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Abstract

We present a modal logic for reasoning about perception and belief, captured
respectively by the operators P and B. The B operator is the standard belief
operator used in recent years, and the P operator is similarly defined. The
contribution of the paper is twofold. First, in terms of P we provide a defini-
tion of perceptual indistinguishability, such as arises out of limited visual acuity.
The definition is concise, intuitive (we find), and avoids traditional paradoxes.
Second, we explore the bimodal B — P system. We argue that the relationship
between the two modalities varies among settings: The agent may or may not
have confidence in its perception, may or may not be accurate in it, and so
on. We therefore define a number of agent types corresponding to these various
assumptions, and for each such agent type we provide a sound and complete
axiomatization of the B — P system.



1 Introduction

There is a long-standing interest in Al in defining the mental state of agents. By far the
most explored components are those of knmowledge and belief, versions of which have been
captured in a variety of epistemic logics with well understood properties (cf. (8, 7, 9, 16]).
In addition, other mental attitudes have been investigated. For example, the notion of
commitment is defined in both [2] and [15]. In this paper we consider two modalities: the
traditional belief modality, and a new one: perception.

The reason we choose these two is that, other than being told, the main source of
new beliefs is sensory input. The connection between perception and logic is difficult and
multifacetted. Mackworth and Reiter [12], for example, explore the connection between
vision and default reasoning. We do not address that, nor many other difficult issues
in relating perception and logic. Instead, we concentrate on two issues: the notion of
indistinguishability, and the relationship between perception and belief.

We define an operator P, which captures the information about the world which has
been delivered by the sensors. Although on its own the operator is rather dull, it does
allow us to explore the issue of perceptual indistinguishability, such as that resulting from
limited visual acuity. This notion has been addressed in the philosophical logic literature
(cf.[13, 5]), and at least once in AI ([3]). In this literature the main issue has been to avoid
the transitivity of indistinguishability; transitivity leads to paradoxes akin to the ‘heap
paradox’ (if two piles of sand differing in size by only one sand grain cannot be distinguished,
and if indistinguishability is transitive, then no two piles can be distinguished). We provide
an intuitive definition of perceptual indistinguishability in terms of P, and show that the
paradox doesn’t arise.

The other concern of this paper is the connection between belief and perception: we
augment the language with the standard B operator for belief, and explore the connection
between B and P. If the agent always believes in the truth of what it perceives, this
makes things simple. This is an unacceptable assumption in general, however: There are
limits to the ability of perception to register correctly the state of the world (due, e.g.,
to malfunctioning of the perceptual apparatus), and the agent may be aware of that. We
therefore define a number of agent types, capturing different interactions between perception
and belief.

The paper is organized as follows. In Section 2 we present the basic logic for perception,
and define the concept of two properties being “undistinguished” (and the related notions of
their being “indistinguishable” and “incompatible”). We illustrate the notion through two
examples — having to do with limited visual acuity and perspective, respectively — and show
that our definition avoids a traditional paradox. In Section 3 we then augment the language
to incorporate belief, and discuss how the basic model can be specialized to capture various
interactions between perception and belief; at the end of the section we address a more
sophisticated version of the paradox of indistinguishability.

Throughout this article we treat only the single-agent case, but the extension to multiple

agents is straightforward.



2 Perception and indistinguishability

In this section we introduce the concepts of perception and perceptual indistinguishability.
We will introduce an operator P to capture perception, but we must be careful in what
we aim to capture with it. We intend that a formula P is to be read as “4 follows
from the agent’s perceptions”. Though we could have interpreted it simply as “the agent
perceives ", this would force us to distinguish between what is perceived and the result of
“interpreting” the perception (e.g perceiving a retinal image of a car vs. perceiving a car,
which in a sense is an interpretation of the retinal image). This distinction is a problematic
one (cf. [14]), and technically inconvenient as well; our choice allows us to treat P as a
modality akin to belief and to make sense of iterated applications of the operator (for one
or multiple agents.) Nonetheless, just as the distinction between explicit and implicit belief
has proven important {10, 4], a notion of “immediate perceptual information” would be
worthy of investigation; we do not pursue it in this article.

Perception does not in general provide complete information about what is perceived, in
the sense that it may fail to distinguish between different states of the world. This notion of
perceptual indistinguishability has often led, as already mentioned, to paradoxes. We need
a relation that is reflexive and symmetric, but which is not transitive. The intuition we will
try to capture in defining it is that two propositions are perceptually undistinguished when
the perception of one does not make the other incompatible with the agent’s perception;
and conversely, if they are distinguished, then the perception of one rules out the other.

2.1 The basic formal model

The basic logic of perception is a standard modal logic. Given a set P of primitive propo-
sitions, the syntax of the logic is defined recursively as usual: any primitive proposition
is a formula in the language, the special logical symbol false is in it, and if ¥ and ¢ are
formulas, then so are =t and ¥ A ¢. The usual abbreviations are used: P V ¢ = =( =~p A ~¢);
YOd=—(YAa—-@)v=¢=vD4A¢DY;and true = —false.

We adopt the standard possible worlds semantics, and treat P as a modal operator for
perception. Given our interpretation of P, it is natural to require that it satisfies at least the
axioms of KD45 [1]. Formally, a Kripke structure for perception is a tuple M = (W, I, ©),
where W is a set of worlds; I is a serial, transitive and Euclidean relation on W, the
accessibility relation for perception; and @ is a truth assignment, i.e. a function mapping
each primitive proposition into the set of worlds in which the proposition is true, with the
restriction 7(false) = @. The semantics for the language is defined as follows.

M, sk pif s € n(p), for any primitive proposition p € P.
M,s k=~ if M,s £ .

M, sEvAPif M,sk= v and M,s [ ¢.

M, s|= Py if M, t = 9 for every t such that (s, t) € L

The following is the standard (sound and complete) axiomatization of KD45:



A 1. All tautologies of propositional calculus.
A2. (P 4 P(p D ¢)) D Po.

A3.  ~P(false).

A4. P D PPy.

AS5. =Py D PP

Rl. From % and ¥ D ¢ infer ¢.

R2. From % infer Pi.

Thus, for example, if 1 follows from your perceptions then it follows from your per-
ceptions that % follows from your perceptions. For readability, we will simply say that if
the agent perceives 1 then she perceives that she perceives %, etc. Some trivial results
due to this treatment of perception are: the agent cannot perceive both a proposition and
its negation (i.e. ~(P¢ A P-%) is valid in any Kripke structure for perception); the agent
perceives the conjunction of two propositions exactly when she perceives both propositions
(PyY A Pp = P(¢ A)is valid); and if the agent perceives ¥ then she perceives 9 V ¢ for
any formula ¢ (P D P(¥ V @) is valid).

2.2 Indistinguishability

The intuition is that the agent cannot distinguish perceptually between two formulas when
perceiving one is incompatible with perceiving the negation of the other. This intuition
can be captured quite directly in our framework. However, rather than directly define the
property of being perceptually indistinguishable, we first define the concept of two formulas
being perceptually undistinguished at a world (this finer grain definition will turn out to be
important). For this purpose we introduce a new operator UD (for undistinguished).

Definition 1 UD (%, $) =4e5 ~(PP A P=p) A (P A P-p)

Thus, if % is undistinguished from ¢ and % is perceived, then ¢ is compatible with the
agent’s perceptions; and vice versa. Conversely, they are distinguished if perceiving one
entails that the negation of the other follows from the agent’s perceptions. We can also say
that two formulas are indistinguishable if they are undistinguished in every world in the
structure and that they are perceptually incompatible if the perception of one entails that
the negation of the other follows from the agent’s perceptions. In the following definitions,
let M = (W,I,7)be a Kripke structure for perception, s € W, and % and ¢ two formulas.

Definition 2 ¥ and ¢ are undistinguished in M, s iff
M,s | UD (,9)

and distinguished otherwise.



Definition 3 ©¥ and ¢ are indistinguishable in M iff
M,s = UD (¢, ¢) for every s € W
and distinguishable otherwise.
Definition 4 % and ¢ are perceptually incompatible in A4 iff
M,s = (P D P~¢) A(P¢p D P=ip) for every s € W
and compatible otherwise.

In the philosophical literature, it has been suggested that the concept of distinguisha-
bility leads to paradoxes, and several clever formulations have been devised to avoid those.
For example, drawing on Fine’s [5], in [13] Parikh proposes a logic of vague predicates. The
paradox is essentially the heap paradox, and hinges on the transitivity of intistinguishability.
To use an example due to Parikh, if the human eye can not discern a change in color as a
result adding one drop of black paint into a gallon of white paint, and if indistinguishability
is transitive, then adding two drops, three drops or 100 gallons of black paint would not
result in discernible difference either, which is clearly nonsensical.’

It is not hard to see that with this definition the paradox never arises in our system:
The operator UD is reflexive and symmetric, but not transitive:

Proposition 1 (reflexivity) UD (%, 1) is valid.
Proposition 2 (symmetry) UD (3,¢) = UD (¢, ¥) is valid.
Proposition 3 (nontransitivity) UD (,$) A UD (¢,¢) a4 ~ UD (%, ¥) is satisfiable.

(As a counterexample to transitivity, consider a world in which -=P¢ and ~P-¢ are true
(i.e there is no perceptual information about ¢), and in which P% is true. Then UD (%, ¢)
and UD (¢, %) are true, but UD (¢, =) is false.)

We also have the following properties:

Proposition 4 P A = UD (¥,¢) D P~ is valid.
Proposition 5 P¢ A UD (¢, ¢) D = P= ¢ is valid.

Thus, the perception of a proposition immediately rules out all other propositions which
are perceptually distinguished from it; whereas propositions that are undistinguished from it
remain compatible with the agent’s perceptions. We will see in section 3.3 how an incorrect
encoding of these two properties lies at the root of a paradox associated with the notion of
indistinguishability.

Propositions (1)-(5) constitute the basic properties that we may expect of any operator
for perceptual indistinguishability. Some other properties of UD , which suggest that the
operator is well-behaved, are given at the end of this section. First, however, we illustrate
the definitions with two concrete examples.

‘There is a more elaborate version of the paradox, due to Davis, which involves belief (or knowledge) as
well as perception. We will return to it at the end of section 3.



Example 1 (Sensor tolerance.) Consider a real-valued sensor accurate to within %2, i.e.
such that any two values differing by more than 2 points in the scale can be perceptually
distinguished. Let’s represent the values the sensor may take in some convenient form, e.g.
as T = z for some real number x; and let val(T = x) = x be a metalinguistic function which
gives us the value of the measure denoted by each proposition “T" = z”. This situation can
be captured by using two types of axiom, one for stating the situations in which values are
undistinguished (2), and one for stating when they are distinguished (ii).
Axioms of type (i) are instances of the schema

UD (¢,¢)

for each 9, ¢ such that val(yp) — 2 < val($) < val(¢p) + 2. It is easy to check that this
is consistent with the reflexivity and symmetry of UD . Given these axioms, we can use
proposition (5) to derive, e.g., "P~(T = 8) from P(T = 10) and UD (T = 10,T = 8), thus
obtaining that T = 8 is compatible with the perception P(T = 10).

Axioms of type (1) consist of instances of the schema

Py > -UD (¢, ¢)

for any t,¢ such that val(¢) < val(yp) — 2 or val(¥p) + 2 < wval(@$). This is sufficient to
rule out all values incompatible with a particular reading. For example, P(T = 10) implies
~ UD (T = 10, T = 7); using proposition (4), we obtain P-=(T" = 7).

It should be noted that type (i) axioms will not always be adequate. For suppose we
have an additional sensor, with identical accuracy, for the same property, and that the
readings of each sensor are, respectively, T = 10 and T = 11. Then P(T = 11) and
-~UD (T = 11, T = 8) imply P—~(T = 8), in contradiction with our previous conclusion. In
this case, one possibility is simply to remove type (i) axioms; type (ii) axioms will still allow
the agent to rule out all propositions distinguished from the perceived values. Another, quite
interesting possibility is to interpret P, by analogy with the “all I know” operator [6, 11],
as an “all I perceive” operator. If all I perceive is T = 10, then I can legitimately conclude
- P=(T = 8), as suggested in the example; but if I also perceive T = 11, the conclusion
would no longer follow. Thus, the required semantics would be non-monotonic. O

Many variations of this example are possible. Our next example shows how perceptual
indistinguishability can be modeled as a function of the agent’s “perspective”.

Example 2 (Parallax.) Suppose that the ability of the agent to perceptually distinguish
between various propositions in a given domain depends on its physical position. For exam-
ple, looking at a portion of a line from a slanted perspective allows for less resolution than
looking at that same portion from a position which gives you a front view of it. To make
things concrete, assume that the agent’s resolution is a function of the angular separation
between two points, as seen from her position, that the domain is a bidimensional surface,
which we will represent by Cartesian coordinates, and that the goal is to determine the
position of a mark on its x-axis. Specifically, suppose that there is some angular value
o such that the agent can distinguish any two points separated by an angle greater than



Figure 1: Example 2

a with origin in the agent’s position (see Figure 2). The language includes two disjoint
sets of propositional symbols, S and M, where symbols in S will be written am_at(s) and
stand for the agent’s position s in the plane, and symbols in M, written A4 = x, stand for
the position of the mark in the x-coordinate. Given three points i, 7, & in the plane, [ijk]
represents (in the metalanguage) the magnitude of the angle with origin in i and whose two
edges pass through j and k respectively. If § € S has the form am-at(s), then val(f) = s
is the position in the plane denoted by 8; if ¥ € M is M = x then val(¥) = (z,0) is the
position of the mark in the x-axis represented by . In a similar fashion as in the previous

example, we add the axiom (of type (i)):
am_at(s) D UD (¢, ¢),

for any $,¢ € M and am-at(s) € S such that val(am_at(s)) = s, val(¢) = 7, val(¢p) =
k, and |sjk] < a. Again, it is easy to check that this is consistent with the reflexivity
and symmetry of UD . Thus, two positions of the mark are undistinguished if the angle
with origin in the agent’s position passing through the two positions is smaller than «; as
before, we obtain that values for the position of the mark which are undistinguished from
its perceived value (as seen from the agent’s position), are compatible with the agent’s
perceptions. Similarly, we add the type (ii) axiom

am-at(s) A Py D ~ UD (¢, ¢)

for any am.at(s) € S and ¥,¢ € M such that val(am.at(s)) = s, val(y) = j, val(¢p) = £k,
and |sjk| > @, and the agent can rule out all positions of the mark which are separated
from the perceived position by more than «, taking the the agent’s own position as origin.

o

It should be obvious that these examples can be elaborated to include arbitrarily complex
mathematical or symbolic conditions. One of these elaborations is worth noticing: We may




decide to integrate the results of various sensors as if they were only one. Thus, if the
agent in our previous example had an stereoscopic vision system, the set of axioms could
be modified to deal with her improved resolution directly. In general, this procedure may
allow us to make stronger assertions about compatibility: if all sensors for a given domain
are integrated into one, type (i) axioms can be used without worrying about the problems
arising from multiple sensors for these axioms. More generally, it is in principle possible to
enrich our language as much as we want so that the metalinguistic conditions that we have
been using are expressible in the object language. As a simple elaboration of example 1, we
could introduce a new connective < in the language such that ¥ < ¢ iff val(¥) < val().
Then we could use axiom schemas such as, say,

~UD ($,¢) A < ¢ <@ D ~UD (¥,9),
which together with proposition 5 gives us:
PO A-UD ($, ) A (¥ X ¢ X p) D Py,

and similarly for other axioms dealing with the ordering of propositions. There is no reason
in principle why such enrichments could not go as far as incorporating, say, a full-fledged
interval arithmetic, though obviously we would have to leave the propositional realm.

Some other properties of UD are listed next. A formula is perceptually undistinguished
from its negation exactly when there is no perceptual information about it, it is distinguished
from truth iff its negation is perceived and distinguished from false iff it is perceived. We
also have that % is undistinguished from both 4 and -4 iff either there is no perceptual
information about % or there is no perceptual information about 4, that % cannot be
simultaneously distinguished from both a formula and its negation; and that two formulas
are undistinguished exactly in case their negations are undistinguished. Finally, if (¢ V 4) is
not perceived, then % and 4 are undistinguished (or, equivalently, if ¥YA¢ is compatible with
what is perceived, then they are undistinguished.) Each of these properties is intuitively
plausible, which seems to indicate that UD is a well-behaved operator.

Proposition 6 The following sentences are all valid:

UD (,~$) = ~Pp A ~P=

= UD (¢, true) = P~y

=UD (¢, false) = Py

UD (,6) A UD (,~¢) = [~(P V P=$) V ~(P$V P=)]
UD (4,¢)V UD (A-4)

UD (¢, ¢) =UD (ﬂlﬁ, —\¢0)

~P($V $) > UD (,9)

2.3 Accurate and observant agents

As mentioned in the introduction, various agent types can be defined to capture varying
assumptions about the domain of application. A number of such types are discussed in
section 3. Most definitions refer to the relationship between perception and belief, a topic



we have not yet addressed. However, two agent types are defined in terms of the relationship
between perception and objective facts in the world. Since these definitions are independent
of the belief modality, they are given here.

We first consider observant agents, those from whose perception nothing escapes. For-
mally, the agent is said to be observant if the following schema is valid:

¥ D Py,
Similarly, the agent is said to be accurate if the schema

PyDO vy

is valid.

Note that the axiom schema for the accurate agent is simply the schema T for the
operator P. The schema corresponding to the observant agent is clearly very strong, unlikely
to be applicable to agents in a complex environment, since nothing in it escapes perceptually
from the observant agent. Yet it is possible to think of simple agents for which it makes
sense, such as e.g. a device continuously and accurately monitoring some variable and whose
model of the world consists exclusively in the possible values the variable can take. It is
also possible to define agent types in terms of the validity of the respective schemas with
respect to specific subsets of propositions, in which case we could think of certain “sensory
modalities” being modelled by the axiom for observant agents.

The first fact to notice is the following:

Proposition 7 An observant agent is accurate.

For the observant agent, furthermore, UD is transitive, and thus becomes an equivalence

relation.

Proposition 8 For the observant agent, the following sentences are valid:

UD (¥, 4) AUD (¢,¢) D UD (¢, ©)-
UD (¥,¢) = (P = P4).
UD($,4) =($=¢).

For the accurate agent, the state of the world cannot be distinguished from its perceived

state.
Proposition 9 For the accurate agent, Py A —~ UD (¢, 4) D -4 is valid.

What these properties suggest is that the most interesting uses of UD arise, as could be
expected, for agents which are neither observant nor accurate.

3 Incorporating belief

We are now interested in what the agent should believe, given what she perceives. It might
be tempting to make the assumption that anything perceived is also believed. However,
in (common) cases where the sensors might not be completely accurate, and in which the



agent might know this, the assumption would be inappropriate. Sometimes the converse
assumption is more adequate: one doesn’t believe in anything without having perceived it.
Keeping this in mind, we begin with the most general case, in which the relation between
perception and belief is unconstrained, and which can be captured in a straightforward
manner. We will then identify a number of special cases with further properties.

Formally, we add an operator B to our vocabulary to represent belief, and extend the
language so that B is a formula whenever ¥ is a formula. A Kripke structure for perception
and belief is a tuple M = (W, R, I, w), where IV, I and = are as before and R is a serial,
transitive and Euclidean relation over W. The semantics of the B operator are given as

usual by:,
M,s = By if M, t}= v for every t such that (s, t) € R.

The system BPO consists of all the axioms and rules of PO together with:
Ad. (By A B(¢ D ¢)) D Bg.

AS5. ~B( f alse).

A6. By D BBy.

A7. =By D> B-B1.

R3. From % infer Bi.

The following result should be obvious:

Proposition 10 BP0 is a sound and complete axiomatization with respect to the class of
Kripke structures for perception and belief.

3.1 Agent types

By placing additional restrictions on I or jointly on I and R it is possible to capture differ-
ent ways in which perceptions can be related to the agent’s beliefs and to the environment.
There are a number of basic dimensions to consider. In the previous section we appealed
to the relationship between perception and the environment in defining the accurate and
observant agents. In addition we may now consider the introspective abilities of the agent,
the accuracy of the agent’s beliefs about her perceptions and the confidence that the agent
places in her perceptions. The first table defines the various agent types along these three
dimensions in terms of the validity of certain (not necessarily independent) axiom schemas,
and the second table identifies certain classes of Kripke structures for perception in terms
of restrictions on I and R. The correspondence between the axiom schemas and the cor-
responding classes of structures is given in the soundness and completeness results in the

next theorem.

Theorem 1 BPQO + I (respectively + 2, + 3, + 4, + 5, +6, + 7, + Ta, + T3, + 8, + &, +
9, + 95) is a sound and complete axiomatization with respect to the class of Kripke structures
for perception and belief Mpservant (respectively Maccurate, Mpositive—-intro: Mncgatiuc—intro;
Myeak-positive-intro y M weak-negative-intro y M confident, M confident2 y M confident3s M cautious
-Alcautious2 ’ Mskeptical; Mskeptical2 )

10



Agent Type

Aziom schema

0 bservan t agent

Accurate agent

Positively introspective
Negatively introspective
Weakly positively introspective
Weakly negatively introspective
Perceptually confident
Perceptually confident2
Perceptually confidents
Cautiously confident
Cautiously confidenty
Skeptical (“show-me”)
Skeptical2

.Yy D Py

. Py DY

. Py D BPYy

. =Py D B-~Py
B-P¢$ D ~Py¢
BPy D Py
.BPy D BY
72. Py D By

73. B(PY D ¢)
8. BPy D =B~y
82. P'(/) D '“IB_"(»L'
9. ~BPy > ~By
9,. =Py D ~BvY

Restriction

1. Vs, t,(s,0) €ETiff s = ¢
2. vs, (s,8) €1
Mpositive-intro 3. Vs, t, u, if (s, ) €R and (¢ u) € I then (s, u) € I
M egative-intro 4. Vs, t, u, if (s,2) € R and (s, u) € I then (t, u) € 1
5
6

Class of structures

Mobservanr

Maccurale

. Vs3t such that (s, #) € R and Vu, if (t, u) € I then (s, u) €I
M yeak-negative-intro . Vs, u, if (s, u) € I then 3¢ such that (s, t) € R and (2, u) €1
M confident i. Vs,u, if (s,u) € R then 3t such that (s, ) € R and (¢,u) € [
72. Vs, t, if (s, t) € R then (s, t) € I

M weak—positive—intro

M confident2

Alconfidcnw 75. Vs, t, if (s,t) € Rthen (t, t) €1

M autions 8. Vs3t,u such that (s, #) € R and (t,u) € I and (s, u) € R

M cautious? 89. Vs3t such that (s, ) € R and (s, #) €1

M sieprical 9. Vs, u, if 3t such that (s, #) € R and ({, u) € I, then (s, u) € R

M s eprical2 95. Vs, t, if (s,#) € I then (s, ) € R

The introspective abilities of the agent with respect to perception refer to the agent’s
beliefs about her perceptions (as opposed to the propositions perceived), and give rise to
two basic agent types, corresponding to positive and negative introspection of perceptions.

- If an agent has positive introspection of perception, then whenever the agent perceives
1, she believes that she perceives it. There are situations in which this is not the case,
since an agent may not be aware that she perceives something; a good deal of perceptual
information is often ignored or “filtered out”. For example, the ambient noise in a room may
go unnoticed though we would hesitate to say that it is not perceived. In this sense, positive
introspection can be interpreted as the agent’s awareness of her perceptions. Negative
introspection of perception, in contrast, rules out believing that you have had a perception
that in fact you have not had. For agents with both types of introspection, the respective

schemas can be strengthened into equivalences.



Proposition 11 For an agent with positive and negative introspection of perception, (P =
BP1) and (~ Py = B~ P) are valid schenzas.

The next two types of agent refer to the accuracy of the agent’s beliefs about her
perceptions. The weakly positively introspective agent believes that she has not had a
perception only if she in fact has not had it; and the weakly negatively introspective agent
believes that she has had a perception only if she has in fact had it. Agents with both types
of weak introspection have only correct beliefs about what perceptions they have had. The
choice of names is justified because each of them is strictly weaker than its analogously
named introspective agent. Obviously, each half of proposition 11 holds for an appropriate
combination of weak and standard introspection, though neither holds in general for an
agent with both types of weak introspection.

Agents may also differ in the level of confidence they place on their perceptions. Again
we distinguish two basic types, a confident agent who believes in her perceptions and an
agent who, more cautiously, simply refuses to believe in the falsity of what she perceives
(cautiously confident agent). In both cases, there are several reasonable ways (distinguished
by subscripts) of characterizing the agent. For the confident agent (with no subscript), the
agent believes in the truth of the propositions that she believes she has perceived (including
by the way the case in which she believes this falsely, as it may happen in the absence of
weakly negative introspection). Thus, in this version, which is the preferred one, it is not
sufficient to perceive ¥ in order for the confident agent to believe that %. It is sufficient
for the confident2 agent, but its corresponding schema can be obtained from schema 5 by
adding positive introspection, thus allowing for a clearer separation between perception and
belief. Finally, the last version of the confident agent is given by axiom schema 53, which
is simply a stronger version of 5. It can perhaps be read as identifying confidence with the
belief that one is accurate. Note also that the two types of cautiously confident agents are
related in exactly the same way as the two first versions of the confident agent, namely: the
second version can be obtained from positive introspection and the preferred version of the
cautious agent.

Finally, we consider skeptical agents, who refuse to believe in something unless they
(believe that) they have perceived it. The two versions are related again by positive intro-
spection. More generally, we can capture some of the dependencies between schemas for
different types of agents in proposition 12. The list is not intended to be exhaustive, and
in fact it is easy to see some other dependences which are obvious consequences from those

listed.

Proposition 12
An agent with positive introspection of perception has weakly positive introspection of per-

ception.

An agent with negative introspection of perception has weakly negative introspection of per-
ception.

An observant and confident2 agent has positive introspection of perception.

An observant and confident, agent has negative introspection of perception.

A confident3 agent is a confident agent.

A confident agent is cautiously confident.

12



confident2 agent is cautiously confident,.

confident agent with positive introspection of perception is confidents.

cautiously confident agent with positive introspection of perception is cautiously confident;!.
confident2 agent with weakly negative introspection of perception is confident.

cautiously confident2 agent with weakly negative introspection of perception is cautiously
confident.

A skeptical, agent with positive introspection of perception is a skeptical agent.

A skeptical agent with weakly negative introspection of perception is skepticaly.

e

3.2 Belief and indistinguishability

In section 2.3 we noted that in the case of both accurate and observant agents, the UD operator
has strong additional properties. This is true also of the new agent types, though in a less
extreme fashion, corresponding to the less extreme nature of the assumptions made about

such types.
We leave it to the reader to explore the effects on UD of the various forms of confidence.

We only the note the interaction between introspection and distinguishability:

Proposition 13 For an agent with positive introspection of perception,
~UD (4,4) D> B~UD (¢,¢)

is valid.
Proposition 14 For an agent with negative introspection of perception,

UD (¢,¢) D BUD (¢, )

is valid.

These results can be read as follows. Negative introspection can be seen as awareness of the
lack of perceptual information, and positive introspection as awareness of certain positive
perceptual information. The indistinguishability of two propositions can also be seen as
a lack of information, and the negatively introspective agent is aware of it; similarly, the
positively introspective agent is aware of the positive perceptual information given by two
propositions being distinguished. Combining both results, an agent with both positive and
negative introspection of perception has only correct beliefs (and has all correct beliefs)
about his ability to perceptually distinguish between formulas.

Proposition 15 For the agent with positive and negative introspection of perceptions,

UD (¢,¢) = BUD (¢, ¢)
~UD (¢,¢) = B~UD (,¢).

are valid.
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Interestingly, none of the results in this section hold for weakly introspective agents. Fur-
thermore, though the weakly negatively introspective agent is the converse of the positively
introspective agent, the converse of proposition 13 does not hold for the former; and sim-
ilarly, the converse of proposition 14 does not hold for the weakly positively introspective
agent. Thus, whereas the agent with weakly negative introspection cannot have incorrect
beliefs about the perceptions she has had, she may have incorrect beliefs about the proposi-
tions that she has perceptually distinguished. The reason is that though the agent may not
incorrectly believe that she has had a perception, she may fail to believe (be unaware) that
she has had some particular perception. This loss of information is reflected in her failure
to have only correct beliefs about what she can distinguish. With more information, the
problem dissapears, as the following proposition makes clear.

Proposition 16 For the agent with weakly negative introspection of perception,
BPy A B~UD (¢,4) D ~UD (%, ¢)

is valid.

3.3 The paradox of indistinguishability, revisited

In section 2.2 we mentioned the paradox of indistinguishability, and how it does not arise
in our framework due to the intransitivity of the UD operator. However, in [3] E. Davis
articulated a 'more sophisticated version of the paradox, which involves both perception and
belief (or, in his case, knowledge). In his words:

This property of indistinguishability can lead to the following paradox: Let a,
b and c be three states of the world such that a is indistinguishable from b and
b from c, but a is not indistinguishable from c. Suppose the real state of the
world is a. Then the agent can see that the world is not in state c. If he knows
enough about his own perceptions, then, even though he cannot see that the
state of the world is not b, he can infer it, since, if the world were in b then he
could not see that the world is not in state c.

Davis reconstructs this argument within a formal system, and then proceeds to proposes
two ingenious, though somewhat complex, modifications which escape the paradox.

Although intuitively compelling, this argument (like all those leading to paradoxes)
contains a certain slight of hand, which recasting in our formal system will expose. The
reason Davis was able to present a formal version of the argument in the first place is that
he implicitly made quite strong assumptions: that perception entails belief; that perception,
and hence belief, are accurate (indeed, he talks of knowledge rather than belief); that agents
have strong introspective capabilities; and that indistinguishability is defined relative to the
whole structure and not at a world. His two solutions amount to relaxing these implicit
assumptions in different ways.

In our general framework, which does not assume a certain agent type, the argument
does not go through. It can be derived, but only by making strong assumptions along the
way. Here is a derivation faithful to the English text, annotated by the assumptions made:
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1. B(a V b v ¢ (given)

2. a (given)

3. UD (a,b) (given)

4. UD (b, ¢) (given)

5. = UD (a, ¢) (given)

6. Vz, y. z A ~UD (z, y) D P-y (assumption)

7. B(Vz,y- zA=UD (x, y) D P-y) (assumption)
8. Vz,y. x A UD (z, y) D -P-y (assumption)

9. B(Vz, y. x A UD (x, y) D =~P~y) (assumption)
10. P~c (From 2+45+6)

11. BP-¢c (From 10, assuming Pp D BPp)

12. B-b (From 9+11, assuming UD (p,q) D BUD (p,q))
13. B-¢ (From 10, assuming Pp D Bp)

14. Ba (From 1+12+13)

Some of the assumptions made along the way correspond to certain agent types2 and
it can be argued that it is desirable to escape the paradox even for those types. However,
assumptions 6 and 8 (and their counterparts, 7 and 9) are completely unfounded. They
should be rather replaced by propositions 4 and 5, instantiated here, respectively, to:

Pa 4 -~ UD (a, ¢c) D P-c. (1)
Pb A UD (b, ¢c) D -P-c. (2)

The rationale for these two propositions is that even if ¢ is perceptually distinguished from a,
c cannot be ruled out perceptually unless the agent perceives a. If the world is in state a but
the agent perceives b, then Pb together with (2) implies -P-c, contrary to assumption 6;
and if we had b and Pa, then (1) implies P-c, contrary to 8. For example, if the temperature
is 8 and we have a thermometer accurate to within 2 (i.e values are distinguished when they
differ by more than this margin), it is quite possible to have a reading of 10, which does
not allow us to rule out a temperature of 12. It is only if the reading (as opposed to the
actual temperature) differs from a value by more than the margin of error that we can rule
out that value. In general, therefore, the paradox does not arise in our framework.

There is at least one case which assumptions 6 and 8 are valid, and that is the case of
the observant agent. Indeed, we have the following properties:

QSpeCiﬁCale, the assumptions made in lines 11 and 13 correspond to positive introspection of percep-
tion and confidencez, respectively; the assumption in line 12 is a consequence of negative introspection of

perception.
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Proposition 17 For the observant agent, ¥ A =UD (¥,$¢) D P-4 is valid.
Proposition 18 For the observant agent, 1y A UD (¢,¢) D ~P~¢ is valid.

However, this hardly poses a paradox, since (as shown in section 2.3) for observant agents
UD is transitive, rendering the given facts 3, 4 and 5 mutually inconsistent.

4 Concluding remarks

We have presented a formalism to reason about perception and belief, a heretofore un-
derexplored area of investigation. We have explored possible relations between an agent’s
perceptions and beliefs, and between them and the environment, under different assump-
tions, likely to be applicable in different setups. No type of agent among those defined is
likely to be usable in all scenarios, and we have mentioned some of the circumstances in
which different agent types should be used.

In addition, we have defined the notion of perceptual indistinguishability in our frame-
work in a way which we think is simple and intuitive. The operator can be easily used to
formalize a wide class of examples in which perception is involved, and allows us to capture
a limited notion of “perceptual perspective,” without incurring in paradoxes.

The formalism we have presented seems natural and well-behaved, but more research is
needed on applying, whether in general formulation of commonsense reasoning or in more
specific applications. It would also be interesting to study extensions of the language which
incorporate more specific domain structure (such as a metric space), and relate them to
perceptual indistinguishability. Temporal and multi-agent aspects are also of interest, as
well as the problem of updating the beliefs of the agent on the light of perceptually acquired

information.

Appendix

Proof of theorem 1. We prove the soundness part first.

(Observant: 1 D P.) Obvious.

(Accurate: Py D %.) If M, s |= Pt then for every t such that (s, t) € I,M, t |= 1. By
restriction 2, (s, s) € I, so M, s | .

(Positive introspection of perception: Py D BP3.) Assume M, s = Py, ie. M, t E ¢
for every ¢ such that (s, t) € I. We need to show: M, u |= ¢ for every t, u such that (s,t) € R
and (t,u) € I. But (s,1) € R and (¢, u) € I imply (s,u) € L, by restriction 3, and therefore
M, v 1.

(Negative introspection of perception: =P O B-~P.) If M, s = =P then there exists
u such that (s, u) € I andM, u |= =%. Let ul be one such u. We need to show: for every ¢
such that (s, t) € R there exists v such that (¢, v) € I and A, v | ~%. But if (s, t) € R and
(s, ul) € I then (t, ul) € L, by restriction 4, so ul is such v.

(Weakly positive introspection of perception: B-~P D —~P1.) Suppose M,s = B-~P.
Then for every t such that (s, t) € R, there exists u such that (¢, u) € I and M, u = 9.
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By restriction 5, there exists ¢such that (s,) € R and such that for all u if (t,u) €1 then
(s, v € I.1t follows that for some u such that (s, u) € r, M, u E .

(Weakly negative introspection of perception: BP% D P3.) Suppose M, s = BP¥ and
(s, u) € I. Restriction 6 implies that there exists ¢ such that (s, t) € R and (t, v) € I. Thus,
M,tl= Py, so M, ul=1.

(Confident: BPw D Bi.) Completely analogous to the previous case.

(Confidenty: Pip D By.) If M, s |= P then for every {, (s, t) € I implies M, t |= .
But since (s, t) € R implies (s,t) € 1, by restriction 72, we have that (s, 1) € R implies
M, tE .

(Confidents: B(Py D #).) If (t,t) € I, then we have M,t |= Py D 1. By restriction
73, for every s and t such that (s, ) € R we have that(Z, t) € L. It follows that for every
such s and ¢, M, t = Py D, and therefore M, s |= B(P¥ D ).

(Cautiously confident: BP%¥ D =~B~.) If M, s | BP then for every t and u such
that (s, t) € R and (t, u) € I we have M, u |= 9. By restriction 8, there exists v satisfying
these two conditions such that in addition (s, v) € R. Since M, v |F ¥, M, s | ~B=3.

(Cautiously confidenty: Py D =B—.) If M, s |= Pt then for every t, (s, ) € I implies
M, t }= . By restriction 8,, there exists ¢ such that(s, t) € I and (s, t) € R, so there exists
t such that (s, t) € R and M,t |= 9.

(Skeptical: ~BPw D ~By.) If M,s | ~BP1 then there exists ¢, u such that (s, £) € R
and (f,u) € I and such that M, u |= =. By restriction 9, (s, u) € R, so M, s |= ~B.

(Skepticaly: —Pw D =Bw.) T h e poof is identical to that for the confident;! agent,
reversing the roles of R and I.

The completeness results that follow do not assume BP0 but only the subset of it formed
by propositional logic and the distributivity axioms (i.e. Al, A2 and A4), in addition to the
applicable rules of inference. The system formed from these axioms and all rules together
with a particular axiom a will be named BPa (so for example BP1 stands for this system
augmented with axiom 1), and Fgp, will be used to denote the consequence relation in each
BPa.

To prove the completeness of an axiomatic system X with respect to a given class of
structures M, we need to show that if a sentence is valid in M (i.e. valid in every M € M)
then it is provable in X, or, equivalently, that if it is C-consistent then it is satisfiable in
some M € M. The techniques we will use are fairly standard, so to avoid repetition we will
go only over the details of the proof that are specific to our results (cf. [1, 7] for a more
detailed discussion). By Lindembaum’s lemma, every C-consistent set of sentences (where
¥ is any axiomatic system including Al and Rl, i.e. propositional logic) can be extended
to a maximal C-consistent set, one such that the addition of a new formula would make it
inconsistent ([1]). For any given class of structures M, we construct a canonical structure
M€ € M such that there is a world s, corresponding to every maximal C-consistent set
V. Then we show that M€ s, |= ¢ iff ¢ € V. This suffices to prove the completeness of
Y, as it is easy to see. By Liendembaum’s lemma, if ¢ is C-consistent then it is contained
in some maximal C-consistent set V and therefore M€, s, = ¢; but this implies that ¢ is
satisfiable in M, as we want to show. To construct the canonical structure M€ for the class
of Kripke structures for perception, we proceed as follows. Given a set V of formulas, let
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V/B={¢|Bp€V}and V/P = {¢ | Pp € V). Then M® = (S, R, I, ), where

S = {s, | V is a maximal consistent set}
sy€n-(p) il peV

R = {(sv,50) | V/B C W}

I = {(sv,s0) | V/P C W}

Now we can show that M€ s, |= ¢ if and only if ¢ € V by induction on the structure
of ¢; in addition, we can show that if all substitution instances of the schemas in BP0 are
valid in M€ then the relations R and I of M€ must both be serial, transitive and euclidcan.
It follows that M€ is in the class of Kripke structures for perception, which proves the
completeness of BP0 with respect to this class of structures. We prove the other cases in
more detail next.

(Observant: BP1.) We have seen that for the observant agent, ¢ = Py (since the
observant agent is also accurate). Therefore V/P = {¢ | Pp € V} = {p | p € V} = V.
It follows that if (s,, Sy) € I, then V C W. But V ¢ W, since otherwise W would be
inconsistent by the maximality of V. Therefore if (s, Syw) € [ then V = W, so s, = 8.

(Accurate: BP2.) By axiom 2, if P € V, then ¢ € V-Therefore, if ¢ € V/P then
p €V, s0o V/P CV and (sy,y) € L

(Positive introspection of perception: BP3.) Assuming the validity of axiom 3, we have
to show that if (sy,54) € R and (s,, s,) € I, then ($y,5z) € I, or equivalently that if
V/B C W and W/ P C X then V/P C X. By axiom 3, if Py € V, then BPyp € V, and
therefore P € W and ¢ € X. But then V/P C X.

(Negative introspection of perception: BP4.) Assuming the validity of axiom 4 and that
(sv, 5w) €ER (V/B C W) and (s, s,) €1 (V/P CX), we have to show that (s, sz) € I, ie.
that W/ P C X. Suppose, for indirect proof, that W/P ¢ X. Then there exists a formula
¢ such that P € W and ~¢ € X; since V/P C X, M€ s, - Py, and by the maximality
of V, M€, s, E =Pep. By axiom 2, M s, = B=Pyp, so M, s, |E ~Pe and Po ¢ W, in
contradiction with the hypothesis. Therefore W/P C X.

(Weakly positive introspection of perception: BP5.) For V, W and X BP5-consistent
sets, we need to show that for every V there exists a W such that W/B C V and such
that for every X, if W/P C X then V/P C X. We show first that V/B U { Py € V}is
BPS-consistent. Suppose not. Then there exist formulas Bo1, . . ., Bo, and P¢y, ..., Pon
such that Bo; € V (1 <7< n)and P¢; € X (1 <j < nz), and such that

FpsO1A ... Ad, A PpiA...APoy, D false,
or equivalently, such that
Feps o1 A...Nop D (P(@1 Ao Ady).

Using R3, we get
Feps B[01 A. . Ao, D —1P(¢1 AN...A ¢m)]7

which implies
Feps Boi A.. . A Bo, D B-P(¢1 A. . A ).
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Since each Bo; € V, B~P($1 A...A¢m) € V, and by axiom 5, ~P(¢1 A.. . Adn) € V. And

since each each P¢; €V, P(¢1 A. . Adm) € V, a contradiction. Therefore V/BU {Py € V}
is BP5-consistent, and by Liendembaum’s lemma there exists a maximal BP5-consistent set

W such that (V/B U {P% € V}) C W. This means in particular that V/B C W and that
{PYpeV}YyC{PPpeWw), so V/P C W/P, and thus for every X, if W/P C X then

V/P C X, as we wanted to show.
Some of the following results assume the following lemma. For a maximal C-consistent

set V, define V/P* = {=P-p | ¢ € V}.
Lemmal[fV and W are two maximal C-consistent sets, then V/P C W iff WP*CV.

Proof. From left to right, suppose V/P € W, so that if Pe € V then ¢ € W, and suppose
@ € W. Then ~p ¢ W, so P~¢ ¢ V, and by the maximality of V, ~P-p € V. Thus, if
¢ € W then =P~ € V, so W/P* C V. From right to left, suppose W/P* C V, so that if
¢ € W then =P—-p € V, and suppose that Pp € V. Then ~Pep € V, so ~p € W, and by
the maximality of W, ¢ € W. Thus, if P € V then ¢ € W, so V/P C W. O

(Weakly negative introspection of perception: BPG.) Assume (s,, s,) € I, so that
V/P C X. We have to show that there exists S, € S such that (s,, $y,) € R and (s,, Sz) € I,
or equivalently, that there exists a maximal BP&consistent set W such that V/B C W and
W/P C X. By lemma 1, it suffices to show that there exists W such that V/BUX/P* C W.
By Liendenbaum’s lemma, such W exists if V/B u X/P* is BP&consistent. Suppose on
the contrary that this union is inconsistent. Then there exist formulas oy,. . ., 0p and
- P-=¢1,...,mP-¢, such that Bo; € V (1 <i <n)and ¢; € X (1 £j <m), and such

that
Fere 01 A - Aoy A=P=d A ... A~P~d, D false,

or equivalently, such that

Fppre o1 A...Ac, D (P¢1V ...V P=ép).
But this last formula implies

Fpe 01N - . Adp, D P(m1 V...V =dp),
which in turn is equivalent to

l‘BPGCTl/\.../\O'nDPﬂ(QJ)]/\.../\(f)m).

Using R3, we get
tBPe B[O’l/\ —-AopD Pﬁ((ﬁl A A ¢m)],

which implies

Fepre Boy A ... A Bo, D BP~(¢1A.. . A ).

Since each Bo; € V, BP~(¢1 A ... Aém) € V, and by axiom 6, P~(¢d1 A ... A ¢y) € V.
By the hypothesis that V/P C X, it follows that =(¢1 A . . . A ¢,,,) € X. But since each
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¢; € X,(#1A...A¢m) € X, a contradiction. Therefore V/B U X/P* is BPG-consistent, as
we wanted to show.

(Confident: BP7.) The proof is analogous to the previous case. Assuming V/I C X,
we have to show that V/B U X/P¥* is consistent. If it is not, then there exist formulas
O1y-..,0n and =P=¢y,..., 2 P~¢,, such that Bo; € V (1 < in) and ¢J €EX (1 Lj<Lny
and such that

Fep7 Boi A.. . A Bon, D BP~(¢1 A . A dm).

Since each Bo; € V, BP~(¢1 A . .. Adm) € V, and by axiom 7, B~(¢; A.. . Ad) € V. By
the hypothesis that V/B C X, it follows that =(¢; A. . A ¢n) € X. But since each ¢; € X,
(pr1A...A ¢n) € X, a contradiction.

(Confidents: BP7;.) If (s,,Sy) € R, then by axiom 7, if P € V then By € V and
therefore ¢ € W; so V/P C W and therefore (s,, $y) € I

(Confidentz: BP73.) If (sy, Sy) € R, then by axiom 73, B(P¢ D )€ V,s0 (Py D)€
W. Thus, if P € W then ¢ € W, so W/P C W and (Sy,Sw) € I.

For the cautiously confident agent, we need the following lemma. For a maximal ¥-
consistent set V', define V/BP = {¢ | BPp € V}.

Lemma 2 If V and X are two maximal C-consistent sets, then V/BP C X iff there exists
some maximal C-consistent set W such that (s,, s,) € R and (s, s;) € L

Proof. From left to right, assume V/BP C X. We need to show that there exists a
maximal C-consistent set W such that V/B C W and W/P C X, or by lemma 1 such
that V/B U X/P* C W. By Liendembaum’s lemma, it suffices to show that V/B U X/P*
is consistent. Suppose not. Then there exist formulas oy, .. .,0, and =P=¢y, . .., = P-¢,,
such that Bo; € V (1 <i < n) and ¢; € X (1 < j < nt), and such that

Fyoi1A...A o, A =P=¢) A.. . A =P~ D false.
We can then derive as before:
bx Boy A.. . A Ba, D BP~(¢1 A.. . A ¢,,).

Since each Bo; € V, BP~(¢; A ... A ¢,) €V, and by the hypothesis that V/BP C X,
it follows that =(¢y A . . . A ¢,n) € X. But since each ¢; € X, (1 A . . . A ¢p) € X, a

contradiction.

From right to left, assume there exists W such that (s,, sy,) € R and(sy, s;z) € I.
Then V/B C W and W/P C X. Then if BPp € V, then Pp € W, so ¢ € X. Thus,
V/BP C X.O

(Cautiously confident: BP8.) We have to show that that for every s, € S there exist
s,, 8z € S such that ($,,54) € R and (s,, Sz) € I and (Sy, Sz) € R. By lemma 2, we know
that there exists W such that (sy,8,) € R and (su,sz) € I if and only if V/BP C X.
Thus, we only need to show that there exists a maximal BP8-consistent set X such that
V/BP C X and V/B C X, for which in turn jt suffices to show that V/BP UV/D is
BP8-consistent. Suppose not. Then there exist formulas oy,. .., 0, and ¢y, . . . , ¢, such
that Bo; € V (1 <i < n) and BP¢; € V (1 £ j < m), and such that

FBPs O1A... A0, AP A ...A ¢ D false,
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or equivalently, such that

I—131’8‘71/\-'-/\0'71 D) _‘(4’1/\---/\(]5771)-

By rule R3, it follows that

'—BPS Bal A...A B(Tu D) Bﬁ(d’l A .- A d)m),

and since each Bo; € V, B-~(¢1 A.. .A¢y) € V, and using axiom 8, ~BP(¢; A.. .Apm) € V.
But since each BP¢; € V and BP¢; A.. . A BP¢,, implies BP(¢1 A ... A ¢p), it follows
that BP(¢1 A.. .A¢n) € V, which is impossible. Therefore V/BP U V/B is BP&consistent.
(Cautiously confident,: BP8;.) We need to show that there exists a maximal BP8,-
consistent set W such that V/B C W and V/P C W. Again, it suffices to show that
V/B U V/P is BP&-consistent. Suppose not. Then there exist formulas oy, . . -, 9n and
@1,y Pm such that Po; € V(1 <1< n)and Bé; € V(1 €3 <m), and such that

FBpPs, O1A ... A0, AL A ..-A ¢y D false,

or equivalently, such that

"—BP82 g1 A A UnDﬁ((ﬁlA ---A ¢m)

By rule R2,
tFBps, Po1A-.-A Po, D P-(¢1 A -. A ¢m).

Since each Po; € V, P~(¢1 A. . A ¢n) € V, and using axiom 82, =B(¢; A.. . A ¢p) € V.
But since each B¢; € V, we have B(¢1 A . ..V @) € V, a contradiction.

(Skeptical: BP9.) We need to show that for every V and X, if there exists W such
that V/B € W and W/P C X, then V/B C X. By lemma 2, it suffices to show that if
V/BP C X then V/B C X. So assume that V/BP C X. Then if By € V, by axiom 9,
BPy €V, so b € X. It follows that V/B C X.

(Skepticaly: BP9;.) Analogous to the proof for the confident;! agent.

Proof of selected propositions.

Proposition 7. An observant agent is accurate.
Proof. —~1 implies P—1 for an observant agent, which in turn implies ~P. By contrapo-
sition, Py D .0

Proposition 8 For the observant agent, the following are valid sentences: UD (v, ¢) A
UD (¢,¢) D UD (4, ¢)
UD (4,9) = (PY = P¢)
UD (4,¢) = (¢ = ¢)

Proof. We prove transitivity only. The other two are an inmediate consequence of the fact
that, for the observant agent, we have 9 = P and Py = ~P-.

UD (p,¢) A UD (¢,9) = (P D ~P~¢) A(PpD-P-)A(PpDO-P-p)A(PpD
- P-¢). Suppose P3. Then ~P-¢, which for the observant agent implies ¢ and therefore
P¢, which in turn implies ~P-¢p. So Py D -~ P-. Suppose now Pe. Then ~P-¢, which
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as before implies P¢, which implies =P=1, so Pp D ~P-1. But (PY D ~P-p) A (Py D
~P=y) = UD (9, ¢).0

Proposition 11. For an agent with positive and negative introspection of perception,
(Py = BP¢) and (~Py = B-Py) are valid schemas.
Proof. For the first one, from left to right, this is simply positive introspection. From right
to left, B P implies =B-P, which by negative introspection implies P. For the second
one, from left to right, this is negative introspection. From right to left, B—Pv implies
—~B—~-Py, i.e. ~B P, which by positive introspection implies BP.0

Proposition 12. We prove only the less obvious dependencies.

An observant and confident2 agent has positive introspection of perception.
Proof. Py D PP for an observant agent, which implies B Py for confident,. O

An observant and confident2 agent has positive introspection of perception.
Proof. - P D P-Pt for observant, which implies B—P1 for confident,. O

A confident, agent with weakly negative introspection of perception is confident.
Proof. BP1 D P by weakly negative introspection, and Py O B for confident,.

A cautiously confident;! agent with weakly negative introspection of perception is cau-

tiously confident.
Proof. BPi D Pi by weakly negative introspection, which implies =Bt for cautiously
confident;!. O
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