
THE EARLY DEVELOPMENT OF PROGRAMMING LANGUAGES

by

Donald E. Knuth

Luis Trabb Pardo |

STAN-CS-76-562

AUGUST 1976

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

(A)

The Early Development of Programming Languages

by Donald E. Knuth and Luis Trabb Pardo

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

This paper surveys the evolution of "high level" programming languages

during the first decade of computer programming activity. We discuss the

contributions of Zuse ("Plankalkiul", 1945), Goldstine/von Neumann ("Flow

Diagrams", 1946), Curry ("Composition", 1948), Mauchly et al. ("Short Code",

1950), Burks ("Intermediate PL", 1950), Rutishauser (1951), BOhm (1951),
Glennie ("AUTOCODE", 1952), Hopper et al. ("A-2", 1953), Laning/Zierler

(1953), Backus et al. ("FORTRAN", 1954-1957), Brooker ("Mark I Autocode',

1954), Kemynin/Liubimskii ("mm-2", 1954), Ershov ("mm", 1955), Grems/Porter
("BACAIC", 1955), Elsworth et al. ("Kompiler 2", 1955), Blum ("ADES", 1956),
Perlis et al. ("IT", 1956), Katz et al. ("MATH-MATIC", 1956-1958),

Hopper et al. ("FLOW-MATIC", 1956-1958), Bauer/Samelson (1956-1958).
The principal features of each contribution are illustrated; and for

purposes of comparison, a particular fixed algorithm has been encoded

(as far as possible) in each of the languages. This research is based

primarily on unpublished source materials, and the authors hope that they

have been able to compile a fairly complete picture of the early

developments in this area.

This article was commissioned by the Encyclopedia of Computer Science

and Technology, ed. by Jack Belzer, Albert G. Holzman, and Allen Kent,

and it is scheduled to appear in vol. 6 or vol, 7 of that encyclopedia

during 1977.

The preparation of this paper has been supported in part by National
Science Foundation grant MCS 72-03752 AO3, by the Office of Naval Research
contract NOOOlL-76-C-0%3%0, and by IBM Corporation. Reproduction in whole
or in part is permitted for any purpose of the United States Government.

1

The Early Development of Programming Languages

It is interesting and instructive to study the history of a subject

not only because it helps us to understand how the important ideas were

born -- and to see how the "human element" entered into each development --

but also because it helps us to appreciate the amount of progress that

has been made. This is especially striking in the case of programming

languages, a subject which has long been undervalued by computer scientists.

After learning a high-level language, a person often tends to think mostly

of improvements he or she would like to see (since all languages can be

improved), and it is very easy to underestimate the difficulty of creating

that language in the first place. The real depth of this subject can

only be properly perceived when we realize how long it took to develop

the important concepts which we now regard as self evident. These ideas

were by no means obvious apriori, and many years of work by brilliant

and dedicated people were necessary before our current state of knowledge

was reached.

The goal of this paper is to give an adequate account of the early

history of "high level" programming languages, covering roughly the first

decade of their development. Our story will take us up to 1957, when the

practical importance of algebraic compilers was first being demonstrated,

and when computers were just beginning to be available in large numbers.

We will see howpeople's fundamental conceptions of algorithms and of the

programming process evolved during the years -- not always in a forward

direction -- culminating in languages such as FORTRAN I. The best languages

we shall encounter are, of course, very primitive by today's standards, but

they were good enough to touch off an explosive growth in language

development; the ensuing decade of intense activity has been detailedin

Jean Sammet's T785-page book [SA 69]. We shall be concerned with the more

relaxed atmosphere of the "pre-Babel" days, when people who worked with

computers foresaw the need for important aids to programming that did not

yet exist. In many cases these developments were so far ahead of their

time that they remained unpublished, and they are still largely unknown

today.

2

Altogether we shall be considering about 20 different languages, and

it follows that we will have neither the space nor the time to characterize

any one of them completely; besides, it wouldbe rather boring to recite
so many technical rules. The best way to grasp the spirit of a programming

language is to read example programs, so we shall adopt the following

strategy: A certain fixed algorithm-- which we shall call the "TPK

algorithm" for want of a better name -- will be expressed as a program in
each language we discuss. Informal explanations of this program should

then suffice to capture the essence of the corresponding language,

although the TPK algorithm will of course not exhaust that language's

capabilities; once we have understood the TPKprogram, we will be able

to discuss the most important language features it does not reveal.

~~ Note that the same algorithm will be expressed in each language,

in order to provide a simple means of comparison. Aserious attempt

has been made to write each program in the style originally used by the

author of the corresponding language; and if comments appear next to the

program text, they attempt to match the terminology used at that time

by the original authors. Our treatment will therefore be something

like "a recital of Chopsticks as it would have been played by Bach,

Beethoven, Brahms, and Brubeck." The resulting programs are not truly

authentic excerpts from the historic record, but they will serve as |

fairly close replicas; the interested reader can pursue each language

further by consulting the bibliographic references to be given.

The exemplary TPK algorithm which we shall be using so frequently

can be written as follows in a dialect of Algol 60.

1 TPK: begin integer i; real y; real array a[0:10];

2 real procedure £(t); real t; value ts
3 f := sqrt(abs(t))+5 xt t3;

I for i := 0 step 1 until10 do read(a[i]);

2 for i := 10 step -1 until O do

[¢] begin y := f(a[il);
7 if y > Loo then write(i, "TOO LARGE")

8 else write(i,y);

2 end

et. "Grimm's Law" in comparative linguistics, and/or the word "typical,
and/or the names of the authors of this article.

5

(Actually Algol 60 is not one of the languages we shall be discussing,

since it was a later development, but the reader ought to know enough

about it to understand TPK. If not, here is a brief run-down on what

the above program means: Line 1says that i is an integer-valued

variable, while y takes on floating-point approximations to real

values; and 84875 every, are also real valued. ILines 2and 3define

the function f(t) = Jt] + 5° » for use in the algorithm proper
which starts on line 4. Line 4reads in the values 8s 8s ee esBy 3
in this order; then line 5says to do lines 6, 7, 8, 9 (delimited by

begin and end) for i =10,9 ...,0 , in that order. The latter

lines cause y to be set to f(a) , and then one of two messages is
written out. The message is either the current value of i followed

by the words "TOO LARGE" , or the current values of i and vy,

according as y > LOO or not.)

Of course this algorithm is quite useless; but for our purposes

it will be helpful to imagine ourselves vitally interested in the process.

Let us pretend that the function f(t) —[t| + 54° has a tremendous
practical significance, and that it is extremely important to print out

the function values f(a) in the opposite order from which the a |
are received. This will put us in the right frame of mind to be reading

the programs. (If a truly useful algorithm were being considered here,

it would need to be much longer in order to illustrate as many different

programming language features.)

| Many of the programs we shall discuss will have italicized line

numbers in the left-hand margin, as in the Algol code above. Such numbers

are not really part of the programs, they appear only so that the

accompanying text can refer easily to any particular line.

It turns out that most of the early high-level languages were

incapable of handling the TPK algorithm exactly as presented above;

so we must make some modifications. In the first place, when a language

deals only with integer variables, we shall assume that all inputs and

outputs are integer valued, and that " sqrt(x) " denotes the largest

integer not exceeding /x Secondly, if the language does not provide

L

for alphabetic output, the string "TOO LARGE" will be replaced by the

number 999 . Thirdly, some languages do not provide for input and

output at all; in such a case, we shall assume that the input values

8 815 +r 8q(have somehow been suppliedby an external process, and

that our job is to compute 22 output values Dos Dis eeeybyy . Here
bas Pos «ees bp will be the respective " i values" 10,9,...,0 , and the

alternate positions Dysbygy ees will contain the corresponding f(a,)
values and/or 999 codes. Finally, if a language does not allow the

programmer to define his own functions, the statement " y := f(a[i]) "

will essentially be replaced by its expanded-out form

" y := sqrt(abs(a[i])) +5 x ali] t3 ".

Prior developments.

Before getting into real programming languages, let us try to set

the scene by reviewing the background very quickly. How were algorithms

described prior to 19457

The earliest known written algorithms come from ancient Mesopotamia,

about 2000 B.C. Tn thig case the written descriptions contained only

sequences of calculations on particular sets of data, not an abstract

statement of the procedure; it is clear that strict procedures were

being followed (since, for example, multiplications by 1 were explicitly

performed), but they never seem to have been written down. Iterations

like " for i := 0 step 1 until 10 " were rare, but when present they

would consist of a fully-expanded sequence of calculations. (See [KN 72],

for a survey of Babylonian algorithms.)

By the time of Greek civilization, several nontrivial abstract

algorithms had been studied rather thoroughly; for example, see [KN 69,

p. 295] for a paraphrase of Euclid's presentation of "Fuclid's algorithm".

The description of algorithms was always informal, however, rendered

in natural language.

During the ensuing centuries, mathematicians never did invent a

good notation for dynamic processes, although of course notations for

(static) functional relations became highly developed. When a procedure

involved nontrivial sequences of decisions, the available methods for

precise description remained informal and rather cumbersome.

p)

Example programs written for early computing devices, such as those

for Babbage's Calculating Engine, were naturally presented in "machine

language" rather than in a true programming language. Thus: (a) The

three-address code for Babbage's machine was to consist of instructions

such as " Vv), XV, = Vi, ", where operation signs like " x" would appear
on an Operation-card, and subscript numbers like (4, 0, 10) would appear

cn a separate Variable-card. The most elaborate program developed by

Babbage and Lady Lovelace for this machine was a routine for calculating

Bernoulli numbers; see [BA 61, pp. 68, 286-297]. (b) In 191k, Leonardo

Torres y Quevedo used natural language to describe the steps of a short

program for his hypothetical automaton; and Helmut Schreyer gave an

analogous description in 1939 for the machine he had helped Konrad Zuse

to build [see RA73, pp. 95-98, 167]. (c) An example MARK I program

given in 1946 by Howard Aiken and Grace Hopper [see RA 73, pp. 216-218]

shows that its machine language was considerably more complicated. |

Although all of these early programs were in a machine language,

it is interesting to note that Babbage had noticed alreadyon July 9, 1836

that machines as well as people could produce programs as output:

This day I had for the first time a general but very indistinct |

conception of the possibility of making an engine work out algebraic

developments. I mean without any reference to the value of the

letters. My notion is that as the cards (Jacquards) of the

Calc. engine direct a series of operations and then recommence

with the first so it might perhaps be possible to cause the same

cards to punch others equivalent to any given number of repetitions.

But there hole [sic] might perhaps be small pieces of formulae

previously made by the first cards. [RA 73, p. 349]

To conclude this survey of prior developments, let us take a look at

A. M. Turing's famous mathematical paper of 1936 [TU 36], where the

concept of a universal computing machine was introduced for theoretical

curposes. Turing's machine language was more primitive, not having a

built-in arithmetic capability, and he defined a complex programby

giving what amounts to macro-expansions or open subroutines. For example,

here was his program for making the machine move to the leftmost "a™ on

its working tape:

6

m-config. symbol behavior final m-config.

2 L £,(G B, a)
f(C,B,a) ~~ LZ
~ Zz not L f£(C,B,a)

a C

f,(C,B,a) not a R f,(C,B,a)

None R £,(C,B, a)

a C

£,(C, B, a) not a R f, (CB, a)
None R B

I

[In order to carry out this operation, one sends the machine to state

£(C,B, a) ; it will immediately begin to scan left (L) until first

cessing the symbol 5 . Then it moves right until either encountering
the symbol a or two consecutive blanks; in the first case it enters
into state CC while still scanning the a , and in the second case it

enters state” B after moving to the right of the second blank. Turing
used the term ~ "m-configuration" for state.]

Such "skeleton tables", as presentedby Turing, represented the

highest-level notations for precise algorithm description that were

developed before our story begins -- except, perhaps, for Alonzo Church's

"\-notation" [CH 36] which represents an entirely different approach to

calculation. Mathematicians would traditionally present the control

mechanisms of algorithms informally, and the computations involved would

be expressedby means of equations. There was no concept of assignment

(i.e., of replacing the value of some variableby a new value); instead

of writing " s « -s " one would write S41 = ~S, giving a new name to
each quantity that would arise during a sequence of calculations.

Zuse's "Plancalculus". |

Near the end of World War II, Allied bombs destroyed nearly all of

the sophisticated relay computers that Konrad Zuse had been building in

Germany since 1936. Only his ZL machine could be rescued, in what Zuse

describes as a fantastic ["abenteuerlich"] way; and he moved the Zh to

a little shed in a small Alpine village called Hinterstein.

It was unthinkable to continue practical work on the equipment;

my small group of twelve co-workers disbanded. But it was nowa

satisfactory time to pursue theoretical studies. The Z4 Computer

which had been rescued could barely be made to run, and no

especially algorithmic language was really necessary to program

it anyway. [Conditional commands had consciously been omitted;

see [RA 73, p. 181].] Thus the PK [Plankalkul] arose purely as a

piece of desk-work, without regard to whether or not machines

suitable for PK's programs would be available in the foreseeable

future. [ZU 72, p. 6].

3

Zuse had previously come to grips with the lack of formal notations

for algorithms while working on his planned doctoral dissertation

[ZU Lk]. Here he had independently developed a three-address notation

remarkably like that of Babbage; for example, to compute the roots
2 .

Xq and Xn of x +ax+b =0, given a =v, and b =V,, he
prepared the following Rechenplan [p. 26]:

Vyie = Vs
V,*'V, =V
3 3 4

V Vg = Vg
V,(-1) =V3) ’

He reelized that this ncetation wees limited to straight-line programs

[so-called starre Pléne], and he concluded his previous manuscript with
the following remark:

Unstarre Rechenplane constitute the true discipline of higher

combinatorial computing; however, they cannot yet be treated in

this place. [ZU 44, p. 31]

The completion of this work was the theoretical task Zuse set himself

in 1945, and he pursued it very energetically. The result was an amazingly

comprehensive language which he called the Plankalkiil [program calculus],

an extension of Hilbert's Aussagenkalkiil [propositional calculus] and

Pradikatenkalkiil [predicate calculus]. Before laying this project aside,

Zuse had completed an extensive manuscript containing programs far more

complex than anything ever written before. Among other things, there were

algorithms for sorting; for testing the connectivity of a graph represented |

as a list of edges; for integer arithmetic (including square roots) in

binary notation; and for floating-point arithmetic. He even developed

9

algorithms to test whether or not a given logical formula is syntactically

well-formed, and whether or not such a formula contains redundant

parentheses ~-- assuming six levels of precedence between the operators.

To top things off, he also included 49 pages of algorithms for playing

chess. (Who would have believed that such pioneering developments

could emerge from the solitary village of Hinterstein? His plans to

include algorithms for matrix calculations, series expansions, etc.,

had to be dropped since the necessary contacts were lacking in that

place; furthermore, his chess playing program treated "en passant

captures" incorrectly, because he could find no chess boards or people

to play chess with [ZU 72, pp. 32, 35]!)

Zuse's 1945 manuscript unfortunately lay unpublished until 1972,

although brief excerpts appeared in 1948 and 1959 {ZU 48, ZU 59]; see also

[BW 72], where his workwas brought to the attention of English-speaking

readers for the first time. It is interesting to speculate about what

would have happened if he had published everything at once; would many

people have been able to understand such radical new ideas?

The monograph[ZU 45] on Plankalkiil begins with the following

statement of motivation:

Aufgabe des Plankalkils ist es, beliebige Rechenvorschriften rein

formal darzustellen. [The mission of the Plancalculus is to

provide a purely formal description of any computational procedure.]

So, in particular, the Plankalkul should be able to describe the TPK

algorithm; and we had better turn now to this program, before we forget

what TPK is all about. Zuse's notationmay appear somewhat frightening

at first, but we will soon see that it is really not difficult to understand.

10

1 a2 = (49,441)

2 Pl R(V) =» R

3 0 0

4 Al A AM

2 Viv) + 5 X Vv =» R
6 0 0 0

7 Al AL A AL

8 Po R(V) = R

9 | 0 010 Al 1lxal 11 x2

11 w2(11)| R1L(V) = Z

12 v 0 0 0

14 A A AL

15 | Z>h0 = (i,+®) = R (10-1)

16 Vv 0 0|
18 A AL 9 2 9

19 z>h00 =- (i,Z) = R (10-1)

20 v 0 0 0|
22 A AL 9 Al 2 9

Line 1 of this code is the declaration of a compound data type, and

before we discuss the remainder of the program we should stress the richness

of data structures provided by Zuse's language (even in its early form

[ZU 44]). This is, in fact, one of the greatest strengths of the

Plankalkiil; none of the other languages we shall discuss had such a

perceptive notion of data, yet Zuse's proposal was simple and elegant.

He started with data of type SO, a single bit ["Ja-Nein-Wert"] whose

value is either " -" or "+". From any given data types Op e0030p 1 7
a programmer could define the compound data type (UNERRY 01) , and

11

individual components of this compound type could be referred to by

applying the subscripts 0 ,..., k-1 to any variable of that type.

Arrays could also be defined by writing mx0 , meaning m identical

components of type 0 ; and this idea could be repeated, in order to

obtain arrays of any desired dimension. Furthermore m could be "QO",

meaning a list of variable length, and Zuse made good use of such list

structures in his algorithms dealing with graphs, algebraic formulas, and

chessplay.

Thus the Plankalkil included the important concept of hierarchically

structured data, going all the way down to the bit level. Such advanced

data structures did not enter again into programming languages until the

late 1950's, in IBM's Commercial Translator. The idea eventually

appeared in many other languages, such as FACT, COBOL, PL/I, and

extensions of ALGOL 60; cf. [CL 61] and [SA 69, p. 325].

Integer variables in the Plankalkil were representedby type A9 .

Another special type was used for floating-binary numbers, namely

AML = (3x80,7x80, 22x80) .

The first three-bit component here was for signs and special markers --

indicating, for example, whether the number was real or imaginary or zero; the

second was for a seven-bit exponent in two's complement notation; and

the final 22 bits represented the 23-bit fraction part of a normalized number,

with the redundant leading " 1" bit suppressed. Thus, for example, the

floating-point number +L00.0 would have appeared as

and it also could be written

(LO, LOOO, LOOLOOOOO0000000000000)

[The +'s and -'s notation has its bits numbered 0,1,... from left-to-

right, while the L's and O's notation corresponds to the more familiar

binary notation, putting most significant bits at the left.] There was a

speclal representation for "infinite" and "very small" and "undefined"

quantities; for example,

12

+o = (LLO, LOOOO, 0) .

Note that the above program uses +« instead of 999 on line 15>, since

| such a value seems an appropriate way to render the concept "TOO LARGE" .

Let us return now to the program itself. Line1 introduces the data

type A2 , namely an ordered pair whose first component is an integer

(type AQ) and whose second component is floating-point (type AAl).

This data type will be used later for the 11 outputs of the TPK algorithm.

Lines 2thru 7define the function f(t) , and lines 8thru22 define the
main TPK program.

The hardest thing to get used to about Zuse's notation is the fact

that each operation spans several lines; for example, lines 1l thru 1h must

be read as a unit. The second line of each group (labelled" V") is used

to identify the subscripts for quantities named on the top line; thus

R, V, Z stands for the variables Ry sy Vo 5 Zo oo Operations are done
O O ©

primarily on output variables ["Resultatwerte"] R_, input variables
["Variablen"] V, » and intermediate variables ["Zwischenwerte"] Z,
The " K" line is used to denote components of a variable, so that, in

our example, v meens component i of the input variable Vs .
i

(A completely blank " K" line is normally omitted.) Complicated subscripts

can be handled by making a zig-zag bar from the K-line up to the top line,

as in line 17 of the above program where the notation indicates component

10-1 of R, . The bottom line of each group is labeled A or S, and
it is used to specify the type of each variable. Thus the "2" in line 18

of our example means that Ry 1s of type A2 ; the " Al " means that Zq
is floating-point (type AAl); and the " 9" means that i is an integer.

Thus each " A" in the left margin is implicitly attached to all types in
its line.

Zuse remarked [ZU 45, p. 10] that the number of possible data types

was so large, it would be impossible to indicate a variable's type simply

by using typographical conventions as in classical mathematics; thus he

realized the importance of apprehending the type of each variable at

each point of a program, although this information is usually redundant.

This is probably one of the main reasons he introduced the peculiar

multi-line format. Incidentally, a somewhat similar multi-line notation

13

has been used in recent years to describe musical notes [SM 73]; it is

interesting to speculate if this notation will evolve in the same way

that programming languages have.

We are now ready to penetrate further into the meaning of the above

code. Each plan begins with a specification part ["Randauszug")], stating

the types of all inputs and outputs. Thus, lines 2thru 4 mean that P11

is a procedure that takes an input V, of type AAl (floating point) and
produces Ry of the same type. Lines 8thru 10 say that P2 maps Vy of
type 11 xAAL (namely, a vector of 1 floating-point numbers, the array a,

of our TPK algorithm) into a result Ry, of type 11 x42 (namely, a vector
of 11 ordered pairs as described earlier).

The double arrow = , which Zuse called the Ergibt-Zeichen (yields-sign),

was introduced for the assignment operation; thus the meaning of lines >

thru 7should be clear. As we have remarked, mathematicians had never

| used such an operator before; in fact, the systematic use of assignments

constitutes a distinct break between computer-science thinking and

mathematical thinking. Zuse consciously introduced a new symbol for the

new operation, remarking [ZU 45, p. 15] that Z+1= Z was analogous to
5 po)

to the more traditional equation Zz +1 = Z . (Incidentally, the
5.1 3.i+1l

publishers of [ZU 48] used the sign >= instead of = , but Zuse never

actually wrote >= himself.) Note that the variable receiving a new value

appears on the right, while most present-day languages have it on the left,

We shall see that there was a gradual "leftist" trend as languages

developed,

It remains to understand lines 11 thru 22 of the example. The notation

" W2(n) " represents an iteration, for i = n-1 down to O , inclusive;

hence W2(1ll) stands for the second for loop in the TPK algorithm,
(The index of such an iteration was always denoted by i , or i.0 ; if

another iteration were nested inside, its index would be called 1i.l ,

etc.) The notation fl (x) on line 11 stands for the result R, of
applying procedure P1L to input x . Lines 1> thru 18 of the program mean

"if 24 > 400 then R,[10-i] = (1, +») "; note Zuse's new notation -
for conditionals. Lines19 thru 22 are similar, the bar over " Z, > Loo "
indicating the negation of that relation. There was no equivalent of

" else " in the Plankalkul, nor were there go to statements. Zuse did,

14

however, have the notation " Fin " with superscripts, to indicate a

Jump out of a given number of iteration levels and/or to the beginning
of a newiteration cycle [cf. ZU 72, p. 28; zU L5, p. 32]; this idea

has recently been revived in the BLISS language [WR 71].

The reader should now be able to understand the above code completely.
In the text accompanying his programs in Plankalkiil notation, Zuse

made it a point to state also the mathematical relations between the

variables which appeared. He called such a relation an impliciter Ansatz; |
we would now call it an "invariant". This was yet another fundamental

idea about programming; and, like Zuse's data structures, it disappeared

from programming languages during the 1950's, waiting to be enthusiastically
received when the time was ripe [HO 71].

Zuse had visions of using the Plankalkiil some day as the basis of a

programming language that could be translated by machine (ef. [ZU 72,
pp. 5, 18, 33, 34]); but in 1945, he was considering first things first
-- namely, he needed to decide what concepts should be embodied in a

notation for programming. We can summarize his accomplishments by

saying that the Plankalliil incorporatedmany ciuiremely lmportant ideas, but
it lacked the "syntactic sugar" for expressing programs in a readable
and easily writable format. |

Zuse says he made modest attempts in later years to have the

Plankalkil implemented within his own company, "but this project

necessarily foundered because the expense of implementing and designing
compilers outstripped the resources of my small firm." He also mentions

his disappointment that more of the ideas of the Plankalkiil were not

incorporated into Algol 58, since some of Algol's original designers

knew of his work. [ZU 72, p. 7] Such an outcome was probably inevitable,
because the Plankalkiul was far ahead of its time from the standpoint of

available hardware and software development. Most of the other languages
we shall discuss started at the other end, by asking what was possible

to implement rather than what was possible to write; and it naturally
took many years for these two approaches to come together and to achieve
a suitable synthesis.

15

Flow Diagrams.

On the other side of the Atlantic, Herman H. Goldstine and John

von Neumann were wrestling with the same sort of problem that Zuse had

faced: How should algorithms be represented in a precise way, at a

higher level than the machine's language? Their answer, which was due

in large measure to Goldstine's analysis of the problem together with

suggestions by von Neumann, Adele Goldstine, and Arthur W. Burks [GO 72,

pp. 266-268],was quite different from the Plankalkul: they proposed a

pictorial representation involving boxes joined by arrows, and they called

it a "flow diagram". During 1946 and 1947 they prepared an extensive

and carefully worked out treatise on programming based on the idea of

flow diagrams [GV 47], and it is interesting to compare this work to

that of Zuse. There are striking differences, such as an emphasis on

numerical calculation rather than on data structures; and there are also

striking parallels, such as the use ot the term "Plan" in the titles of

both documents. Although neither work was published in contemporary

journals, perhaps the most significant difference was that the treatise

of Goldstine and von Neumann was beautifully "Varityped" and distributed

in quantity to the vast majority of people involved with computers at

that time. This fact, coupled with the high quality of presentation and

von Neumann's prestige, meant that their report had an enormous impact,

forming the foundation for computer programming techniques all over the

world. The term "flow diagram" became shortened to "flow chart" and

eventually it even became "flowchart" -- a word which has entered our

language as both noun and verb,

We all know what flowcharts are; but comparatively few people have

seen an authentic original flow diagram. In fact, it is very instructive

to go back to the original style of Goldstine and von Neumann, since

their inaugural flow diagrams represent a transition point between the

mathematical "equality" notation and the computer-science "assignment"

operation. Here is how the TPK algorithm would probably have looked,

if Goldstine and Von Neumann had been asked to deal with it in 1947:

16

. .=10

. .-10 a
Aj 2 a, (j = Oy eeer10) B.j bs (J = 0, .0.,19-21)

| c.1 10.2707 c.1 270% |

2 (a+10), | 2 (ati), |

| 3 (0), | 3 (b+20-21) | B.j by (§ = 0s e20) |
T | oo

-3910.2 to c.x | | 4 - . |

| .

(bg to 3
| : 2

| 2
- IIT

* 20, = lay] ro) be 0

6 L .oA=10—{7
- TV

VII + LOO-y -

2291-1) to C.1 | 4 h

(ati-1), to 2 — i 4
(b+22-21), to 3 #| vy = 997

Vv, =Y.
1 1 4.3

999-2710 to 1b
"3

5

VI cl 27%

: 39 AD 2 (ati)
| Prong = 2 Uy to B.20-21 Ls (a 3g
| _ ,-10 . (br 0-51boypg =2 Vv; to B.21-2i 3 21),

D 2™10,

17

Several things need to be explained about this original notation,

and probably the most important consideration is the fact that the boxes

containing " 10 - 1 " and " 1-1 - i " were not intended to specify any

computation. This amounts to a significantly different viewpoint than

we are now accustomed to, and the reader will find it worthwhile to

ponder this conceptual difference until he or she understands it. The

box " i-1 - i " represents merely a change in notation, as the flow

of control passes that point, rather than an action to be performedby

the computer. For example, box VII has done the computatim necessary

to place 2737 (1-1) into storage position C.l ; so after we pass the
box " i-1 -» i " and go thru the subsequent junction point to box II,

location C.1 now contains 227i . The external notation has changed
but location C.l has not! This distinction between external and internal

notations occurs throughout, the external notation being problem-oriented

while the actual contents of memory are machine-oriented. The numbers

attached to each arrowin the diagram indicate so-called "constancy

intervals", where all memory locations have constant contents and all

bound variables of the external notation have constant meaning.

A "storage table" is attachedby a dashed line to the constancy intervals,

to show the relevant relations between external and internal values at

that point. Thus, for example, we note that the box " 10 — i " does

not specify any computation, but it provides the appropriate transition

from constancy interval 1.5 to constancy interval 2 . (Cf. [GV L7,

§8 7.6, 7.71.)

There were four kinds of boxes in a flow diagram: (a) Operation

boxes, marked with a Roman numeral; this is where the computer program

was supposed to make appropriate transitions in storage. (b) Alternative

boxes, also marked with a Roman numeral, and having two exits marked +

and - 3 this is where the computer control was to branch, depending on

the sign of the named quantity. (c) Substitution boxes, marked with a

and using the " - " symbol; this is where the external notation for

a bound variable changed, as explained above, (4) Assertion boxes, also

marked with a # 3; this is where important relations between external

notations and the current state of the control were specified. The

example shows three assertion boxes, one which says " i = -1 ", and two

18

which assert that the outputs u. and A (in a problem-oriented
notation) now have certain values. Like substitution boxes, assertion

boxes did not indicate any action by the computer, they merely stated

relationships which helped to prove the validity of the program and

which might help the programmer to write code for the operation
boxes.

The next most prominent feature about original flow-diagrams is

the fact that a programmer was required to be conscious of the scaling

(i.e., the binary point location) of all numbers in the computer memory.

A computer word was 40 bits long and its contents was to be regarded as a binary
fraction x in the range -1 <x <1 . Thus, for example, the above

flowchart assumes that 2s, is initially present in storage position
A.j , rather than the value 8 itself; and the outputs b, are
similarly scaled.

The final mystery which needs to be revealed is the meaning of

notations such as (ati), , (bg , etc. In general, " x, " was used
when X was an integer machine address; and it represented the number

a9, 5 229, , nameiy a binary word with Xx appearing twice, in oil
positions 9 to 20 and 29 to 40 (counting from the left). Such a

number could be used in their machine to modify the addresses of 20-bit

instructions that appeared in either half of a LO-bit word.

Once a flow diagram such as this had been drawn up, the remaining

task was to prepare so-called "static coding" for boxes marked with

Roman numerals. In this task a programmer would use his problem-solving

ability, together with his knowledge of machine language and the

information from storage tables and assertion boxes, to make the required |

transitions. For example, in box VI one should use the facts that Us = i,

that storage D contains "Ov, , that storage C.1 contains 0=39; ,
and that storage C.3 contains (b+20 -21) [a word corresponding to

the location of variable B.20-2i] to carry out the specified assignments.

The job of box VII is slightly trickier: One of the tasks, for example,

is to store (b+22 -2i), in location C.3 ; the programmer was supposed
to resolve this by adding 2. (2719 + 2739) to the previous contents of C.3 .
In general, the job of static coding required a fairly high level of

artificial intelligence, and it was far beyond the state of the art in

19

in those days to get a computer to do such a thing. As with the

Plankalkul, the notation needed to be simplified if it was to be

suitable for machine implementation.

Let us make one final note about flow diagrams in their original

form: Goldstine and von Neumann did not suggest any notation for

subroutine calls, hence the function f(t) in the TPK algorithm has

been written in-line. In [GV 47, §12] there is a flow diagram for

the algorithm that a loading routine must followin order to relocate

subroutines from a library, but there is no example of a flow diagram

for a driver program that calls a subroutine. An appropriate extension |

of flow diagrams to subroutine calls could surely be made, but it would

have made our example less "authentic".

A Logician's Approach. |

Let us now turn to the proposals made by Haskell B. Curry, who was

working at the Naval Ordnance Laboratory in Silver Spring, Maryland;

his activity was partly contemporaneouswith that of Goldstine and

von Neumann, since the last portion of [GV 47] was not distributed until

1948.

Curry wrote two lengthy memoranda [CU 48, CU 50] which have never

been published; the only appearance of his work in the open literature

has been the brief and somewhat cryptic summary in [CU 50']. He had

prepared a rather complex program for ENIAC in 1946, and this experience

| led him to suggest a notation for program construction that is more
compact than flowcharts.

His aims, which correspond to important aspects of what we now call

"structured programming", were quite laudable:

The first step in planning the programis to analyze the computation

into certain main parts, called here divisions, such that the

program can be synthesized from them. Those main parts must be

such that they, or at any rate some of them, are independent

computations in their own right, or are modifications of such

computations. [CU 50,P 34]

20

But in practice his proposal was not especially successful, because

the way he factored a problem was not very natural; his components

tended to have several entrances and several exits, and perhaps his

mathematical abilities tempted him too strongly to pursue the complexities

of fitting such pieces together. As a result, the notation he developed

was somewhat eccentric; and the work was left unfinished. Here is how

he might have represented the TPK algorithm:

F(t) = @|t| + 57:4)
I = {10:1} -» {t = L(a+i)} » F(t) - {A:y]}

- IT - It. (0,1) - 0&1,
ITI = {x=L(b+20-2i)} -» {i:x} —- III

~ {w=L(b+21-21)} > {y:w)

IIT = {y > 400} - {999:y)} &0,

The following explanations should suffice to make the example clear,

although they do not reveal the full generality of his language:

{E:x} means "compute the value of expression E and store it in

location x ".

A denotes the accumulator of the machine.

{x = L(E)} means "compute the value of expression E and substitute

it into all appearances of ' x' in the following instruction

groups".

X -Y means "substitute instruction group Y for the first exit

of instruction group X ".

Is denotes the j-th entrance of this routine, namely the beginning
of its j-th instruction group.

oF denotes the j-th exit of this routine (he used the words "input"
and "output" for entrance and exit).

{x >y} - 0; &0, means "if x>y, go to 0, , otherwise to 0, ".

It, (my 1) = 0, &0, means "decrease 1 by 1, then if i >m go
2 LL]

to 0, y otherwise to Oy .

Actually the main feature of interest in Curry's early work is not

this programming language, but rather the algorithms he discussed for

21

converting parts of it into machine language. He gave a recursive

description of a procedure to convert fairly general arithmetic expressions

into code for a one-address computer, thereby being the first person to

describe the code-generation phase of a compiler. (Syntactic analysis

was not specified; he gave recursive reduction rules analogous to well-

known constructions in mathematical logic, assuming that any formula

could be parsed properly.) His motivation for doing this was stated in

[cu 50]:

Now von Neumann and Goldstine have pointed out that, as programs

are made up at present, we should not use the technique of program

composition [i.e., subroutines] to make the simpler sorts of programs

-- these wouldbe programmed directly -- but only to avoid

repetitions in programs of some complexity. Nevertheless, there

are three reasons for pushing clear back to formation of the |

simplest programs from the basic programs [i.e., machine language

instructions], viz.: (1) Experience in logic and in mathematics

shows that an insight into principles is often best obtained by a

consideration of cases too simple for practical use -- e.g., one

gets an insight into the nature of a group by considering the

permutations of three letters, etc. ... (2) It is quite possible

that the technique of program composition can completely replace

the elaborate methods of Goldstine and von Neumann; while this may

not work out, the possibility is at least worth considering.

(3) The technique of program composition can be mechanized; if

it should prove desirable to set up programs, or at any rate certain

kinds of them, bymachinery, presumably this may be done by

analyzing them clear down to the basic programs.

The programhe would have constructed for F(t) , if £2 were replaced by
tet-t , is

{|t]:4} = {VA:4} — {A:w} — {t:R} - {tR:A} — {A:R} - {tR:A)

— {A:R} -» {5R:A} - {A+w:A} .

Here w 1s a temporary storage location, and R is a register used in

multiplication.

22

An flgebraic Interpreter.

The three languages we have seen so far were never implemented; they

served purely as conceptual aids during the programming process. Such

conceptual alds were obviously important, but they still left the

programmer with a lot of mechanical things to do, and there were many
chances for errors to creep in.

The first "high-level" programming language actually to be implemented

was the Short Code, originally suggested by John W. Mauchly in 1949.

William F. Schmitt coded it for the BINAC at that time. Late in 1950,

Schmitt recoded Short Code for the UNIVAC, with the assistance of

Albert B. Tonik, and J. Robert Logan revised the program in January of 1952,

Details of the system have never been published, and the earliest

extant programmer's manual [RR 55] seems to have been written originally
in 1952.

The absence of data about the early Short Code indicates that it

was not an instant success, in spite of its eventual historic significance,

This lack of popularity 1s not surprising when we consider ithe small

number of scientific users of UNIVAC equipment in those days; in fact,

the most surprising thing is that an algebraic language such as this was

not developed first at the mathematically-oriented centers of computer
activity. Perhaps the reason is that mathematicians were so conscious

of efficiency considerations, they could not imagine wasting any extra

computer time for something a programmer could do by himself. Mauchly

had greater foresight in this regard; and J. R. Logan put it this way:

By means of the Short Code, anymathematical equations may

be evaluated by the mere expedient of writing them down. There

is a simple symbological transformation of the equations into

code as explained by the accompanying write-up. The need for

special programming has been eliminated.

In our comparisons of computer time with respect to time

consumed by manual methods, we have found so far a speed ratio

of at least fifty to one. We expect better results from future

operations.

23

... It is expected that future use of the Short Code will

demonstrate its power as a tool in mathematical research and

as a checking device for some large-scale problems. [RR 55]

We cannot be certain how UNIVAC Short Code looked in 1950; but

it probably was closely approximated by the 1952 version, when TPK

could have been coded in the following way.

Memory equivalents: i=WO0, t=T0, y=Y0.

Eleven inputs go respectively into words UO, T9, T8, ..., TO .

Constants: Z0 = 000000000000

Zl = 010000000051 [1.0 in floating-decimal form]

Z2 = 010000000052 [10.0]

73 = 0LO000000053 [400.0]

Z4 = AAATOOALARGE |
75 = 050000000051 [5.0]

Equation number recall information [labels]:

O=1line 01, 1 = line 06, 2 = lineO07

Short Code:

Equations Coded representation

00 i =10 00 00 00 WO 0% 22
01 0: y=(/abst)+5 cube t TO 02 07 75 11 TO

02 00 YO 03 09 20 06

03 y 400 if<to 1 00 00 O00 YO Z3 hl

ok i print, 'TOO LARGE' print-and-return 00 00 Z4 59 WO 58

03 O O if=to 2 O00 00 O00 Z0 ZO 172

06 1: i print, y print-and-return 00 00 YO 59 Wo 58

07 2: TO UO shift O00 00 00 TO UO 99

08 i = i-1 O00 WO O03 WO O01 2Zz1

09 0 i if<to 0 00 00 00 ZO WO ko

10 stop 00 00 00 00 2zz O08

2

Each UNIVAC word consisted of twelve 6-bit bytes, and the Short

Code equations were "symbologically" transliteratedinto groups of six

2-byte packets using the following equivalents (among others):

oL - 06 abs value In (n+2)nd power 59 print and return carriage

02 (07 + 2n (n+2)nd root Tn if= ton

03 = 08 pause kn if<ton 99 cyclic shift of memory

ok / 09) 58 print and tab Sn, Tn, ...,Zn quantities

Thus, " i = 10 " would actually be coded as the word " 00 00 00 WO 03 Zo

as shown; packets of 00 's could be used at the left to fill a word.

Multiplication was indicated simply by juxtaposition (see line Ol).

The system was an algebraic interpreter, namely an interpretive

routine which continuously scanned the coded representation and performed

the appropriate operations. The interpreter processed each word from

right to left, so that it would see the " =" sign last. This fact needed

to be understood by the programmer, who had to break long equations up

appropristely into several words (cf. lines 01 and 22); soc alac the

print instructions on lines QL and 06, where the codes run from right
to left.

This explanation should suffice to explain the TPK program above,

except for the "shift" on line 07. Short Code had no provision for

subscripted variables, but it did have a 99 order which performed a

cyclic shift in a specified block of memory. For example, line Q7 of

the above program means " temp= TO, TO = T1, ..., T9 = U0, UO =temp ";
and fortunately this facility is all that the TPK algorithm needs.

The following press release from Remington Rand appeared in Journal

of the ACM, 1955, page 291:

Automatic programming, tried and tested since 1950, eliminates

communication with the computer in special code or language. ...

The Short-Order Code is in effect an engineering "electronic

dictionary" ... an interpretive routine designed for the solution

of one-shot mathematical and engineering problems.

2D

(Several other automatic programming systems, including "B-zero" -- which

we shall discuss later -- were also announced at that time.) This is one

of the few places where Short Code has been mentioned in the open

literature; Grace Hopper referred to it briefly in [HO 52, p. 243]

(calling it "short-order code"), [HO 53, p. 1k2] ("short-code"),

[HO 58, p. 165] ("Short Code"). In [HM 53, p. 1252] it is stated that

the "short code" system was "only a first approximation to the complete

plan as originally conceived." This is probably true, but several

discrepancies between [HM 53] and [RR 55] indicate that the authors

of [HM 53] were not fully familiar with UNIVAC Short Code as it actually

existed.

TheIntermediateFL of Burks.

Independent efforts to simplify the job of coding were being made

at this time by Arthur W. Burks and his colleagues at the University of

Michigan. The overall goal of their activities was to investigate the

process of going from the vague "Ordinary Business English" description

of a data-processing problemto the "Internal Program Language" description

of amachine-language program for that problem; and, in particular, to

break this process up into a sequence of smaller steps.

This has two principal advantages. First, smaller steps can

more easily be mechanized than larger ones. Second, different

kinds of work can be allocated to different stages of the

process and to different specialists. [BU 51, p. 12]

In 1950, Burks sketched a so-called "Intermediate Programming Language"

which was to be the step one notch above the Internal Program Language.

Instead of spelling out complete rules for this Intermediate Programming

Language, he took portions of two machine programs previously published

in [BU 50] and showed how they could be expressed at a higher level of

abstraction, From these two examples it is possible to make a reasonable

guess at how he might have written the TPK algorithmat that time:

26

1. 10 -1

To 10.

From 1,35

10. A+i - 11 Compute location of a.

11. [Ati] -» t Look up a; and transfer to storage

12. [t]Y245¢ oy v; =a] + 582
13. Lo0,y; 20,30 Determine if Vi = Vs

To 20 if y > Loo

To 30 if y < Loo

From 13

To 30

From 13,20

30. (B+20-2i)° = 31 Compute location of Dog ni
31. i - [B+20-2i] bong = i

32. (B+20 -2i)+1 - 33 Compute location of by,,:

33. y — [(B+20 -21i)+1] bogpn; = Vs
34, i-1 —- i 1 — i+1

35. 1,0; Lo, 10 Repeat cycle until i negative

To LO if i <0

To 10 if 1>0

From 35

Lo. F Stop execution

27

Comments at the right of this program attempt to indicate Burks's

style of writing comments at that time; and they succeed in making the

program almost completely self-explanatory. Note that the assignment

operation is well established by now; and Burks used it also in the

somewhat unusual form " i - i+l " shown in the comment to instruction 34

[BU 50, p. 41]. |
The prime symbol which gppears within instruction 30 meant that the

computer was to save this intermediate result, as it was a common

subexpression that couldbe used later without recomputation. Burks

mentioned that several of the ideas embodied in this language were due

to Janet Wahr, Don Warren, and Jesse Wright.

Methods of assigning addresses and of expanding abbreviated

commands into sequences of commands can be worked out in advance.

Hence the computer could be instructed to do this work. ... It

shouldbe emphasized, however, that even if it were not efficient

to use a computer to make the translation, the Intermediate PL

would nevertheless be useful to the human programmer in planning

and constructing programs. [BU 51, p. 13]

At the other end of the spectrum, nearer to Ordinary Business

Language, Burks and his colleagues later proposed an abstract form of

description which may be of independent interest, even though it does

not relate to the rest of our story. The following example suffices

to give the flavor of their "first Abstraction Language', proposed in

1954:

XI

c,d*(=1 inst)

L, (da, [k, s,ul, [a,r])
1 ult <d<ad*

2 (s-r) 2 (s-r) + =~ 2 (s-r)
d<1 ult d<1 ult 1 ult <da<d®

FORM XI: CUSTOMER'S STATEMENT

28

On the first line, c¢ denotes the customer's name and address; and a |

is " 1 inst ", the first of the current month. The symbol Ly, (Xp, .00,%)
was used to denote a list of all n-tuples (X15 0005) of category i ,
in order by the first component xy and the meaning of the second line
is "a listing, in order of date d , of all invoices and all remittances

for the past month". Here [k,s,u] was an invoice, characterized by

its number k , its dollar amount s , and its discount wu ; [a,r] was

a remittance of r dollars, identified by number a ; and " 1 ult " means

the first of the previous month. The bottom gives the customer's old

balance from the previous statement, and the new balance on the right.

"The notation is so designed as to leave unprejudiced the method of the

statement's preparation." [BC 54] Such notations have not won over the

business community, however, perhaps for the reasons explained by

Grace Hopper in [HO 58, p. 198]:

I used to be a mathematics professor. At that time I found there

were a certain number of students who could not learn mathematics,

I then was charged with the job of making it easy for businessmen

to use our computers. I found it was not a question of whether

they could learn mathematics or not, but whether they would. »..

They said, "Throw those symbols out -- I do not know what they mean,

I have not time to learn symbols." I suggest a reply to those

who would like data processing people to use mathematical symbols

that they make them first attempt to teach those symbols to

vice-presidents or a colonel or admiral, I assure you that IT

tried it.

Rutishausers contribution.

Now let us shift our attention once again to Europe, where the first

published report on methods for machine code generation was about to

appear. Heinz Rutishauser was working with the Z4 computer which, by

then, had been rebuilt and moved to the Swiss Federal Institute of

Technology (E.T.H.) in Zurich; and plans were afoot to build a brand new

machine there. The background of Rutishauser's contribution can best be

explained by quoting from a letter he wrote some years later:

29

I am proud that you are taking the trouble to dig into my 1952

paper. On the other hand it makes me sad, because it reminds me

of the premature death of an activity that I had started hopefully

in 1949, but could not continue after 1951 because I had to do

other work -- to run practically singlehanded a fortunately slow

computer as mathematical analyst, programmer, operator and even

troubleshooter (but not as an engineer). This activity forced

me also to develop new numerical methods, simply because the ones

then known did not work in larger problems. Afterwards when T

would have had more time, I did not come back to automatic

programmingbut found more taste in numerical analysis. Only much

later I was invited -- more for historical reasons, as a living

fossil so to speak, than for actual capacity -- to join the ALGOL

venture, The 1952 paper simply reflects the stage where I had to

give up automatic programming, and I was even glad that I was able

to put out that interim report (although I knew that it was final).
[RU 63]

Rutishauser's comprehensive treatise [RU 52] described a hypothetical

computer and a simple algebraic language, together with complete

flowcharts for two compilers for that language. One compiler expanded

all loops out completely, while the other produced compact code using

index registers. His source language was somewhat restrictive, since

there was only one nonsequential control structure (the for statement);
but that control structure was in itself an important contribution to
the later development of programming languages. Here is how he might

have written the TPK algorithm:

1 Fur i = 10(-1)0

2 a; = t
3 (Sart Abs t) + (5 xt xt xt) >: ¥

ky Max (Sgn (y-400), 0) 2= h

2 20; PF Pypy

& (bx999) + ((1-h) xy) 9= boyos
Id Ende Index 1

8 Schluss

30

Since no "if «oo then” construction --much lessgo to -- was present
in his language, the computation of

y » if y <Lk00,

999, if y > Loo,

has been done here in terms of the Max and Sgn functions he did have,

plus appropriate arithmetic; see lines 4and 6. (The function Sgn(x)

is 0 if x=0, or +1 if x >0, or -1 if x <0.) Another

problem was that he gave no easy mechanismfor converting between

indices and other variables; indices (i.e., subscripts) were completely

tied to Fur -Ende loops. The above program therefore invokes a

trick to get i into the main formula on line L; " Z 0; " is intended
to use the 7 instruction which transfered an indexed address to the

accumulator in Rutishauser's machine [RU 52, p. 10], and it is possible

to write this in such a way that his compiler would produce the correct

code, Tt is not clear whether or not he would have approved of this

trick; if not, we could have introduced another variable, maintaining

its value eguai LO 1 , Bul Since ne later wrote a paper entitied

"Interference with an ALGOL procedure," there is some reason to believe

he would have enjoyed the trick very much.

As with Short Code, the algebraic source code symbols had to be

transliterated before the program was amenable to computer input, and

the programmer had to allocate storage locations for the variables and

constants, Here is how our TPKprogramwould have been converted to a

sequence of (floating-point) numbers on punched paper tape, using the

memory assignments a; = 100+1 , b. =200+1i, O0=300, 1=301,
5=302, L00=305, 999=30k, y=305, h=306, t=307:

31

1 107, 50, 10, -1 , 0, Q,

begin stmt a sub 1 P= t

2 oio0000 , 100, .00L , 200000 , 307 , Q ,

begin stmt (t Abs dummy Sqrt

3 010000 , 010000 , 307 , 110000, O , 350800,

dummy) + (5 X t X

0 , 2000000 , 020000 , 010000 , 302 , 060000 , 307 , 060000 ,

t X t) >= y

307 , 060000 , 307 , 200000 , 200000 , 305 , Q ,

begin stmt ((y - 400) Sgn

4 010000 , 010000 , 010000 , 305 , 030000 , 30% , 200000 , 100000 ,

dummy) Max 0 = h

0 , 200000 , 080000 , 300 , 2000000 , 306 , Q ,

begin stmt Z 0 sub i => bq sub -21 |
p) oiococoo , 0, 230000, 0, L,OOL , 200000 , 220, =-,002 , Q,

begin stmt (h X 999) + (

6 0100000 , 010000 , 306 , 060000 , 304 , 200000 , 020000 , 010000 ,

(1 - h) X y) >
010000 , 301 , 030000 , 306 , 200000 , 060000 , 305 , 200000 , 200000 ,

byy sub -21

Ende

Ia Q, Q,

Schluss

8 Q, Q.

32

Here Q represents a special flag that was distinguishable from

all numbers. The transliteration is straightforward, except that unary

operators such as " Abs x" have to be converted to binary operators

"x Abs O". An extra left parenthesis is inserted before each formula,

to match the == (which has the same code as right parenthesis).

Subscripted variables whose address is «a+2 SFE are specified by
writing the base address «a followed by a sequence of values 1072 ;
this scheme allows multiple subscripts to be treatedin a simple way.

The operator codes were chosen to make life easy for the compiler;

for example, 020000 was the machine operation "add" as well as the

input code for + , so the compiler could treat almost all operations

alike. The codes for left and right parentheses were the same as the

machine operations to load and store the accumulator, respectively.

Since his compilation algorithm is published and reasonably simple,
we can exhibit exactly the object code that would be generated from the

above source input. The output is fairly long, but we shall consider

it in its entirety in view of its importance from the standpoint of

compiler history. Each word in Rutishauser's machine held two instructions,

and there were 12 decimal digits per instruction word.

Machine instruction Symbolic form

250010 200050 10 - 0p, Op -1i,

250001 120000 l1-0p, -Op -» Op,

200051 230000 Op =» 17, 0 =» Op

200052 220009 Op = 1i%7 , *1 ~ IR,
239001 200081 WIR =» 0p, Op = Iy |
000000 230100 No-op , loc a — Op

200099 010050 Oop =» T, 1 -0p

020099 210001 OptT -» Op, Op - IR,
011000 200307 a; - Op , Op = t
010307 110000 t - 0p, |Op| = Op

220009 350800 *+1 — IR, , 80 to Sqrt
000000 000000 no-op, no-op

200999 010302 0p =P; 5, 5 ~-0p

55

Machine Instruction Symbolic form

060307 060307 Opxt=» 0p, Opxt - Op

060307 200998 Opxt - Op, Op ~ Py,

010999 020998 P, = Op , Op+P, — Op
200305 010305 Oop -y, ¥y-0p

030303 200999 Op-400 — Op , Op — Py

010999 100000 P, » Op, Sgn Op — Op

200998 010998 Op » PB, , P, = Op
080300 200306 Max(0Op,0) = Op, Op = h ,

230000 200099 O-0p, Op=»T

010050 020099 i -0p, OptT — Op

210001 230220 Op —» IR; , loc b,, — Op
200099 230002 Op -T, 2 —- 0p

120000 060050 -0p » Op , Op xi — Op

020099 210002 OptT — Op , Op = IR, |
010000 231000 (0) -» Op , IR; — Op

202000 230221 Op - bro os , loc bq - Op
200099 230002 Oop -T, 2 - 0p

120000 060050 -Op - Op , Opxi = Op

020099 210001 OptT —~ Op , Op — IR
010301 030306 1 -0p, Op-h — Op

200999 010306 Op »P, , h -» 0p
06030L 200998 Op x999 -» Op , Op = Fj

010999 060305 Pp, » 0p, Opxy — Op

200997 010998 Op — P, » Py, = Op
020997 201000 Op+P; — Op , Op = bqos
010081 210009 L, = 0p, Op ~ IR,
010050 220008 i-0p, *1 —~ IRg

030052 388003 Op-i” - Op , to (IRgt3) if Op = 0 |
010050 020051 i —-O0p, Opti’ - Op

200050 359000 Oop - 1, to (Ry)
000000 999999 no-op , stop

999999 stop

34

(Several bugs on pp. 39-40 of [RU 52] needed to be corrected in order

to produce this code, but Rutishauser's original intent was reasonably

clear, The most common error made by a person who first tries to write

a compiler is to confuse compilation time with object-code time, and

Rutishauser gets the honor of being first to make this error!)

The above code has the interesting property that it is completely

relocatable -- even if we move all instructions up or down by one-half

a word, Careful study of the output shows that index registers were

treated rather awkwardly; but after all, this was 1951, and many
canpilers even nowadays produce far more disgraceful code than this,

Rutishauser published slight extensions of his source language

notation in [RU 55] and [RU 55'1].

Bohm's Compiler,

An Ttalian graduate student, Corrado Bohm, developed a compiler at

the same time and in the same place as Rutishauser, so it is natural to

assume -- as many people have -- that they worked together. But in fact,

their methods had essentially nothing in common. Bohm (who was a student

of Eduard Stiefel) developed a language, a machine, and a translation

method of his own, during the latter part of 1950, knowing only of

[GV 47] and [ZU 48]; he learned of Rutishauser's similar interests only

after he had submitted his doctoral dissertation in 1951, and he amended

the dissertation at that time in order to clarify the differences between

their approaches.

32

Bohm's dissertation [BO 52] was especially remarkable because he

not only described a complete compiler, he also defined that compiler

in its own language! And the language was interesting in itself,

because every statement (including input statements, output statements,
and control statements) was a special case of an assignment statement.

Here is how TPK looks in Bohm's language:

A. Set i =0 (plus the nt —- A

base address 100 for 100 -» 1

the input array a). B -» =x

B. Let a new input a, be n' = B
given. Increase 1 by unity, 7? = |i

and proceed to C if i > 10, itl —- 1

otherwise repeat B . [(1 N (12110))sCl+[(12(i2110))+B] - =

110 -» 1

D. Call x the number as nt —- D
and prepare to calculate i - x

its square root r (using E - X

subroutine R), returning R -» =n

to E .

E. Calculate f(a) and n' —- E
attribute it to y . rtoelielieli —» y

If y > 400, continue [(1N(y2400)) Fl+[(1=(y=400))G] = =

at F, otherwise at G.

F. Output the actual value nt - F

of 1 , then the value i100 =» 7?

999 ("too large"). 999 — ?

Proceed to H. H -» x

| 36

G. Output the actual Tt =

values of 1 and y . i=100 - ?

Cy a
H - =x

H. Decrease 1 by unity, n' —- H

and return to D if i=l - 1

i > 0. Otherwise stop. [(12(10021))+D]+[(1 N(100=1i)).Q] - =

Here comments in an approximation to Bohm's style appear on the left,

| while the program itself is on the right. As remarked earlier, every-

thing in Bohm's language appears as an assignment. The statement

"Bn" means " go to B", i.e., set the program counter =n to the

value of variable B . The statement " n* -» B " means "this is label B";

a loading routine preprocesses the object code, using this type of
statement to set the initial value of variable B rather than to store

an instruction in memory. The symbol " ? " stands for the external

world, hence the statement " ? -x " means "input a value and assign

it to x"; the statement " x —- ? " means "output the current value of x".

MA arrow " } " is used to indicate indirect addressing (restricted to

one level); thus, " ? — {i " in part B means "read one input into the |

location whose value is i", namely into a;
BShm's machine operated only on nonnegative integers of 1h decimal

digits. As a consequence, his operation x*y was the logicilan's

subtraction operator,

X-y if x>y 3

Xy =

0 ’ if x<y .

He also used the notation xNy for min(x,y) . Thus it can be verified

that

1 , if 1 > 7 3

1n(1)) =

o , if 1 <J 3

5

co , if 1 > J 3

1:(i23) =

1 , if 1 <3.

Because of these identities, the complicated formula at the end of part B

is equivalent to a conditional branch,

C—-mn, if i > 110 ;

B-mn, if i <110 .

It is easy to read Bdhm's program with these notational conventions

in mind. Note that part C doesn't end with " D = nn", although it could

have; similarly we could have deleted " B — mn " after part A. (BShm

omitted a redundant go-to statement only once, out of six chances he

had in [BO 52].)

Part D shows how subroutines are readily handled in his language,

although he did not explicitly mention them. The integer square root

subroutine can be programmed as follows, given the input x and the

exit location X :

R. Set r=0 and t _ oH . n' = R

0 =r

703687hL17766L - t
§ —-

S. If rt <x, goto T, n't = 3

otherwise go to U . r+t =x - u

[(@2u)-T+[(1Nw)-v] — =

T. Decrease x by r+t , | n' =» T

divide r by 2 , increase Xxr-t - X

r by t, and go to V. r:2+t - r

V -» =x

U. Divide r by 2 . nt =» U

r:2 -»r

V =» x

38

V. Divide t by 4. If t=0, nn - U

exit, otherwise return to S. th - t

[(1=t)-X]+[(1Nt)-s] -

(This algorithmis equivalent to the classical rencil-and-paper method

for square roots, adapted to binary notation. It was given in hardware-

oriented formas example P9.18 by Zuse in [ZU 45, pp. 143-159]. To prove

its validity, one can verify that the following invariant relations hold

when we reach step S:

t is a power of UL ;

r is a multiple of Lt

r°/bt +x = initial value of x; |
0 < x < 2r+ht

At the conclusion of the algorithm these conditions hold with t =1/k ;

so r is the integer square root and x is the remainder.)

Bohm's one-pass compiler was capable of generating instructions

rapidly, as the input was being read from paper tape. Unlike Rutishauser,

Bohm recognized operator precedence in his language; for example, r:2+t

was interpreted as (r:2)+t , the division operator " : " taking

precedence over addition. However, Bohm did not allow parentheses to be

mixed with precedence relations: If an expression began with a left

parenthesis, the expression had to be fully parenthesized even when
associative operators were present; on the other hand if an expression

did notbegin with a left parenthesis, precedence was considered but no

parentheses were allowed within it. The complete program for his

compiler consisted of 114 assignments, broken down as follows:

(1) 09 statements to handle formulas with parentheses
(ii) 51 statements to handle formulas with operator precedence
(iii) L statements to decide between (i) and (ii).

There was also a loading routine, described by 16 assignment statements;

so the compiler amounted to only 130 statements in all, including 33

statements which were merely labels (n' - ee.) « This brevity is

especially surprising when we realize that a good deal of the program

39

was devoted solely to checking the input for correct syntax; this check

was not complete, however. [It appears to be necessary to add one more

statement in order to fix a bug in his program, caused by overlaying

information when a left parenthesis follows an operator symbol; but even

with this "patch" the compiler is guite elegant.]

Rutishauser's parsing technique often required order ne steps to
process a formula of length n . His idea, which we have seen illustrated

above, was to find the leftmost pair of parentheses which have the highest

level, so that they enclose a parenthesis-free formula & , and to compile

the code for " « ~ Py" then the subformula " (x) " was simply replaced
by " Pq "s, gq was increased by 1 , and the process was iterated until
no parentheses remained. Bdhm's parsing technique, on the other hand,

was of order n , generating instructions in what amounts to a linked

binary tree while the formula was being read in; to some extent, his

algorithm anticipated modern list-processing techniques, which were first

made explicit by Newell, Shaw, and Simon about 1956 (cf. [KN 68, p. 4571).

Here is a brief indication of how Bohm's algorithm would have translated

the statement ((a:(b-c))+((dne)2f)) -»g , assuming that the bug referred
to above had been removed:

40

Current Current Contents of tree (instructions and stack pointers)
artial osition

Input instruction Fin tree @ © 3) 0, (5
(@ ©
(® © ©
a a ® © CT
: a: ® © (1)

(@ | © 2:3,® |®
b b © © a:(3),® ®
. be ©), © 2:3), @ ®
Cc bec ©) a:(®,Q 0B)
) ©), © 2:3, b.c »(3) |
) | © © a:(3 -(2 bec -(3)

+ O+ ® © a:(3 -®@ b.c »(3)
(® @+®,a:Q -@v-c-QI©
(® | ©®,¢=0-0»-0|@ |®
d d ® O+W, Qa: NOIR: -3|@ ® |
n an | @ | 0+®,Q0=:0 -@|r-c-B|@ @
e ane | ® | @+W, Qa:B) -@|bc-G|D @
) 0) @+®. 0:0 -©@ bec 30), €) ane -5
: OF ® @+®, Qa: ~@|v-c-B@ ine -©
f G:rt @) @+®,Q=:0 -@ bec -(|QD dne-0B)
) | © @+®,0Qe:0 ~@|v-c~0|@ rt ~-W| ane-G
) © @+®-D:G NG bec QB 2 -® ane -GG
- @ © @+®-@p:@ ~Q|r-c-Q@xt -W| ane -O

At this point the contents of the tree would be punched out, in reverse

preorder:

dNe - ©,

@:-®
bec - 0

2:0 - @
O+® ~- 0

and the following symbol " g " would evoke the final instruction " © -g".

L1

Bohm's compiler assumed that the source code input would be trans-

literated into numeric form, but in an Italian patent filed in 1952 he

proposed that it should actually be punched on tape using a typewriter

with the following keyboard [BO 52', Fig. 9]:

OOOOBOO OOO
QOWEOOOOOOOO®E

BEOOOOO®OO®OE

OOOOEOO®OO

Constants in the source program were to be assigned a variable name and

input separately.

Of all the authorswe shall consider, Bohm was the only one who gave
an argument that his languagewas universal, i.e., capable of computing

any computable function,

Meanwhile, in England.

Our story so far has introduced us to many firsts, such as the first

algebraic interpreter, the first algorithms for parsing and code generation,

the first compiler in its own language. Now we come to the first real

compiler, in the sense that it was really implemented and used; it really

took algebraic statements and translated them into machine language.

The unsung hero of this development was Alick E. Glennie of Fort Halstead,

the Royal Armaments Research Establishment. We may justly say "unsung"

because it is very difficult to deduce from the published literature that

Glennie introduced this system. When Christopher Strachey referred favorably

to it in [ST 52, pp. 46-47], he did not mention Glennie's name, and it was

inappropriate for Glennie to single out his own contributions when he co-authored

an article with J. M, Bennett at the time [BG 53, pp. 112-113]. In fact,

there are apparently only two published references to Glennie's authorship

of this early compiler; one of these was a somewhat cryptic remark inserted

by an anonymous referee into a review of Bohm's paper [TA 56] while the |

other appeared in a comparatively inaccessible publication [MG 53].

h2

Glennie called his system AUTOCODE; and it may well have helped toinspire

many other "Autocode" routines, of increasing sophistication, developed

during the late 1950's. Strachey said that AUTOCODE was beginning to

come into use in September, 1952. The Manchester Mark I machine language

was particularly abstruse -- see [WO 51] for an introduction to its

complexities, including the intricacies of Teleprinter code (used for

base-32 arithmetic, backwards) -- and its opagqueness may have been why

this particular computer witnessed the world's first compiler. Glennie

stated his motivations this way, at the beginning of a lecture he

delivered at Cambridge University in February, 1953:

The difficulty of programming has become the main difficulty

in the use of machines. Aiken has expressed the opinion that the

solution of this difficulty may be sought by building a coding

machine, and indeed he has constructed one. However it has been

remarked that there is no need to build a special machine for

coding, since the computer itself, being general purpose, should

be used. ... To make it easy, one must make coding comprehensible.

This may be done only by improving the notation of programming.

Present notations have many disadvantages: all are incomprehensible

to the novice, they are all different (one for each machine) and

they are never easy to read. It is quite difficult to decipher

coded programmes even with notes, and even if you yourself made

the programme several months ago.

Assuming that the difficulties may be overcome, it is obvious

that the best notation for programmes is the usual mathematical

notation, because it is already known. ...

Using a familiar notation for programming has very great

advantages, in the elimination of errors in programmes, and the

simplicity it brings. [GL 52]

His reference to Aiken should be clarified here, especially because

Glennie stated several years later [GL 65] that "I got the concept from

a reported idea of Professor Aiken of Harvard, who proposed that a

machine be built to make code for the Harvard relay machines." Aiken's

coding machine for the Harvard Mark IIT was cited also by Bohm

Lz

[BO 52, p. 176]; it is described in [HA 52, pp. 36-38, 229-263, illustrated

on pp. 20, 37, 230]. By pushing appropriate buttons on the console of

this machine, one or more appropriate machine codes would be punched
on tape for the equivalent of three-address instructions such as

" -b3 x |ci| » ai " or " 1X9 - rO "; there was a column of keys for

selecting the first operand's sign, its letter name, and its (single)

subscript digit, then another column of keys for selecting the function

name, etc. (Incidentally, Heinz Rutishauser is listed as one of the

fifty-six authors of the Harvard report [HA 52]; his visit to America

in 1950 is one of the reasons he and BShm did not get together.)

Our TPK algorithm can be expressed in Glennie's AUTOCODE as follows:

Ll C@VA t@IC x@%C y@RC z@NC

2 INTEGERS +5 —c¢

3 ~t |

ky +1 TESTA Z

bl -t

6 ENTRY Z

id SUBROUTINE 6 —z

8 +tt -»y =x

9 +tX =y =x

10 +ztcx CLOSE WRITE 1

11 aG/# b@MA c@GA dBOA e@PA f@HA i@VE X@ME

12 INTEGERS +20 -»b +10 —»c +400 -»d +999 we +1 —f

13 LOOP 10n

14 n —Xx

1> +b-x =x

16 X =q
17 SUBROUTINE 5 —aqg |

18 REPEAT n

19 +c —1

20 LOOP 1On

21 +an SUBROUTINE 1 -y

22 +d-y TESTA Z

LL

23 +1 SUBROUTINE 3

2h +e SUBROUTINE L

22 CONTROL X

26 ENTRY Z

27 +1 SUBROUTINE 3%

28 +y SUBROUTINE L4

29 ENTRY X

30 +ief =i

31 REPEAT n

32 ENTRY A CONTROL A WRITE 2 START 2

Although this language was much simpler than the Mark I machine code,

1t was still very machine-oriented, as we shall see. (Rutishauser and

Bohm had had a considerable advantage over Glennie in that they had

designed their own machine code!) Lines 1-10 of this program represent
a subroutine for calculating f(t) ; " CLOSE WRITE 1 " on line 10 says
that the preceding lines constitute subroutine number 1. The remaining

lines yield the main program; " WRITE 2 START 2 " on line 52 says thal
the preceding lines constitute subroutine number 2, and that execution

starts with number 2.

Let's begin at the beginning of this program and try to give a

play-by-play account of what it means. Iine l is a storage assignment
for variables c,t, x,y, and 2z , in terms of absolute machine

locations represented in the beloved Teleprinter code. Line 2 assigns
the value 5 to c¢ ; like all early compiler-writers, Glennie shied

away from including constants in formulas. Actually his language has

been extended here: he had only the statement "FRACTIONS" for producing

constants between -3 and j , assuming that a certain radix point
convention was being used on the Manchester machine. Since scaling

operations were so complicated on that computer, it would be inappropriate

for our purposes to let such considerations mess up or distort the

TPK algorithm; thus the INTEGERS statement (which is quite in keeping

with the spirit of his language) has been introduced to simplify our
exposition.

L5

Upon entry to subroutine 1, the subroutine's argument was in the |

machine's lower accumulator; line 3assigns it to variable t . Line ky

means " go to label Z if t is positive "; line 5puts -t in the

accumulator; and line 6defines label Z'. Thus the net effect of lines

4thru6 is to put |t| into the lower accumulator. Line 7applies

subroutine 6 (integer square root) to this value, and stores it in =z .

On line 8 we compute the product of +t by itself; this fills both |

upper and lower accumulators, and the upper half (assumed zero) is

stored in y , the lower half in x . Line 9is similar, now XxX

contains t° . Finally line 10 completes the calculation of f(t)
by leaving z+5x din the accumulator. The "CLOSE" operator causes the

compiler to forget the meaning of label Z , but the machine addresses

of variables ¢, x, vy, and =z remain in force.

Line 11 introduces new storage assignments, and in particular it

reassigns the addresses of ¢ and x . New constant values are defined

on line 12. Iines 13 thru 18 constitute the input loop, enclosed by

LOOP 10n ... REPEAT n ; here n denotes one of the index registers

(the famous Manchester B-lines), the letters k, 1, n, o, q, Tr

being reserved for this purpose. Loops in Glennie's language were

always done for decreasing values of the index, up to and including O ;

and in our case the loop was performed for n = 20,18,16,...,2,0 .

These values are twice what might be expected, because the Mark T

addresses were for half-words. Lines 1h thru16 set index q equal

to 20-n ; this needs to be done in stages (first moving from n to

a normal variable, then doing the arithmetic, and finally moving the

result to the index variable). The compiler recognized conversions

between index variables and normal variables by insisting that all

other algebraic statements begin with a + or - sign. Line 17 says

to store the result of subroutine 5 (an integer input subroutine) into

variable aq
Lines 20 thru 31 comprise the output loop. Again n has the value 21,

so the true value of i has been maintained in parallel with n (see

lines 19 and 30). Line 21applies subroutine 1 (namely our subroutine

for calculating f(t)) to a, and stores the result in y . Line 22

| L6

branches to label Z if L400> y ; line 25 is an unconditional jump

to label X . Line 23 outputs the integer 1 , using subroutine 3, and

subroutine 4 in line 2k is assumed to be similar except that a carriage-

return and line-feed are also output. Thus the output is correctly

performed by lines 22 thru 29.

The operations " ENTRYA CONTROL A " on line 32define an infinite

loop " A: goto A"; this was the so-called dynamic stop used to

terminate a computation in those good old days.

Our analysis of the sample program is now complete, Glennie's

language was an important step forward, but of course it still remained

very close to the machine itself. And it was intended for the use of

experienced programmers, As he said at the beginning of the user's

manual [GL 52'], "The left hand side of the equation represents the

passage of Information to the accumulator through the adder, subtractor,

or multiplier, while the right hand side represents a transfer of the

accumulated result to the store." The existence of two accumulators

complicated matters; for example, after the multiplication in lines 8

and9 the upper accumulator was considered relevant (in the -y), while

elsewhere only the lower accumulator was used, The expression " +atbc "

meant "load the lower accumulator with a , then add it to the double

length product bec ", while " +bcta " meant "form the double length

product be , then add a into the upper half of the accumulator".

Expressions like +ab+cd+ef were allowed, but not products of three
or more quantities; and there was no provision for parentheses. The

language was designed to be used with the 32-character Teleprinter code,

where — was substituted for " .

We have remarked that Glennie's papers have never been published;

this may be due to the fact that his employers in the British atomic

weapons project were in the habit of keeping documents classified,

Glennie's work was, however, full of choice quotes, so it is interesting

to repeat several more remarks he made at the time:

There are certain other rules for punching that are merely a

matter of common sense, such as not leaving spaces in the middle

of words or misspelling them, I have arranged that such accidents

will cause the input programme to exhibit symptoms of distress ...

b7

This consists of the programme coming to a stop and the machine

making no further moves.

[The programme] is quite long but not excessively long, about

50 orders. ... The part that deals with the translation of the

algebraic notation is the most intricate programme that I have ever

devised ... [but the number of orders required] is a small

fraction of the total, about 140,

My experience of the use of this method of programming has

been rather limited so far, but I have been much impressed by

the speed at which it is possible to make up programmes and the

certainty of gaining correct programmes. ... The most important

feature, I think, is the ease with which it is possible to read

back and mentally check the programme. And of course on such

features as these will the usefulness of this type of programming

be judged. [GL 52]

At the beginning of the user's manual [GL 52'], he mentioned that

"the loss of efficiency (in the sense of the additional space taken by

routines made with AUTOCODE) is no more than about 10%." This remark

appeared also in [BG 53, p. 113], and it may well be the source of the

oft-heard opinion that compilers are "90% efficient".

On the other hand, Glennie's compiler actually had very little

tangible impact on other users of the Manchester machine. For this reason,

Brooker did not even mention it in his 1958 paper entitled "The Autocode

Programs developed for the Manchester University Computers" [BR 58].

This lack of influence may be due in part to the fact that Glennie was

not resident at Manchester, but the primary reason was probably that his

system did little to solve the really severe problems that programmers

had to face, in those days of small and unreliable machines. An

improvement in the coding process was not regarded then as a breakthrough

of any importance, since coding was often the simplest part of a programmer's

task. When one had to wrestle with problems of numerical analysis, scaling,

and two-level storage, meanwhile adapting one's program to the machine's

current state of malfunction, coding itself was quite insignificant.

48

Thus when Glennie mentioned his system in the discussion following

[MG 53], it met with a very cool reception. For example, Stanley Gill's

comment reflected the prevailing mood:

It seems advisable to concentrate less on the ability to write,

say

+ a+b+ ab - c

as 1t is relatively easy for the programmer to write

A a

Ab

H a

Vb

Tec . [MG 53, p. 79]

Nowadays we would say that Gill had missed a vital point, but in 1953

his remark was perfectly true.

Some 13 years later, Glennie had the following reflections [GL 65]:

[The compiler]was a successful but premature experiment.

Two things I believe were wrong: (a) Floating-point hardware

had not appeared. This meant that most of a programmer's effort

was in scaling his calculation, not in coding. (b) The climate

~ of thought was not right, Machines were too slow and too small.

It was a programmer's delight to squeeze problems into the

smallest space. ...

I recall that automatic coding as a concept was not a novel

concept in the early fifties. Most knowledgeable programmers

knew of it, I think. It was a well known possibility, like the

possibility of computers playing chess or checkers, ... [Writing

the compiler] was a hobby that I undertook in addition to my

employers' business: they learned about it afterwards. The

compiler ,.., took about three months of spare time activity to

complete,

4

Early American '"Compilers'.

None of the authors we have mentioned so far actually used the word

"compiler" in connection with what they were doing; the terms were

automatic coding, codification automatique, Rechenplanfertigung. In fact

it 1s not especially obvious to programmers today why a compiler should be

so called. We can understand this best by considering briefly the other

types of programming aids that were in use during those early days.

The first important programming tools to be developed were, of course,

general-purpose subroutines for such commonly needed processes as

input-output conversions, floating-point arithmetic, and transcendental

functions. Once a library of such subroutines had been constructed, there

was time to think of further ways to simplify programming, and two

principal ideas emerged: (a) Coding in machine language could be made

less rigid, by using blocks of relocatable addresses [WH 50]. This idea

was extended by M. V. Wilkes to the notion of an "assembly routine", able
to combine a number of subroutines and to allocate storage [WW 51, pp. 27-32];

and Wilkes later [WI 52, WI 53] extended the concept further to include

general symbolic addresses (i.e., not simply relative to a small number of

origins). For many years these were called "floating addresses”. Similar

developments in assembly systems occurred in America and elsewhere;

cf. [RO 52]. (bb) An artificial machine language or pseudo-code was

devised, usually providing easy facilities for floating-point arithmetic

as if it had been built into the hardware. An "interpretive routine"

(sometimes called "interpretative" in those days) would process these

instructions, emulating the hypothetical computer. The first interpretive

routines appeared in programming's first textbook, by Wilkes, Wheeler,

and Gill [WwW 51, pp. 34-37, 74-77, 162-16L]; the primary aim of this book

was to present a library of subroutines and the methodology of their use.

Shortly afterwards a refined interpretive routine for floating-point

calculation was described by Brooker and Wheeler [BW 53%], including the

ability for subroutines nested to any depth. Interpretive routines in

their more familiar compact form were introduced by J. M. Bennett (cf.

[WW 51, Preface and pp. 162-164], [BP 52]); the most influential was

perhaps John Backus's IBM 701 Speedcoding System [BA 5L, BH 54]. As we

have already remarked, Short Code was a different sort of interpretive

50

routine. The early history of library subroutines, assembly routines,

and interpretive routines remains to be written; we have Just reviewed

it briefly here in order to put the programming language developments

into context.

During the latter part of 1951, Grace Murray Hopper developed the

idea that pseudo-codes need not be interpreted, they could also be

expanded out into direct machine language instructions. She and her

associates at UNIVAC proceeded to construct an experimental program

which would do such a translation, and they called it a compiling routine.

To compile means to compose out ofmaterials from other documents.

Therefore, the compiler method of automatic programming consists

of assembling and organizing a program from programs or routines

or in general from sequences of computer code which have been

made up previously. [MO 54, p. 15]

(See also [HO 55, p. 22].) The first "compiler" in this sense, named A-O,

was in operation in the spring of 1952, when Dr. Hopper spoke on the

subject at the first ACM National Conference [HO 52]. Incidentally,

M. V. Wilkes came up with a very similar idea, and called it the method of

"synthetic orders" [WI 52]; we would now call this a macro expansion.

The A-O "compiler" was improved to A-1 (January, 1953) and then

to A-2 (August, 1953); the original implementors were Richard K. Ridgeway

and Margaret H. Harper. Quite a few references to A-2 have appeared in

the literature of those days [HM 53, HO 53, HO 53', MO 5k, WA 54], but

these authors gave no examples of the language itself. Therefore it will

be helpful to discuss here the state of A-2 as it existed late in 1953,

when it was first released to UNIVAC customers for testing [RR 53]. As

we will see, the language was quite primitive by comparison with those

we have been studying, and this is why we choose to credit Glennie with

the first compiler although A-O was completed first; yet it is important

to understand what was called a "compiler" in 1954, in order to appreciate

the historical development of programming languages.

Here is how TPK would have looked in A-2 at the end of 1953:

51

Use of working storage

00 02 Ook 06 08 10 12 14 to 34 36 38 LO Lo -58

10 5 Loo -1 ® Ly 5 ay to ay 1 ¥yLY” t,t7,t” temp storage

Program

0. GMIOOO0 000002 Read input and necessary constants from I,
TTEMOl WS.000

SERVO2 BLOCKA

1RGOOO 000000
EEUU—

1. GMMOOO 000001

000180 020216 10.0 =1

1RGOOO 001000
cv ——————————————_——S1t2gopS eee eeea a eteeS

o. AMOO3L 03Loko Sp ~t
3. RNAOLO 0100kO hr = 1

Lk. APNO3L 012038 a? | =
5. AMO002 038038 5y =y”

6. AAOOLO 038038 titys =y7~

7. ASOOOL 038040 LOO-y#= t~

8. OWNACO DEAOO3
KOOOOO KOOOOO

FOO912 EOOIRG if t”> 0, go on to Op. 10

000000 QOOL1CN

1RGOOO 008040

1CNOOO 000010

9. GMMOOO 000001

000188 020238 'AAATOO ALARGE AAAAAA AAAAAAY = y7

1RGO00 009000

10. YT0036 038000 Print i,y”
eT

11. GMMOOO 000001

000194 200220 Move 20 words from WS1h to WSLO

1RGOOO 011000

52

12. GMMOOO 000001

000222 200196 Move 20 words from WSLO to WS16

1RGOOO 012000

13. ALIOl2 FO0O0OTi

1RGOOO 013036 Replace i by i+(-~1) and go to Op. 2

2RGOOO 000037 if i # -1, otherwise go to Op. 1k |
3RGO00 000006

| 4RGOOO 000007

5RGO0O0 000006

6RGO00 000007

1CNOOO 000002

2CNOOCO 00001k

1RS000 000036

2RS000 000037

14. OWNACO DEAQO2

810000 820000 Rewind tapes 1 and 2, and halt.
00000 SOUO0U

1RGOOO 014000

ROENDA INFO.K

There were 60 words of working storage, and each floating-point number

used two words. These working storages were usually addressed by numbers

00,02, ...,58 , except in the GMM instruction (move generator) when

they were addressed by 180, 182, ..., 238 respectively; see operations

1, 9, 11, and 12. Since there was no provision for absolute value

operations 2 and 3 of this program find Vial by computing Wz .
(The A-2 compiler would replace most operators by a fully expanded subroutine,

in line; this subroutine would be copied amew each time it was requested,

unless it was one of the four basic floating-point arithmetic operations.)

Since there was no provision for subscripted variables, operations 11

and 12 shift the array elements after each iteration.

Most arithmetic instructions were specified with a three-address

code, as shown in operations 2 thru 7. But at this point in the development

55

of A-2 there was no way to test the relation " > " without resorting

to machine language -- only a test for equality was built in -- sO

operation 8 specifies the necessary UNIVAC instructions. (The first

word in operation 8 says that the following 003 lines contain UNIVAC

code. Those three lines extract (E) the sign of the first numeric

argument (1RG) using a system constant in location 912 , and if it

was positive they instruct the machine to go to program operator I1CN .

The next two lines say that 1RG is to be t¥ (working storage LO),

and that 1CN is to be the address of operation 10. The "008" in the

1RG specification tells the compiler that this is operation 8; such

redundant information was checked at compile time. Note that the

compiler would substitute appropriate addresses for 1RG and 1CN

in the machine language instructions. Since there was no notation

for " 1RG+1 ", the programmer had to supply ten different parameter

lines in operation 13.

By 1955, A-2 had become more streamlined, and the necessity for

OWN CODE in the above program had disappeared; see [PR 55] for a description

of A-2 coding, vintage 1955. (Another paper [TH 55] also appeared at that time,

presenting the same example program.) Operations 7 and the following of

the above program could now be replaced by

7. QTLO038 00LOOO To Op. 9 if y~ >LOO

1CNOOO 000009

8. QUO038 038000 Go to Op. 10

1 CNOOO 000010

9. MVO008 001038)

10. YTO0036 038000
11. MvoOolk 0100LO

12. MVOOLO 010016

13. AATO36 006006 Same meaning as before, but new syntax.

1CNOOO 000002

2CNOOO 000014

14. RWS120 000000

ENDACO DINGAA

54

Grace Hopper was particularly active as a spokesperson for

automatic programming during the 1950's; she went barnstorming

throughout the country, significantly helping to accelerate the

rate of progress. One of the most important things she

accomplishedwas to help organize two key symposia on the topic, in

1954 and 1956, under the sponsorship of the Office of Naval Research, |
These symposia brought together many people and ideas at an important

time. (On the other hand, it must be remarked that the contributions

of Zuse, Curry, Burks, Mauchly, Bdhm, and Glennie were not mentioned at either

symposium, and Rutishauser's work was cited only once -- not quite

accurately [GO 54, p. 76]. Communication was not rampant!)

In retrospect, the biggest event of the 1954 symposium on automatic

programming was the announcement of a system that J. Halcombe Laning, Jr. and

Niel Zierler had recently implemented for the Whirlwind computer at M.I.T.

However, the significance of that announcement is not especially evident

from the published proceedings [NA 54], 97% of which are devoted to

enthusiastic descriptions of assontlors, interpreters, and 195h-style

"compilers". We know of the impact mainly from Grace Hopper's introductory

remarks at the 1956 symposium, discussing the past two years of progress:

A description of Laning and Zierler's system of algebraic

pseudocoding for the Whirlwind computer led to the development

of Boeing's BACAIC for the 701, FORTRAN for the 704, AT-3 for |

the Univac, and the Purdue System for the Datatron and indicated

the need for far more effort in the area of algebraic translators.

[HO 56]

A clue to the importance of Laning and Zierler's contribution can also

be found in the closing pages of a paper by John Backus and Harlan Herrick

at the 1954 symposium. After describing IBM 701 Speedcoding and the

tradeoffs between interpreters and "compilers", they concluded by

speculating about the future of automatic programming:

0D

A programmer might not be considered too unreasonable if he

were willing only to produce the formulas for the numerical

solution of his problem, and perhaps a plan showing how the

data was to be moved from one storage hierarchy to another,

and then demand that the machine produce the results for his

problem. No doubt if he were too insistent next week about

this sort of thing he would be subject to psychiatric

observation. However, next year he might be taken more

seriously. [BH 54]

After listing numerous advantages of high-level languages, they said:

"Whether such an elaborate automatic-programming systemis possible

Or feasible has yet to be determined." As we will soon see, the system

of Laning and Zierler proved that such a systemis indeed possible.

Brief mention of their system was made by Charles Adams at the

symposium[AL 54]; but the full user's manual [LZ 54] ought to be

| reprinted some day because their language went so far beyond what had
been implemented before. The programmer no longer needed to know much

about the computer at all, and the user's manual was (for the first time)
addressed to a complete novice. Here is how TPK would look in their

system:

1 v|N= (input),

2 i =0,

3 1 j=itl,

ky ali =v|J,

2. 1=J,

6 e =1i-10.5,

7 Cp 1,

8 i =10,

9 2 y=rF(FT(a|2))#5(al1)?,
10 e =y-5400,

11 CP 3,
12 z = 999,

15 PRINT i, z.

56

1h SP Li,
15 3 PRINT 1,y.

16. 4 i=i-1,

17 e =-0.5-1,

18 CP 2,

19 STOP

The program was typed on a Flexowriter which punched paper tape

and had a fairly large character set (including both upper and lower

case letters); at M.I.T. they also had superscript digits ol ..7
and a vertical line . The language used the vertical line to

indicate subscripts; thus the " 5(a|i)’ " on line 9means 5a) .
Aprogrammer would insert his eleven input values for the TPK |

algorithm into the place shown on line 1; then they would be converted

to binary notation and stored on the magnetic drum as variables

VysVpr sees Vig » If the numbers had a simple arithmetic pattern, an
abbreviation could also be used; e.g.,

would set (vy5 coos Veg) -(1,1.5,2,2.25,2.5,2.75,3,3.25,3.5,4.5,5.5) .
If desired, a special code could be punched on the Flexowriter tape in

line 1, allowing the operator to substitute a data tape at that point
before reading in the rest of the source program.

Lines 2thru 7are a loop which moves the variables Vis eeer Veg from

the drum to variables ays ...,8;, in core. (All variables were in core
unless specifically assigned to the drum by an ASSIGN or |N instruction.
This was an advanced feature of the system not needed in small problems.)

The only thing that isn't self-explanatory about lines 2thru 7 is line 7;

" CP k, " means "if the last expression computed was negative, go to the

instruction labeled k".

In line 9, Fr denotes square root and pt denotes absolute value.
In line 14, " SP " denotes an unconditional jump. (CP and SP were the
standard mnemonics for jumps in Whirlwind machine language.) Thus, except

for control statements -- for which there was no existing mathematical

convention -- Laning and Zierler's notation was quite easy to read.

of

Their expressions featured normal operator precedence, as well as

implied multiplication and exponentiation; and they even included a

built-in Runge- Kutta mechanismfor integrating a system of differential

equations if the programmer wrote formulas such as

Dx = y+1,

Dy= -X,

where D stands for d/dt . Another innovation, designed to help

debugging, was to execute statement number 100 after any arithmetic

error message,if 100 was a PRINT statement.

According to [IM 70], Laning first wrote a prototype algebraic

translator in the summer of 1952. He and Zierler had extended it to a

usable systemby May, 1953, when the Whirlwind had only 1024 16-bit

words of core memory in addition to its drum. The version described in

[LZ 54] utilized 2048 words and drum, but earlier compromises due to

such extreme core limitations caused it to be quite slow. The source

code was translated into blocks of subroutine calls, stored on the drum,

and after being transferred to core storage (one equation's worth at a

time) these subroutines invoked the standard floating-point interpretive

routines on the Whirlwind.

The use of a small number of standard closed subroutines has

certain advantages of logical simplicity; however, it also often

results in the execution of numerous unnecessary operations.

This fact, plus the frequent reference to the drum required in

calling in equations, results in a reduction of computing speed

of the order of magnitude of ten to one from an efficient computer

program. [AL 54, p. 64]

From a practical standpoint, those were damning words. Laning recalled,

eleven years later, that

This was in the days when machine time was king, and people-time

was worthless (particularly since I was not even on the Whirlwind

staff). ... [The program] did perhaps pay for itself a few times

when a complex problem required solutions with a twenty-four

hour deadline, [LA 65]

58

In a recent search of his files, Laning found a listing of the

Whirlwind compiler's first substantial application:

The problem addressed 1s that of a three-dimensional lead

pursuit course flown by one aircraft attacking another, including

the fire control equations. What makes this personally interesting

to me is tied in with the fact that for roughly five years previous

to this time the [M.I.T. Instrumentation] Lab had managed and

operated the M.I,T. Rockefeller Differential Analyzer with the

principal purpose of solving this general class of problem.

Unfortunately, the full three dimensional problem required more

integrators than the RDA possessed.

My colleagues who formulated the problem were very skeptical

that it could be solved in any reasonable fashion. As a challenge,

Zierler and I sat down with them in a 2-1/2 hour coding session,

at least half of which was spent in defining notation. The tape

was punched, and with the usual beginner's luck it ran successfully

the first time: Although we never seriously capitalized on this

capability, for reasons of cost and computer availability, my own

ego probably never before or since received such a boost. [LA 76]

The lead-pursuit source program consisted of 79 statements, including 29

which merely assigned initial data values, and also including seven uses

of the differential equation feature.

Laning describes his original parsing technique as follows:

Nested parentheses were handled by a sequence of generated

branch instructions (sp). In a one-pass operation the symbols

were read and code generated a symbol at a time; the actual

execution sequence used in-line sp orders to hop about from

one point to another. The code used some rudimentary stacks,

but was sufficiently intricate that I didn't understand it without

extreme concentration even when I wrote it. ... Structured programs

were not known in 195%!

The notion of operator precedence as a formal concept did not

occur to me at tie time; I lived in fear that someone would write

a rerfectly reasonable algebraic expression that my system would

not analyze correctly. [LA 76]

29

Plans for a much expanded Whirlwind compiler were dropped when the

M.I.T. Instrumentation Lab acquired its own computer, an IBM 650.

Laning and his colleagues Philip C. Hankins and Charles P. Werner

developed a compiler called MAC for this machine in 1957 and 1958.

Although MAC falls out of the time period covered by our story, it

deserves brief mention here because of its unusual three-line format

proposed by R. H. Battin c. 1956, somewhat like Zuse's original language.

For example, the statement

E 5

| Y = SQRT(ABS(A))+5 A
S I+1 I+1

would be punched on three cards. Although this language has not become

widely known, it was very successful locally: MAC compilers were later

developed for use with IBM 704, 709, 7090 and 360 computers, as well as
the Honeywell H800 and H1800 and the CDC 3600. (See [IM 70].) "At the

present time [1976], MAC and FORTRAN have about equal use at CSDL,"

according to [LA 76]; here CSDL means C. S. Draper Laboratory, the

successor to M.I.T. Instrumentation Lab.

But we had better get back to our story of the early days.

During the first part of 1954, John Backus began to assemble a group

ot" people within IBM to work on improved systems of automatic programming

(see [BA 76]). Shortly after learning of the Leaning and Zierler system

at the ONR meeting in May, Backus wrote to Laning that "our formulation

of the problem is very similar to yours: however, we have done no

programming or even detailed planning." Within two weeks, Backus and his

co-workers Harlan Herrick and Irving Ziller visited M,I.T. in order to see

the Laning/Zierler system in operation. The big problem facing them was

to implement such a language with suitable efficiency.

60

At that time, most programmers wrote symbolic machine

instructions exclusively (some even used absolute octal or

decimal machine instructions). Almost to a man, they firmly

believed that any mechanical coding method would fail to apply

that versatile ingenuity which each programmer felt he possessed

and constantly needed in his work. Therefore, it was agreed,

compilers could only turn out code which would be intolerably

less efficient than human coding (intolerable, that is, unless

that inefficiency could be buried under larger, but desirable,

inefficiencies such as the programmed floating-point arithmetic

usually required then). ...

[Our development group] had one primary fear. After working

long and hard to produce a good translator program, an important

application might promptly turn up which would confirm the views

of the sceptics: ... its object program would run at half the

speed of a hand-coded version. It was felt that such an occurrence,

or several of them, would almost completely block acceptance of

the system. [BH 64]

By November of 195k, Backus's group had specified "The IBM Mathematical

FORmula TRANslating system, FORTRAN". (Almost all the languages we shall

discuss from now on had acronyms.) The first paragraph of their report

[IB 54] emphasizes that previous systems had offered the choice of easy

coding and slow execution or laborious coding and fast execution, but

FORTRAN would provide the best of both worlds. It also places specific

emphasis on the IBM 704; machine independence was not a primary goal,

although a concise mathematical notation "which does not resemble a machine

language" was definitely considered important. Furthermore they stated

that "each future IBM calculator should have a system similar to FORTRAN

accompanying it."

It is felt that FORTRAN offers as convenient a language for stating

problems for machine solution as is now known. ... After an hour

course in FORTRAN notation, the average programmer can fully under-

stand the steps of a procedure stated in FORTRAN language without

any additional comments. [IB 5k]

Ol

They went on to describe the considerable economic advantages of

programming in such a language.

Perhaps the reader thinks he knows FORTRAN already; it is certainly

the earliest high-level language that is still in use. However, few

people have seen the original 1954 version of FORTRAN, so it is

instructive to study TPK as it might have been expressed in "FORTRAN O":

1 DIMENSION A(11)

2 READ A

3 2 DO 3,8,11 J=1,11

4 3 I=11-J

2 Y = SQRT(ABS(A(I+1))) + 5*A(I+1)**3

6 IF (LOO. >=Y) 8,k

7 L PRINT I, 999.

8 GO TO 2

9 8 PRINT I,Y

10 11 STOP

The READ and PRINT statements do not mention any FORMATs, although an

extension to format specification was contemplated [p. 26]; programmer-

defined functions were also under consideration [p. 27]. The DO statement

in line 3 means, "Do statements 3 thru 8 and then go to 11"; the

abbreviation " DO 8 J=1,11 " was also allowed at that time, but the

original general form is shown here for fun, Note that the IF statement

was originally only a two-way branch (line 6); the relation could be =,

>, or >=, On line > we note that function names need not end in F ;

they were required to be at least three characters long, and there was

no maximum limit (except that expressions could not be longer than 750

characters). Conversely, the names of variables were restricted to be

at most two characters long at this time; but this in itself was an

innovation, FORTRAN being the first language in which a variable's

name could be larger than one letter, contrary to established

mathematical conventions. Note that mixed mode arithmetic

60 |

was allowed, the compiler was going to convert"5" to "5.0" in line 5.

A final curiosity about this program is the GO TO statement on line 8;

this did not begin the DO loop all over again, it merely initiated the

next iteration.

Several things besides mixed-mode arithmetic were allowed in FORTRANO

but withdrawn during implementation, notably (a) subscripted subscripts

to one level, such as AM(L,J),N(X,L)) were allowed; (b) subscripts

of the form N¥I+J were allowed, provided that at least two of the

| variables N, I,J were declared to be "relatively constant" (i.e.,

infrequently changing); (c) a RELABEL statement was intended to permute

array indices cyclically without physically moving the array in storage.

For example, " RELABEL A(3) " was to be like setting

(A(1),A(2),A(3), .-.,2(n)) < (A(3),...,A(n),A(1),A(2))

Incidentally, statements were called formulas throughout the 195k

document; there were arithmetic formulas, DO formulas, GO TO formulas,

etc. Similar terminology had been used by Bohm, while Laning and

Zierler and Glennie spoke of "equations"; Grace Hopper called them

"ovoratione". Furthermore, the word "compiler" ic never uced din [TR SL].

there is a FORTRAN language and a FORTRAN system, but not a FORTRAN

compiler.

The FORTRAN O document represents the first attempt to define the

syntax of a programming language rigorously; Backus's important notation

[BA 59] which eventually became " BNF" [KN 64] can be seen in embryonic

| form here.

With the FORTRAN language defined, it "only" remained to implement

the system. It is clear from reading [IB 54] that considerable plans

had already been made towards the implementation; however, the full job

took 2.5 more years (18 man-years), so we shall leave the IBM group at

work while we consider other developments.

Brooker's Autocode.

Back in Manchester, R. A. Brooker introduced a new type of Autocode for

the Mark I machine. This language was much "cleaner" than Glennie's,

being nearly machine-independent and using programmed floating-point

arithmetic, but it allowed only one operation per line, there were few

63

mnemonic names, and there was no way for a user to define subroutines.

The first plans for this language, as of March 1954, appeared in [BR 55],

and the language eventually implemented [BR 56, pp. 155-157] was almost

the same. Brooker's emphasis on economy of description was especially

noteworthy: "What the author aimed at was two sides of a foolscap sheet

with possibly a third side to describe an example." [BR 55]

The floating-point variables in Brooker's Mark I Autocode are called

vl, v2,... and the integer variables -- which may be used also as

indices (subscripts) -- are called nl,n2,... . The Autocode for TPK is

easily readable with only a few auxiliary comments, given the memory

assignments 8; = Vigs 0 ¥ = Vip 1 = Nn,

1 nl =1 sets n, = 1
nl = I reads input into v. |
nl = nl+l 1

Jl,11 > nl Jumps to 1 if ny < 11
nl =11

2 * n2 =nl-1 prints i = n,-1
v1l2 = vnl

J3,v12 > 0-0

v12 = 0.0-v12 sets vip = [vp

3 vie = Fl(vl2) (v1, [a |)
vl =50® nl

v1 = vnl ® vl3

v13 = wml ®vl3 (vo = 5a))
v1e = v12 + vl13 (y = f(a,))

jh, vi2 > 400.0

* v12 = vl12 prints y

J>

By * v12 = 999.0 prints 999
p nl = nl-1

j2,nl > O tests for last cycle
H halt

(31) starts programme

6h

The final instruction illustrates an interesting innovation: An

instruction or group of instructions in parentheses was obeyed

immediately, rather than added to the program. Thus " (jl) " jumps

to statement 1.

This language is not at a very high level, but Brooker's main

concern was simplicity and a desire to keep information flowing

smoothly to and from the electrostatic high-speed memory. Mark I's

electrostatic memory consisted of only 512 20-bit words, and it was

necessary to make frequent transfers from and to the 32K-word drum;

floating-point subroutines could compute while the next block of

program was being read in. Thus two of the principal difficulties

facing a programmer -- scaling and coping with the two-level store --

were removed by his Autocode system, and it was heavily used. For

example:

Since its completion in 1955 the Mark I Autocode has been used

extensively for about 12 hours a week as the basis of a computing

service for which customers write thelr own programs and post

them to us. [BR 58, p. 16]

Gary KE, Felton, who developed the first Autocode for the Ferranti |

PEGASUS, says in [FE 60] that its specification "clearly owes much to

Mr. R. A. Brooker." Incidentally, Brooker's next Autocode (for the

Mark II or 'Mercury' computer, first delivered in 1957) was considerably

more ambitious; see [BR 58, BR 58', BR 60].

05

Russian Programming Programs.

Work on automatic programming began in Russia at the Mathematical

Institute of the Soviet Academy of Sciences, and at the Academy's

computation center, which originally was part of the Institute of Exact

Mechanics and Computing Technique. The early Russian systems were

appropriately called Programming Programs [Programmiruioshchye Programmy]

-- or TM for short. An experimental program 17-1 for the STRELA computer

was constructed by E. Z. [iubimskii and S. S. Kamynin during the summer

of 195k; and these two authors, together with M. R. Shura-Bura,

E. L. Lukhovitskaia, and V. S. Shtarkman, completed a production compiler
called TM-2 in February, 1955. This compiler is described in [KL 58].

Meanwhile, A. P. Ershov began in December 1954 to design another programming

program, for the BESM computer, with the help of IL. N. Korolev,

L. D. Panova, V. D. Poderiugin and V. M. Kurochkin; this compiler, called
simply TIT, was completed in March, 1956, and it is described in Ershov's

book [ER 58]. A reviewof these developments appears in [KO 58].

In both of these cases, and in the later system T||-3 completed in 1957

(see [ER 58']), the language was based on a notation for expressing

programs developedby A. A. 1fapunov in 1953. Liapunov's operator

66

schemata [LJ 58] provide a concise way to represent program structure

in a linear manners; in some ways this approach is analogous to

the ideas of Curry we have already considered, but it is somewhat

more elegant and it became widely used in Russia.

Let us consider first how the TPK algorithm (exclusive of input-

output) can be described in TM-2., The overall operator scheme for the

program would be written

6 L 11 9

hole sR lA Tae Lo Aglg [lho Ta Faas LT
n |

Here the operators are numbered 1 thru 14 ; and [| mean
m

respectively " go to operator n if true, go to operator m if false ',
i

while 1, are the corresponding notations for "coming from operator i".
i

This operator scheme was not itself input to the programming program

explicitly, it would be kept by the programmer in lieu of a

flowchart. The details of operators would be written separately and

input to TM-2 after dividing them into operators of types R (relational),

A (arithmetic), 2 (dispatch), F (address modification),

0 (restoration), and N (nonstandard, i.e., machine language). In the

above case, the details are essentially this:

R) Pq 6, 5 [if py; is true go to 6 else to 5]

Ro Ps 8, 10 [if p, is true go to 8 else to 10]

Ry: Ps 3 14, 2 [if 18 is true go to 1b else to 2]

P, - Cs < v, [0 < x]
. c, <V LOO <P, , < Vs [y]

Ps - vg < Cs [i < 0]

A - ce = Vg [10 =1, i.e., set i equal to 10]

Ag + vy = Vj, [a; = X]

As - C= = Vj, [0-x =x]

o7

Ag. Ve =V), Cg, = Vs [1 =b., 999 = ¢, |]

Age Vg = Vy Vi = Vg [1 =b., Na = ¢, |]

Bit Vem = Vg [1-1 = i]

Zs Vy3 3» 6 [dispatch a; to special cell, in operators 3 thru 6]

Fine Vg3 2, 10 [modify addresses depending on parameter i, in
operators 2 thru 10]

Ng BP 11 [go to operator 11]

Nj). OST [stop]

Dependence on parameter \< VisVq, =l3 Vis Vs 2

[when i changes, v, goes down by 1, v), thru Vg 80 up 21
cq» 1.107 [1]

10° [999]Co» -999 999

[J O“3

— 1 =

cs. +510 [5]

Working cells: 100,119 [compiled program can use locations 100-119 for temp
storage]

vy. 130 [initial address of a,]

Vi, 131 [address of x]

Vz 132 [address of y]

vy. 133 [initial address of b, |

Vs - 134 [initial address of c,]
vi 154 [address of i]

Operator 1 initializes i , then operators 2 thru 13 are the loop on i .

Operator 2 moves a; to a fixed cell, and makes sure that operators 3

68

thru 6 use this fixed cell; this programmer-supplied optimization

means that fewer addresses in instructions have to be modified when

1 changes. Operators 3 thru 5 set x = |a, | , and operator 6 sets
Ng = f(a;) . (Note the parentheses in operator 6; precedence was not
recognized.) Operators 7 thru 10 store the desired outputs in memory ;
operators ll and 12 decrease 1 and appropriately adjust the addresses

of quantities that depend on 1 . Operators 13 and 14 control looping

and stopping.

The algorithms used in TT-2 are quite interesting from the standpoint

of compiler history; for example, they avoided the recomputation of

common subexpressions within a single formula. They also produced

efficient code for relational operators compounded from a series of

elementary relations, so that, for example,

(py V(pyps) VEY) "Ps Vg

would be compiled as

EAD Aro
F

Ershov's TIT language improves on TMT-2 in several respects, notably

(a) the individual operators need not be numbered, and they may be
intermixed in the natural sequence; (b) no address modification need

be specified, and there is a special notation for loops; (ec) the

storage for variables is allocated semi-automatically; (d) operator

precedence can be used to reduce the number of parentheses within

expressions. The TPK algorithm looks like this in TIT:

69

™

1 Massiv a (11 iacheek) [declares an array of 11 cells]

2 ay = 0 [address in array al

3 a; = -1.j+10 [address in array a depending on Jj]

hs 3 Jppen = 9 Jyop = 11 [information on loop indexes]

5 o, 11, 10, 5, y, 400, 999, i [list of remaining constants and variables]

6 (Ma, 080, O, a5) 5 (Mo, O, 01,0);

i [10-3 = i3 / mod a, +5 xa] = ¥;
J

0101

8 R(y, 0102; | (400,®)) 3

0103

9 Vyd i, = 0; Vyd 999, = 0; | 5
0101 | |

10 | Vyd i, = 0; Vyd y, = 0; |]3 STOP
0102 0103

After declarations on lines 1 thru >, the program appears here on lines 6

thru 10. In TIT each loop was associated with a different index name, and

the linear dependence of array variables on loop indices was specified

as in line 3; note that 8 does not mean the j-th element of a , it
means an element of a which depends on j . The commands in line 6

are BESM machine language instructions which read 11 words into memory

starting at ay Line 7 shows the beginning of the loop on J » which
ends at the "]" on line 10; all loop indices must step by +1 . (The
initial and final-plus-one values for the Jj loop are specified on line kL.)

Line 8 is a relational operator which means, "If y 1s in the interval

(400,®) , i.e., if y > LOO , go to label 0101 ; otherwise go to 0102 ."

Labels were given as hexadecimal numbers, and the notation | indicates
n

the program location of label n . The " Vyd" instruction in lines 9 and

10 means convert to decimal, and " , » O " means print. Everything

else should be self-explanatory.

70

The Russian computers had no alphabetic input or output, so the

programs written in TIT-2 and TIT were converted into numeric codes.

This was a rather tedious and intricate process, usually performed by

two specialists who would compare their independent hand-transliterations

in order to prevent errors. As an example of this encoding process,

here is how the above program would actually have been converted into
BESM words in the form required by MI. (The hexadecimal digits were

written 0,1,...,9,0,1,...,5 . A 39-bit word in BESM could be represented

either in instruction format,

bbh bghh bghh bghh

where b denotes a binary digit (0 or 1), gq a quaternary digit

(0,1,2, or 3), and h a hexadecimal digit; or in floating-binary

numeric format,

+ 2, bh hh bh hh

where Kk 1s a decimal number between -32 and +31 inclusive. Both of

these representations were used at various times in the encoding of a

MT program, as shown below.)

Location Contents Meaning

of 000 0000 0000 0000 no space needed for special subroutines

08 000 0000 0000 0013 last entry in array descriptor table

09 000 0000 0000 0015 first entry for constants and variables

00 000 0000 0000 0012 last entry for constants and variables

ol 000 0000 0000 0025 base address for encoded program scheme

02 000 0000 0000 00L2 last entry of encoded program

03 000 0000 0000 0295 base address for "block y "

ok 000 0000 0000 0215 base address for "block a"

05 000 0000 0000 0235 base address for "block B"

10 015 0000 000L 0000 a = array of size 11

11 000 1001 0000 0000 coefficient of -1 for linear dependency

12 ot 00 00 00 00 as = 0 relative to a
13 0°, 14 00 00 00 a, =-=1-jJ+10 relative to a
1h 000 0015 001l& 0000 1 loop index from O to 11

71

Location Contents Meaning

15 570% 00 00 00 00 0
16 oH 10 00 00 00 11
17 ot, 00 00 00 00 10
18 >>, 30 00 00 00 5
19 07, 28 00 00 00 LOO
15 210 59 30 00 00 999
11 000 0000 0000 0000 i

12 000 0000 0000 0000 y

30 016 0080 0000 0012 (Ma, 080, 0, an)
31 017 0000 0001 0000 (Mo ,0,01,0)

30 018 0014 0000 0000 [5
33 2°, 17 Ok 1k 08 10 = J =

sho 2”, 1153 55 13 i / mode,0

35 27, 03 18 09 13 FS ox a
36 2°, 03 08 15 00 > 4 5
37 018 0000 0012 0102 R(y, 0102;

0101

38 008 0019 0000 0101 | (400,©))

39 018 0101 0000 0000
_ 0. 0101

30 27, 54 11 07 00 Vydi ,= 0

31 20, 54 15 07 00 Vyd 999 ,= O
_ 0103

35 011 0000 0000 0103 |

33 018 0102 0000 0000
0 _ 0102

3h 2~, 54 11 07 00 Vyd i ,= 0

35 2”, 54 12 07 00 Vyd vy ,= O

40 018 0103 0000 0000 |
_ 0103

41 015 1355 1355 1355]

Lo 015 0000 0000 0000 STOP

72

The BESM had 1024 words of core memory, plus some high-speed

read-only memory, and a magnetic drum holding 5 x 1024 words. The TT

compiler worked in three passes (formulas and relations, loops, final

assembly), and it contained a total of 1200 instructions plus 150

constants. Detailed specifications of all its algorithms were published

in [ER 58]; Ershov was aware of Rutishauser's work [p. 9], but he gave

no other references to non-Russian sources. |

A Western Development.

Computer professionals at the Boeing Airplane Company in Seattle,

Washington, felt that "In this jet age, it is vital to shorten the time

from the definition of a problem to its solution." So they introduced

BACAIC, the Boeing Airplane Company Algebraic Interpretive Computing

system for the IBM 701 computer.

BACAIC was an interesting language and compiler developed by

Mandalay Grems and R. E. Porter, who began work on the system in the

latter part of 1954; they presented it at the Western Joint Computer

Conference held in San Francisco, in February, 1956 [GP 561. Although

the " I" in BACAIC stands for "Interpretive", their system actually

translated algebraic expressions into machine language calls on

subroutines, with due regard for parentheses and precedence, so we

would now call it a compiler.

The BACAIC language was unusual in several respects, especially in

its control structure which assumed one-level iterations over the entire

program; a program was considered to be a nearly straight-line computation

to be applied to various "cases" of data. There were no subscripted

variables; however, the TPK algorithm could be performed by inputting

the data in reverse order using the following program:

75

1. IT-K1*I

2. X

3. WHN X GRT K2 USE 5

Lh, K2-X*2

5. SRT X+ K3 . X PWRKk

6. WHN 5 GRT K5 USE 8

Te TRN 9

8. Kb6%5

9. TAB I 5

Here " *" is used for assignment, " ." for multiplication; variables

are given single-letter names (except K), and constants are denoted

by Kl thru K99 . The above program is to be used with the following

input data:

Case 1. Xl =1.0 K2 =0.0 K3 =5.0 Kt =3.0 K5 = 400.0 K6 = 999.0

I =11.0 X = 10

Case 2. X = 2g
Case 3. X = ag

Case 11. X = ay

Data values are identified by name when input; all variables are zero

initially, and values carry over from one case to the next unless changed.

For example, expression 1 means " I-1 - I ", so the initial value I =11

needs to be input only in Case 1.

Expressions 2, 3, 4 ensure that the value of expression 2 is the

absolute value of X when we get to expression 5. (The "2" in

expression U4 means expression 2, not the constant 2 .) Expression 5

therefore has the value f(X) .

A typical way to use BACAIC was to print the values associated with

all expressions 1,2,... ; this was a good way to locate errors.
Expression 7 in the above program is an unconditional jump; expression 9

says that the value of I and expression 5 should be printed.

The BACAIC system was easy to learn and to use, but the language

was too restrictive for general-purpose computing. One novel feature

was its "check-out mode", in which the user furnished hand-calculated data

and the machine would print out only the discrepancies it found.

Th

According to [BE 57], BACAIC became operational also on the

IBM 650 computer, in August of 1956.

Kompilers.

Another independent development was taking place almost simultaneously

at the University of California Radiation Laboratory in Livermore,

California; this work has apparently never been published, except as an

internal report [EK 55]. In 195k, A. Kenton Elsworth began to experiment

with the translation of algebraic equations into IBM 701 machine language,

and called his program KOMPILER 1; at that time he dealt only with

individual formulas, without control statements or constants or input/output.
Elsworth and his associates Robert Kuhn, Leona Schloss, and Kenneth Tiede

went on to implement a working system named KOMPILER 2 during the following

year. This system is somewhat similar in flavor to 17-2, except that it

is based on flow diagrams instead of operator schemata. They characterized

its status in the following way:

In many ways Kompiler is an experimental model; it is therefore

somewnal itimited 1n applications. For example it is designed to

handle only full-word data and is restricted to fixed-point

arithmetic. At the same time every effort was made to design a

workable and worthwhile routine: the compiled code should approach

very closely the efficiency of a hand-tailored code; learning to

use it should be relatively easy; compilation itself is very
fast. [EK 55]

In order to compensate for the fixed-point arithmetic, special

features were included to facilitate scaling, As we will see, this is

perhaps KOMPTLER 2's most noteworthy aspect.

To solve the TPK problem, let us first agree to scale the numbers

by writing

A, = 20a, , YY =20y | 120%

Furthermore we will need to use the scaled constants

V = 5.270 , F = 400.210 », N = 999.2% , W = 1.0722

The next step is to draw a special kind of flow diagram for the program;

72

1

CARD constants Read values of constants and initial
value of I from a data card.

2

Read Ans ceeshig from two more data cards.

p)

(9) Af | A | . 07? + vA . ot 15 = Y Calculate Y.

: >
(7 EC co 006 52 han >

<

p

6

(4) PRINT i,y Print answer,

-35 _ :I-12 = I Decrease i by 1.

8

Decrease address of As by 2
wherever it appears.

9
Z

I:0 3 Returnto 3 if i > 0.
_/ —

<

10

© Stop the machine,

76

The third step is to assign the data storage, for example as follows:

61 =I, 63=Y, 656=V, 61 =F, 69=N, 71= W;

8l=Ay, 85=4, ... , 101 = Ag

(Addresses in the IBM 701 go by half words, but variables in KOMPILER 2

occupy full words. Address 61 denotes halfwords 60 and 61 in the

"second frame" of the memory.)

The final step is to transcribe the flow-diagram information into

a fixed format designated for keypunching. The source input to

KOMPILER 2 has two parts: the so-called "flow diagram cards", one

card per box in the flow diagram, and the "algebraic cards'", one per

complex equation. In our case the flow diagram cards are

1CARD 61 2 235 0) 103 310 310 135 0 61

2CARD 8L 2 310 310 310 310 310 310 310 95 14

3CALC 101 8 65 101 8 63%

LTRPL 67 63 6

5PLUS 69 63

6PRNT 61 63 2 1 35 10

TMINS 71 61 61

8DECR 2

9TRPL 61 Z 3

1OSTOP

and the algebraic cards are |

1*ACARD

2% APRNT

Here is a free translation of the meaning of the flow diagram cards:

1. Read data cards into locations beginning with 61 in steps of 2. The

words of data are to be converted using respective scale codes 235,0,103,

«ee;0 ; stop reading cards after the beginning location has become 61 ,

i.e., immediately. (The scale code ddbb means to take the 10-digit

Tf

data as a decimal fraction, multiply by 1094 , convert to binary,
and divide by oPb . In our case the first input datum will be
punched as 1000000000 , and the scale code 235 means that this

is regarded first as (10.00000000)4 and eventually converted to
(.00...01010), = 10.2727 , the initial value of I . The initial
value of N , with its scale code 310 , would therefore be punched

9990000000 , Up to seven words of data are punched per data card.)

2 Read data cards into locations beginning with 81 in steps of 2.

The words of data are to be converted using respective scale codes

310,310, 66.3310 3 stop reading cards after the beginning location

has become 95. The beginning location should advance by 1h

between data cards (hence exactly two cards are to be read).

Se Calculate a formula using the variables in the respective locations

101 (which changes at step 8); 65; 101 (which changes at step 8);

and 63,

4. If the contents of location 67 minus the contents of location 63

is nonnegative, go to step 6.

5. Store the contents of location 69 in location 63.

6. Print locations 61 through 63, with 2 words per line and 1 line

per block. The respective scale factors are 35 and 10.

7. Subtract the contents of location71 from the contents of location 61

and store the result in location 61.

8. Decrease all locations referring to step 8 (cf. step 3) by 2.

9. If the contents of location 61 is nonnegative, go to step 3.

10, Stop the machine,

The first two algebraic cards in the above example simply cause the

library subroutines for card reading and line printing to be loaded with

the object program. The third card is used to encode

Jia | -27 +aA
The variable names on an algebraic card are actually nothing but dummy

placeholders, since the storage locations must be specified on the

corresponding CALC card. Thus, the third algebraic card could also

have been punched as

78

3 ASRTAABSX, ~00+XX3 ,+13=X

without any effect on the result.

KOMPILER 2 was used for several important production programs

at Livermore. By 1959 it had been replaced by KOMPILER 3, a rather

highly developed system for the IBM 704 which used three-line format

analogous to that of MAC (but apparently designed independently).

79

A Declarative Language.

During 1955 and 1956, E. K. Blum at the U. S. Naval Ordnance

Laboratory developed a language of a completely different type. This

language ADES (Automatic Digital Encoding System) was presented at the

ACM national meetings in 1955 [when no proceedings were published] and

1956 [BL 56"], and at the ONR symposium in 1956 [BL 56'].

The ADES language is essentially mathematical in structure. It

is based on the theory of the recursive functions and the schemata

for such functions, as given by Kleene. [BL 56', p. 72]

The ADES approach to automatic programming is believed to be

entirely new. Mathematically, it has its foundations in the

bedrock of the theory of recursive functions. The proposal

to apply this theory to automatic programming was first made

by C. C. Elgot, a former colleague of the author's. While at |

the Naval Ordnance Laboratory, Elgot did some research on a

language for automatic programming. Some of his ideas were

adapted to ADES. [BL 56, p. iii]

A full description of the language was given in a lengthy report |

[BL 56]; it is rather difficult to understand several aspects of ADES,

and we will content ourselves with a brief glimpse into its structure

by considering the following ADES program for TPK. (The conventions

of [BL 57'] are followed here since they are slightly simpler than the

original proposals in [BL 56].)

80

1 8n1l:4,1L,

2 fs = + /abs ct p cq ©1 Cy»

2 d3pP) = Ty |

= <

Yb dypb, =< by LOO, by, 999,

, bs = 150 8 To»

6 ry = ~10 dp?

L V0qy10by=1,Db;by,

Here 1s a rough translation: Line 1 is the so-called "computer table",

meaning that input array an has 11 positions, and the "independent

index symbol" dy takes 11 values. Line 2defines the auxiliary function

50 , our f(t) ; arithmetic expressions were defined in Zukasiewicz's
parentheses-free notation, now commonly known as "left Polish". Variable

c, here denotes the first parameter of the function. (Incidentally,
"right Polish" notation seems to have been first proposed shortly

afterwards by C. L. Hamblin in Australia, cf. [HA 57].)

Line 3states that the dependent variable by is equal to the dependent

index ry the " ds " here means that this is to be output as component 1

of a pair. Line4 similarly defines b, , which is to be component 2.

This line is a "branch equation" meaning "if by < LOO then bs else 999 ",
(Such branch equations are an embryonic form of the conditional expressions

introduced later by McCarthy into LISP and ALGOL. Blum remarked that the

equation " < x a, f, g, " could be replacedby o¢ f + (1-p)g , where ©

is a function that takes the value 1 or O according as x <a or

Xx >a. [BL56, p. 16] "The function ¢ is a primitive recursive

function, and could be Incorporated into the library as one of the given

functions of the system, Nevertheless, the branch equation is included

in the language for practical reasons. Many mathematicians are accustomed

to that terminology, and it leads to more efficient programs." In spite

of these statements, Blum may well have intended that ff or g not be

evaluated or even defined when ¢ = O or 1, respectively.)

81

Line >says that by is the result of applying Tso to the rq -th
element of ay . Line 6explains that ry is 10-q, . Finally, line 7
is a so-called "phase equation" which specifies the overall program flow

by saying that bq and Db, are to be evaluated for 4 = OylyeeeylO
The ADES language is "declarative" in the sense that the programmer

states relationships between variable quantities without explicitly

specifying the order of evaluation. John McCarthy put it this way, in 1958:

Mathematical notation as it presently exists was developed to

facilitate stating mathematical facts, i.e., making declarative

sentences, Aprogram gives a machine orders and hence is usually

constructed out of imperative sentences. This suggests that it

will be necessary to invent new notations for describing complicated

procedures, and we will not merely be able to take over intact the

notations that mathematicians have used for making declarative

sentences. [ER 58', p. 275]

The transcript of a 1965 discussion of declarative vs. imperative languages,

with comments by P. Abrahams, P. Z. Ingerman, E. T. Irons, P. Naur,

B. Raphael, R., V., Smith, C. Strachey, and J. W. Young, appears in

Comm. ACM 9 (1966), pp. 155-156, 165-166.

Although ADES was based on recursive function theory, it did not

really include recursive procedures in the sense of ALGOL 60; it dealt

primarily with special types of recursive equations over the integers,

and the emphasis was on studying the memory requirements for evaluating

such recurrences.

An experimental version of ADES was implemented on the IBM 650,

and described in [BL 57, BL 57']. Blum's translator scheme was what

we now recognize as a recursive approach to the problem, but the recursion

was not explicitly stated; he essentially moved things on and off various

stacks during the course of the algorithm, This implementation points

up the severe problems people had to face in those days: The ADES

encoder took 3500 instructions while the Type 650 calculator had room

for only 2000, so it was necessary to insert the program card decks

into the machine repeatedly, once for each equation! Because of further

machine limitations, the above program would have been entered into the

computer by punching the following information onto six cards:

82

AOO 011 PO2 QO 011 POL F50 EOO FO2 F20

FO6 CO1 FOL FOL FOL 005 COL CO1 CO1 POL

D12 BOl EOO ROO PO1 D222 BO2 EOO Fll BO3

LOO PO1 BO3 PO1L 999 PO1 BO3 EOO F50 AO0O

ROO PO1 ROO EOO FO3 010 QO PO1 PO3 000

QO 010 BOO EOO FOO BO1 BO2 PO1 ~— —

Thus Pann was a punctuation mark, Fnn a function code, etc. Actually

the implemented version of ADES was a subset that did not allow

auxiliary f-equations to be defined, so the definition of Dy in
line 5would have been written out explicitly.

The IT.

In September, 1955, four members of the Purdue University

Computing Laboratory -- Mark Koschman, Sylvia Orgel, Alan

Perlis, and Joseph W. Smith -- began a series of conferences

to discuss methods of automatic coding. Joanne Chipps joined

the group in March, 1956. Acompiler, programmed to be used

on the Datatron, was the goal and result. [OR 58, p. 1]

Purdue received one of the first Datatron computers, manufacturedby

Electrodata Corporation (cf. J. ACM 2 (1955), p. 122, and [PE 55]); this machine

was later known as the Burroughs 205. By the summer of 1956, the Purdue

group had completed an outline of the basic logic and language of its

compiler, and they presented some of their ideas at the ACMnational

meeting [CK 56]. It is interesting to note that their 1956 paper

used both the words "compiler" and "statement" in the modern sense;

a comparison of the ONR 1954 and 1956 symposium proceedings makes it

clear that the word "compiler" had by now acquired its new meaning.

Furthermore the contemporary FORTRAN manuals [IB 56, IB 57] also used

the term "statement" where [IB 5k] had said "formula". Terminology was

crystallizing.

At this time Perlis and Smith moved to the Carnegie Institute of

Technology, taking copies of the flowcharts with them, and they adapted

their language to the IBM 650 (a smaller machine) with the help of

Harold Van Zoeren. The compiler was put into use in October, 1956,

(cf. [PS 57, p. 102]), and it became known as IT, the Internal Translator.

83

Compilation proceeds in two phases: 1) translation from an IT

program into a symbolic program, PIT and 2) assembly from a PIT

program into a specific machine coded program, SPIT. [PS 57', p. 1.23]

The intermediate "PIT" program was actually a program in SOAP language [PM 55],

the source code for an excellent symbolic assembly program for the IBM 650.

Perlis has stated that the existence of SOAP was an important simplifying

factor in their implementation of IT, which was completed about three

months after its authors had learned the 650 machine language.

This was the first really useful compiler; IT and IT's derivatives were

used successfully and frequently in hundreds of computer installations until

the 650 became obsolete. (Indeed, R. B. Wise stated in October, 1958

that "the IT language is about the closest thing we have today to the universal

language among computers." [WA 58, p. 131]) The previous systems we have

discussed were important steps along the way, but none of them had the

combination of powerful language and adequate implementation and documentation

needed to make a significant impact in the use of machines. Furthermore, IT

proved that useful compilers could be constructed for small computers

without enormous investments of manpower.

Here is an IT program for TPK: |

1: READ

2: 3, 11,10,-1,0,

5: Yl « "20E, AC(I1+1)"

+(5x(C(T1+1)*3))

6: G3 IF 400.0 > Yl

7: YL «999

5 TI1 TY1

10: H

Fach statement has an identifying number, but the numbers do not have to

be in order, The READ statement does not specify the names of variables

being input, since such information appears on the data cards themselves.

Floating-point variables are called Y1,Y2,... or C(Cl,C2,... ; the above

program assumes that the input data will specify eleven values for Cl

thru Cll.

Statement number 2 designates an iteration of the following program through

statement number 3 inclusive; variable Il runs from 10 in steps of -1

down to O., Statement 5 sets Yl to £(Cr141) ; the notation " 20E,x "

8h

is used for "language extension 20 applied to x", where extension 20

happens to be the floating-point square root subroutine. Note the use

of mixed integer and floating-point arithmetic here. The redundant

parentheses emphasize that IT did not deal with operator precedence,

although in this case the parentheses need not have been written since

IT evaluated expressions from right to left.

The letter A is used to denote absolute value, and * means

exponentiation. Statement 6 goes to 3 if YL < LOO ; and statement 3
outputs Il and Yl . Statement 10 means "halt".

Since the IBM 650 did not have such a rich character set at the

time, the above program would actually be punched onto cards in the

following form -- using K for comma, M for minus, q for quote,

IL and R for parentheses, etc.:

0C01 READ F

0002 3K I1K 10K M1K OK F

0005 Yl Z Q 20EK ACLI1SIR Q F

10.0) 5S 1D X LCLILSIK P 3RK i

0006 G3 IF LOOJO W Y1 F

0006 Yl Z 999 F

0003 TI1 TYLl F

0010 H FF

The programmer also supplied a "header card", stating the limits on

array subscripts actually used; in this case the header card would

say 1 I variable, 1 Y variable, 11 C variables, 10 statements.

(It was possible to "go to" statement number n, where n was the value

of any integer expression, so an array of statement locations wags kept

in the running program.)

The Purdue compiler language discussed in [CK 56] was in some respects

richer than this, it included the ability to type out alphabetic information

and to define new extensions (functions) in source language. On the other

hand, [CK 56] did not mention iteration statements or data input. Joanne

Chipps and Sylvia Orgel completed the Datatron implementation in the

sumer of 1957; the language had lost the richer features in [CK 56], however,

| 85

probably since they were unexpectedly difficult to implement. Our

program in the Purdue Compiler language [OR 58] would look like this:

input i0 yO ¢cl0 s10 fF [maximum subscripts used]

1 e "800e" f [read input]

2 s i0=10T°F [set i, =10]
5 s yO = "200e, aciO"+(5x(cioOp3)) fF

6 r g8, r yo < 400.0f [go to 8 if y, < 400.0]
7 s yo =99f

8 o 10fT [output i]
9 o yO f [output Yo
Ls 10 =1i0-1fF

5 r g, r0<iof [go to 5 if i, > O]
10 h ff [halt]

Note that subscripts now may start with O , and that each statement

begins with a letter identifying its type. There are enough differences

between this language and IT to make mechanical translation nontrivial.

FORTRAN frrives.

During all this time the ongoing work on FORTRAN was widely publicized.

Max Goldstein may have summed up the feelings of many people when he made

the following remark in June, 1956: "As far as automatic programming

goes, we have given 1t some thought and in the scientific spirit we

intend to try out FORTRAN when it is available. However ..." [GO 56, p. 40]

The day was coming. October, 1956, witnessed another "first" in

the history of programming languages, namely a language description which

was carefully written and beautifully typeset, neatly bound with a glossy

cover. It began thus:

This manual supersedes all earlier information about the Fortran

system. Tt describes the system which will be made available during

late 1956, and is intended to permit planning and Fortran coding in

advance of that time. [IB 56, p. 1]

Object programs produced by Fortran will be nearly as efficient

as those written by good programmers. [p. 2]

86

"Late 1956" was, of course, a euphemism for April, 1957. Here is how

Saul Rosen described FORTRAN's debut:

Like most of the early hardware and software systems, Fortran

was late in delivery, and didn't really work when it was

delivered. At first people thought it would never be done.

Then when it was in field test, with many bugs, and with some

of the most important parts unfinished, many thought it would

never work. It gradually got to the point where a program

in Fortran had a reasonable expectancy of compiling all the

way through and maybe even of running. [RO 6k]

In spite of these difficulties, it is clear that FORTRAN I was

worth waiting for; it soon was accepted even more enthusiastically

than its proponents had dreamed.

A survey in April of this year [1958] of twenty-six 70L installations

indicates that over half of them use FORTRAN for more than half

of their problems. Many use it for 80% or more of their work

(particularly the newer installations) and almost all use it

for some of their work. The latest records of the 704 users!

organization, SHARE, show that there are some sixty installations

equipped to use FORTRAN (representing 66 machines) and recent

reports of usage indicate that more than half the machine

instructions for these machines are being produced by FORTRAN.

[BA 58, p. 246]

On the other hand, not everyone had been converted. The second

edition of programming's first textbook, by Wilkes, Wheeler, and Gill,

was published in 1957, and the authors concluded their newly-added

chapter on "automatic programming" with the following cautionary

remarks:

87

The machine might accept formulas written in ordinary

mathematical notation, and punched on a specially designed

keyboard perforator. This would appear at first sight to

be a very significant development, promising to reduce

greatly the labor of programming. Anumber of schemes of

formula recognition have been described or proposed, but

on examination they are found to be of more limited utility

than might have been hoped, ... The best that one could

expect a general purpose formula-recognition routine to do,

would be to accept a statement of the problem after it had

been examined, and if necessary transformed, by anumerical

analyst. ... Even in more favorable cases, experienced

programmers will be able to obtain greater efficiency by

using more conventional methods of programming. [WW 57, pp. 136-137]

An excellent paper by the authors of FORTRAN I, describing both the language

and the organization of the compiler, was presented at the Western Joint Computer

Conference in 1957 [BB 57]. The new techniques for global program flow analysis

and optimization, due to Robert A. Nelson, Irving Ziller, Lois M. Haibt, and

Sheldon Best, were particularly important. By expressing TPK in FORTRAN I

we can see most of the language changes that had occurred:

C THE TPK ALGORITHM, FORTRAN STYLE

FUNF(T) = SQRTF(ABSF(T))+5 .0*T*%3

DIMENSION A(11)

1 FORMAT(6Fl2.k4)

READ 1, A

DO 10 J = 1,11

I =11-J

Y = FUNF(A(I+1))

IF (400.0-Y)4,8,8

4 PRINT 5, I

5 FORMAT (110, 10H TOO LARGE)

GO TO 10

8 PRINT 9, I, Y

9 FORMAT(I10, Fl12.7)

10 CONTINUE

STOP 52525

88

The chief innovations are

(1) Provision for comments: No programming language designer had thought

to do this before! (Assembly languages had comment cards, but

programs in higher-level languages were generally felt to be self-

explanatory.)

(2) Arithmetic statement functions were introduced. These were not

mentioned in [IB 56], but they appeared in [BB 57] and (in detail)

in the Programmer's Primer [IB 57, pp. 25, 30-31].

(3) Formats are provided for input and output. This feature, due to

Roy Nutt, was a major innovation in programming languages; it

probably had a significant effect in making FORTRAN popular since

input/output conversions were otherwise very awkward to express

on the 70k.

(4) Lesser features not present in [IB 54] are the CONTINUE statement,

and the ability to display a five-digit octal number when the

machine halted at a STOP statement.

MATH-MATTC and FLOW-MATTC

Meanwhile, Grace Hopper's programming group at UNIVAC had also been busy.

They had begun to develop an algebralc language in 1955, a project that was

headed by Charles Katz, and the compiler was released to two installations for

experimental tests in 1956. (Cf. [BE 57], p. 112.) The language was originally
called AT-3; but it received the catchier name MATH-MATIC in April, 1957, when

its preliminary manual [AB 57] was released. The following program for TPK
gives MATH-MATIC's flavor:

(1) READ-ITEM A(11) .

(2) VARY I 10(-1)0 SENTENCE 3% THRU 10 .

(3) J =TI+1 .

(b) ¥ =8er |A(9)] + 5%a(3)°
(5) IF Y > LOO, JUMP TO SENTENCE 8 .

(6) PRINT-OUT I, Y .

(7) JUMP TO SENTENCE 10 .

(8) z2=99 .

(9) PRINT-OUT I, Z .

(10) IGNORE .

(11) sTOP .

39

The language was quite readable; note the vertical bar and the superscript

3 in sentence (4), indicating an extended character set that could be

used with some peripherals. But the MATH-MATIC programmers did not share

the FORTRAN group's enthusiasmfor efficient machine code; they translated

MATH-MATIC source language into A-3 (an extension of A-2), and this

produced extremely inefficient programs, especially considering the fact

that arithmetic was all done by floating-point subroutines. The UNIVAC

computer was no match for an IBM 704 even when it was expertly programmed,

so MATH-MATIC was of limited utility.

The other product of Grace Hopper's programming staff was far more

influential and successful, since it broke important new ground. This

was what she originally called the Data-Processing compiler in January,

1955; it was soon to be known as "B-0O", later as the "Procedure

Translator" [KM 57], and finally as FLOW-MATIC [HO 58, TA 60]. This

language used English words, somewhat as MATH-MATIC did but more so,

and its operations concentrated on business applications. The following

examples are typical of FLOW-MATIC operations:

(1) COMPARE PART-NUMBER (A) TO PART-NUMBER (B) ; IF GREATER GO TO

OPERATION 13 ; IF EQUAL GO TO OPERATION 4 ; OTHERWISE GO TO

OPERATION 2 .

(2) READ-ITEM B ; IF END OF DATA GO TO OPERATION 10 .

The allowable English templates are shown in [SA 69; pp. 317-322].

The first experimental B-O compiler was operating in 1956 [HO 58,

p. 171], and it was released to UNIVAC customers in 1958 [SA 69, p. 316],

FLOW-MATIC had a significant effect on the design of COBOL in 1950.

A Formalazcontrolled Computer.

At the international computing colloquiumin Dresden, 1955, Klaus Samelson

presented the rudiments of a particularly elegant approach to algebraic

formula recognition [SA 55], improving on Bohm's technique. Samelson and

his colleague F. L. Bauer developed this method during the ensuing years,

and their subsequent paper [SB 59] describing it became well known.

90

One of the first things they did with their approach was to design

a computer in which algebraic formulas themselves were the machine

language. This computer design was submitted to the German patent office

in the spring of 1957 [BS 57], and to the U.S. patent office (with the

addition of wiring diagrams) a year later. Although the German patent was

never granted, and the machines were never actually constructed, Bauer and

Samelson eventually received U.S. Patent 3,047,228 for this work [BS 62].

Their patent describes four possible levels of language and machine, At

the lowest level they introduced something like the language used on today's pocket

calculators, allowing formulas consisting only of operators, parentheses,

and numbers, while their highest level includes provision for a full-

fledged programming language incorporating such features as variables

with multiple subscripts and decimal arithmetic with arbitrary precision.

The language of Bauer and Samelson's highest-level machine is of

principal concern to us here, Aprogram for TPK could be entered on

its keyboard by typing the following:

1 OO 0000.00000000= alll?
= 2.27 = allt

3 3.328 = ajat

12 5.28764 = alllt

13 10 = 1

1h Lhx ali+tlt = t

BL] / BEASxtxtxt = y
16 i=0d=1

17 y > L400 -» 77*

18 y=U0O0].00U=1y

19 88% |
20 7x 999 = Jd .00dd=1y

2l 88% i-1 = i

22 i > -1 - Lh*

(This is the American version; the German version wouldbe the same if

all the decimal points were replaced by commas.)

91

The " @. " at the beginning of this program is optional; it means that
the ensuing statements up to the next label (Lh4*) will not enter the |

machine's "formula storage", they will simply be performed and forgotten.

The remainder of line 1specifies storage allocation; it says that a is

an ll-element array whose entries will contain at most 12 digits.

Lines 2 through 12enter the data into array a . The machine also

included a paper tape reader in addition to its keyboard input; and if the

data were to be entered from paper tape, lines2 through 12 could be

replaced by the code

l= 1

33% eoeeeee® = ali

itl = 1

i < 12 -33%

Actually this input convention was not specifically mentioned in the patent,
but Bauer [BA 76'] recalls that such a format was intended.

The symbols | and t for subscripts would be entered on the keyboard

but they would not actually appear on the printed page; instead, the

printing mechanismwas intended to shift up and down. The equal signs

followed by square boxes on lines 16, 18, and 20indicate output of a

specified number of digits, showing the desired decimal point location.

The rest of the above program should be self-explanatory, except perhaps

for the B in line 15 which denotes absolute value ("Betrag").

Summary.

We have now reached the end of our story, having covered essentially

every high-level language whose design began before 1957. It is

impossible to summarize all of the languages we have discussed by

preparing a neat little chart; but everybody likes to see a neat little

chart, so here is an attempt at a rough but perhaps meaningtul comparison.

92

| 3[°F] .
® o :
5 3

in 17} “ .
+ V F

o} 9 |g |=A = V
: ie sm Ee |B :

9] @ + +3 ¢) co
oe 42 J ul pn Is
+ SI re H

I { i) 42

8 CIE Be J IR I ER I= 3
Principal pi Ade 18181 &

- i : cs | @ | 5 .

Language Author(s) Year A 12108 18121 & First,

Plankalkil use 1945 X, 5, F F D A A} B C Yrogramuing language, lorarcnic Sain

Flow Diagrams Goldstine/ 1940 xX, 5 # |A ID JC {BA Accepted programming methodology
VOI Neumann .

Comrosition Curry 1048 X F Id |C IDC {FT Code gen=ration ulgorithm

Short Code Mauchly 1950 I C C F ® B D High level language Inilemented
: : . I) , :

Tntermediate PL barks 1950 B I | | C lA} TX Common subeiiree.ion notion
Klammerausdrucke Rutizhaicer | 1951 I | I B E C B be, simple code gencraticn, loop exponoicn
Formules : BSlm 1951 X | F B } C J J¥ Compiler in own lenga-geAut code | Glennie BRS | ¥ |C {CC tC IN I | Dooful compiler .
A-2 Hoyer I 195 i C Lol F C Ju Sacre cXpanuer

. . ! - = i Ta i \ I M IN - -- 3 oo

Algebraic interpreter | Laning/ 1:53 k B AD C A i Cenctants in Jormalars
| cderler |

Autocode Brooker 195k | Xb | A dB (DU CALC Clean Lwo-level Llorogo
mr=-2 . | Kamyviin/ | Ava . | lS do 1S lL af eee inal adel !ou - -

LiubimskiY | | |mi Ershov 1625 ¥ B |e |C | Cc | E | » Book abcut = congpiler
BACAIC Grems/Porter | 1955 Ig A tA |° Fi1A]D xpression-oriented
KOMPILER 2 Elsworth/Kuhn| 1955 S I a C iC |F Scaling aids
ADES Blum 1050 A, DID tB |C |A}F Declarative language

IT Perlis 145 CLT A {B JC |C}|A |B Cuccessiul canpiler, change of machine

FORTRAN I Backuc 1950 | A, I A [A C CAA T/C formats, global cpiliilzation
MATH-MATIC Katz 1955 Ir B | A ¢C jC iA by | Heavy uce of Inglishob
Tatent 3,047,228 Bauer/ 1957 | Io ''D 'B ID c 'B OC | Tormula-controiled computer

samelson ;
t i \

| | 1 |

Table 1

Table 1 shows the principal mathematically-oriented languages we

have discussed, together with their chief suthors and approximate year

of greatest research or development activity. The "arithmetic" column

shows X for languages that deal with integers, F for languages that

deal with floating-point numbers, and S for languages that deal with

scaled numbers. The remaining columns of Table 1 are filled with very

subjective "ratings" of the languages and associated programming systems
according to various criteria.

Implementation: Was the language implemented on a real computer?

If so, how efficient and/or easy to use was it?

Readability: How easy is it to read programs in the language?

(This includes such things as the variety of symbols usable

for variables, the closeness to familiar notations.)

Control structures: How high-level are the control structures?

Are the existing control structures sufficiently powerful?

(By "high level" we mean a level of abstraction; something

the language has that the machine does not.)

Data structures: How high-level are the data structures? (For

example, can variables be subscripted?)

Machine independence: How much does a programmer need to keep

in mind about the underlying machine?

Impact: How many people are known to have been directly influenced

by this work at the time?

Finally there is a column of "firsts", which states some new thing(s)

this particular language or system introduced.

The Sequel.

What have we not seen, among all these languages? The most significant

gaps are the lack of high-level data structures other than arrays (except

in Zuse's unpublished language); the lack of high level control structures

other than iteration controlled by an index variable; and the lack of

oh

recursion. These three concepts, which now are considered absolutely

fundamental in computer science, did not find their way into languages

until the 1960's. Our languages today probably have too many features,

but the languages up to FORTRAN I had too few.

At the time our story leaves off, explosive growth in language
development was about to take place, since the successful compilers

touched off a language boom. Programming languages had reached a stage

when people began to write translators from IT to FORTRAN [GR 58] and

from FORTRAN to IT (cf. [BO 58], who describes the FOR TRANSIT compiler

which was developedby a group of programmers at IBM under the direction

of R. W. Bemer and D. Hemmes). An excellent survey of the state of

automatic programming at the time was prepared by R. W. Bemer [BE 57].

Perhaps the most significant development then in the wind was the

international project attempting to define a "standard" algorithmic

language. Just after the 1955 meeting in Darmstadt, a group of

European computer scientists began to plan a new language (cf. [IE 55]),

under the auspices of the Gesellschaft flr Angewandte Mathematik und

Mechanik (GAMM, the Association fur Applied Mathematics and Mechanics).

They later invited American participation, and an ad hoc ACM committee

chaired by Alan Perlis met several times beginning in January, 1958.

During the summer of that year, Zurich was the site of a meeting attended

by representatives of the American and European committees: J. W. Backus,

F. L. Bauer, H., Bottenbruch, C. Katz, A. J. Perlis, H. Rutishauser,

K. Samelson, and J. H., Wegstein. (See [BB 58] for the language proposed

by the European delegates.)

It seems fitting to bring our story to a close by stating the TPK

algorithm in the "International Algebraic Language" (IAL, later called

ALGOL) developed at that historic Zurich meeting [PS 58]:

PD

procedure TPK (a[]) =: b[];

array (a[0:10],b[0:21]);

comment given 11 input values a[0],...,a[10], this procedure
produces 22 output values b[0],...,b[21], according

to the classical TPK algorithm;

begin for i := 10(-1)0;

begin y := f(a[il]);
f(t) := sqrt(abs(t)) +5 x t134;

if (y > 400); y := 999;
b[20-2xi] := i;

b[2l-2xi] :=¥y

end;

return;

integer (i)

end TPK

96

References

[AB 57] R. Ash, E. Broadwin, V. Della Valle, C. Katz, M. Greene, A, Jenny,

and L. Yu, "Preliminary Manual for MATH-MATIC and ARTITH-MATIC

Systems (for Algebraic Translation and Compilation for UNIVAC I

and IT)," (Philadelphia, Pa.: Remington Rand Univac, 1957).

[AL 54] Charles W. Adams and J. H. Laning, Jr., "The M,I.T. systems of

automatic coding: Comprehensive, Summer Session, and Algebraic,"

Symposiumon Automatic Programming for Digital Computers

(Washington, D.C.: Office of Naval Research, Dept. of the Navy,

1954), 40-68. [Although Laning is listed as co-author, he did

not write the paper or attend the conference; in fact, he states

that he learned of his "co-authorship" only ten or fifteen

years later!]

[BA 54] J. W. Backus, "The IBM 7Ol Speedcoding system," J.ACM 1 (1954),

4-6,

[BA 58] J. W. Backus, "Automatic programming: Properties and performance

of FORTRAN. systems I and II," Mechanisation of Thought Processes,

National Physical Laboratory Symposium No. 10, 1958 (London:

Her Majesty's Stationery Office, 1959), 231-255.

[BA 59] J. W. Backus, "The syntax and semantics of the proposed International

Algebraic Language of the Zurich ACM-GAMM conference," Proc. Int.

Conf, Inf, Processing (Paris: UNESCO, 1959), 125-131.

[BA 61] Charles Babbage and his Calculating Engines, ed. by Philip

Morrison and Emily Morrison (New York: Dover, 1961), xxxviii+ L400 pp.

[BA 76] John Backus, "Programming in America in the Nineteen Fifties --

some personal impressions," Proc, International Research Conf.

on the History of Computing (Los Alamos, 1976), to appear,

[BA 76'] F., L. Bauer, letter to D. E. Knuth dated July 7, 1976; 2 pp.

[BB 57] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L., Mitchell

Haibt, H., L. Herrick, R., A. Nelson, D., Sayre, P. B, Sheridan,

H., Stern, I. Ziller, R. A. Hughes, and R., Nutt, "The FORTRAN

automatic coding system," Proc. Western Joint Comp. Conf. (1957),

188-197.

Jl

[BB 58] F. L. Bauer, H. Bottenbruch, H. Rutishauser, and K. Amelson,

"Proposal for a universal language for the description of

computing processes," in Computer Programming and Artificial

Intelligence, ed. by John W. Carr, III (Ann Arbor, Mich.:

University of Michigan, College of Engineering, 1958), 353-373,

[Translation of original German draft dated May 9, 1958, in Ziirich.]

[BC 54] Arthur W. Burks, Irving M. Copi, and Don W. Warren, "Languages for

analysis of clerical problems," Engineering Research Institute,

Informal Memorandum 5 (Ann Arbor, Mich.: Univ. of Michigan, 1954),

iii +24 pp.

[BE 57] R. W. Bemer, "The status of automatic programming for scientific

problems," Proc. 4th Annual Computer Applications Symposium,
Armour Research Foundation (1957), 107-117.

[BG 53] J. M. Bennett and A. E. Glennie, "Programming for high-speed digital

calculating machines," in Faster Than Thought, ed. by B. V. Bowden

(London: Pitman, 195%), 101-113,

[BH 54] John W. Backus and Harlan Herrick, "IBM 701 Speedcoding and other

automatic-programming systems," Symposium on Automatic Programming

for Digital Computers (Washington, D.C.: Office of Naval Research,

Dept. of the Navy, 1954), 106-113.

[BH 64] J. W. Backus and W. P. Heising, "FORTRAN," IEEE Trans. Electronic

Comp, EC-13 (196k), 382-383.

[BL 56] E. K. Blum, "Automatic Digital Encoding System II (ADES IT),"

NAVORD Report L209, Aeroballistic Research Report 326, U., S.

Naval Ordnance Laboratory (February 8, 1956), v +45 pp. +

(2+1+7) pp. of appendices.

[BL 56'] E. K. Blum, "Automatic Digital Encoding System, II," Symposium on

Advanced Programming Methods for Digital Computers, Washington, D.C,

ONR Symposium Report ACR-15 (1956), 71-76.

[BL 56"] E. K. Blum, "Automatic Digital Encoding System, II (ADES IT),"

Proc. ACM National Conference 6 (1956), paper 29, L pp.

[BL 57) E. K. Blum, "Automatic Digital Encoding System II (ADES IT),

Part 2: The Encoder," NAVORD Report L411, U, S. Naval Ordnance

Laboratory (November 29, 1956), 82 pp. + appendix.

[BL 57'] E. K. Blum and Shane Stern, "An ADES Encoder for the IBM 650

calculator," NAVORD Report 4412,U. S., Naval Ordnance Laboratory

(December 19, 1956), 15 pp.

98

[BO 52] Corrado Bohm, "Calculatrices digitales: Du déchiffrage de

formules logico-mathématiques par la machine méme dans la

conception du programme’ [Digital computers: On the deciphering

of logical-mathematical formulaeby the machine itself during

the conception of the program], Annsli di Matematica Pura ed

Applicata (4) 37 (1954), 175-217.

[BO 52'] Corrado Bohm, "Macchina calcolatrice digitale a programma con

programma preordinato fisso con tastiera algebrica ridotta atta

a comporre formule mediante la combinazione del singoli elementi

simbolici" [Programmable digital computer with a fixed preset

program and with an algebraic keyboard able to compose formulae

by means of the combination of single symbolic elements], Patent

application No. 13567, filed in Milan on October 1, 1952;

26 pp. + 2 tables.

[BO 54] Corrado Bohm, "Sulla programmazione mediante formule" [On

programming by means of formulas], Atti 4° Sessione Glornate

della Scienza, suppl. de "La ricerca scientifica" (Rome, 195k),

1008-101k,

[BO 58] B. C. Borden, "FORTRANSIT, a universal automatic coding system,"

Canadian Conf. for Computing and Data Proc. (Toronto: U. of

Toronto Press, 1958), 349-359,

[BP 52] J. M. Bennett, D. G. Prinz, and M, L. Woods, "Interpretative

sub-routines," Proc, ACM National Conference 2 (Toronto, 1952),

81-87.

[BR 55] R. A. Brooker, "An attempt to simplify coding for the Manchester

electronic computer," British J. Appl. Physics 6 (1955), 307-311.

[This paper was received in March, 195L,]

[BR 56] R. A. Brooker, "The programming strategy used with the Manchester

University Mark 1 computer," Proc. I.E.E, 103, part B, supplement

(1956), 151-157.

[BR 58] R. A. Brooker, "The Autocode programs developed for the Manchester

University computers," Comp. J. 1 (1958), 15-21,

[BR 58'] R. A. Brooker, "Some technical features of the Manchester Mercury

AUTOCODE programme," Mechanisation of Thought Processes,

National Physical Laboratory SymposiumNo. 10, 1958 (London:

Her Majesty's Stationery Office, 1959), 201-229,

99

[BR 60] R. A. Brooker, "MERCURY Autocode: Principles of the Program

Library," Ann, Rev. in Automatic Prog. 1 (1960), 95-110,

[BS 57] Friedrich Ludwig Bauer and Klaus Samelson, "Verfahren zur

automatischen Verarbeitung von kodierten Daten und Rechenmaschine

zur Ausubung des Verfahrens," Deutsches Patentamt, Auslegeschrift

| 1094019 (March 30, 1957), published December, 1960; 26 cols. plus
6 Figs.

[BS 62] Friedrich Ludwig Bauer and Klaus Samelson, "Automatic computing

machines and method of operation," United States Patent Office,

patent 3,047,228 (July 31, 1962); 32 cols. plus 17 Figs.

[BU 50] Arthur W. Burks, "The logic of programming electronic digital
computers," Industrial Math. 1 (1950), 36-52,

[BU 51] Arthur W. Burks, "An intermediate program language as an aid in

program synthesis," Engineering Research Institute, Report for

Burroughs Adding Machine Company (Ann Arbor, Mich.: Univ. of

Michigan, 1951), ii +15 pp.

[BW 53] R. A. Brooker and D, J. Wheeler, "Floating operations on ‘the

EDSAC," Math, Tables and other aids to Computation 7 (1953), 37-k47.
[BW 72] F. L. Bauer and H. Wossner, "The 'Plankalkiil' of Konrad Zuse:

A forerunner of today's programming languages," Comm, ACM 15

(1972), 678-685,

[CH 36] Alonzo Church, "An unsolvable problemof elementary number

theory," Amer. J. Math. 58 (1936), 345-363,

[CK 56] J. Chipps, M. Koschmann, S. Orgel, A. Perlis, and J. Smith,

"A mathematical language compiler," Proc. ACM National Conf. 6

(1956), paper 30, L pp.

[CL 61] R. F. Clippinger, "FACT - ABusiness Compiler: Description and

comparison with COBOL and Commercial Translator," Ann. Rev. in

Auto, Prog. 2 (1961), 231-292,

[CU 48] Haskell B. Curry, "On the composition of programs for automatic

computing,” Naval Ordnance Laboratory Memorandum 9806 (Silver

Spring, Md., 1949); 52 pp. [Written in July, 1948,]

[CU 50] H. B. Curry, "Aprogram composition technique as applied to inverse

interpolation,” Naval Ordnance Laboratory Memorandum 10337 (Silver

Spring, Md., 1950); 98 pp. + 3 figs.

100

[CU 50'] H. B., Curry, "The logic of program composition," Applications
scientifiques de la logique mathématique, Actes du 2% Colloque

International de Logique Mathématique, 1952 (Paris: Gauthier-

Villars, 195k), 97-102. [Paper written in March, 1950.]

[EK 55] A. Kenton Elsworth, Robert Kuhn, Leona Schloss, and Kenneth Tiede,

"Manual for KOMPILER 2," Univ. of California Radiation Lab.,

Livermore, Calif., report UCRL-4585 (November 7, 1955), 66 pp.

[ER 58] A. P. Ershov, Programmiruioshchaia Programma dlia Bystrodeistvuioshchel
Elektronnoi Schetnol Mashiny (Moscow: Akad. Nauk SSSR, 1958),
116 pp. English translation, Programming Programme for the BESM

Computer (London: Pergamon, 1959), v+ 158 pp.

[ER 58'] A. P. Ershov, "The work of the Computing Centre of the Academy

of Sciences of the USSR in the field of automatic programming,"

Mechanisation of Thought Processes, National Physical Laboratory

Symposium No. 10, 1958 (London: Her Majesty's Stationery Office,

1959), 257-278,

[FE 60] G. E. Felton, "Assembly, interpretive and conversion programs for

PEGASUS," Ann. Rev. in Automatic Prog. 1 (1960), 32-57.

[GL 52] A. E. Glennie, "The automatic coding of an electronic computer,"

unpublished lecture notes dated Dec. 1h, 1952; 15 pp. [This

lecture was delivered at Cambridge University in February, 1953.]

[GL 52'] A. E. Glennie, "Automatic Coding," unpublished manuscript (undated,

probably 1952), 18 pp. [This appears to be a draft of a user's

manual to be entitled "The routine AUTOCODE and its use."]

[GL 65] Alick E. Glennie, letter to D. E. Knuth dated September 15, 1965;

6 pp.

[GO 54] Saul Gorn, "Planning universal semi-automatic coding," Symposium

on Automatic Programming for Digital Computers (Washington, D.C.:

Office of Naval Research, Dept. of the Navy, 1954), 74-83,

[GO 56] Max Goldstein, "Computing at Los Alamos, Group T-1," Symposium on

Advanced Programming Methods for Digital Computers, Washington, D.C.,

ONR Symposium Report ACR-15 (1956), 39-43,

[GO 57] Saul Gorn, "Standardized programming methods and universal

coding," J. ACM Lk (1957), 254-273.

[GO 72] Herman H. Goldstine, The Computer from Pascal to von Neumann

(Princeton, N. J.: Princeton University Press, 1972), xi +378 pp.

101

[GP 56] Mandalay Grems and R. E. Porter, "Atruly automatic computing

system," Proc. Western Joint Computer Conf, (1956), 10-21.

[GR 58] Robert M. Graham, "Translation between algebraic coding languages,"

Proc. ACM National Conf. 8 (1958), paper 29, 2 pp.

[GV 47] Herman H. Goldstine and John von Neumann, Planning and Coding

of Problems for an Electronic Computing Instrument: Report on

the Mathematical and Logical Aspects of an Electronic Computing

Instrument (Princeton, N.J.: The Institute for Advanced Study,

1947-1948), Volume 1, iv +69 pp.; Volume 2, iv +68 pp.;

Volume 3, iil +23 pp. Reprinted in von Neumann's Collected Works,

ed. by A. H. Taub, Vol. 5 (London: Pergamon, 1963), 80-235,

[HA 52] Staff of the Computation Laboratory [Howard H. Aiken and 55

others], Description of a Magnetic Drum Calculator: The Annals

of the Computation Laboratory of Harvard University 25 (Cambridge,

Mass.: Harvard University Press, 1952), xi +318 pp.

[HA 57] C. L. Hamblin, "Computer languages," Australian J. Science 20, 6

(December 1957), 135-139,

[HM 53] Grace M. Hopper and John W. Mauchly, "Influence of programming

techniques on the design of computers," Proc. I.R.E. 41 (1953),

1250-1254,

[HO 52] Grace Murray Hopper, "The education of a computer," Proc, ACM

National Conf, 1 (Pittsburgh, 1952), 243-250,

[HO 53] Grace Murray Hopper, "The education of a computer," Symp. on

Industrial Appl, of Automatic Computing Equipment (Kansas City,

Mo.: Midwest Research Institute, 1953), 139-1kk,

[HO 53'] Grace M. Hopper, "Compiling routines," Computers and Automation

2, 4 (May, 1953), 1-5.

[HO 55] G. M, Hopper, "Automatic coding for digital computers,"

Computers and Automation 4, 9 (September 1955), 21-2k,

[HO 56] Grace M. Hopper, "The interlude 1954-1956," Symposiumon Advanced

Programming Methods for Digital Computers, Washington, D.C.,

ONR Symposium Report ACR-15 (195%), 1-2,

[HO 57] Grace M, Hopper, "Automatic programming for business applications,"

Proc. 4th Annual Computer Applications Symposium, Armour Research

Foundation (1957), 45-50.

102

[HO 58] Grace Murray Hopper, "Automatic programming: present status

and future trends," Mechanisation of Thought Processes,

National Physical Laboratory SymposiumNo. 10, 1958 (London:

Her Majesty's Stationery Office, 1959), 155-200.

[HO 71] C. A. R. Hoare, "Proof of aprogram: FIND," Comm. ACM 1k

(1971), 39-15.

[IB 54] Programming Research Group, I.B.M. Applied Science Div.,

"Specifications for The IBM Mathematical FORmula TRANslating

System, FORTRAN," Preliminary report (New York: TI.B.M. Corp.,

195k), 1+29 pp.

[IB 56] J. W. Backus, R. J. Beeber, S., Best, R. Goldberg, H. L. Herrick,

R. A. Hughes, L. B. Mitchell, R. A. Nelson, R. Nutt, D. Sayre,

P. B. Sheridan, H, Stern, I. Ziller, "Programmer's Reference

Manual: The FORTRAN Automatic Coding System for the IBM 70k

EDPM," Applied Science Div. and Programming Research Dept.,

IBM (October 15, 1956), 51 pp.

[IB 57] International Business Machine Corporation, "Programmer's |

Primer for FORTRAN Automatic Coding System for the IBM 704"

(1957), iii +64 pp.

[KA 57] Charles Katz, "Systems of debugging automatic coding," Automatic

Coding, Franklin Institute monograph no. 3 (1957), 17-27.
(KL 58] S. S. Kamynin, E. Z. Liubimskii, and M. R. Shura-Bura, "Ob

avtomatizatsii programmirovaniia pri pomoshchi programmiruioshchei
programy," Problemy Kibemetiki 1 (1958), 135-171.

English translation, "Automatic programming with a programming

| programme," Problems of Cybernetics 1 (1960), 149-191.

[KM 57] Henry Kinzler and Perry M. Moskowitz, "The Procedure Translator --

a systemof automatic programming," Automatic Coding, Franklin

Institute monograph no. 3 (1957), 39-55.

[KN 64] Donald E. Knuth, "Backus Normal Form vs, Backus Naur Form,"

Comm. ACM 7 (1964), 735-736.

[KN 68] Donald E. Knuth, Fundamental Algorithms: The Art of Computer

Programming 1 (Reading, Mass.: Addison-Wesley, 1968), xxi +634 pp.

[KN 69] Donald E. Knuth, Seminumerical Algorithms: The Art of Computer

Programming 2 (Reading, Mass.: Addison-Wesley, 1969), xi +624 pp.

10%

[KN 72] Donald E. Knuth, "Ancient Babylonian algorithms," Comm, ACM 15
(1972), 671-677. Errata in Comm. ACM 19 (1976), 108.

[KO 58] L. N. Korolev, "Some methods of automatic coding for BESM and

STRELA computers," in Computer Programming and Artificial

Intelligence, ed. by John W. Carr, III (Ann Arbor, Mich,:

University of Michigan, College of Engineering, 1958), 489-507.

[LA 05] J. H. Laning, letter to D. E. Knuth dated January 13, 1965; 1 p.
[LA 76] J. H. Laning, letter to D. E. Knuth dated July 2, 19763; 11 pp.
[LE 55] N. Joachim Lehmann, "Bemerkungen zur Automatisierung der

Programmfertigung fur Rechenautomaten," Elektronische Rechenmaschinen

und Informationsverarbeitung - Electronic Digital Computers and
Information Processing, proceedings of October, 1955, conference

at Darmstadt, Nachrichtentechnische Fachberichte 4 (1956), p. 1.43
(including discussion).

[LJ 58] A. A. Liapunov, "O logicheskikh skhemakh programm," Problemy
Kibernetiki 1 (1958), L6-7L, English translation, "The logical

structure [sic] of programs," Problems of Cybernetics 1 (1960),
48-81.

[IM 70] J. Halcombe Laning and James S, Miller, "The MAC algebraic
language," MIT Instrumentation Laboratory report R-681

(November 1970), 23 pp.

[LZ 54] J. H. Laning, Jr., and N. Zierler, "A program for translation of

mathematical equations for Whirlwind T," Engineering memorandum

E-36L4 (Mass. Inst. of Technology: Instrumentation Laboratory,
January, 195k), v+21 pp.

[MG 53] E., N. Mutch and S. Gill, "Conversion routines," Automatic Digital

Computation, Proc, of a symposium held at the National Physical

Laboratory on March 25, 26, 27 & 28, 1953 (London: Her Majesty's
Stationery Office, 1954), 74-80.

[MO 54] Nora B. Moser, "Compiler method of automatic programming, "'
Symposium on Automatic Programming for Digital Computers

(Washington, D.C.: Office of Naval Research, Dept. of the Navy,
1954), 15-21.

10k

[NA 54] Navy Mathematical Computing Advisory Panel, Symposium on

Automatic Programming for Digital Computers (Washington, D.C.:

Office of Naval Research, Dept. of the Navy, 1954), v +152 pp.

TOR 58] Sylvia Orgel, "Purdue Compiler: General description"

(W. Lafayette, Ind.: Purdue Research Foundation, 1958), iv +33 pp.

[PE 55] A. J. Perlis, "DATATRON," transcript of lecture given August 11, 1955;

in Digital Computers and Data Processors, ed. by John W. Carr

and Norman R. Scott (Ann Arbor, Mich.: University of Michigan,

College of Engineering, 1956), Section VII.20.l1l, 3 pp.

[PE 57] Richard M. Petersen, "Automatic coding at G.E.," Automatic

Coding, Franklin Institute monograph no. 3 (1957), 3-16.

[PM 55] Stanley Poley and Grace Mitchell, "Symbolic Optimum Assembly

Programming (SOAP)," IBM Corporation, New York, 650 Programming

Bulletin 1, Form 22-6285-1 (November, 1955), 4 pp.

[PR 55] Programming Research Section, Eckert Mauchly Division, Remington

Rand, "Automatic programming: The A-2 Compiler System,"

Computers and Automation L, 9 (September 1955), 25-29; 4, 10

(Cctober 1555), 15-27.

[PS 57] Alan J. Perlis and Joseph W. Smith, "Amathematical language

compiler," Automatic Coding, Franklin Institute monograph no. 3

(1957), 87-102.

[PS 57'] A, J. Perlis, J. W. Smith, and H. R. Van Zoeren, "Internal

Translator (IT): A compiler for the 650," Computation Center,

Carnegie Institute of Technology (March, 1957). Part I,

Programmer's Guide, 47 pp. Part II, Program Analysis, 638 pp.

Addenda, 12 pp. (flow charts were promised on p. 3.12).
Reprinted in Applications of Logic to Advanced Digital Computer

Programming (Ann Arbor, Mich,.: University of Michigan, College

of Engineering, 1957). This report was also available from

IBM Corp. as a 650 Library Program; File Number 2,1.,001.

[Autobiographical note: D. E. Knuth learned about system

programming by reading the program listings of part II in the

sumer of 1957; thie changed his life,]

105

[PS 58] A. J. Perlis and K., Samelson, "Preliminary report, International

Algebraic Language," Comm, ACM 1, 12 (December 1958), 8-22. Also

"Report on the Algorithmic Language ALGOL by the ACM Committee

on Programming Languages and the GAMM Committee on Programming,"

Numer. Math. 1 (1959), 41-60, Also reprinted in Ann. Rev. in

Automatic Programming 1 (1960), 269-290,

[RA 73] Brian Randell, The Origins of Digital Computers: Selected
Papers (Berlin: Springer, 1973), xvi+ 46h pp.

[RO 52] N. Rochester, "Symbolic programming," I.R.E. Trans. EC-2

(1952), 10-15.

[RO 64] Saul Rosen, "Programming systems and languages, a historical

survey," Proc. Spring Joint Computer Conf, (1964), 1-16,

[RR 53] Remington Rand, Inc., "The A-2 Compiler System Operations

Manual" (November 15, 1953), iii +54 pp, Prepared by

Richard K. Ridgway and Margaret H., Harper under the direction

of Grace M. Hopper.

[RR 55] Remington Rand UNIVAC, UNIVAC Short Code, unpublished collection

of dittoed notes, Preface by A. B. Tonik, dated Oct. 25, 1955

(1 page); prefaceby J. R. Logan, undated but apparently from

1952 (1 page); "Preliminary Exposition" (19522, 22 pages,

where pp. 20-22 appear to be a later replacement); "Short Code

Supplementary Information, Topic One" (7 pp.); Addenda # 1,2,3,k

(9 op.)

[RU 52] Heinz Rutishauser, "Automatische Rechenplanfertigung bei

programmgesteuerten Rechenmaschinen" [Automatic machine-code

generation on program-directed computers], Mitteilungen aus

dem Inst. fur angew. Math. an der E,T.H, Zurich No. 3

(Basel: Birkhauser, 1952), ii +L5 pp,

[RU 55] Heinz Rutishauser, "Some programming techniques for the ERMETH,"

J. ACM 2 (1955), 1-L,

[RU 55'] Heinz Rutishauser, "Massnahmen zur Vereinfachung des Programmierens

(Bericht liber die in fiinfjshriger Programmierungsarbeit mit der

Zh gewonnenen Erfahrungen)," Elektronische Rechemmaschinen und

Informationsverarbeitung - Electronic Digital Computers and

Information Processing, proceedings of October, 1955, conference

106

at Darmstadt, Nachrichtentechnische Fachberichte 4 (1956), 26-30,

English summary, "Methods to simplify programming, experiences

based on five years of programming work with the Z4 computer,

Te 225.

[RU 63] H. Rutishauser, letter to D. E. Knuth (Oct. 11, 1963), 2 pp.

[SA 55] Klaus Samelson, "Probleme der Programmierungstechnik," Aktuelle

Probleme der Rechentechnik, Ber. uber das Int. Mathematiker-

Kolloquium, Dresden, 1955 (Berlin: VEB Deutcher Verlag der

Wissenschaften, 1957), 61-68.

[SA 69] Jean E. Sammet, Programming Languages: History and Fundamentals

(Inglewood Cliffs, N.J.: Prentice-Hall, 1969), xxx+ 785 pp.

[SB 59] K. Samelson and F. L. Bauer, "Sequentielle Formeliibersetzung,"

Elektronische Rechenanlagen 1 (1959), 176-182. Also "Sequential

formula translation," Comm. ACM 3 (1960), 76-83, 351.

[SM 73] Leland Smith, "IZditing and printing music by computer,"

J. Music Theory 17 (1973), 292-309,

[ST 52] CC. S. Strachey, "Logical or non-mathematical programmes,"

rroc. Ack wallonal condi, 2 (roronto, ive), 4oO=-iy,

[TA 56] D. Tamari, review of [BO 52], Zentralblatt fir Mathematik

57 (1956), 107-108, |

[TA 60] Alan E. Taylor, "The FLOW-MATIC and MATH-MATIC Automatic

Programming Systems," Ann, Rev, in Auto. Prog. 1 (1960), 196-206.

[TH 55] Bruno Thuring, "Die UNIVAC A-2 Compiler Methode der automatischen

Programmierung,'" Elektronische Rechenmaschinen und

Informationsverarbeitung - Electronic Digital Computers and

Information Processing, proceedings of October, 1955, conference

at Darmstadt, Nachrichtentechnische Fachberichte 4 (1956), 154-156,

English summary, p. 226,

[TU 36] A. M, Turing, "On computable numbers, with an application to the

Intscheidungsproblem," Proc. London Math. Soc. (2) 42 (1936),

230-265; correction in vol. 43 (1937), 5S5kLk-5L6,

[WA 54] John Waite, "Editing generators," Symposium on Automatic

rrogramuing for Digital Computers (Washington, 0.C.: Office oi

Naval Research, Dept. of the Navy, 195k), 22-20,

107

[WA 58] F. Way III, "Current developments in computer programming

techniques," Proc. 5th Annual Computer Applications Symposium,

Armour Research Foundation (1958), 125-132,

[WH 50] D. J. Wheeler, "Programme organization and initial orders for

the EDSAC," Proc. Royal Soc. (A) 202 (1950), 573-589.

[WI 52] M. V. Wilkes, "Pure and applied programming," Proc. ACM National

Conf. 2 (Toronto, 1952), 1l21-12k,

[WI 53] M. V. Wilkes, "The use of a 'floating address' system for orders |

in an automatic digital computer," Proc. Cambridge Philos, Soc.

49 (1953), 84-89.

[WO 51] M. Woodger, "Acomparison of one and three address codes,"

Manchester University Computer Inaugural Conference (Manchester,

1951), 19-23.

[WR 71] WwW. A. Wulf, D. B. Russell, and A. N. Habermann, "BLISS, a language

for systems programming," Comm. ACM 1k (1971), 780-790.

[Ww 51] Maurice V. Wilkes, David J. Wheeler and Stanley Gill, The

Preparation of Programs for an Electronic Digital Computer,

with special reference to the EDSAC and the use of a library of

subroutines (Cambridge, Mass.: Addison-Wesley Press, 1951),

xi+ 170 pp.

[Www 57] Meurice V. Wilkes, David J, Wheeler, and Stanley Gill, The

Preparation of Programs for an Electronic Digital Computer,

second edition (Reading, Mass.: Addison-Wesley, 1957),

xii +238 pp.

[ZU 44] KK. Zuse, "Ansatze einer Theorie des allgemeinen Rechnens unter

besonderer Berucksichtigung des Aussagenkalkiils und dessen

Anwendung auf Relaisschaltungen." [Beginnings of a theory of

calculation in general, considering in particular the propositional

calculus and its application to relay circuits.] Manuscript

dated 1944; Chapter 1 has been published in Berichte der

Gesellschaft fir Mathematik und Datenverarbeitung, No, 63

(Bonn, 1972), part 1, 32 pp. English translation, No, 106

(Bonn, 1976), 7-20,

[ZU 45] K. Zuse, "Der Plankalkiil," manuscript prepared in 1945, Published

in Berichte der Gesellschaft fur Mathematik und Datenverarbeitung,

No. 63 (Bonn, 1972), part 3, 285 pp. English translation of all

but pp. 176-196 in No. 106 (Bonn, 1976), Lo-2Ll,

108

[ZU 48] KX. Zuse, "Uber den allgemeinen Plankalkiil als Mittel zur

Formulierung schematisch kombinativer Aufgaben," Archiv der

Math, 1 (1948/49), LLl-Lh9,

[ZU 59] K. Zuse, "ber den Plankalkul," Elektron. Rechenanl, 1 (1959),
68-71.

[ZU 72] Konrad Zuse, "Kommentar zum Plankalkul," in Berichte der

Gesellschaft fiir Mathematik und Datenverarbeitung, No. 63

(Bonn, 1972), part 2, 36 pp. English translation, No. 106

(Bonn, 1976), 21-41.

109

