay.e2)e3)) @, ((Ay.(Az.e) e2)e3)

,L.B
o (Ay.v ((Az.€0) €2)) €3 (@) (Ay.(Az.v eg) €2) €3

Case 23: €3 = v € Vxp

v((Az.eg)v1) —2 (Az.v eg)vr =3 v eo{z = v1} % since * € FV(v)

\Y (()\’Eeo) 1)1) =3V (eo{:c = U]})

Case 3: We use the following standard lemmas.

N N
i) e (n), e’ = efx = v {rh e'{z := v}

l A4, (i, . .
(ii) v (r—z v = e{x = v}(r l)—r(r ) e{x = v’} where l1,...,l,is a list of the

locations of free occurrences of X in e.

Let (e);, = Az.eg v. Then Ig must be a location in €y or v and the result follows
from the lemmas (i) and (ii) respectively. I

Corollary (B-limited rewriting is canonical): Each expression €ipit has a
unique simplified form with respect to B-limited rewriting for any B C Ajam such
that geng contains no cycles.

BeginNote

One might suppose that R-limited rewriting is canonical for any R C Ajam X
Ajam with no cycles. This conjecture is false. For example, take

einit = (M z.(A2z.22) (AVp.2)) (M)

and R = {(2,3)}. There are two choices for the first step of R-limited recluction,
and the resulting expressions have no common reachable expression.
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EndNote

4.4. Strategies for controlling rewriting

The results of this section suggest the following strategies for controlling rewrit-
ing.

(1: Statically-limited) Compute gen, choose a maximal subset B of Ajam with no
gen-cycles, and perform B-limited rewriting until termination.

2: Dynamically-limited) Instead of computing gen, merely apply rules, accumulating
information about the xgen relation as the set of pairs (a, b) such that a has
generated b in some step of the rewriting so far, and disallowing any step which
would cause this relation to contain a cycle. Since any reduction sequence gen-
erated by this method is R-limited for some R with no cycles, no infinite
reduction sequence can be generated.

The first strategy has some obvious advantages. First, it is fully specified in the
sense that it terminates with the same final result regardless of the order in which
rules are applied. This means that it is simpler to analyze. Another advantage of
strategy (1) is that it does not require computing generation pairs (a b) at each
beta reduction step. In practice, since we have no algorithm for computing gen,
strategy (1) will be implemented using some safe approximation gen’ of gen. One
such approximation is described in the next section.

Let us say that one rewrite-control strategy is always as powerful as another if
every reduction sequence allowed by the first is allowed by the second. Otherwise
we say that the first is sometimes less powerful than the second (and the second
sometimes more powerful than the first). It is interesting to compare the power
of strategies (1) and (2) with that of the reduces-size strategy mentioned in the
introduction.

Both of the strategies (1) and (2) are sometimes more powerful than the
reduces-size strategy (for example consider the second example given in the intro-
duction). Reduces-size rewriting is identical with R-limited rewriting with R the
empty relation. So strategy (2) is always as powerful as the reduces-size strategy.

Strategy (1) is sometimes less powerful than the reduces-size strategy. Fox
example if the initial expression is

let!{f := My.let? {z = y}let® {w = 2} ww} fA2z.f

then gen includes the cycle 4 — 4. (To see this, reduce the application of 1; then
reduce leftmost applications of 3, 5, and 4. Node 4 generates itself in the last step.)
This means that our choice of B for statically-limited rewriting cannot include
node 4. Thus, statically-limited rewriting will not allow reduction of 4-applications.
However the reduces-size strategy allows reduction of a- 4-application as the first
step.
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5. Estimating the genrelation

We defined a relation gen on Al, the set of lambda nodes of a given initial
expression einit and showed that if a subset B of Ajay contains no gen-cycles
then B-limited rewriting from e€init terminates. As it stands, this result is of
little use, since we have no algorithm to compute the relation gen for an arbitrary
expression €injt. Instead we will define a computable relation gen’ which is a safe
approximation to gen. We say that gen’ is a safe approximation to gen if whenever
a subset B of A1ay has no gen’ cycles then it has no gen cycles. Thus we can safely
use gen’ to choose the subset B for limited rewriting.

Lemma (gen.safe): If gen’ is a relation on Ajam X Ajam that is a superset of
gen (gen(a, b) = gen'(a, b)) then gen’ is a safe approximation of gen.

In this section we define a computable relation gen’ that is a superset of gen

for any given €init. The development for our algorithm for calculating gen’ was
based on the following intuitions.

(1) Nodes (atomic expression nodes, application nodes, and lambda nodes) are
considered to maintain their identity as reduction proceeds.

(2) Each application node has two hooks, and each lambda node one hook, to
which the root nodes of subexpressions are attached. During reduction the
node attached to a given hook may be removed and a new node attached.

(3) One can simultaneously determine for every hook an upper bound on the set
of lam or atx nodes which can ever become attached to that hook, in the
following way. We know the node initially attached to each hook. There are
only two ways a given hook can get a new node: (a) when a lambda-application
app!(lam?(el),e2) is reduced, each hook within lam?(el) to which a variable-
node bound by lam? is attached gets (a copy of) the node currently attached to
the right-hand hook of app,. (b) when the above-mentioned reduction occurs,
the hook to which the node app! is attached, gets the node attached to the
hook of lam®. To simultaneously build the upper-bound set of nodes for every
hook, we proceed as follows. Each node-set initially contains zero or one node.
If there is an app node whose left hook node-set contains lam* and whose right
hook node-set contains node n then add n to the node-set of each hook whose
node-set contains an atx node bound by lam', and to the node-set of the hook
to which this app is originally attached, add all elements in the node-set of the
hook of lam’.

(4) By analogous methods we can determine upper bounds for the set of lam nodes
which are “doublers” (a lam node with some descendent that contains more
than one occurrence of the bound variable in the body) and for the set of pairs
( n1, na) of at x or lam nodes such that node ny can occupy a position at or
below nj (so that attaching n; to a given hook “can bring” node no along with
it). Finally we compute gen’ as the set of all pairs (ny, n2) of lam nodes such
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that ny is a doubler and n; is in the node-set of the left hook of an app node
whose right hook node set includes a node which can bring ns.

To compute gen’ we first define auxiliary relations get, doubler, and canbring
expressing the key features in the clauses of the definition of gen and show that
gen is approximated by a simple combination of these relations. We then define
computable relations get’, doubler’, and canbring’ that are safe approximations
(supersets) of get, doubler, and canbring respectively. gen’ is then defined to be
the corresponding combination of the approximations to the auxiliary relations.

As motivation we begin with a lemma (gen.char) characterizing gen. This
lemma states that gen(a, b) holds just if there is some rewriting e of ejnit with
a site for application of the beta-v rule such that the ancestor of the abstraction
component is a the bound variable of that abstraction occurs at least twice in the
body, and there is a location within the value component with ancestor b.

Lemma (gen.char): gen(a, d) just if a, b € Al, and there are p, 1, ¢ ¢’ lo, 11, 2
such that

. p 3,0
o €init *e —r ¢,

(i) anc(p, l.L) = a and E;.nc(p, l.R.lo) = b,
(iii) {1 # Iz and tag(p, l.L.l1) = tag(p, [.L.l1) = atx(l.L).

Proof: The if direction is trivial. For the onlyif direction, assume gen(a, b) and

3,1 .
let p,l, e, e’ be such that €init 2, e (—)) e’, anc(p,l.L) = a, and (in the case a = b)

ny < ny or (in the case a # b) ny < n;,; where nyp is the number of locations I’
in e such that anc(p, I’) = b and n;, is the number of locations {' in e’ such that
anc(p,l') = b. If there is no lp such that anc(p, l.R.ly) = b or if tag(p,l.L.ly) =
tag(p, [.L.l2) = atx(l.L) implies {; = Iy then (since the subexpression at b is not a
variable) b # a implies ny = nj and b = a implies np > ng. Thus we can find lo, l1,12
such that anc(p, [.R.lp) = b, l; # l2, and tag(p, l.L.l}) = tag(p, [.L.l3) = atx(l.L). « I

get is a relation on A x {L, R, B) x A such that for locations @, b in the initial
expression, get(a, ¢, b) means that there is a rewriting p of ejnit such that there is
a p-descendant of a with a p-descendant of b immediately below it along a ¢ edge.

Definition (get): get(a, ¢, b) just if a, b € A, ¢ € {L, R,B}, and there is some
p, I, e such that €jnit £, e, anc(p, 1) = a, and anc(p, l.c) = b

canbring is a relation on A x A such that if canbring(a;, ay) then a; and a9
are lam-nodes and there is a rewriting p of einit such that there is a p-descendant
of a; which is in a “potential operand” location (a location ending with R or B),
and which has p-descendant of a; below it.

Definition (canbring): For aj, as € A canbring(ay, as) just if tag(einit, ay) =
tag(einit,a2) = lam and there are p, I, ¢, ly, l; such that ¢ € {R, B} such that
anc(p, l.c) = ay and anc(p, l.c.ly) = as.
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For a node a in the initial expression, doubler(a) means that a is a lam-node
and that there is a rewriting p from einit such that a p-descendant of a has more
than one occurrence of its bound variable in its body.

Definition (doubler): For a € A, doubler(a) just if there are p, 1, ly, I such

that {y # Iy, anc(p, 1) = a tag(p, 1) = lam, tag(p, 1.11) = tag(p, l.Iz) = atx(l).
Approximations to gen can be factored into approximations of get, canbring,

and doubler using the following theorem.

Theorem (gen.approx): If gen(a, b) then doubler(a) and there are ag, a; € A

such that get(ao, L, a), get(ao, R, al), and canbring(ay, b).

Proof : A direct consequence of (gen.char). oI

5.1. Approximating the factors of gen

The approximations get’, canbring’, and doubler’ are defined inductively as
the least relations satisfying certain conditions (sets of clauses). The clauses were
determined systematically by seeing what was needed to carry through a proof
of safeness by induction on the rewriting p that occurs in the definitions of the
corresponding exact relations. The base case is p = o and the corresponding clause
was obtained by instantiating the formula defining the exact relation with p = o . For
p non-empty we consider the last rule applied, assurne safeness for shorter rewritings,
and analyze the possible relations between the location of the rule application and
the locations mentioned in the definition of the exact relation. The labels of the
clauses in the definitions of get’, canbring’, and doubler’ below reflect this case
analysis which is given in more detail in the proofs of safeness. For the definitions we
need one additional auxiliary relation isval on A which is true for value locations
in the initial expression.

Definition (isval): isval(a) & (einit)s € VXp

Lemma (isval): isval(a) just if tag(€init , ) = lam or tag(einit, @) = atx(b)
for some b in Al,.

5.1.1. Approximating get

Definition (getp): get’ is the least relation on A x {L, R, B} x A such that

(mit)  get'(a, ¢, ac)

(1.1) get'(a,c,a0) A get'(ao, L, b) A get'(h, L, ay) A tag(o,a;) = lam
= get'(a, ¢, b)

(12)  get'(h, L,ag) A get'(ap,L,a) A tag(o,a) = lam = get'(a,B,d)

(1.3)  get'(a,L,ag) A get'(ap,L,a1) A get'(a;,B,0) = get'(a,L,b)

(2.1)  get'(a,c, no) A get'(ao, R, b) A get'(aop, Lya)) A isval(ap)
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A get'(b, L,az) A tag(o,a2) = lam = get'(a, ¢, b)

(2.2) get'(b,L,ap) A isval(ap) A get'(b,R,a1) A get'(a1,L,a) A tag(o,a) = lam
= get'(a, B, b)

(2.3) get'(a,R,a0) A get'(ap, L,a1) A get'(ay, B, b) A get'(a, L,az) A isval(az)
= get'(a, R, b)

(3.1) get'(a,c,ap) A get'(ao, L,a;) A get'(a1, B, b) A get'(ao, R,az) A isval(az)
= get'(a, ¢, b)

(3.2) get'(a,c,a0) A get'(ao,R,b) A isval(b) A get'(ao,L,a1) A get'(ay,B,az)
A tag(o, az) = atx(a; ) = get'(a, ¢, b)

(3.3) get'(ag,R, b) A isval(d) A get'(ao, L,a1) A get'(a,c,az)

A tag(o, az) = atx(a;) = get'(q, ¢, b)

Theorem (getp): get (a, c, b) = get'(a ¢ b)

Proof:  We show by induction on p that anc(p, /) = a and anc(p, l.c) = b implies

get'(a, ¢, b). If p is empty the result follows from clause (mt) of the definition of

(r,lo)
get’. Assume p = po, ('r', lo) and ejinit o, e - e’. If r = 1 there are three cases

of interest: (1.1) l.e = lp; (1.2) I = lp.L A c = B; and (1.3) | = [(.L.LBA ¢ = L.

If » = 2 there are three cases of interest: (2.1) l.c = lp; (2.2) | = lyp.L A ¢ = B;

and 23) [ = [(.L.B A ¢ = R. If r = 3 there are three cases of interest: (3.1)

l.e = lp A tag(po,lo.L.B) # atx(lo.L); (3.2) l.c = lp A tag(po,lo.L.B) = atx(lp.L);
and (3.3) | = lo.l; A tag(po, lp.L.B.ly.¢) = atx(lp.L) A tag(po, lo.L.B) # atx(lp.L). In

each of these cases we use the corresponding clause in the definition of gen’. For all of
the remaining possible positions of [ relative to Iy we have anc(p, 1) = anc(po, I’) = a
and anc(p, l.c) = anc(po, I'.c) = b where 1’ = pred(e, (7, lo), 1). Hence by induction

we are done. U

5.1.2. Approximating canbring

The definition of canbring is in fact too restrictive to allow us to express the
conditions we need in constructing the approximations canbring’ and doubler’.
This is because we want to express not only the possibility of one lambda&node
appearing below another, but also the possibility of a variable-node appearing be-
low a lambda-node. To solve this problem we define a larger relation canbring*.
canbring*(ai, a2) holds if either canbring(a | as) or ay is a value node, as is an
atx-node, and there is a rewriting p of ejnit such that there is a p-descendant of as
which has a p-descendant of a; between it and its binding location.

Definition (canbring®: For al, a; € A canbring(ay, az)* just if canbring(a;, as)
or isval(a;) and there are p, 1, c, ly, i such that ¢ € R, B} and anc(p, l.lo.c) = a1,
anc(p, l.ly.c.ly) = as, and tag(p,az) = atx(l).
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Lemma (canbring*): canbring(ai, az) = canbring*(ai, az).

Definition (canbringp) : canbring’ is the least relation on A x A such that

(mt.i) aj=lcAc€ (R, B)Aa=all2 A tag(na;) = tag(o,az) = lam
= canbring'(a;, az)

(mt.ii) a; =llj.c A isval(a1) A ¢ € {R,B} A ag = a1.l2 A tag(n,az) = atx(l)
= canbring'(a;, az)

(3) get'(ap,R,aq) A get'(ap,L,a3) A canbring’(as,az) A canbring’(a;,as)

A tag(o,a;) = lam A tag(o,as) = atx(as) = canbring'(ai,asz)

Theorem (canbringp): canbring(a;, az) = canbring'(ai, a3)

Proof: We will show that canbring*(a;, az) implies canbring’(a;, az). For this,
we show by induction on p that

(ij tag(o,a1) = tag(o, a2) = lam, anc(p, l.c) = al, anc(p, l.c.la) = ag, and ¢ €
R, B} implies canbring'(ay, as).

(ii) anc(p, l.ly .c) = a1, isval(ay), anc(p, lli.c.la) = ag, tag(p,Lii.clz) = atx(]),
and ¢ € {R,B} implies canbring’(ay, az).

If p is empty the result follows from clauses (mt.i,ii) of the definition of canbring’.

.’I
Assume p = pg, (7, lp ) and ejnit 2o, e (-r—o>) e’ . If r € { 1,2} then for all allowed

positions of I relative to [p the result follows by induction. If 7 = 3 then the only
interesting case is pred(e, (7, ly), l.c) = lp.L.B.l} and pred(e, (r, lp), l.c.lz) = lp.R.1}
for some l'l, lf_,. Then (ij and (ii) both follow from clause (3) of the definition of
canbring’. O

5.1.3. Approximating doubler

Definition (doublerp): doubler’ is the least »elation on A such that

(mt) Iy # lo A tag(o,a.B.ly) = tag(o,a.B.l2) = atx(a) = doubler'(a)
(3) doubler'(a;) A get'(ao, L, al) A get'(ao, R, a2) A canbring'(as, as)

A tag(o, az) = atx(a) = doubler'(a)

Theorem (doublerp): doubler(a) = doubler’(a)

Proof: We show by induction on p that anc(p, [) = a, [; # 5, and tag(p, [.B.[}) =
tag(p, [.B.lz) = atx(l) implies doubler’(a). Assume [} # Iy, anc(p, I) = a and

tag(p, [.B.l;) = tag(p, [.B.ly) = atx(l). If p is empty the result follows from the

(rdo)
clause (mt) of the definition of doubler’. Assume p = pg, (7, lp) and €init PO, e

e’. If pred(e, (7, lo), [.B.ly) # pred(e, (7. lo), [.B.l3) then anc(p, 1), (po, pred(e, (r, ly), 1)),
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and a are equal. Also tag(po, pred(e, (r.lyj, [.B.l;)), atx(pred(e, (r,ly), 1)), and
tag(p, [.B.l;) are equal and the result follows by induction. Thus we may assume
r= 3, lis a proper prefix of ly, pred(e, (7, lo), I.B.ly) = pred(e, (, ly), [.B.l3) = lo.R.I'
for some [', and the result follows from clause (3) of the definition of doubler’. (]

5.2. Approximating gen

Definition (genp): gen'(a, bj just if a b € A1an and for some ag, a; € A

doubler’(a) A get'(ag, L, a) A get'(ao, R, ar) A canbring'(agz, b).

Theorem (genp): gen(a, bj = gen'(a, d)

Proof: An easy consequence of (gen.char). O

5.3. Usefulness of theapproximation

We would like to think of the computable definition of gen’ as a program
satisfying a two-part specification: (1) gen’ is safe; (2) gen’ is useful. Formalizing
notions of safety is well-understood, but formalizing notions of usefulness is an open
problem. At the present we have only some miscellaneous criteria, described in this
section.

One criterion of usefulness is non-triviality: the requirement that there ex-
ists some expression ejnit for which gen’ is smaller than the trivial approximation
Ajlam X Ajam. As mentioned earlier, our definition of gen’ satisfies this criterion.

Another criterion is to require that the program for gen’ compute gen exactly
on some test suite of interesting expressions. A finite test suite is hardly a specifi-
cation, since a trivial program modified to handle the test suite examples as special
cases would satisfy the specificat ion. However a good test suite can be useful in
identifying problems with the approximation.

Another possibility would be to require that gen’ = gen for certain infinite sets
of expressions. For example, our definition of gen’ a erees with gen on expressions
that contain no doublers initially.

Lemma (no.doubler): If einit contains no doublers then gen and gen’ are
empty.
Proof : Assume t ag( einit, 1) = tag(einit , 1) = atx(l) implies I} = Iy for

li,l2,1 € locs(einitj. By safeness it suffices to show that gen’ is empty. Show
by contradiction that —doubler’(a) for a € Al,. Choose a € Al, with miminal
derivation of doubler’(a). The last rule applied cannot be (mt) by hypothesis. The
last rule applied cannot be (3) by minimality. O
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6. Towards a general purpose simplifier

The ultimate goal of this work is to develop simplifiers which are of practical
use as as automatic program manipulation tools. The work presented here pro-
vides a foundation for developing general-purpose expression simplifiers. We have
extended the beta-v reduction rule by adding rearrangememt rules that substan-
tially increase the simplification power. These rules remain valid for a wide range of
extensions of the lambda calculus by primitive operations to permit embedding of
traditional programming languages. We have seen that there are trade-offs between
maintaining confluent systems and increasing simplification power. What remains
to be done is to work out a variety of substantial examples to test the practical ap-
plicability of the various strategies and to determine what are the limiting factors
in practical situations. In this section we discuss potential deficiencies and possible
improvements of our analysis.

6.1. Approximating gen more accurately

Although for some expressions, the computed gen’ estimates gen exactly, there
are other some expressions where the approximation is poor. For example if

einit = Ma. A times.let® {twice := NS f \8x.f (fa)}
let*{sqr := \"a.times vz}

twice twice sqra

then gen = {3 —5,6;5—5;4— T} but gen’ = {3 — 5,6;4—4,5,6,7;5—
4,5,6,7; 6 — 4,5,6,7; T — 4,5,6,7}. (Here 3 — 5,6 abbreviates (3,5), (3,6),
and so on.) Thus the set B cannot include any of 4,5,6.7 and statically-limited
rewriting is unable to fully simplify the expression.

One way to improve the simplifier is to more accurately approximate gen.
This can be done systematically as follows. For a given expression, define relations
xdoubler(p, I, a), xget (p, [, a1, ¢, as ), and xcanbring( p, [, aj, az) which, unlike their
finite counterparts, completely describe the rewrite history and location where the
relationship occurs. A set of rules can be given which define these relations simul-
taneously by induction on p. The finite (though perhaps uncompu t able) relation
gen can be defined exactly in terms of these three potentially infinite relations.

To approximate gen, we choose a function f assigning each pair (p, ) in Rseq X
Loc a representation s from a finite set S. We then define finite but not necessar-
ily computable relations ydoubler( s, a), yget( s, a;, ¢, ¢2), and ycanbring( s, @1, as)
suchthatthetuple (s, @) is in ydoubler just if(p, [, a1, @2) is in xdoubler for some
p, [ such that f(p, ) = s, and likewise for yget and ycanbring. Finally, we apply f
to the inductive rules defining xdoubler, xget and xcanbring to obtain rules defin-
ing computable relations ydoubler’, yget’ and ycanbring’ which are guaranteed
to be supersets of ydoubler, yget and ycanbring.
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The value s in a tuple (s, a) satisfying ydoubler is a partial history telling
how node a becomes a doubler. In this paper we took S to be a one-element set,
throwing away the history so that doubler could play the role of ydoubler (and
similarly for get and canbring) By keeping more history information, it should be
possible to approximate gen with arbitrary accuracy; the only drawback would be
the increased cost of the calculation. This approach is similar the use of procedure
strings and their abstractions in the inter-procedural analysis of Scheme programs

[Harrison 1989].

6.2. Alternate non-standard interpretations

gen is itself an approximation to the information contained in the xgen rela-
tion. Forgetting the path along which one node generates another when computing
generates cycles introduces ficticious cycles — it is possible that xgen(p, a, b) and
xgen(q, b, a) hold, but never along the same path. Note that this sort of loss of
information is avoided by the dynamically-limited strategy. Thus, one could look
for better approximations to xgen (that would enable statically-limited rewriting to
subsume more of the simplifications allowed by dynamically-limited rewriting. In
the example of the previous section, xgen has a cycle although all rewritings from
the given initial expression terminate. Thus one might also look for an alternative
non-standard interpretation corresponding to a different analysis of the cause of
non-termination.

6.3. Preserving context information

We separated simplification from the continuation-passing transformation in
order to simplify the basic transformation and to develop a generic simplifier that
could be shared among a variety of program manipulation tools. Of course this
means loss of information. For example a continuation-passing transformer can
carry out beta reductions based on knowledge about whether the application came
from the original program or was introduced by the transformation. This approach
has been successfully used in developing a continuation-passing transformation pro-
gram [Danvy, private communication].

We gained simplicity by considering only the language of the pure lambda cal-
culus. Following [Landin 1966) we can represent (by adding primitive constants and
syntactic sugar) a wide range of language features (block structure, loops, recursive
definition, branching, assignment, goto, escape, labels, . . . ) without invalidating
our reduction rules. In fact any set of rules that are valid in the lambda-c calcu-
lus will have this property. Again we lose information in translating from a richer
language to the lambda calculus and we may want to consider more refined simplifi-
cation mechanisms based on richer languages. For example [Moggi 1989 treats let
as a construct distinct from lambda-application and gives a normalizing system of
let-reductions. The system includes the analog of beta.-value reduction and many
instances (but not all) of our rearrangement rules. It also includes rules such as
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let{z := e}z — e which are not derivable in our system. It will require further
investigation to determine the relative merits of the two sets of rules (and other
alternatives) as the basis of simplification systems.

To improve the usefulness of a generic simplifier a language is needed for ex-
pressing information such as that discussed above. One such language is the two-
level lambda calculus [Nielson 1988]. Here there are two copies of each syntactic
construct. The distinction can be interpreted as compile-time vs run-time or as ex-
pressing binding time information [Jones et al. 1989]. To account for the wide range
of information we need to express will require a more general annotation language.

6.4. Adding new rules

In addition to extending the capabilities of a simplifier by increasing the in-
formation and lambda rules available one may also wish to add constants to the
language and add corresponding delta-rules. These might include rewriting rules for
an abstract data type, rules for conditional expressions, rules for updating opera-
tions [Mason and Talcott 1989al, or rules for control operations [Talcott 1989, 1990].
In general the combination of two or more terminating rewriting systems does not
produce a terminating system. However, [Breazu-Tannen and Gallier 1989] studies
combinations of algebraic term rewriting systems and polymorphic lambda term
rewriting and shows that properties such as strong normalization and confluence
are preserved for a number of combinations.
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