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Abstract. A snapshot scan algorithm takes an “instantaneous” picture of a region of
shared memory that may be updated by concurrent processes. Many complex shared
memory algorithms can be greatly simplified by structuring them around the snapshot
scan abstraction. Unfortunately, the substantial decrease in conceptual complexity is
quite often counterbalanced by an increase in computational complexity.

In this paper, we introduce the notion of a weak snapshot scan, a slightly weaker prim-
itive that has a more efficient implementation. We propose the following methodology
for using this abstraction: first, design and verify an algorithm using the more powerful
snapshot scan, and second, replace the more powerful but less efficient snapshot with
the weaker but more efficient snapshot, and show that the weaker abstraction neverthe-
less suffices to ensure the correctness of the enclosing algorithm.

We give two examples of algorithms whose performance can be enhanced while re-
taining a simple modular structure: bounded concurrent timestamping, and bounded
randomized consensus. The resulting timestamping protocol is the fastest known
bounded concurrent timestamping protocol. The resulting randomized consensus pro-
tocol matches the computational complexity of the best known protocol that uses only
bounded values.

1 Introduction

Synchronization algorithms for shared-memory multiprocessors are notoriously difficult to
understand and to prove correct. Recently, however, researchers have identified several pow-
erful abstractions that greatly simplify the conceptual complexity of many shared-memory
algorithms. One of the most powerful of these is aromic snapshot scan (in this paper we
sometimes omit the word “scan”). Informally, this is a procedure that makes an “instanta-
neous” copy of memory that is being updated by concurrent processes. More precisely, the
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problem is defined as follows. A set of n asynchronous processes share an n-element array
A, where P is the only process that writes A[P]®. An atomic snapshot is a read of all the
elements in the array that appears to occur instantaneously. Formally, scans and updates are
required to be linearizable [20}, i.e. each operation appears to take effect instantaneously at
some point between the operation’s invocation and response.

Atomic snapshot scan algorithms have been constructed by Anderson [3] (bounded regis-
ters and exponential running time), Aspnes and Herlihy [6] (unbounded registers and O(n?)
running time), and by Afek, Attiya, Dolev, Gafni, Merritt, and Shavit [2] (bounded registers
and O(n?) running time). Chandy and Lamport [13] considered a closely related problem in
the message-passing model.

Unfortunately, the substantial decrease in conceptual complexity provided by atomic snap-
shot scan is often counterbalanced by an increase in computational complexity. In this paper,
we introduce the notion of a weak snapshot scan, a slightly weaker abstraction than the
atomic snapshot scan. The advantage of using weak snapshot is that it can be implemented
in O(n) time. Thus, the cost of our weak snapshot scan is asymptotically the same as the
cost of a simple “collect” of the n values. Our primitive, however, is much more powerful.
Moreover, the best known atomic snapshot requires atomic registers of size O(nv), where v
is the maximum number of bits in any element in the array A. In contrast, our weak snapshot
requires registers of size O(n + v) only.

Our results indiite that weak snapshot scan can sometiis alleviate the trade-off between
conceptual and computational complexity. We focus on two well-studied problems: bounded
concurrent timestamping and randomized consensus. In particular, we consider algorithms for
these problems based on an atomic snapshot. In both cases, we show that one can simply
replace the atomic snapshot scan with a weak snapshot scan, thus retaining the algorithms’
structure while improving their performance.

The weak snapshot algorithm presented here was influenced by work of Kirousis, Spirakis,
and Tsigas [23], who designed a linear-time atomic snapshot algorithm for a single scanner.
In this special case our algorithm solves the original atomic snapshot problem as well.

One important application of snapshots is to bounded concurrent timestamping, in which
processes repeatedly choose labels, or timestamps, reflectii the real-time order of events.
More specifically, in a concurrent timestamping system processes can repeatedly perform two
types of operations. The first is a Label operation in which a process assigns itself a new label;
the second is a Scan operation, in which a process obtains a set of current labels, one per
process, and determines a total order on these labels that is consistent with the real tie order
of their corresponding Label operations. *

Israeli and Li [21] were the first to investigate bounded sequential timestamp systems,
and Dolev and Shavit [17] were the first to explore the concurrent version of the problem.
The Dolev-Shavit construction requires O(n)-sized registers and labels, O(n) time for a label
operation, and O(n? log n) time for a scan. In their algorithm each processor is assigned
a single multi-reader single-writer register of O(n) bits. Extending the Dolev-Shavit solution
in a non-trivial way, Israeli and Pinhasov [22] obtained a bounded concurrent timestamp
system that is linear in time and label size, but uses registers of size O(n?). An alternative

% One can also define multi-writer algorithms in which any process can write to any location.
# Observe that the scan required by the timestamping is not necessarily identical to the atomic snapshot
scan. Unfortunately, the two operations have the same name in the literature.



implementation of their algorithm uses single-reader-single-writer registers’ of size O(n), but
requires O(n?) time to perform a Scan. Later, Dwork and Waarts [18] obtained a completely
different linear-time solution, not based on any of the previous solutions, with a simpler proof
of correctness. The drawback of their construction is that it requires registers and labels of size
O(n log n).

Dolev and Shavit observed that the conceprual complexity of their concurrent timestamp-
ing algorithm can be reduced by using atomic snapshot scan. We show that, in addition, the
algorithm’s computational complexity can be reduced by simply replacing the snapshot scan
with the weak snapshot, making no other changes to the original algorithm. The resulting
bounded concurrent timestamping algorithm is linear in both time and the size of registers and
labels, and is conceptually simpler than the Dolev-Shavit and Israeli-Pinhasov solutions.

Another important application of atomic snapshots is randomized consensus: each of n
asynchronous processes starts with an input value taken from a two-element set, and runs until
it chooses a decision value and halts. The protocol must be consistent: no two processes
choose different decision values; valid: the decision value is some process’ preference; and
randomized wait-free: each process decides after a finite expected number of steps. The
consensus problem lies at the heart of the more general problem of constructing highly
concurrent data structures [19]. Consensus has no deterministic solution in asynchronous
shared-memory [16]. Nevertheless, it can be solved by randomized protocols in which each
process is guaranteed to decide after a finite expecred number of steps. Randomized consensus
protocols that use unbounded registers have been proposed by Chor, Israeli, and Li[14] (against
a “weak” adversary), by Abrahamson 1] (exponential running time), by Aspnes and Herlihy [ 7]
(the first polynomial algorithm), by Saks, Shavit, and Woll [27] (optimized for the case where
processes run in lock step), and by Bracha and Rachman [ 1 1] (running time O(n? log n)).

Protocols that use bounded registers have been proposed by Attiia, Dolev, and Shavit [8]
(running time O(n?)), by Aspnes [5] (running time O(n?(p? + n)), where p is the number
of active processors), and by Bracha and Rachman [10] (running time O(n(p? + n))). The
bottleneck in Aspnes’ algorithm is atomic snapshot. Replacing thii atomic snapshot with
our more efficient weak snapshot improves the running time by Q(n) (from O(n?(p? +
n)) to O(n(p? + n))), and yields a protocol that matches the fastest known randomized
consensus algorithm that uses only bounded registers, due to Bracha and Rachman [10]. Both
our consensus algorithm and the one in [10] are based on Aspnes’ algorithm. The main
difference is that the solution of Bracha and Rachman is specific to consensus, whereas our
algorithm is an immediate application of the primitive developed in this paper.

The remainder of thii paper is organized as follows. Section 2 gives our model of compu-
tation and defines the weak snapshot primitive. Some properties of weak snapshots appear in
Section 3. The remaining sections describe the weak snapshot algorithm and its applications.

2 Model and Deflnitions

A concurrent system consists of a collection of n asynchronous processes that communicate
through an initialized shared memory. Each memory location, called a register, can be written
by one “owner” process and read by any process. Reads and writes to shared registers are
assumed to be atomic, that is, they can be viewed as occurring at a single instant of time.
In order to be consistent with the literature on the discussed problems, our time and space

8 All other results mentioned are in terms of multi-reader-single-writer registers.



complexity measures are expressed in terms of read and write operations on single-writer
multi-reader registers of size O(n). Polynomial-tii algorithms for implementing large single-
writer/multi-reader atomic registers from small, weaker, registers are well known [ 12, 24, 25,
26].

An algorithm is wait-free if there is an a priori upper bound on the number of steps a
process might take when running the algorithm, regardless of how its steps are interleaved
with those of other processes. All algorithms discussed in this paper are wait-free.

An atomic snapshot memory supports two kinds of abstract operations: Update modifies
a location in the shared array, and Scan instantaneously reads (makes a copy of) the entire
array. Let UF (S¥) denote the kth Update (Scan) of process 4, and vF the value written by
i during U¥. The superscripts are omitted where it can not cause confusion. An operation
A precedes operation B, written as “A — B”, if B starts after A finishes. Operations
unrelated by precedence are concurrent. Processes are sequential: each process starts a
new operation only when its previous operation has finished, hence its operations are totally
ordered by precedence.

Correctness of an atomic snapshot memory is defined as follows. There exists a total order
“=="on operations such that:

-fA— BthenA = B.
= If Scan Sy returns ¥ = (vy,. .., Vv,), then vy is the value written by the latest Update U,
ordered before Sp by ==.

The order “=="is called the linearization order[20]. Intuitively, the first condition says
that the linearization order respects the “real-time” precedence order, and the second says
that each correct concurrent computation is equivalent to some sequential computation where
the scan returns the last value written by each process.

We define a weak snapshot as follows: we impose the same two conditions, but we allow
“=="t0 be a partial order® rather than a total order. We call this order a partial linearization
order. If A => B we say that B observes A.

This weaker notion of correctness allows two scans S and S’ to disagree on the order
of two Updates U and U’, but only if all four operations are concurrent with one another.
Scanning processes must agree about Updates that happened “in the past ” but may disagree
about concurrent updates. Thus, in a system with only one scanner, atomic snapshots and
weak snapshots are equivalent. Similarly, the two types of snapshots are equivalent if no two
updates occur concurrently.

3 Properties of Weak Snapshots
The reader can easily verify that weak snapshots satisfy the following axioms:

- Regularity: For any value v}, returned by si, U begins before S,f terminates, and there
is no U¥ such that Ui — U¥ — .

- Monotonicity of Scans: If Si and S are two scans satisfying S§ — Si,(aandb could
be the same process), and if S observes update U¥ (formally, U¥ = S?), then Sj
observes U¥.

81n this paper, aii partial orders are irreflexive.



- Monotonicity of Updates: If U} and U,f are two Update operations (possibly by the
same process), such that Ui — U}, and if S¥ 18 a Scan operation, possibly concurrent
with both U% and U}, such that S¥ observes U} (U] => S¥), then S¥ observes U;.

Roughly speaking, weak snapshots satisfy all the properties of atomic snapshots except
for the consistency property which states: If Scans S%, S return & = (vq,...v,) and 6’ =
(vi...v}), respectively, then either Uy~ Uy for every k =1,.. ., n, or vice versa.

Define the span of a value v}, to be the interval from the start of U} to the end of U5*+!.
Clearly, values written by successive Updates have overlapping spans. The following lemma
formalizes the intuition that a weak snapshot scan returns a possibly existing state of the

system.

Lemma L. If a weak snapshot scan returns a set of values 6, then their spans have a
non-empty intersection.

Proof: Let vy and v] be in @ such that the span of v}, is the latest to start and the span of v
is the first to end. Then, it is enough to show that the spans of v, and vg intersect. Suppose
not. Then U — U;. By the definition of span, U7+! —s U}, and hence Uj+! = UZ,
which violates the requirement that each Scan return the latest value written by the latest
Update ordered before it by ==, |

Let a Scan S of a weak snapshot start at time ¢4, end at time ¢, , and return a set of values
9. Lemma 1 implies that there is a point ¢ in which the spans of all these values intersect.
There may be more than one such point; however, the Regularity property of weak snapshots
and Lemma 1 imply that there is at least one such point ¢ such that ¢, < ¢ < ¢t.. This is
because the first clause in the definition of regularity implies that the span of v begins before
t. , while the second clause implies that the span of vf, ends after t,. We will refer to the latest
such point ¢ by tsean of S.

4 Weak Snapshot

Intuitively, in order to be able to impose partial order on the scans and updates, we need to
ensure that a scan that did not return value v of processor a because v} is too new, will not
return a value v} that was written by processor b after b saw vj.By the properties of weak
snapshot, if the scan returns v} , then it must be ordered after b’s update in the partial order.
Since this update has to be ordered after a’s update, we have that a’s update has to be ordered
before the scan. This contradicts the assumption that the scan saw neither vJ nor any later
update by a.

If each value returned by the Scan is the value written by the latest update that terminated
before a specific point in the Scan, the above situation does not occur. Thii observation,
due to Kirousis, Spirakis, and Tsigas [23], motivates our solution. Roughly speaking, in our
solution, at the start of a scan, the scanner produces a new number, called color, for each
other process. When a process wants to perform an update, it reads the colors produced for it
(one color by each scanner) and tags its new value with these colors. Thii enables the scanner
to distinguish older values from newer ones.

The next subsection describes a solution that uses an unbounded number of colors. Later
we will show how to simulate this solution using only a bounded number of colors. The



simulation uses a simplification of the Traceable Use abstraction defined by Dwork and Waarts
in[18].

4.1 Unbounded Weak Snapshot

We follow the convention that shared registers appear in upper-case and private variables
in lower-case. In order to simplify the presentation, we assume that ail the private variables
are persistent. If a variable is subscripted, the first subscript indicates the unique process that
writes it, and the second, if present, indicates the process that uses it. Each process b has
variables VALUEy, which stores b’s current value, PCOLORp, QCOLOR;, e€ach of which stores an
n-element array of colors, and VASIDE,, for each ¢ # b. We frequently refer to PCOLORy[c]
as PCOLORy, (analogously for QCOLORs[c]). In this section, we assume that all these variables
are stored in a single register. Section 4.4 describes how to eliminate this assumption. The
code for the Update and Scan operations appears in Figures 1 and 2, respectively; the code
for the Produce operation, called by Scan, appears in Figure 3. At the start of a scan, the
scanner b produces a new color for each updater ¢ and stores it in PCOLORp,. It then reads
VALUE,, VASIDE,5, and QCOLOR.; atomically. If QCOLOR,; is equal to the color produced by b
for ¢ (and stored in PCOLORy.), b takes VASIDE,;, as the value for ¢, Otherwise b takes VALUE,.

The updater b first reads PCOLOR¢p and then writes its new VALUE atomically with
QCOLORj. := PCOLOR(y for all c. At the same time it updates VASIDE, for all ¢ that the
updater detects have started to execute a concurrent Scan.

The intuition behind the use of the VASIDE variable can be best described if we will consider
an example where we have a “fast” updater b and a “slow” scanner ¢, where c executes a
single Scan while b executes many Updates. In thii case, the updater will update VALUE, each
time, but will update VASIDEs only once, when it will detect that ¢ is scanning concurrently.
Intuitively, VASIDE, allows the scanner ¢ to return a value for process b that was written by b
during an update started no later than the end of the color producing step of the current scan.
Therefore, such value can depend only on values that are not more recent than the values
returned by the Scan.

1. Forallc#b, read gcolor,[c] := PCOLORep
2. For all ¢ # b, if qcolor,{c] # QCOLORy,
then vasides[c] := VALUE,
3. Atomically write:
VALUE; := new value
For all ¢ # b, VASIDE. := vaside,[c|
For all ¢ # b, QCOLORy, := gcolor,, []

Fig. 1. Update Operation for Process b.

We superscript the values of variables to indicate the execution of Update or Scan in
which they are written. For example PCOLOR}, is the value of PCOLORy written during Scan
S}. Next, we construct an explicit partial linearization order == as follows. Define Ug => S,",
to hold if Sy takes the value originally written by UJ. (Note that S;, may read thii value from



1. Call Produce
2. For all ¢ # b atomically read:
valuey[c] := VALUE.
qcolor,, [c] := QCOLOR.
vasides [c] := VASIDEcp
3.Forallc#b
if qcolory[c] # peolor, [c]
then datas[c] : =values [c]
else datay[c] := vasides|c]
4 Return(datas[1],..., VALUEs, . . . , datap[n])

Fig. 2. Scan Operation for Process b.

1. For all ¢ # b peolory[c} := PCOLORye + |
2. Atomically write forall.7#bPCOLORse := pcolor, [c]

Fig. 3. Produce Operation for Process b.

VASIDE:,,, where k > j). Define = to be the transitive closure of — U =. It follows
from the following two lemmas that the Scan and Update procedures yield a weak snapshot
memory.

Lemma 2. The relation = is a partial order

Proof: It suffices to check that == is acyclic. Suppose there exists a cycle Ao, . . ., Ak,
where adjacent operations are related by — or =, and the cycle length is minimal. Because
— is acyclic and transitiie, some of these operations must be related only by =>. Since the
cycle is minimal, and — is transitive, there are no adjacent — edges and therefore each
consecutive pair A; and A, , if A; => Ai41then A; /— A;41. Moreover, since = goes
only from Update to Scan operations, there are no adjacent => edges, and therefore the
edges of the cycle must alternate between = and —. It follows that k is odd. Without loss
of generality, assume Ag=> A;.

We argue by induction that, for £ > 0, we have that Ag starts before Agg42 starts.
Throughout the proof all subscripts are taken modulo k + 1. For the base case (£ = 0),
observe that Ag and A; are concurrent by construction (otherwise we would have had both
Ap = Ay and Ap — Ay), and hence Ay starts before A finishes. Since by construction
A; — A; (alternating edges property), we have that A finishes before Aj starts, and the
base case follows.

Assume the result for £. We have Agpyo => Aggss (alternating edges), and hence
Azeta /— Aggys, ie. Aggyg and Age4s are concurrent. This implies that Aggqo starts
before Az¢+3 finishes. By the inductive hypothesis, Ag starts before Age4 2 starts and hence
Ay starts before Age43 finishes. To finish the argument, note that Agg43 — Az¢+4 (alter-
nating edges), which implies that Ag starts before Agg44 starts, completing the induction.



Recall that the cycle has even length, and that this length is at least 2. Thus, Ag starts
before Ag+1 starts, but since all subscripts are modulo k + 1 this says that Ag starts before
itself, which is a contradiction. [

Lemma 3. For each process, our weak scan returns the value written by the latest update
ordered before that scan by =>.

Proof: Recall that v,’; denotes the value originally written by U: . Let Ug be the last update

by process g to be ordered before S;, by ==. The proof of the lemma relies on the following
claim.

Claim 4. Ug terminates before S; reads VALUE, . Moreover, Ug does not read PCOLOR:,q.

Proof: By definition of = there must be a sequence Ao, . . . , Ax where adjacent operations
are related by — or = and where Ap = U] and Ay = S, The proof proceeds by induction
on the length k of a minimal such sequence. ' _ _ _

For the base case, k = 1, observe that eitherU] — S, or U] = S, In the first case
the claim trivially follows from the regularity of a read. In the second case, since Sy, returns v}
we have that Ug must terminate before S; reads vazve, . To complete the proof of this case,
we will show by contradiction that U] does not read PCOLOR},. Suppose otherwise. It follows
from Step 3 of the Scan operation that S, could not have taken v} from vawve, because
qeolor), [p] = pcolor;[q] . So 83 must have taken v from VASIDEgp. Thii implies that there
is some Ug’ ,J7 > j that wrote v} into VASIDEzp, and that terminated before S; performs
Step 2. We show that there is no such Ug' . Since U] reads PCOLOR},, the monotonicity
of a read implies that so does any later Ug' that terminates before S,f,’s READ in Step 2,
and hence it follows from the code of the Update operation that any such later Ug' sees
gcolor, [p] = QCOLOR,p, and hence does not write v} into VASIDEgy.

Assume the claim for k£ and suppose the minimal sequence from U, g to S,‘, is of length
k + 1. Then one of the following must hold:

1. Ug—>U£=>S;.
2. Ul =St —Ul=S;
3. Ug:S;"——»S;,

(We don’t consider the case: U] — S7== S} because then either U] — S* —
Ul= S:, which leads to Case (1), or U] — S* — S3 which leads to the base case of
Ug — S;.)

For Case (1), by the inductive hypothesis U} does not read PCOLOR:,q and it terminates
before S':,'s READ in Step 2. Clearly, the regularity of a read implies that U’ does not start after
the P roduce operation of S, completed. Consequently, U] completed before thii P roduce is
completed, and the claim follows. In Case (2) we have thatU] must have completed before
Sg* has completed and hence before U, ! has started, and the claim follows as in Case (1). For
case (3) we have that U] completed before S, started and the claim trivially follows. u

Now observe that since Ug is the last update of q ordered before S;, by =, S;, could not
have returned vg' for some j’ > j. Therefore, to complete the proof it is enough to show that



St does not return v} for j < j. However, from Claim 4 it follows that Uj has completed
before S; performs its read in Step 2. So before the time S"',' performs Step 2, v] is written
into varve, . The only way that S:, could still take some vg' for j' <j is if it takes it from
VASIDE,p. This can happen only if the color that that S} reads, QCOLORJ, = PCOLOR},. By
Claim 4,U] does not read PCOLOR,,, and hence we have that QCOLOR}, # PCOLOR,,. This
implies that there exists j < 3 <j” such that QCOLOR%’ #QCOLORJ) ~1. But this implies
that VASIDEgp is updated with vg""l by update U{", contradicting the assumption that S},
takes qu' from VASIDEgp, for some j’ < j. |

4.2 Review ofthe TraceableUse Abstraction

We use a simplified version of the Traceable Use Abstraction of Dwork and Waarts [18] in
order to convert the unbounded weak snapshot described in the previous section into a
bounded one. We start by reviewing the abstraction. Recall that in the unbounded solution,
when process b produces a new color for process ¢, this new color was never produced by
b for ¢ beforehand. This feature implies that when b sees VALUE. tagged by this new color it
knows that this VALUE, is too recent (was written after the scan began), and will not return
it as the result of its scan. However, the same property will follow also if when b produces a
new color for ¢, it will simply choose a color that is guaranteed not to tag ¢’s value unless b
produces it for ¢ again. To do this b must be able to detect which of the colors it produced for
c may still tag c’s values. This requirement can be easily satisfied by incorporating a simplified
version of the Traceable Use abstraction.

In general, the goal of the Traceable Use abstraction is to enable the colors to be traceable,
in that at any time it should be possible for a processor to determine which of its colors might
tag any current or future values, where by “future value” we mean a value that has been
prepared but not yet written. Although we allow a color that is marked as “in use” not to be
used at all, we require that the number of such colors will be bounded.

The simplified version of the Traceable Use abstraction has three types of wait-free oper-
ations: Consume, Reveal and Garbage Collection.

= Consume: Allows the calling processor to obtain the current color produced for it by
another processor. It takes two parameters: the name c of the processor from which the
color is being consumed, and the name of the color (that is, the shared variable holding
the color). It returns the value of the consumed color.

= Reveal: Allows a processor to update a vector containing its colors. It takes two parame-
ters: the name of the vector and a new value for the vector.

= Garbage Collection: Allows a processor to detect all of its colors that are currently “in
use”. It takes a list of shared variables in which the garbage collector’s colors reside. It
returns a list of colors that may currently be in use.

It is important to distinguish between shared variables of an algorithm that uses the Trace-
able Use abstraction and auxiliary shared variables needed for the implementation of the
abstraction. We call the first type of variables principal shared variables, and the second type
auxiliary. Only principal shared variables are passed to the Garbage Collection procedure.
For example, in the weak snapshot system the only principal shared variables are PCOLOR, ,
and QCOLORy, foranypand gq.



For 1 <i<n,let Rf (Cf) denote the kth Reveal (Consume) operation performed by
processor i. X ¥ denotes the vector written by i during R¥ . Let b consume a color X, from
c. Then X, is said to be in use from the end of the Consume operation until the beginning
of b’s next Consume from c. In addition, all colors revealed by ¢ appearing in any principal
shared variables are also said to be in use. We require the following properties:

= Regularity: For any color X consumed by ct, Ry begins before C* terminates, and
there is no R} such that R2 — R} — C¥.

- Monotonicity: Let C¥ C]'F' (where ¢ and j may be equal) be a pair of Consume operations
returning the colors X2, X}.If Cf — CJ’-" then a < b.

- Detectability: If a color v revealed by processor b was not seen by b during Garbage
Collection, then v will not be in use unless b reveals it again.

- Boundedness: The ratio between the maximum number of colors detected by » during
Garbage Collection as possibly being in use and the maximum number of colors that can
actually be in use concurrently is bounded by a constant factor.

The regularity and monotonicity properties of the Traceable Use guarantee the regularity
and monotonicity properties of the bounded weak snapshot system. Detectability guarantees
that a processor will be able to safely recycle its colors. Boundedness guarantees that by taking
the local pools to be sufficiently large, the producer will always find colors to recycle.

The implementation of the Traceable Use abstraction described in [ 18] assumes following
restrictions:

- Conservation: If a color v, consumed by C¥ from c is still used by 4 when it performs
anew Consume from ¢, C¥ , k' > k, then at the start of C¥' this color is in one of i’s
principal shared variables.

- Limited Mobility: A color consumed by b and stored in a principal shared variable X
cannot be moved to a different principal shared variable Y} (i.e., removed from X3 and
placed in Y3).

We show that the simplified Traceable Use under these restrictions suffices for our weak
snapshot algorithm.

4.3 Bounded Weak Snapshots

For simplicity of exposition, we first present an algorithm that uses registers of size 0( nv),
where v is the maximum number of bits in any process’ value. In Subsection 4.4 we show how
to modify thii algorithm so that registers of size O(n +v) will suffice. In order to convert the
unbounded solution to a bounded one, we replace the Produce operation shown in Figure 3
by the Produce operation shown in Figure 4. The meaning of the notation in Step 1.3 of the
new Produce operation is that all n colors pcolor,[i], | <4 <n, are written atomically to
PCOLORy; .
Also, Line 1 of the Update operation shown in Figure 1 is replaced by the following:

1. For all ¢ # b, geolory [c] := Consume(c, PCOLOR.b).

10



la. Forall 1 €i<n X[i] : = Garbage Collection(PCOLORs;i , QCOLOR;})
1.b. For all ¢ # b, choose peolor,c] ¢ X|c]
1.c. Reveal (PCOLORs, pcolor,)

Fig. 4. Poduce Operation for Process b.

Next we show that the bounded construction is indeed a weak snapshot algorithm. Observe
that the proof of Lemma 2 applies directly for the bounded weak snapshot. The proof of
Claim 4 holds because of the Regularity and Monontonicity properties of Traceable Use. In the
proof of Lemma 3 all statements are true up to the statement “By Claim 4, Ug does not read
PCOLOR:,q, we have thatQCOLORf,'p # PCOLOR:W”. This is not necessarily correct because we
recycle the colors. Clearly, if QCOLOR},, # PCOLOR;,, the same argument holds. Consider
the case where QCOLOR}, = PCOLOR},. By Claim 4, U7 did not read PCOLORy,,. By the
Detectability property of Traceable Use, this implies that in the end of the Garbage Collection
step executed by S5, QCOLOR, , contains a color QCOLOR}L, # PCOLOR}, , where ji > j. The
rest of the proof follows analogously, with j; replacing j.

The complexity of Traceable Use given in [18] is O(n) per each Consume or Reveal, and
O(n?) per each Garbage Collection. However, in our particular case a trivial modification of
the implementation in [18] reduces the cost of Garbage Collection to O(k), where k is the
number of variables passed as parameters to the Garbage Collection procedure. Also, it is
easy to see that we can get by with a constant number of colors for each pair of processes.

4.4 Reducingthe Register Size

The weak snapshot described above uses registers of size O(nv) where v is the maximum
number of bits in any value VALUE,. This is due to the fact that an updater b may set aside a
different value for each scanner c in a variable VASIDE;., and all these values are kept in a single
register. To reduce the size of the registers, each updater b, will store VASIDEs, in a separate
register for each c. Only after this has been accomplished, b atomically updates VALUEy and,
foralle # b, VCOLORpe. _

The modifications to the code are straightforward. Lines 2 and 3 of the code for the
Scan (Figure 2) are replaced by Lines 2’ and 3’ below.

2°. For all ¢ # b atomically read:
valuep[c] := VALUE,
qcolor[c] := QCOLOR.;
3’ Forallc#b
If gcolory [c] # peolory[c]
then datas[c} := values|c]
else read damb[c] := VASIDE;p

Lines 2 and 3 of the code for the Update operation (Figure 1) are replaced by the following
Lines 2’ and 3.
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2'. For aii c #£b, if qcolor, [c] # QCOLOR,, then vasides[c] := VALUE,
VASIDE, ;= vasides c]

3’. Atomically write:
VALUE; := new value
For all c#b,QCOLORy, := gcolor,|c]

Observe that the only difference between the modified and the original algorithm is that
the shared variables VASIDEgp, and VALUE, are not read atomically together by Scan and not
written atomically together by the Update.

The only way we can get an execution of the modified algorithm that does not correspond
to an execution of the original algorithm is when the Scan reads w«LUEf'c and VASIDE:;, and

returns the latter, where VASIDE;‘P # VASIDEZ;. We now show that this can not happen.

Since VASIDE,,, is written before VALUE,, we have that k* > k. Since the scan Sy, returns
the value it read from VASIDEy , we have PCOLOR},, = QCOLORg,. By the Detectability property,
U: consumes color PCOLOR:,,,. By Monotonicity, for all ¥ < k; < ¥/, U,f‘ consumes same

color. Hence none of U changed the value in VASIDEgp, i.c. VASIDEY, = VASIDEE,

5 Applications

In this section, we explore two applications of the weak snapshot: bounded concurrent times-
tamping and randomized consensus. First we take the bounded concurrent timestamping
protocol of Doiev and Shavit[17], and show that the labels can be stored in an abstract weak
snapshot object, where each access to the labels is through either the weak snapshot Update
or the weak snapshot Scan operation. The resulting protocol has running time, label size, and
register size all O(n).

We then take the elegant randomized consensus protocol of Aspnes [5], and show that
replacing atomic snapshot with weak snapshot leads to an algorithm with O(n(p? + n))
expected number of operations. This is an improvement of §2(n) over the original algorithm.

5.1 Efficient Bounded Concurrent Timestamping

In a concurrent timestamping system, processes repeatedly choose labels, or timestamps,
reflecting the real-time order of events. More precisely, there are two kinds of operations:
Label generates a new timestamp for the calling process, and Scan returns an indexed set of
labels £ = (€1, . . ., €,) and an irreflexive total order < on the labels.

For 1 <i<n, let L¥ (S¥) denote the kth Label (Scan) operation performed by processor
t (processor & need not keep track of £, thii is simply a notational device allowing us to describe
long-lived runs of the timestamping system). Analogously, £5 denotes the label obtained by i
during L¥. Correctness is defined by the following axioms:

- Ordering: There exists an irreflexive total order == on the set of all Label operations,
such that:

« Precedence: For any pair of Label operations Ly and Lg (where p and ¢ may be
equal), if L§ — L}, then L3 => L}.
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« Consistency: For any Scan operation S¥ returning (Z, <), €< £ if and only if
L3 = L.
= Regularity: For any label £3 in £ returned by SF, L3 begins before S¥ terminates, and
there is no L} such that L§ — L} — S¥.
- Monotonicity: ene SF, S;" (where % and j may be equal) be a pair of Scan operations
returning the vectors &, £ respectively which contain labels £, lg respectively. If S¥F —
Sf’ then a < b.

Dolev and Shavit describe a bounded concurrent timestamping system that uses atomic
multi-reader registers of size O(n) and whose Scan” and Label operations take time O(n?log n)
and O(n) respectively. They also mention that the labels can be stored in an abstract atomic
snapshot object, where each access to the labels is through either atomic snapshot Update
or Scan operation. More specifically, they would replace the Collect performed during the
Label operation by an atomic snapshot Scan, would replace the simple writing of the new
label with an atomic snapshot Update, and would replace their entire original Scan with an
atomic snapshot Scan.

However, as they note, this transformation has drawbacks. The size of the atomic registers
in all known implementations of atomic snapshot memory is 0( nv), where v is the size of
the local value of each processor, and hence the size of the atomic registers in the resulting
timestamping system is Q(n?) (because here v is a label, and their label is of size n). Second,
since both Update and Scan operations of the snapshot take O(n?) steps, then while the
running time of the Scan operation in the resulting timestamping system improves, the running
time of the Label operation increases to O(n?).

We show that one can replace the atomic snapshot abstract object in the Dolev-Shavit
timestamping system by the weak snapshot object. Note that this leads to a solution without
the above-mentioned drawbacks. More precisely, we get a timestamping system with linear
running time, register size and label size.

Next we prove that the resulting system is indeed a bounded concurrent timestamping
system.

Theorem 5. Our modification of the Dolev-Shavit algorithm yields a bounded concurrent
timestamping system.

Proof: Regularity and Monotonicity follow directly from the analogous properties of the weak
snapshot (more specifically, they follow from the Regularity and the Monotonicity of Scans
properties of weak snapshot). To complete the proof we need to show the Ordering property.

Consider an execution of our algorithm and focus on the sequence of labelling operations.
In our algorithm, when a process performs a Label operation it collects the labels of the
other processes using a weak snapshot Scan, w hile in the original algorithm of Dolev and
Shavit these labels are obtained using a simple Collect. However, for every execution of our
algorithm, there exists an execution of the Dolev-Shavit algorithm that produces the same
sequence of the labelling operations. This is due to the fact that the set of labels read by a
weak snapshot scan can be also read by a collect executed in the same time interval, and
because the result of a labelling operation in the Dolev-Shavit algorithm depends only on the
set of labels collected during this operation. Thii implies that there exists an irreflexive total

" Note that this Scan is different from our weak snapshot Scan.
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order on the labelling operations in the execution of our algorithm that is consistent with the
precedence relation on the labelling operations. (The ordering is the one guaranteed by the
proof of the Dolev-Shavit algorithm on the corresponding execution of their algorithm.)

Given an execution, the total order on the labelling operations defined by Dolev and Shavit
is as follows: if one labelling operation reads the label produced by another labelling operation,
then the first operation is ordered after the second. To get the total order, take the transitive
closure of this partial order and extend it to a total order by considering the values of the
labels.

The next step is to show that the order produced by a Scan operation of our algorithm
is consistent with this total order. A Scan operation of our algorithm is just a weak snapshot
Scan. Consider a weak snapshot Scan that returns a set of labels £. To compute the order
between these labels, our algorithm makes direct use of the appropriate procedure in the
Dolev-Shavit algorithm. Therefore, it remains to show that the order on these labels produced
by this procedure is consistent with the total order defined above.

Define a modified execution of our algorithm where we stop each process after it completes
the labelling operation that generates its label in £, Observe that the Monotonicii of Scans
property of weak snapshots implies that none of the labelling operations in the original
execution that generated labels in £ can observe labels that were not written in the modified
execution. Consider a Scan of the original Dolev-Shavit algorithm that is executed at the end of
this modified execution. The Scan of Dolev-Shavit reads the same labels as in-1. The ordering
of the labels computed by this Scan is consistent with the ordering on the labelling operations
in the modified execution, and hence the ordering of the labels produced by our algorithm is
also consistent with the total order on the labels defined by the modified execution.

We claim that the total order on Label operations obtained for the original execution (from
which we obtained the modified one) is consistent with the total order obtained by the modified
execution. In other words, we have the original (infinite) execution and a modified (truncated)
execution. Consider labelling operations that appear only in both executions and the two total
orders defined on these operations. Note that the only way these two total orders could be
inconsistent is if there exists a labelling operation in the original execution that generated a
label in £ and that read a label (during its weak snapshot Scan) that was not written in the
modified execution. However, since the labels in £ are read by a weak snapshot Scan, the
“Monotonicity of Scans” property of weak snapshots implies that thii is impossible. a

5.2 EfficientRandomized Consensus

In a randomized consensus protocol, each of n asynchronous processes starts with a pref-
erence taken from a two-element set (typically {0,1}), and runs until it chooses a decision
value and halts. The protocol is correct if it is consistent: no two processes choose differ-
ent decision values; valid: the decision value is some process’s preference; and randomized
wait-free: each process decides after a finite expected number of steps. When computing a
protocol’s expected number of steps, we assume that scheduling decisions are made by an
adversary with unlimited resources and complete knowledge of the processes’ protocols, their
internal states, and the state of the shared memory. The adversary cannot, however, predict
future coin flips.

Our technical arguments require some familiarity with the randomized consensus protocol
of Aspnes [5]. This protocol makes two uses of atomic snapshot, both of which can be
replaced by our weak snapshot. The protocol is centered around a robust weak shared coin
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protocol, which is a kind of collective coin flip: all participating processes agree on the outcome
of the coin flip, and an adversary scheduler has only a slight influence on the outcome. The
n processes collectively undertake a one-dimensional random walk centered at the origin with
absorbing barriers at £+ (K + n), for some K > 0. The shared coin is implemented by a
shared counter. Each process alternates between reading the counter’s position and updating
it. Eventually the counter reaches one of the absorbing barriers, determining the decision value.
While the counter is near the middle of the region, each process flips an unbiased local coin to
determine the direction in which to move the counter. If a process observes that the counter
is within n of one of the barriers, however, the process moves the counter deterministically
toward that barrier. The code for the robust shared coin appears in Figure 5.

FuncTioN SharedCoin

repeat

1. ¢ := read{counter)

2. if ¢ € (K + n) then decide 0

3. elseif ¢ > (K + n) then decide 1

4. elseif ¢ < — K then decrement{counter)
5. elseif ¢ > K then increment{counter)

6. else
7. if LocalCoin=0 then decrement{counter)
8. else increment{counter)

Fig. 5.Robust Weak Shared Coin Protocol (Aspnes{S])

Aspnes implements the shared counter as an n-element array of atomic single-writer multi-
reader registers, one per process. To increment or decrement the counter, a process updates
its own field. To read the counter, it atomically scans all the fields. Careful use of modular
arithmetic ensures that all values remain bounded. The expected running time of thii protocol,
expressed in primitive reads and writes, is 0( 72 (p? +n)), where p is the number of processes
that actually participate in the protocol.

The shared counter at the heart of this protocol is linearizable [20}: There exists a total
order “==" on operations such that:

-ifA — Bthen A = B.
- Each Read operation returns the sum of all increments and decrements ordered before it
by =

We replace the linearizable counter with a different data abstraction: by analogy with the
definition of weak snapshot, a weak counter imposes the same two restrictions, but allows
= to be a partial order instead of a total order. Informally, concurrent Read operations
may disagree about concurrent increment and decrement operations, but no others. We can
construct a weak counter implementation from Aspnes’s linearizable counter implementation
simply by replacing the atomic snapshot scan with a weak snapshot scan. We now argue that
the consensus protocol remains correct if we replace the linearizable counter with a more
efficient weak counter.
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The proof of the modified consensus protocol depends on the following lemma which
is analogous to a similar lemma in [5]. Recall from Section 3 that for each Scan operation
returning a vector @ of values, there is an associated time tgeqn, the latest time between the
start and end times of the Scan at which the spans of the values in % intersect.

Let Ry (I3, Dj) denote p’s (¢’s) i** (5**) read (increment, decrement) operation.

Lemma6. If R; returns value v > K + n, then all reads w hose tscan is not smaller

than the tscan of Ry, will return values > K + 1. (The symmetric claim holds w hen
v< (K +n))

Proof: Suppose not. Pick an earliest (with respect to tscan) Rg that violates the hypothesis.
Denote the tscan of R} by t,. Since tscan of R} is tg >y, it follows from the definition of
tscan that R{ must observe all updates that were completed before ¢, i.. all these updates
are ordered before it by =

Observe that for each processor z, any update U¥ that completes not before tp, except
the first such update, must follow a read RX that started not before ¢, and hence the scan of
this read (t;) is not smaller than ¢,. Note that by definition of “observed” relation, any R¥
observed by R} completes before ¢4 and hence ¢, <t, <1,. Since R} is the first to violate
the claim, we have that any such R¥ returns a value > K + 1.

Any counter modiition that follows such a read (R’,‘) must be an increment (see Step 5).
Since processes alternate between reads and updates, any update seen by R; and not seen by
R?" finishes after ¢, and hence any subsequent update of the same processor that is observed
by R} must be an increment. Any update observed by RJ but not by R, must finish after ¢,.
Similar to the argument above, any subsequent update of the same processor that is observed
by Rg must be an increment.

The claim follows since any update by processor p that is not observed by R; but is
observed by Rg must follow a read that started after ¢,, and hence must be an increment. W

The protocol also uses an atomic snapshot to make the protocol’s running time depend
on p, the number of active processes. For thii purpose, in addition to the shared counter used
for the random walk, the protocol also keeps two additional counters, called active counters
(implemented in the same way as the “random walk” counter), to keep track of the number
of active processes that start with initial values 0 and 1. Each process increments one active
counter before it modifies the random walk counter for the first time. (More specifically, if
the processor starts with initial value 0, it increments the first active counter, and otherwise it
increments the second.) All three counters (that is, the shared coin counter and the two active
counters) are read in a single atomic snapshot scan.

The proof of the expected running time of the protocol hinges on the following lemma,
which holds even if we replace the atomic snapshot scan by a weak snapshot scan. Define
the true position of the random walk at any instant to be the value the random walk counter
would assume if all operations in progress were run to completion without starting any new
operations.

Lemma 7. Let T be the true position of the random w alk at tsean of Rp. If Rp returns

values ¢, ag, and a; for the random walk counter and the two active counters, then
c—(ap+a1-1)<t<c+(ap+a;-1)
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Proof: A process g affects the random walk’s true position only if it has started to increment
or decrement the random walk counter by time tscgn. Any g that has started to modify the
random walk counter by the ¢scan of Rp has already finished incrementing the appropriate
active counter before that time, so Rp observes that increment. It follows that Ry, fails to
observe at most (ag + @; — 1) increments or decrements active at its tscan, and the result
follows. [ ]

6 Conclusions

We have defined the weak snapshot scan primitive and constructed an efficient implementation
of it. We have given two examples of algorithms designed using the strong primitive of atomic
snapshot scan for whiih it was possible to simply replace the expensive atomic snapshot with
the much less expensive weak snapshot scan. Indeed, it seems that in many cases atomic
snapshot scan can be simply replaced by weak snapshot scan. Our construction relied on the
Traceable Use abstraction of Dwork and Waarts [18]. Alternatively, we could have used the
weaker primitives of Tromp [28] or of Kirousis, Spirakis, and Tsigas [23}.

In a similar spirit to the weak snapshot, one can define a weak concurrent timestamping
system, which, roughly speaking, satisfies the properties of the standard timestamping system
except that the ordering == on Label operations and the < orders on labels are partial rather
than total. Such a timestamping system is interesting for two reasons: it is conceptually simple
and it can replace standard timestamping in at least one situation: Abrahamson’s randomized
consensus algorithm [1].

In conclusion, we can generalize our approach as follows. Consider a concurrent object
with the following sequential specification. 8

- Mutator operations modify the object’s state, but do not return any values. Mutator oper-
ations executed by different processes commute: applying them in either order leaves the
object in the same state.

- Observer operations return some function of the object’s state, but do not modify the
object.

A concurrent implementation of such an object is linearizable if the precedence order on
operations can be extended to a total order == such that the value returned by each observer
is the result of applying all the mutator operations ordered before it by ==>. This kind of object
has a straightforward wait-free linearizable implementation using atomic snapshot scan ([6]).
A weakly linearizable implementation is one that permits = to be a partial order instead of
a total order. This paper’s contribution is to observe (1) that weakly linearizable objects can be
implemented more efficiently than any algorithm known for their fully linearizable counterparts,
and (2) there are certain important applications where one can replace linearizable objects with
weakly linearizable objects, preserving the application’s modular structure while enhancing
performance.
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