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Abstract.

This paper surveys the evolution of "high level" programming languages
during the first decade of computer programming activity. We discuss the
contributions of Zuse ("Plankalkil", 1945), Goldstine/von Neumann ("Flow
Diagrams", 1946), Curry ("Composition", 1948), Mauchly et al. ("Short Code",
1950), Burks ("Intermediate PL", 1950), Rutishauser (1951), Bohm (1951),
Glennie ("AUTOCODE", 1952), Hopper et al. ("A-2", 1953), Laning/Zierler .
(195%), Backus et al. ("FORTRAN", 1954-1957), Brooker ("Mark I Autocode",
1954), Kemynin/Liubimskii ("mm-2", 1954), Ershov ("mm", 1955), Grems/Porter
("BACAIC", 1955), Elsworth et al. ("Kompiler 2", 1955), Blum ("ADES", 1956),
Perlis et al. ("IT", 1956), Katz et al. ("MATH-MATIC", 1956-1958),

Hopper et al. ("FLOW-MATIC", 1956-1958), Bauer/Samelson (1956-1958).

The principal features of each contribution are illustrated; and for
purposes of comparison, a particular fixed algorithm has been encoded

(as far as possible) in each of the languages. This research is based
primarily on unpublished source materials, and the authors hope that they
have been able to compile a fairly complete picture of the early
developments in this area.
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The Early Development of Programming Languages

It is interesting and instructive to study the history of a subject
not only because it helps us to understand how the important ideas were
born -- and to see how the "human element" entered into each development --
but also because it helps us to appreciate the amount of progress that
has been made. This is especially striking in the case of programming
languages, a subject which has long been undervalued by computer scientists.
After learning a high-level language, a person often tends to think mostly
of improvements he or she would like to see (since all languages can be
improved), and it is very easy to underestimate the difficulty of creating
that language in the first place. The real depth of this subject can
only be properly perceived when we realize how long it took to develop
the important concepts which we now regard as self evident. These ideas
were by no means obvious a priori, and many years of work by brilliant
and dedicated people were necessary before our current state of knowledge
was reached.

The goal of this paper is to give an adequate account of the early
history of "high level" programming languages, covering roughly the first
decade of their development. Our story will take us up to 1957, when the
practical importance of algebraic compilers was first being demonstrated,
and when computers were just beginning to be available in large numbers.

We will see how people's fundamental conceptions of algorithms and of the
programming process evolved during the years -- not always in a forward
direction -- culminating in languages such as FORTRAN I. The best languages
we shall encounter are, of course, very primitive by today's standards, but
they were good enough to touch off an explosive growth in language
development; the ensuing decade of intense activity has been detailed in
Jean Sammet's 785-page book [SA 69]. We shall be concerned with the more
relaxed atmosphere of the "pre-Babel" days, when people who worked with
computers foresaw the need for important aids to programming that did not
vet exist. In many cases these developments were so far ahead of their
time that they remained unpublished, and they are still largely unknown
today.



Altogether we shall be considering about 20 different languages, and
it follows that we will have neither the space nor the time to characterize
any one Sf'them completely; besides, it would be rather boring to recite
so many technical rules. The best way to grasp the spirit of a programming
language is to read example programs, so we shall adopt the following
strategy: A certain fixed algorithm -- which we shall call the "TPK
algoritm" for want of a better namei/ -- will be expressed as a program in
each language we discuss. Informal explanations of this progrem should
then suffice to capture the essence of the corresponding language,
although the TPK algorithm will of course not exhaust that language's
capabilities; once we have understood the TPK program, we will be able
to discuss the most important language features it does not reveal.

Note that the same algorithm will be expressed in each language,
in order to provide a simple means of comparison. A serious attempt
has been made to write each program in the style originally used by the
author of the corresponding langusge; and if comments appear next to the
program text, they attempt to match the terminology used at that time
by the original authors. Our treatment will therefore be something
like "a recital of Chopsticks as it would have been played by Bach,
Beethoven, Brahms, and Brubeck." The resulting programs are not truly
authentic excerpts from the historic record, but they will serve as
fairly close replicas; the interested reader can pursue each language
further by consulting the bibliographic references to be given.

The exemplary TPK algorithm which we shall be using so frequently
can be written as follows in a dialect of Algol 60.

1 TPK: begin integer i; real y; real array a[0:10];
2 real procedure £(t); iggivé;jzgigs ts

3 f := sqrt(abs(t)) +5 xt t3;

L for i :=0 step 1 until 10 do read(a[i]);
2 225 i :=10 Ezsg -1 EEEE& O‘gg

& begin y := f(a[i]);

1 if y > LOO then write(i, "TOO LARGE")
8 else write(i,y);

2 end

10 e,

*
—/Cf. "Grimm's Law" in comparative linguistics, and/or the word "typical",
and/or the names of the authors of this article.
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(Actually Algol 60 is not one of the languages we shall be discussing,
since it was a later development, but the reader ought to know enough
about it to understand TPK. If not, here is a brief run-down on what
the above program means: Line 1 says that i is an integer-valued
variable, while y takes on floating-point approximations to real

values; and 80s 81 +ses8y are also real valued. Lines 2 and 3 define

the function f(t) = VTZT + St3 ; for use in the algorithm proper
which starts on line 4. Line 4 reads in the values B8y eeesByg s
in this order; then line 5 says to do lines 6, 7, 8, 9 (delimited by
begin and end ) for i =10,9,...,0 , in that order. The latter

lines cause y to be set to f(ai) , and then one of two messages is
written out. The message is either the current value of i followed
by the words "TOO LARGE" , or the current values of i and vy,
according as y > 400 or not.)

Of course this algorithm is quite useless; but for our purposes
it will be helpful to imagine ourselves vitally interested in the process.
Let us pretend that the function f(t) ==VT;T + 5t3 has a tremendous
practical significance, and that it is extremely important to print out
the function values f(ai) in the opposite order from which the a;
are received. This will put us in the right frame of mind to be reading
the programs. (If a truly useful algorithm were being considered here,
it would need to be much longer in order to illustrate as many different
programming language features.)

Meny of the programs we shall discuss will have italicized line
numbers in the left-hand margin, as in the Algol code above. Such numbers
are not really part of the programs, they appear only so that the
accompanying text can refer easily to any particular line.

It turns out that most of the early high-level languages were
incapable of handling the TPK algorithm exaectly as presented above;
so0 we must make some modifications. In the first place, when a language
deals only with integer variables, we shall assume that all inputs and
outputs are integer valued, and that " sqrt(x) " denotes the largest
integer not exceeding VX . Secondly, if the language does not provide



for alphabetic output, the string "TOO LARGE" will be replaced by the
number 999 . Thirdly, some languages do not provide for input and
output at all; in such a case, we shall assume that the input values
858y« e 08y have somehow been supplied by an external process, and
that our job is to compute 22 output values bo,bl,...,b21 . Here
bo,b,&,,...,beO will be the respective " i values" 10,9,...,0 , and the

alternate positions bl,bz,...,b will contain the corresponding f(ai)
7

21
values and/or 999 codes. Finally, if a language does not allow the
programmer to define his own functions, the statement " y := f(a[i]) "
will essentially be replaced by its expanded-out form

"y := sqrt(abs(ali])) +5 xa[i] t3 ".

Prior develoEments.

Before getting into real programming languages, let us try to set
the scene by reviewing the background very quickly. How were algorithms
described prior to 19457

The earliest known written algorithms come from ancient Mesopotamia,
about 2000 B.C. In this case the written descriptions contained only
sequences of calculations on particular sets of data, not an abstract
statement of the procedure; it is clear that strict procedures were
being followed (since, for example, multiplications by 1 were explicitly
performed), but they never seem to have been written down. TIterations
like " for i := 0 step 1 until 10 " were rare, but when present they
would consist of a fully-expanded sequence of calculations. (See [KN 72],
for a survey of Babylonian algorithms.)

By the time of Greek civilization, several nontrivial abstract
algorithms had been studied rather thoroughly; for example, see [KN 69,

p. 291 for a paraphrase of Euclid's presentation of "Euclid's algorithm".
The description of algorithms was always informal, however, rendered
in natural language.

During the ensuing centuries, mathematicians never did invent a
good notation for dynamic processes, although of course notations for
(static) functional relations became highly developed. When a procedure
involved nontrivial sequences of decisions, the available methods for

precise description remained informal and rather cumbersome.



Example programs written for early computing devices, such as those

for Babbage's Calculating Engine, were naturally presented in "machine
language" rather than in a true programming language. Thus: (a) The

three-address code for Babbage's machine was to consist of instructions

] " 1

x 1
on an Operation-card, and subscript numbers like (4, 0, 10) would appear

such as " Vh)(VO = Vlo ', where operation signs like would appear
on a separate Variable-card. The most elaborate program developed by
Babbage and Lady Lovelace for this machine was a routine for calculating
Bernoulli numbers; see [BA 61, pp. 68, 286-297]. (b) In 1914, Leonardo
Torres y Quevedo used natural language to describe the steps of a short
program for his hypothetical automaton; and Helmut Schreyer gave an
analogous description in 1939 for the machine he had helped Konrad Zuse
to build [see RA 73, pp. 95-98, 167]. (c) An example MARK I program
given in 1946 by Howard Aiken and Grace Hopper [see RA 73, pp. 216-218]
shows that its machine language was considerably more complicated.
Although all of these early programs were in a machine language,
it is interesting to note that Babbage had noticed already on July 9, 1836

that machines as well as people could produce programs as outpub:

This day I had for the first time a general but very indistinct
conception of the possibility of making an engine work out algebraic
developments. I mean without any reference to the value of the
letters. My notion is that as the cards (Jacquards) of the

Calc. engine direct a series of operations and then recommence

with the first so it might perhaps be possible to cause the same
cards to punch others equivalent to any given number of repetitions.
But there hole [sic] might perhaps be small pieces of formulae
previously made by the first cards. [RA 73, p. 349]

To conclude this survey of prior developments, let us take a look at
A. M. Turing's famous mathematical paper of 1936 [TU 36], where the
concept of a universal computing machine was introduced for theoretical
rurposes., Turing's machine language was more primitive, not having a
built-in arithmetic capability, and he defined a complex program by
giving what amounts to macro-expansions or open subroutines. For example,

1"

here was his program for making the machine move to the leftmost "a" on

its working tape:



£5(C,B,8)

behavior final m-config.
L El(g’ B’ a')
L £(C,B,a)
C
R £,(CBe)
R £ _(C,B,a)
~2 ~ ~
C
R £,(&Ba)
R B



[In order to carry out this operation, one sends the machine to state

f(C,B,a) ; it will immediately begin to scan left (L) until first

passing the symbol 5 . Then it moves right until either encountering
the symbol a or two consecutive blanks; in the first case it enters
into state C while still scanning the a , and in the second case it
enters state: B after moving to the right of the second blank. Turing
used the term ~ "m-configuration" for state.]

Such '"skeleton tables", as presented by Turing, represented the
highest-level notations for precise algorithm description that were
developed before our story begins -- except, perhaps, for Alonzo Church's
"\-notation" [CH 36] which represents an entirely different approach to
calculation. Mathematicians would traditionally present the control
mechanisms of algorithms informally, and the computations involved would
be expressed by means of equations. There was no concept of assignment

(i.e., of replacing the value of some variable by a new value); instead

1" n

of writing S ~ -8 one would write s = -sn , giving a new name to

n+l
each quantity that would arise during a sequence of calculations.

zZuse's "Plancalculus".
MAM’W\M‘WVWV\N\M;

Near the end of World War II, Allied bombs destroyed nearly all of
the sophisticated relay computers that Konrad Zuse had been building in
Germany since 1936. Only his Z4 machine could be rescued, in what Zuse
describes as a fantastic ["abenteuerlich"] way; and he moved the Z4 to
a little shed in a small Alpine village called Hinterstein.

It was unthinkable to conti

my small group of twelve co~workers disbanded. But it was now a

satisfactory time to pursue theoretical studies. The Z4 Computer

which had been rescued could barely be made to run, and no
especially algorithmic language was really necessary to program
it anyway. [Conditional commands had consciously been omitted;

see [RA 73, p. 181].] Thus the PK [Plankalkil] arose purely as a

piece of desk-work, without regard to whether or not machines

suitable for PK's programs would be available in the foreseeable

future. [2U 72, p. 6].



Zuse had previously come to grips with the lack of formal notations

for algorithms while working on his planned doctoral dissertation

[zU 4k]. Here he had independently developed a three-address notation
remarkably like that of Babbage; for example, to compute the roots

Xy and X5 of x2+a.x+b=0, given a,=Vl and b=V2,he
prepared the following Rechenplan [p. 26]:

Vl:2 ='V3
VsV =V,
V-V, =Yg
Vs =,
v5(-1) = V7
V7-+V6 = V8 =X,

V7-V6 =V9=x2 .

. . 2 - B TP G, D, r W, R T
He reglized thot thic notation was vraight-line prograiis

52 1-3m3
Seta v Vedd o sdV VOV id WSO daddidd,

[so-called starre Plénel, and he concluded his previous manuscript with

the following remark:
Unstarre Rechenpléne constitute the true discipline of higher

combingtorial computing; however, they cannot yet be treated in
this place. [ZU 44, p. 31]

The completion of this work was the theoretical task Zuse set himself
in 1945, and he pursued it very energetically. The result was an amazingly
comprehensive language which he called the Plankalkiil [program calculus],
an extension of Hilbert's Aussagenkalkiil [propositional calculus] and
Pradikatenkalkiil [predicate calculus]. Before laying this project aside,
Zuse had completed an extensive manuscript containing programs far more
complex than anything ever written before. Among other things, there were
algorithms for sorting; for testing the connectivity of a graph represented
as a list of edges; for integer arithmetic (including square roots) in

binary notation; and for floating-point arithmetic. He even developed



algorithms to test whether or not a given logical formula is syntactically
well-formed, and whether or not such a formula contains redundant
parentheses ~-- assuming six levels of precedence between the operators.
To top things off, he also included 49 pages of algorithms for playing
chess. (Who would have believed that such pioneering developments
could emerge from the solitary village of Hinterstein? His plans to
include algorithms for matrix calculations, series expansions, etc.,
had to be dropped since the necessary contacts were lacking in that
place; furthermore, his chess playing program treated "en passant
captures" incorrectly, because he could find no chess boards or people
to play chess with [2U 72, pp. 32, 35]!)

Zuse's 1945 manuscript unfortunately lay unpublished until 1972,
although brief excerpts appeared in 1948 and 1959 [ZU 48, zU 59]; see also
[BW 72], where his work was brought to the attention of English-speaking
readers for the first time. It is interesting to speculate about what
would have happened if he had published everything at once; would many
people have been able to understand such radical new ideas?

The monograph [ZU 45] on Plankalkiil begins with the following

statement of motivation:

Aufgabe des Plankalkiils ist es, beliebige Rechenvorschriften rein
formal darzustellen. [The mission of the Plancalculus is to
provide a purely formal description of any computational procedure. ]

So, in particular, the Plankalkil should be able to describe the TPK
algorithm; and we had better turn now to this program, before we forget

what TPK is all about. Zuse's notation may appear somewhat frightening

at first, but we will soon see that it is really not difficult to understand.
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1 2 = (A9 An1)
2 Pl R(V) = R

3 vl o 0

L Al 0 m

5 Vv +5 x vV = &

6 V| © 0 0

7 Al Al Al Al

8 m R(V) = R

9 v 0 0

10 Al 1lxal 11x2

1 w) [ r(v) = z

12 v 0 0 0

13 K i

1k ISR

15 Z2>h40 - (i,+®) = R r(lo-i)
16 v 0 oJ

17 K

18 A vk 9 2 9
19 z>40 - (i,Z) = R (10-1)
20 v 0 0 0

21 K

22 A AL 9 m 2 9

Line 1 of this code is the declaration of a compound data type, and
before we discuss the remainder of the program we should stress the richness
of data structures provided by Zuse's language (even in its early form
[ZU LL4]). This is, in fact, one of the greatest strengths of the
Plankalkiil; none of the other languages we shall discuss had such a
perceptive notion of data, yet Zuse's proposal was simple and elegant.

He started with data of type SO, a single bit ["Ja-Nein-Wert"] whose
value is either " -" or "+". From any given data types O #+ 291 7

a programmer could define the compound data type (OO,...,Gk_l) s and

11



individual components of this compound type could be referred to by
applying the subscripts 0 ,..., k-1 to any variable of that type.
Arrays could also be defined by writing mx0 , meaning m identical
components of type 0 ; and this idea could be repeated, in order to
obtain arrays of any desired dimension. Furthermore m could be "[J",
meaning a list of variable length, and Zuse made good use of such list
structures in his algorithms dealing with graphs, algebraic formulas, and
chessplay.

Thus the Plankalkiil included the important concept of hierarchically
structured data, going all the way down to the bit level. Such advanced
data structures did not enter again into programming languages until the
late 1950's, in IBM's Commercial Translator. The idea eventually
appeared in many other languages, such as FACT, COBOL, PL/I, and
extensions of ALGOL 60; cf. [CL 61] and [SA 69, p. 325].

Integer variables in the Plankalkiil were represented by type A9 .

Another special type was used for floating-binary numbers, namely

AN = (3x80,7x80,22x80) .

The first three-bit component here was for signs and special markers --
indicating, for example, whether the number was real or imaginary or zero; the
second was for a seven-bit exponent in two's complement notation; and

the final 22 ©bits represented the 23-bit fraction part of a normalized number,
with the redundant leading " 1" bit suppressed. Thus, for example, the

g-point number +L00.0 would have

O e

and it also could be written
(L0, 1L.OOO , LOOLOO0000000000000000)

[The +'s and -'s notation has its bits numbered 0,1,... from left-to-
right, while the L's and O's notation corresponds to the more familiar
binary notation, putting most significant bits at the left.] There was a
special representation for "infinite" and "very small" and "undefined"

quantities; for example,



+e = (LLO, LOOOO, 0) .

Note that the above program uses + » instead of 999 on line 15, since
such a value seems an appropriate way to render the concept "TOO LARGE" .
Let us return now to the program itself. Line 1l introduces the data
type A2 , namely an ordered pair whose first component is an integer
(type A9 ) and whose second component is floating-point (type Aal ).
This data type will be used later for the 11 outputs of the TPK algorithm.
Lines 2 thru 7 define the function f£(t) , and lines 8 thru 22 define the
main TPK program.

The hardest thing to get used to about Zuse's notation is the fact
that each operation spans several lines; for example, lines 11l thru ;& must
be read as a unit. The second line of each group (labelled " V") is used
to identify the subscripts for quantities named on the top line; thus

R, V, Z stands for the variables R
O O o0

primarily on output variables ["Resultatwerte'] Rk > input variables

0 2 Vb 3 ZO . Operations are done

["Variablen"] Vi » and intermediate variables ["Zwischenwerte' ] A
The " K" line is used to denote components of a variable, so that, in
our example, g means component i of the input variable VO .
i
(A completely blank " K" line is normally omitted.) Complicated subscripts
can be handled by making a zig-zag bar from the K-line up to the top line,
as in line 17 of the above program where the notation indicates component
10-i of Ry - The bottom line of each group is labeled A .or S, and
it is used to specify the type of each variable. Thus the "2" in line 18
of our example means that Ry is of type A2 ; the " Al " means that Z,
is floating-point (type AAl ); and the " 9" means that i is an integer.
Thus each " A" in the left margin is implicitly attached to all types in
its line,

Zuse remarked [ZU L5, p. 10] that the number of possible data types
was so large, it would be impossible to indicate a variable's type simply
by using typographical conventions as in classical mathematics; thus he
realized the importance of apprehending the type of each variable at
each point of a program, although this information is usually redundant.
This is probably one of the main reasons he introduced the peculiar

multi-line format. Incidentally, a somewhat similar multi-line notation

13



has been used in recent years to describe musical notes [SM 73]; it is
interesting to speculate if this notation will evolve in the same way
that programming languages have.

We are now ready to penetrate further into the meaning of the above
code. Each plan begins with a specification part ["Randauszug"], stating
the types of all inputs and outputs. Thus, lines 2 thru L4 mean that Pl

is a procedure that takes an input V. of type AAlL (floating point) and

0
produces RO of the same type. Lines § thru 10 say that P2 maps VO of

type 11 xAAL (namely, a vector of 1 floating-point numbers, the array a;
of our TPK algorithm) into a result R,
of 11 ordered pairs as described earlier).

The double arrow = , which Zuse called the Ergibt-Zeichen (yields-sign),

of type 11 xA2 (namely, a vector

was introduced for the assignment operation; thus the meaning of lines >
thru 7 should be clear. As we have remarked, mathematicians had never
used such an operator before; in fact, the systematic use of assignments
constitutes a distinct break between computer-science thinking and
mathematical thinking. Zuse consciously introduced a new symbol for the

new operation, remarking [ZU 45, p. 15] that Z+1 = Z was analogous to
3 3

to the more traditional equation zZ +1 = Z . (Incidentally, the
3.1 3,1+l

publishers of [2ZU 48] used the sign > instead of = , but Zuse never
actually wrote = himgelf,) Note that the variable receiving a new value
appears on the right, while most present-day languages have it on the left,
We shall see that there was a gradual "leftist" trend as languages
developed.

It remains to understand lines 1l thru 22 of the example. The notation
" W2(n) " represents an iteration, for i = n-1 down to O , inclusive;
hence W2(1l) stands for the second for loop in the TPK algorithm.
(The index of such an iteration was always denoted by i, or i.0 ; if
another iteration were nested inside, its index would be called i.l1l,
etc.) The notation gl(x) on line 11 stands for the result Ry of

applying procedure PL +to input x . Lines 15 thru ;§ of the program mean
"if Zy > 400 ‘then RO[lO-i] := (1, +») "; note Zuse's new notation -

for conditionals. ILines 19 thru 22 are similar, the bar over " Z, > Loo "
indicating the negation of that relation. There was no equivalent of

" else " in the Plankalkil, nor were there go to statements. Zuse did,

14



however, have the notation " Fin " with superscripts, to indicate a
Jjump out of a given number of iteration levels and/or to the beginning
of a new iteration cycle [ef. ZU 72, p. 28; ZU 45, p. 32]; this idea
has recently been revived in the BLISS language [WR 71].
The reader should now be able to understand the above code completely.
In the text accompanying his programs in Plankalkiil notation, Zuse
made it a point to state also the mathematical relations between the

variables which appeared. He called such a relation an impliciter Ansatz;

we would now call it an "invariant". This was yet another fundemental

idea about programming; and, like Zuse's data structures, it disappeared
from programming languages during the 1950's, waiting to be enthusiastically
received when the time was ripe [HO 71].

Zuse had visions of using the Plankalkiil some day as the basis of a
programming language that could be translated by machine (ef. [2U 72,
pp- 5, 18, 33, 34]); but in 1945, he was considering first things first
-- namely, he needed to decide what concepts should be embodied in g
notation for programming. We can summarize his accomplishments by
saying that the Plankolkill incorporated many cxbremely Luportant ildeas, out
it lacked the "syntactic sugar" for expressing programs in a readable
and easily writable format.

Zuse says he made modest attempts in later years to have the
Plankalkil implemented within his own company, "but this project
necessarily foundered because the expense of implementing and designing
compilers outstripped the resources of my small firm." He also mentions
his disappointment that more of the ideas of the Plankalkiil were not
incorporated into Algol 58, since some of Algol's original designers
knew of his work. [2U 72, p. 7] Such an outcome was probably inevitable,
because the Plankalkiil was far ahead of its time from the standpoint of
available hardware and software development. Most of the other languages
we shall discuss started at the other end, by asking what was possible
to implement rather than what was possible to write; and it naturally
took meny years for these two approaches to come together and to achieve

a suitable synthesis.

10



Flow Diagrams.

On the other side of the Atlantic, Herman H. Goldstine and John
von Neumann were wrestling with the same sort of problem that Zuse had
faced: How should algorithms be represented in a precise way, at a
higher level than the machine's language? Their answer, which was due
in large measure to Goldstine's analysis of the problem together with
suggestions by von Neumann, Adele Goldstine, and Arthur W. Burks [GO T2,
pp. 266-268], was quite different from the Plankalkiil: they proposed a
pictorial representation involving boxes Jjoined by arrows, and they called
it a "flow diagram". During 1946 and 1947 they prepared an extensive
and carefully worked out treatise on programming based on the idea of
flow diagrams [GV L7], and it is interesting to compare this work to
that of Zuse. There are striking differences, such as an emphasis on
numerical calculation rather than on data structures; and there are also
striking parallels, such as the use ot the term "Plan" in the titles of
both documents. Although neither work was published in contemporary
journals, perhaps the most significant difference was that the treatise
of Goldstine and von Neumann was beautifully "Varityped" and distributed
in quantity to the vast majority of people involved with computers at
that time. This fact, coupled with the high quality of presentation and
von Neumann's prestige, meant that their report had an enormous impact,
forming the foundation for computer programming techniques all over the
world. The term "flow diagram" became shortened to "flow chart" and
eventually it even became "flowchart" -- a word which has entered our
language as both noun and verb.

We all know what flowcharts are; but comparatively few people have
seen an authentic original flow diagram. In fact, it is very instructive
to go back to the original style of Goldstine and von Neumann, since
their inaugural flow diagrams represent a transition point between the
mathematical "equality" notation and the computer-science "assignment"
operation. Here is how the TPK algorithm would probably have looked,
if Goldstine and Von Neumann had been asked to deal with it in 1947:

16
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. U, = 1
(a+1-l)o to 2 — i "
(b+22-21), to 3 #] vy =999
V., =
1 yl v b 1+-5
999.27%0 o T
4.5
A
5
VI c.1 2%
-39 : - :
k by py =2 Uy to B.20-2i - 2 (ati)y
-10 ) : o
boyni =27V to B.21-21i 3 (_b+20-_1)0
D 2'lovi
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Several things need to be explained about this original notation,
and probably the most important consideration is the fact that the boxes
containing " 10 -1 " and " i-1 -+ i " were not intended to specify any
computation. This amounts to a significantly different viewpoint than
we are now accustomed to, and the reader will find it worthwhile to
ponder this conceptual difference until he or she understands it. The

box "

i-1 - i " represents merely a change in notation, as the flow

of control passes that point, rather than an action to be performed by
the computer. For example, box VII has done the computatim necessary
to place 2-59(1-1) into storage position C.1 ; so after we pass the

" i-1 - i " and go thru the subsequent junction point to box II,

box
location C.1 now contains 2'391 . The external notation has changed
but location C.l has not! This distinction between external and internal
notations occurs throughout, the external notation being problem-oriented
while the actual contents of memory are machine-oriented. The numbers
attached to each arrow in the diagram indicate so-called "constancy
intervals'", where all memory locations have constant contents and all
bound variables of the externmal notation have constant meaning.

A "storage table" is attached by a dashed line to the constancy intervals,
to show the relevant relations between external and internal values at
that point. Thus, for example, we note that the box " 10 - i " does

not specify any computation, but it provides the appropriate transition
from constancy interval 1.5 +to constancy interval 2 . (Cf. [GV 47,

§ 7.6, 7.71.)

There were four kinds of boxes in a flow diagram: (a) Operation
boxes, marked with a Roman numeral; this is where the computer program
was supposed to make appropriate transitions in storage. (b) Alternative
boxes, also marked with a Roman numeral, and having two exits marked +
and - ; this is where the computer control was to branch, depending on
the sign of the named quantity. (c) Substitution boxes, marked with a
# and using the " - " symbol; this is where the external notation for
a bound variable changed, as explained above. (d) Assertion boxes, also
marked with a # ; this is where important relations between external
notations and the current state of the control were specified. The

example shows three assertion boxes, one which says " i = -1 ", and two
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which assert that the outputs u, and A (in a problem-oriented
notation) now have certain values. Like substitution boxes, assertion
boxes did not indicate any action by the computer, they merely stated
relationships which helped to prove the validity of the program and
which might help the programmer to write code for the operation

boxes.

The next most prominent feature about original flow-diagrams is
the fact that a programmer was required to be conscious of the scaling
(i.e., the binary point location) of all numbers in the computer memory.
A computer word was L0 bits long and its contents was to be regarded as a binary
fraction x 1in the range -1 <x <1l . Thus, for example, the above
flowchart assumes that E-loaj is initially present in storage position
A.j , rather than the value aj itself; and the outputs bj are
similarly scaled.

The final mystery which needs to be revealed is the meaning of

notations such as (a.+i)O , (b)o , etec. In general, " X, " was used
when x was an integer machine address; and it represented the number

-=19_ . .-39 - o s . o R
¢ 'x+2 "“x , namely a binary word with Xx appearing twice, in bit

positions 9 to 20 and 29 to 4O (counting from the left). Such a
number could be used in their machine to modify the addresses of 20-bit
instructions that appeared in either half of a L40-bit word.

Once a flow diagram such as this had been drawn up, the remaining
task was to prepare so-called "static coding" for boxes marked with
Roman numerals. In this task a programmer would use his problem-solving
ability, together with his knowledge of machine language and the
information from storage tables and assertion boxes, to make the required
transitions. For example, in box VI one should use the facts that u; = i,
that storage D contains 2'-10‘4'i » that storage C.1 contains 2'39:1 B
and that storage C.3 contains (b+20 -21)O [a word corresponding to
the location of variable B.20-2i ] to carry out the specified assignments.
The job of box VII is slightly trickier: One of the tasks, for example,
is to store (b+22 -21)0 in location C.3 ; the programmer was supposed
to resolve this by adding 2-(2-19+2-39) to the previous contents of (.3
In general, the job of static coding required a fairly high level of

artificial intelligence, and it was far beyond the state of the art in
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in those days to get a computer to do such a thing. As with the
Plankalkul, the notation needed to be simplified if it was to be
suitable for machine implementation.

Let us make one final note about flow diagrams in their original
form: Goldstine and von Neumann did not suggest any notation for
subroutine calls, hence the function f(t) in the TPK algorithm has
been written in-line. In [GV 47, §12] there is a flow diagram for
the algorithm that a loading routine must follow in order to relocate
subroutines from a library, but there is no example of a flow diagram
for a driver program that calls a subroutine. An appropriate extension
of flow diagrams to subroutine calls could surely be made, but it would

have made our example less "authentic'".

A Logician's Aggroach.

Let us now turn to the proposals made by Haskell B. Curry, who was
working at the Naval Ordnance Laboratory in Silver Spring, Maryland;
his activity was partly contemporaneous with that of Goldstine and
von Neumann, since the last portion of [GV 47] was not distributed until
1948,

Curry wrote two lengthy memoranda [CU 48, CU 50] which have never
been published; the only appearance of his work in the open literature
has been the brief and somewhat cryptic summary in [CU 50']. He had
prepared a rather complex program for ENIAC in 1946, and this experience
led him to suggest a notation for program construction that is more
compact than flowcharts.

His aims, which correspond to important aspects of what we now call

"structured programming', were quite laudable:

The first step in planning the program is to analyze the computation
into certain main parts, called here divisions, such that the
program can be synthesized from them. Those main parts must be

such that they, or at any rate some of them, are independent
computations in their own right, or are modifications of such
computations. [CU SO,CH 34]
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But in practice his proposal was not especially successful, because

the way he factored a problem was not very natural; his components

tended to have several entrances and several exits, and perhaps his
mathematical abilities tempted him too strongly to pursue the complexities
of fitting such pieces together. As a result, the notation he developed
was somewhat eccentric; and the work was left unfinished. Here is how

he might have represented the TPK algorithm:

F(t) = W|t| + 5t7:a)
I = {10:i} - {t = L(a+i)} - F(t) - {A:y}
- IT - It7(o,i) - 0, &1,
IT = {x=L(+20-21)} - {i:x} - III
~ {w=L(b+21-21)} - {y:w}
III = {y > 400} - {999:y} &0,

The following explanations should suffice to make the example clear,
although they do not reveal the full generality of his language:

{E:x} means "compute the value of expression E and store it in
location x ".

A denotes the accumulator of the machine.

{x = L(E)}] means "compute the value of expression E and substitute
it into all appearances of ' x' in the following instruction
groups" .

X - Y means "substitute instruction group Y for the first exit
of instruction group X ".

Ij denotes the j-th entrance of this routine, namely the beginning
of its j-th instruction group.

0, denotes the j-th exit of this routine (he used the words "input"

J

and "output" for entrance and exit).

mns L4 "
{x >y} ~ 07 &0, means "if x >y , go to 0, , otherwise to 0, ".

It7(nbi) = 0, &0, means "decrease i by 1, then if i >m go
to 02 , otherwise to Ol ".

Actually the main feature of interest in Curry's early work is not

this programming language, but rather the algorithms he discussed for
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converting parts of it into machine language. He gave a recursive
description of a procedure to convert fairly general arithmetic expressions
into code for a one-address computer, thereby being the first person to
describe the code-generation phase of a compiler. (Syntactic analysis

was not specified; he gave recursive reduction rules analogous to well-
known constructions in mathematical logic, assuming that any formula

could be parsed properly.) His motivation for doing this was stated in

[cu 50']):

Now von Neumann and Goldstine have pointed out that, as programs

are made up at present, we should not use the technique of program
composition [i.e., subroutines] to make the simpler sorts of programs
-- these would be programmed directly -- but only to avoid
repetitions in programs of some complexity. Nevertheless, there

are three reasons for pushing clear back to formation of the
simplest programs from the basic programs [i.e., machine language
instructions], viz.: (1) Experience in logic and in mathematics
shows that an insight into principles is often best obtained by a
consideration of cases too simple for practical use -- e.g., one
gets an insight into the nature of a group by considering the
permutations of three letters, etc. ... (2) It is quite possible
that the technique of program composition can completely replace

the elaborate methods of Goldstine and von Neumann; while this may
not work out, the possibility is at least worth considering.

(3) The technique of program composition can be mechanized; if

it should prove desirable to set up programs, or at any rate certain
kinds of them, by machinery, presumably this may be done by

analyzing them clear down to the basic programs.

The program he would have constructed for F(t) , if £2  were replaced by
tetet , is

t]:4} - {VA:4) - {A:w} - {t:R} -~ {tR:A} - {A:R} - {{R:A)
3

- {A:R} - {5R:A} - {Atw:A} .

Here w 1is a temporary storage location, and R is a register used in

multiplication.



An Algebraic Interpreter.
D A A eV W S )

The three languages we have seen so far were never implemented; they
served purely as conceptual aids during the programming process. Such
conceptual alds were obviously important, but they still left the
programmer with a lot of mechanical things to do, and there were many
chances for errors to creep in.

The first "high-level" programming language actually to be implemented
was the Short Code, originally suggested by John W. Mauchly in 1949.
William F. Schmitt coded it for the BINAC at that time. Late in 1950,
Schmitt recoded Short Code for the UNIVAC, with the assistance of
Albert B. Tonik, and J. Robert Logan revised the program in January of 1952,
Details of the system have never been published, and the earliest
extant programmer's manual [RR 55] seems to have been written originally
in 1952.

The absence of data about the early Short Code indicates that it
was not an instant success, in spite of its eventual historic significance.

R e e Tt T o P T |
Lullnd il Llic piliad

s 1 9 R i W T S - -
his lack of popularity is not surprising when w

[

number of scientific users of UNIVAC equipment in those days; in fact,
the most surprising thing is that an algebraic language such as this was
not developed first at the mathematically-oriented centers of computer
activity. Perhaps the reason is that mathematicians were so conscious
of efficiency considerations, they could not imagine wasting any extra
computer time for something a programmer could do by himself. Mauchly

had greater foresight in this regard; and J. R. Logan put it this way:

By means of the Short Code, any mathematical equations may
be evaluated by the mere expedient of writing them down. There
is a simple symbological transformation of the equations into
code as explained by the accompanying write-up. The need for
special programming has been eliminated.

In our comparisons of computer time with respect to time
consumed by menual methods, we have found so far a speed ratio
of at least fifty to one. We expect better results from future

operations.
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... It is expected that future use of the Short Code will

demonstrate its power as a tool in mathematical research and

[RR 55]

as a checking device for some large-scale problems.

We cannot be certain how UNIVAC Short Code looked in 19503 but

it probably was closely approximated by the 1952 version, when TPK

could have been coded in the following way.

00
01
02
03
oL
05
06
o7
08
09
10

Memory equivalents:

i=WO, 't=TO,

Eleven inputs go respectively into words

Constants:

Equation number

Short Code:

Z0 = 000000000000
Z1 = 010000000051
Z2 = 010000000052  [10.0]
73 = 040000000053  [L00.0]
Z4 = AAATQOALARGE

75 = 050000000051 [5.0]

II

O =1line 01, 1 = line 06 ,

Equations

i =10
o: y=(

vy 4oo
i print
0O O

1: i print

abs t) + 5 cube t

if<to 1
» 'TOO0 LARGE' print-and-return
if=to 2

» ¥y print-and-return

2: TO UO shift

i=1i-1
0 i
stop

if<to 0

2k

y=YO.

U0, 179,178, ..., TO .

recall information [labels]:
2 = line 07

[1.0 in floating-decimal form]

Coded representation

00
TO
00
00
00
00
00
00
00
00
00

00
o2
Y0
00
00
00
00
00
WO
00
00

00
o7
03
00
zh
00
YO
00
03
00
00

WO
V47
09
YO
9
z0
29
TO
WO
z0
00

03
11
20
3
WO

zZ0
WO
Uo
ol
WO
2z

72
TO
06
41
58
72
58
99
71
4o
08



Each UNIVAC word consisted of twelve 6-bit bytes, and the Short
Code equations were "symbologically" transliterated into groups of six

2-byte packets using the following equivalents (among others):

01 - 06 abs value In (n+2)nd power 59 print and return carriage
02 ( 07 + 2n  (n+2)nd root 7n if=ton

03 = 08 pause bn if<to n 99 cyclic shift of memory
ok / 09 ) 58 print and tab Sn,Tn, ..., Zn quantities

Thus, " i =10 " would actually be coded as the word " 00 00 00 WO 03 zZ2 "
as shown; packets of 00 's could be used at the left to fill a word.
Multiplication was indicated simply by juxtaposition (see line OL).

The system was an algebraic interpreter, namely an interpretive

routine which continuously scanned the coded representation and performed
the appropriate operations. The interpreter processed each word from
right to left, so that it would see the " =" sign last. This fact needed
to be understood by the programmer, who had to break long equations up

tely into several words (ef, linec 01 and 02); sce also the
print instructions on lines Ob and 06, where the codes run from right
to left.

This explanation should suffice to explain the TPK program above,
except for the "shift" on line 07. Short Code had no provision for
subscripted variables, but it did have a 99 order which performed a
cyclic shift in a specified block of memory. For example, line 07 of
the above program means " temp = TO, TO=Tl, ..., T9 = U0, UO = temp ";
and fortunately this facility is all that the TPK algorithm needs.

The following press release from Remington Rand appeared in Journal

of the ACM, 1955, page 291:

Automatic programming, tried and tested since 1950, eliminates
comunication with the computer in special code or language. ...
The Short-Order Code is in effect an engineering "electronic
dictionary" ... an interpretive routine designed for the solution

of one-shot mathematical and engineering problems.
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(Several other automatic programming systems, including "B-zero" -- which
we shall discuss later -- were also ammounced at that time.) This is one
of the few places where Short Code has been mentioned in the open
literature; Grace Hopper referred to it briefly in [HO 52, p. 243 ]
(calling it "short-order code"), [HO 53, p. 142] ("short-code"),

[HO 58, p. 165] ("Short Code"). In [HM 53, p. 1252] it is stated that
the "short code" system was "only a first approximation to the complete
plan as originally conceived." This is probably true, but several
discrepancies between [HM 53] and [RR 55] indicate that the authors

of [HM 53] were not fully familiar with UNIVAC Short Code as it actually

existed.

The Intermediate PL of Burks.

Independent efforts to simplify the job of coding were being made
at this time by Arthur W. Burks and his colleagues at the University of
Michigan. The overall goal of their activities was to investigate the
process of going from the vague "Ordinary Business English" description
of a data-processing problem to the "Internal Program Language" description
of a machine-language program for that problem; and, in particular, to

break this process up into a sequence of smaller steps.

This has two principal advantages. First, smaller steps can
more easily be mechanized than larger ones. Second, different
kinds of work can be allocated to different stages of the
process and to different specialists. [BU 51, p. 12]

In 1950, Burks sketched a so-called "Intermediate Programming Language"
which was to be the step one notch above the Internal Program Language.
Instead of spelling out complete rules for this Intermediate Programming
language, he took portions of two machine programs previously published
in [BU 50] and showed how they could be expressed at a higher level of
abstraction. From these two examples it is possible to make a reasonable

guess at how he might have written the TPK algorithm at that time:
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l. 10-1

To 10.

From 1,35
10.

11.

12.

13.
To 20

To 30

From 13
20.

To 30 -

From 13,20
30.
31.
32.
33.
3L,
35.

To Lo

To 10

From 35

Lo,

A+i - 11
[Avi] -t
6|2 +585 -y
Loo,y; 20,30
if y > 4oo

if y < koo

999 -y

(B+20 -2i)" - 31
i~ [B+20-2i]
(B+20 -2i)+1 - 33
vy = [(B+20 -2i)+1]
i-1 - i

i,0; Lo,10

if i<0

Compute location of a;

Look up a; and transfer to storage

V. ==V|ai| + Sag

1

Determine if vy =Yy

vy = 999

Compute location of b20—2i

boops =1

Compute location of b21—2i
Po1-pi = V3

i - i+l

Repeat cycle until

Stop execution
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Comments at the right of this program attempt to indicate Burks's
style of writing comments at that time; and they succeed in making the
program almost completely self-explanatory. Note that the assignment
operation is well established by now; and Burks used it also in the
somewhat unusual form " i - i+l " shown in the comment to instruction 34
[BU 50, p. k1]. _

The prime symbol which appears within instruction 30 meant that the
computer was to save this intermediate result, as it was a common
subexpression that could be used later without recomputation. Burks
mentioned that several of the ideas embodied in this language were due
to Janet Wahr, Don Warren, and Jesse Wright.

Methods of assigning addresses and of expanding abbreviated
commands into sequences of commands can be worked out in advance.
Hence the computer could be instructed to do this work. ... It
should be emphasized, however, that even if it were not efficient
to use a computer to make the translation, the Intermediate PL
would nevertheless be useful to the human programmer in planning
and constructing programs. [BU 51, p. 13]

At the other end of the spectrum, nearer to Ordinary Business
Language, Burks and his colleagues later proposed an abstract form of
description which may be of independent interest, even though it does
not relate to the rest of our story. The following example suffices
to give the flavor of their "first Abstraction Language', proposed in

1954k

X1

¢,d*(= 1 inst)

L (d-: [k, S:u]:[ayr])

1 ult <d<d*
2 (s-1) 2 (s-v) + =~ 2 (s-r)
a<1l ult d<1l ult 1 ult<d<d*

FORM XI: CUSTOMER'S STATEMENT
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On the first line, ¢ denotes the customer's name and address; and d*

is " 1 inst ", the first of the current month. The symbol.lz;i(xl,...,xn)
was used to denote a list of all n-tuples (xl,...,xn) of category 1,
in order by the first component X 3 and the meaning of the second line
is "a listing, in order of date d , of all invoices and all remittances
for the past month". Here [k,s,u] was an invoice, characterized by

its number k , its dollar amount s , and its discount u ; [a,r] was
a remittance of r dollars, identified by number a ; and " 1 ult " means
the first of the previous month., The bottom gives the customer's old
balance from the previous statement, and the new balance on the right.
"The notation is so designed as to leave unprejudiced the method of the
statement's preparation." [BC 54] Such notations have not won over the
business community, however, perhaps for the reasons explained by

Grace Hopper in [HO 58, p. 198]:

I used to be a mathematics professor. At that time I found there
were a certain number of students who could not learn mathematics,
I then was charged with the job of making it easy for businessmen
to use our computers., I found it was not a question of whether
they could learn mathematics or not, but whether they would., ...
They said, "Throw those symbols out ~-- I do not know what they mean,
I have not time to learn symbols." I suggest a reply to those

who would like data processing people to use mathematical symbols
that they make them first attempt to teach those symbols to
vice-presidents or a colonel or admiral, I assure you that I

tried it.

Rutishauser's contribution.
L e e e et alaa Y vV )

Now let us shift our attention once again to Europe, where the first
published report on methods for machine code generation was about to
appear. Heinz Rutishauser was working with the 74 computer which, by
then, had been rebuilt and moved to the Swiss Federal Institute of
Technology (E.T.H.) in Zirich; and plans were afoot to build a brand new
machine there, The background of Rutishauser's contribution can best be

explained by quoting from a letter he wrote some years later:
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I am proud that you are taking the trouble to dig into my 1952
paper. On the other hand it makes me sad, because it reminds me
of the premature death of an activity that I had started hopefully
in 1949, but could not continue after 1951 because I had to do
other work -- to run practically singlehanded a fortunately slow
computer as mathematical analyst, programmer, operator and even
troubleshooter (but not as an engineer), This activity forced

me also to develop new numerical methods, simply because the ones
then known did not work in larger problems., Afterwards when I
would have had more time, I did not come back to automatic
programming but found more taste in numerical analysis. Only much
later I was invited -- more for historical reasons, as a living
fossil so to speak, than for actual capacity -- to join the ALGOL
venture, The 1952 paper simply reflects the stage where I had to
give up automatic programming, and I was even glad that I was able
to put out that interim report (although I knew that it was final).
[RU 63]

Rutishauser's comprehensive treatise [RU 52] described a hypothetical
computer and a simple algebraic language, together with complete
flowcharts for two compilers for that language. One compiler expanded
all loops out completely, while the other produced compact code using
index registers. His source language was somewhat restrictive, since
there was only one nonsequential control structure (the EEE statement);
but that control structure was in itself an important contribution to
the later development of programming languages. Here is how he might

have written the TPK algorithm:

1l Fir i = 10(-1)0

2 a; = t

3 (Sgrt Abs t) + (5 xt xtxt) =y
L Max(Sgn(y-400), 0) 2= h

2 203 Dy p;

& (8x999) + ((1-h) x¥y) = by o4
7 Ende Index i

8 Schluss
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Since no "if ... then" construction --much less go to -- was present
NI NN

~r AR

in his language, the computation of

y, if y < koo,
999 , if y > Loo ,

has been done here in terms of the Max and Sgn functions he did have,
plus appropriate arithmetic; see lines L4 and 6. (The function Sgn(x)
is 0 if x=0, or +1 if x>0, or -1 if x <0 .) Another
problem was that he gave no easy mechanism for converting between
indices and other variables; indices (i.e., subscripts) were completely
tied to Fir -Ende loops. The above program therefore invokes a
trick to get i into the main formula on line L; " Z Oi " is intended
to use the Z instruction which transfered an indexed address to the
accumulator in Rutishauser's machine [RU 52, p. 10], and it is possible
to write this in such a way that his compiler would produce the correct
code, It is not clear whether or not he would have approved of this
trick; if not, we could have introduced another variable, maintaining
its value egquai to 1 . But since ne later wrote a paper entitled
"Interference with an ALGOL procedure,”" there is some reason to believe
he would have enjoyed the trick very much.

As with Short Code, the algebraic source code symbols had to be
transliterated before the program was amenable to computer input, and
the programmer had to allocate storage locations for the variables and
constants, Here is how our TPK program would have been converted to a
sequence of (floating-point) numbers on punched paper tape, using the
memory assignments a; = 100+1i , bi =200+i, 0=300, 1=2301,
5=302, Lo0o=303, 999 =30k, y=305, h=306, t=307:
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1ro

N

|+

I\

|ON

Fir i =210 (1) o0

1012,50110, -1, 0, Q,

begin stmt a sub i 3> t
010000 , 100, .00L , 200000 , 307 , Q,

begin stmt ( t Abs durmy Sqrt
010000 , 010000 , 307 , 110000 , O , 350800 ,
dummy ) + ( 5 X t X
0 , 2000000 , 020000 , 010000 , 302 , 060000 , 307 , 060000 ,
t X t ) >= v

307 , 060000 , 307 , 200000 , 200000 , 305 , Q ,
begin stmt ( ( v - 400 ) Sen
010000 , 010000 , 010000 , 305 , 030000 , 303 , 200000 , 100000 ,
dummy ) Max 0 D= h
0 , 200000 , 080000 , 300 , 2000000 , 306 , Q ,

begin stmt z 0 subi > by, sub -2i
010000 , O, 230000 , O, .00l , 200000 , 220 , -.002 , Q,

begin stmt ( h X 999 ) + (
0100000 , 010000 , 306 , 060000 , 304 , 200000 , 020000 , 010000 ,
( 1 - h ) X y ) >

010000 , 301 , 030000 , 306 , 200000 , 060000 , 305 , 200000 , 200000 ,
by, sub -2
221 ) e 002 5] Q F]

Ende
Q) Q,

Schluss
Qs Q.
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Here Q represents a special flag that was distinguishable from
all numbers. The transliteration is straightforward, except that unary
operators such as " Abs x" have to be converted to binary operators
"x Abs O". An extra left parenthesis is inserted before each formula,
to match the == (which has the same code as right parenthesis).
Subscripted variables whose address is o+ 2 cjij are specified by
writing the base address « followed by a sequence of values cle-BJ H
this scheme allows multiple subscripts to be treated in a simple way.
The operator codes were chosen to make life easy for the compiler;
for example, 020000 was the machine operation "add" as well as the
input code for + , so the compiler could treat almost all operations
alike. The codes for left and right parentheses were the same as the
machine operations to load and store the accumulator, respectively.

Since his compilation algorithm is published and reasonably simple,
we can exhibit exactly the object code that would be generated from the
above source input. The output is fairly long, but we shall consider
it in its entirety in view of its importance from the standpoint of
complier history. Each word in Rutishauser's machine held two instructions,

and there were 12 decimal digits per instruction word.

Machine instruction Symbolic form
230010 200050 10 -0p, Op—-1i,
230001 120000 l1-0p, -Op~0p,
200051 230000 Op =i’ , 0 - Op
200052 220009 Op »i% , %1 - IR,
239001 200081 1+IR9 - 0p, Op =L
000000 230100 No-op , loc a - Op
200099 010050 Op=-T, i -0p
020099 210001 OptT ~» Op , Op — IR,
011000 200307 a; »O0p, Op ~t
010307 110000 t -0p, |op| - Op
220009 350800 *+1 - 139 , go to Sqrt
000000 000000 no-op, no-op
200999 010302 Op ~P; , 5~ 0p
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Machine Imnstruction Symbolic form

060307 060307 Opxt -0p, Opxt - Op
060307 200998 Opxt -0p, Op - F,
010999 020998 P, ~0p, OptP, = Op
200305 010305 Oop -y, y—~0p

030305 200999 Op-400 - Op , Op - Py
010999 100000 P, »Op, Sgn Op - Op
200998 010998 Op - P, , Py = Op
080300 200306 Max(0Op,0) - Op , Op = h ,
230000 200099 0-0p, Op—-T

010050 020099 i-0p, OptT - Op
210001 230220 Op —» IR, , loc by, = Op
200099 230002 Oop - T, 2-0p

120000 060050 -0p - Op , Opxi - Op
020099 210002 OptT - Op , Op — IR,
010000 231000 (0) - 0p, IR; - Op
202000 230221 Op = b,y pg » 10C Dyy — 0P
200099 230002 Op-T, 2 - 0p

120000 060050 -0p - Op , Opxi = Op
020099 210001 OptT — Op , Op - IR,
0L0301 030306 1-0p, Op-h - Op
200999 010306 Op - P; , h —Op

06030k 200998 Opx999 - Op, Op » F,
010999 060305 P; »Op, Opxy -~ Op
200997 010998 Op » Pz » Fy = 0p
020997 201000 OptPz = 0p 5 Op = Dbyy o5
010081 210009 L ~0p, Op ~ IR
010050 220008 i-0p, *1 - IRg
030052 388003 Op-i” - Op , to (IRgt3) if Op = 0
010050 020051 i-0p, Opti’ - Op
200050 359000 Oop -1i, to (IR9)
000000 999999 no-op , stop

999999 stop
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(Several bugs on pp. 39-40 of [RU 52] needed to be corrected in order
to produce this code, but Rutishauser's original intent was reasonably
clear, The most common error made by a person who first tries to write
a compiler is to confuse compilation time with object-code time, and
Rutishauser gets the honor of being first to make this error!)

The above code has the interesting property that it is completely
relocatable -- even if we move all instructions up or down by one-half
a word, Careful study of the output shows that index registers were
treated rather awkwardly; but after all, this was 1951, and many
campilers even nowadays produce far more disgraceful code than this,

Rutishauser published slight extensions of his source language
notation in [RU 55] and [RU 55'].

An Ttalian graduate student, Corrado Bohm, developed a compiler at
the same time and in the same place as Rutishauser, so it is natural to
assume -- as many people have -- that they worked together. But in fact,
their methods had essentially nothing in common. BOhm (who was a student
of Eduard Stiefel) developed a language, a machine, and a translation
method of his own, during the latter part of 1950, knowing only of
[GV 47] and [2U 48]; he learned of Rutishauser's similar interests only
after he had submitted his doctoral dissertation in 1951, and he amended
the dissertation at that time in order to clarify the differences between

their approaches.
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Bohm's dissertation [BO 52] was especially remarkable because he
not only described a complete compiler, he also defined that compiler
in its own language! And the language was interesting in itself,
because every statement (including input statements, output statements,
and control statements) was a special case of an assignment statement.

Here is how TPK looks in Bohm's language:

A. Set i =0 (plus the - A
base address 100 for 100 - i
the input array a ). B - =

B. Let a new input a; be " - B
given. Increase 1 by unity, 7 = i
and proceed to C if i > 10, itl - 1
otherwise repeat B . [(;I_.ﬂ(i:-J_'LO))'C]+[(1.1(13110))-3] - T

C. Set i =10 . ' - C

110 - 1

D. Call x the number a; > nt - D
and prepare to calculate i - x
its square root r (using E - X
subroutine R ), returning R » =
to E .

E. Calculate f(ai) and ' - E
attribute it to y . r+oedicdieli -y
If y > 40O, continue [(1n(y2L00)) FI+[(1=(y=400)):G] - =

at F, otherwise at G.

F. Output the actual value nt - F
of i , then the value 12100 = ?
999 ("too large"). 999 - ?
Proceed to H. H - n
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G. Output the actual - G

values of i1 and Yy . i<100 - ?

y - ?

H - =

H. Decrease 1 by unity, n' - H
and return to D if i2l - 1

i > 0. Otherwise stop. [(12(10021))-D]+[(1 N (100%1i))-Q] - =«

Here comments in an approximation to Bohm's style appear on the left,
while the program itself is on the right. As remarked earlier, every-
thing in Bohm's language appears as an assignment. The statement

"B on " means " go to B ", i.e., set the program counter =n to the
value of variable B . The statement " n' - B " means "this is label B";
a loading routine preprocesses the object code, using this type of
statement to set the initial value of variable B rather than to store
an instruction in memory. The symbol " ? " stands for the external

" means "input a value and assign

world, hence the statement " ? - x
it to x"; the statement " x - ? " means "output the current value of x".
M arrow " § " is used to indicate indirect addressing (restricted to

one level); thus, " ? - i " in part B means 'read one input into the
location whose value is i", namely into a; -

BShm's machine operated only on nonnegative integers of 1L decimal

digits. As a consequence, his operation x*y was the logician's

subtraction operator,

X~y if x>y ;

0 s if x<y.

He also used the notation xNy for min(x,y) . Thus it can be verified
that
1, if 1i>J ;
1n(123) =
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0o , if i>3;
1:(i2)) =
1, if i<j.

Because of these identities, the complicated formula at the end of part B

is equivalent to a conditional branch,

C-m, if i>110 ;
B-n, if i <110 .

It is easy to read Bdhm's program with these notational conventions
in mind. Note that part C doesn't end with " D —» n ", although it could
have; similarly we could have deleted " B - m " after part A. (BShm
omitted a redundant go-to statement only once, out of six chances he
had in [BO 52].)

Part D shows how subroutines are readily handled in his language,
although he did not explicitly mention them. The integer square root
subroutine can be programmed as follows, given the input x and the

exit location X :

R. Set r=0 and t = 2h6 . n' - R
O - r
7036874417766k - t
' 5 - =
S. If r+t <x, goto T, o - S
otherwise go to U . r+t2x - u
[(1*w)-T]+[(1 Nu).U] - =
T. Decrease x by r+t, ' - T
divide r by 2 , increase x2r:t - X
r by t, and go to V. r:2+t - r
V - =x
U. Divide r by 2. nt - U
r:2 - r

vV -
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V. Divide t by 4. If t=0, - U
exit, otherwise return to S. t:h -t
[(1=t)-X]+[(1Nt)+8] - =

(This algorithm is equivalent to the classical pencil-and-paper method

for square roots, adapted to binary notation. It was given in hardware-
oriented form as example P9.18 by Zuse in [ZU 45, pp. 143-159]. To prove
its validity, one can verify that the following invariant relations hold

when we reach step S:

t 1is a power of L ;
r is a multiple of Ut ;
r°/4t +x = initial value of X3

0 < x <2rtht .

At the conclusion of the algorithm these conditions hold with t = 1/4 ;
so r 1is the integer square root and x is the remainder.)

BShm's one-pass compiler was capable of generating instructions
rapidly, as the input was being read from paper tape. Unlike Rutishauser,
BShm recognized operator precedence in his language; for example, r:2+t
was interpreted as (r:2)+t , the division operator " : " taking
precedence over addition. However, Bdhm did not allow parentheses to be
mixed with precedence relations: If an expression began with a left
parenthesis, the expression ﬂad to be fully parenthesized even when
associative operators were present; on the other hand if an expression
did not begin with a left parenthesis, precedence was considered but no
parentheses were allowed within it. The complete program for his

compiler consisted of 114 assignments, broken down as follows:

(1) 59 statements to handle formulas with parentheses

(ii) 51 statements to handle formulas with operator precedence
(ii1) L4 statements to decide between (i) and (ii).

There was also a loading routine, described by 16 assignment statements;
so the compiler amounted to only 130 statements in all, including 33
statements which were merely labels (n' - ...) . This brevity is

especially surprising when we realize that a good deal of the program
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was devoted solely to checking the input for correct syntax; this check
was not complete, however. [It appears to be necessary to add one more
statement in order to fix a bug in his program, caused by overlaying
information when a left parenthesis follows an operator symbol; but even
with this "patch" the compiler is quite elegant.]

Rutishauser's parsing technique often required order n2 steps to
process a formula of length n . His idea, which we have seen illustrated
above, was to find the leftmost pair of parentheses which have the highest
level, so that they enclose a parenthesis-free formula o , and to compile
the code for " a - Pq "; then the subformula " (@) " was simply replaced
by " Pq ", q was increased by 1 , and the process was iterated until
no parentheses remained. Bohm's parsing technique, on the other hand,
was of order n , generating instructions in what amounts to a linked
binary tree while the formula was being read in; to some extent, his
algorithm anticipated modern list-processing techn<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>