
| April 1991 Report No. STAN-CS-91-1389

The AGENTO0 Manual

by

Mark Torrance and Paul Viola

Department of Computer Science

Stanford University

Stanford, California 94305

S500 JUN,

IY AN <%

RNR Ju
ReCANZED4

The AGENTO Manual

Mark C. Torrance

Program in Symbolic Systems

Stanford University

Stanford, California 94305

torrance@cs.stanford.edu

Paul A. Viola

Artficial Intelligence Laboratory

Massachussets Institute of Technology

Cambridge, Massachussets

viola@ai.mit.edu

April 9, 1991

This document describes an implementation of AOP, an interpreter for pro-

grams written in a language called AGENTO. AGENTO is a first stab at

a programming language for the paradigm of Agent-Oriented Programming.

It is currently under development at Stanford under the direction of Yoav

Shoham. This implementation is the work of Paul A. Viola of MIT and

Mark C. Torrance of Stanford.

1 Introduction

AOP, Agent Oriented Programming, 18 a programming paradigm proposed by Professor

Yoav Shoham of Stanford University. It imposes certain constraints on the nature of agents

and of their communication. AGENTO is a more restrictive language, in which programs

in the spirit of AOP can be written. Both AOP and AGENTO are described in [1].
This document describes an implementation of an interpreter for agent programs written

in the AGENTO language. This implementation purports to be a complete implementation

of the AGENTO language as defined in Shoham’s paper. This implementation is still under
development, but the most recent released version should be fairly complete and accurately

described by this document.

2 Obtaining AGENTO

This implementation of AGENTO is available for Allegro Common Lisp running on UNIX

workstations maintained at the Stanford Robotics Lab, AKCL running on Sparcstations
maintained by AIR at Stanford, and for Macintosh Computers running Allegro Common

Lisp. The code should be portable to any Common Lisp implementation, although there

may be special purpose applications which run only on one or some of the supported plat-

forms (e.g. a graphical front end in X). This manual describes only the main, portable

interpreter/ simulator.

Hereafter in this manual, the notation <a0> will refer to the directory in which your

AGENTO files are stored. You should set up such a directory in a convenient place, and

copy all of the AGENTO files in’qto it.

If you are a member of the Nobotics group at Stanford, the AGENTO files are available

in the directory “aop/lisp/a0. You don’t need to copy these; just run them from this
directory. Hereafter, you should use ~aop/lisp/a0 wherever you see <a0>.

AGENTOis also available on the Andrew File System, a national network-transparent

filesystem, in the directory /af s/ir. stanf ord. edu/users/t/torrance/aop. Copy all files
from this directory into a directory (hereafter <a0>) on your own machine, and change the
variable *sop-load-path* in <a0>/load.lisp to point to the place where you put the

<a0> directory. This pathname should either be absolute for your machine, or relative to
the *def ault-pathname-defaults®* of Lisp as you start it, which is the pathname of the

directory you are in when you started Lisp.

At the moment, uses a separate parser, Paren, to parse source files. You also need to copy

the files from the directory /af s/ir. Stanford. edu/ users/ t/ torrance/ paren to a direc-

tory, usually a sister to <a0>. Change the variable *paren-load-path* in <a0>/load. lisp

to point to the directory where you put the Paren files. Paren will not be used in future

versions of this interpreter.

3 Running AGENTO

To run AGENTO, first start up Common Lisp. The command to do this will depend on

your system, but could be cl, akcl, acl, or clicking on an icon for Allegro Common Lisp on

a Macintosh.

Next, load the file <a0>/load by typing (load ° ‘load’ ’) to Lisp. If you were not in
the <a0> directory when you started Lisp, you should type the pathname of that directory

to the load command, as in (load ‘‘ aop/lisp/a0/load’’), which works on Nobotics lab
machines.

2

4 The (aop) function

After you have loaded AOP, calling the (aop) function will start the interpreter’s read-eval-
print loop. The prompt will be <AGENT>, representing the fact that you are “in the context

of” a predefined agent named agent. This agent has no beliefs or commitment rules built

in. It is useful mainly as a place from which to interact with other agents running under the

interpreter.

5 Defining an Agent

Each agent has a distinct name. An agent program includes two files. One, agent-name. aop

contains the AOP program for the agent. The other, agent-name. Isp, contains support

functions written in Lisp which implement the agent’s primitive actions. Currently, all of

these functions should be written to expect one more argument than the arity of their call

as written in commitment rules. This extra argument should come first. It corresponds to

the data structure which holds the agent who is performing the action. This is useful for

implementing private actions which modify the agent’s own beliefs or commitments.

A sample agent named joetriv has been provided in the <a0> directory. You can examine

the files j oetriv. aop and joetriv. 1sp to get an idea of the format of this information.

The next section describes how to load an agent such as joetriv into the environment.

6 Loading an Agent

To load both the . aop and the .lsp files into the current environment, say of an agent

named joetriv, type load joetriv to the <AGENT> prompt. You can then type joetriv

to the prompt to “enter” joetriv’s context. The prompt will change to reflect the fact

that you are now within joetriv. This sets the global variable *current-agent*® to the

internal data structure associated with joetriv, so that many of the commands understood

by the AGENTO main loop will function with respect to joetriv. For example, you could

type state (now (alive john)) to assert a fact into joetriv’s beliefs. Or you could type

inform agent ((+ now (* 10 m)) (foo a b)) to send an inform message from joetriv to

agent which says that the proposition (foo a b) becomes true ten minutes from the time

the message is sent.

Cf Commands

A number of commands are understood by the AGENTO main loop. These include:

3

q or quit or exit leave the AOP function

run begin asynchronous mode

(run ticks continuously)

walk or stop return to synchronous mode

<return> on a line by itself,

runs one tick in synchronous mode

now print the current time in 24-hour format

load <agent> loads files <agent>. aop

and <agent>. lsp

go <agent> make <agent> the *current-agent*

inform <agent> (TIME PROP) “current -agent * informs <agent >
of <fact>

request <agent> <act> *current-agent® requests <agent>

to perform <act>

beliefs list all beliefs of *current-agentx*

cmtrules list all commitment rules of *current-agent#*

incoming list all incoming messages of *current-agent*

(to be processed at beginning of next tick)

bel? (TIME PROP) tells whether *current-agent* believes PROP
is true at TIME

(now can beusedas a TIME to indicate
the current time. Functions of now can also

be used, such as (+ now (x 2 m)) for

2 minutes later than the current time)

state (TIME PROP) assert this fact as a belief of *current -agent*
clrbels remove all beliefs of *current-agent®

cmtrule [, , , | add a new commit-rule

showmsgs turn on display of messages as they are sent

noshowmsgs turn off display of messages as they are sent

<any-lisp-form> let Lisp evaluate <form>

8 Beliefs

An agent’s beliefs consist of a set of facts. Each fact is associated with a predicate and a

fact-status list. This list describes the truth-values of the fact over time. An example of a

4

fact-status list would be the following:

[.. UJ] [10:00:00 T] [Sun Nov 24 12:00:00 Fl]

This indicates that the agent believes the predicate of the fact in question became true

at 10am today, and will become false at 12 noon on Nov 24 of this year. If you ask this agent

whether she believes the fact at some time between these two, she will answer t; if you ask

about some time after this range, she will answer nil; if you ask about a time before this

range, she will answer nil both to queries about the fact and to queries about its negation.

This is because the truth value up until 10am today is “unknown”.

As described in Yoav’s paper, AGENTO agents believe any new fact they are told. Facts,

here, are really statements about the status of a proposition at a particular time. These are

parsed as statements of the form (TIME (PRED args)), internally called fact-patterns.
Each typically will give rise to a new fact-status record on the fact with the same proposition

as was passed in the message, time equal to TIME (which must be bound), and truth-value

taken from the presence or absence of a not before the PRED. Some special statements are

allowed in place of TIME here; see Section 12 below for details.

9 Commitments

A commitment is just a particular kind of proposition which is stored in an agent’s beliefs

database. An agent can come to have a commitment either as a result of firing a commitment

rule, triggered by some incoming request message, by taking the action of committing to do

some other action, or by simply asserting the commitment into his beliefs. A commitment

can be unrequested by the agent to whom it is made. An agent can commit to herself; this
is considered a “choice”.

| Each tick, an agent performs all of her commitments which have matured. A commitment
| it 1s unasserted from the beliefs database (i.e., asserted with truth-value FALSE), at the time

the commitment is performed. This gives the agent a record of the time at which she actually
carried out the commitment.

10 Capabilities

| The AGENTO specification calls for a database of capabilities to be checked against auto-
| matically each time an agent considers making a commitment. This current implementation

of AGENTO does not include any capability database or checking of such a database.

| 11 Messages :

| Agents can send each other REQUEST and INFORM messages. The syntax is as follows:

5

<AGENT> inform joetriv (now (i-am-cool))

<AGENT> request joetriv (do (+ now (* 5 m)) (becool))

The “now” in the message refers to the moment when the message was sent, not the
moment when it was received.

The next version of this interpreter will include support for a standardized message-

passing format in terms of files or UNIX sockets, so that agents running under this imple-

mentation can communicate with agents running under other implementations or on other

machines.

12 Time

AGENTO can be run in either synchronous or asynchronous mode. The TIMEGRAIN given

in each agent program is used to determine the frequency of simulating that agent. The

guarantee made in general of AGENTO programs is that they keep their commitments by

the time they mature. In this implementation, the agents always perform their commitments

during the‘ first tick which is begun after those commitments mature. If the simulation

is being run in discrete, user-prompted tick cycles, as it will be when the user wants to

interactively send messages and inspect agents. then it is up to the user to hit return often

enough that the agents meet their commitments in a timely manner. To run the simulator in

an asynchronous mode, type run to the prompt.. An asterisk will appear before the prompt

to indicate that ticks are being run. To return to the synchronous mode, type q or quit to

the prompt.

I have chosen to print real times to varying degrees of specificity, depending on how far

the time 1s from the current time. Thus, if the time 1s in the format HH:MM: SS, it is some

time during the current day, printed in 24-hour time format. If the time is within the next

week, and in the same month as the current day, the day of the week is given with the time

for display purposes. If it is not, but it 1s within the same year, then all but the year are

shown. Otherwise, a full display of DAY MONTH DATE HH :MM: SS YEAR is shown.

When using the Lisp syntax, users specify times by using Lisp functions. These functions

will operate on time in the internal (integer) format. So (+ 7time 30) is a time 30 seconds
later than the time to which 7time is bound. Several useful constants are defined to make

it easier to specify relative times. These include m for one minute, h for one hour, day,

week, and yr. I do not yet provide functions for specifying absolute times, but I plan

to soon. For now, you can generate a universal time integer by using the Lisp function

(encode-universal-time args). Its syntax is as follows:

6

ENCODE-UNIVERSAL-TIME [Function] Args: (second minute hour date month

year &optional (timezone -9))

The correct time zone to use on the West Coast of the United States is 8.

Users and agent programs can also use the word now to refer to the current time. Thus,

statements such as state ((+ now (* 2 m)) (i-am-cool)) are acceptable commands to

the <AGENT> prompt.

13 Examples

For practice, try running through a few examples in AGENTO to get the hang of using

the interpreter and watching messages. This is an example of an interaction that exercises

a subset of the part of AGENTO which currently works.

<AGENT> load joetriv

Defining agent "JOETRIV"

Parsing file aop/joetriv . aop now

| LOADED

<AGENT> inform joetriv (100 (on a b)) ; This means at time 100, (on a b)
JOETRIV will be informed next tick.

<JOETRIV> beliefs

| <JOETRIV> ; (press return to run a tick)

<JOETRIV> beliefs

| (ON A B) [.. ul] {100 TI]
<JOETRIV> state (200 (not (on a b)))

| Belief added.

| <JOETRIV> beliefs

| (ON A B) [.. ul [100 T] [200 F]

| <JOETRIV> bel? (150 (on a b))

<JOETRIV> bel? (-500 (on a b))
NIL

<JOETRIV> bel? (-500 (not (on a b)))

NIL

<JOETRIV> agent

<AGENT> inform joetriv (now (i-am-cool))
JOETRIV will be informed next tick.

<AGENT>

<AGENT> request joetriv (do (+ now m) (i-am-cool)) ; one minute from now

JOETRIV will be requested next tick.

<AGENT>

<AGENT> run

*<AGENT> ; * indicates asynchronous mode

<just under one minute passes>

This is the cool Joe Triv Agent.

q ; user types q to quit run-mode

<AGENT> q

<cl>

References

[1] Y. Shoham. Agent Oriented Programming. Technical Report STAN-CS-90-1335, Com-
puter Science Department, Stanford University, 1990.

