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ABSTRACT: We use rec~sive function theory to lay the basis for
a partially constructive theory of calculus, which we
call the I-calculus. Tnis theory differs from other
theories that have grown out of recursive function
theory in that

(1) it is directly related to the variable-precision
computations used in scientific computation
tod.s.y, and

(2) it d~als explicitly with intermediate results
rather than ideal answers.

As E'" 0, intermediate resllts in the £-c"lc,.,l,~s

approach their corresponding ~nSwers in the calculus.
Thus we say "the I-calculus appr-oaches the calcu:'us,
as E -+ 0 ." It is hoped that investigations in the
E-calculus will lead to a better understanding of numf:ri­
cal analysis. Several new results in this direction are
presented, concerning instability and also machine number s .
Discrete notions ;;f limit, convergence, continuity, arit.h­
m~tic, derivative and integral are also presented and
analyzed.
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Chapter 1: Ir.+roduction

1.1 Summary

By Ii "notion" we mean a property of or an operation defined on a

function or functions. The calclollus can be t.hougrrt of as a collection

of elementary notions such as limit, convergence, continuity, derivat.ive

and integral, together with certain proved relations between notions.

such as the reciprocal relationship between integration and differentia­

tion. Fundamental to all this are the concepts of a real number and

a real function. In the usual textbook developments, these basic

concepts are not presented constructively, the notlons are not

necessarily effective or computable in any senSe Rnd relations between

notions are often proved uncons tz-uct.IveLy, 'I'hi s is in direct ccnt.r-as t

to E. Bishop's Foundations of Constructive Analysis [Bl] and in part i.a'l

contrast to recursive or computable analysis ('Iuring, Mazur, Gr:~egorcz:{k,

Goodstein, Specker, Klaua, At:erth and Kreisel, Lo mention a fe'W

researchers in the area). lUsbop defines cons t.ruc t i ve concepts of real

number and real function, develops construc~ive notions and proves

relat ions betweell not tons r-ons t r uc t Lvely. (I~e then goes on to

construct i ve theories of sets, metric spaces, comp.tsx analysis,

measure, Lntegz-at i on , r.ormed :inebr spaces, :'ocally compact abel ian

groups and commutative algebras.) His work is based 011 f-'rul.1wer' s

intuitionistic matbematics. In tileir work, "ccnat.ruc t i.ve " is an

undefined or primitive term. Recurs Lve analysis also has constructive

concepts of real number and real f'unc t Lon (see lG2, pp . (::-2 i ;,rd

deals with constructive notions, b·.... t it al.lows \.;nc.0I.str,Jc~iv,," pr ,;'..Ifs



(see Kreisel [Kl, p. 101]) It is based on recursive function theory,

initiated by Church. In recursive analysis, "constructive" is defined

in terms of recursive functions.

Both of these constructive theories are presented in a way which

makes them foreign to numerical computation as it is done on today's

computers. Here, we use recursive function theory to develop a theory

of not only constructive, but even finitely computable real functions

and defined notions, which we call E-functions and a-notions; these

represent the intermediate results which arise from numerical

computation. We call the resulting theory a-calculus. This theory

is nirectly relQted to modern day numerical computation. £-Functions

are essentially defined over a finite set, R(s) , of a-precision

machine numbers. R(t) approximates the real numbers and each

a-function and a-notion approximates respectively a function and a

notion from calculus. And, as £ ~O ,R(E) approaches (i.e. becomes

dense in) the reals and each a-function or E-notion approaches (in

a sense to be defined) its c~rresponding function or notirul. Thus

we say the E-calculus is a discretization of the calculus such that,

as e ~ 0 , the a-calculI, approaches the calculus.

The value of the E-Gal~ulus to numerical analysis is that it

presents a model of variabl~-precision computations. The study of

R(t) , c-functions and E-nottons within the context of this model

should lead to a better undelstanding of numerical computation. Our

principal results in this direction are

(1) a new and simple def Lni.t.Lon of numerical instability (the

k.ind caused by pr0ps"c:...tion of roundoff-error) together with
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a suggestive geometric characterization (ch. ,), and

(2) an algorithm for overcoming such instabilities (en, 3 and

en, 4).

Other new results rresented here include

(1) a characterization of the concept of variable-precision

machine numhers (sec. 2.2), ane

(2) two new definitions of computable real functions, one

allowing f'unc t l ons with discontinuities (ch. 7).

Before we present the C-cb.lculus, we give a motivating examp:'e

to point out acme of t.he uas t c problems involved in f'crmi ng si.cl.

a theory (1. e., involved in going from ideal mathematics to act lJal

numerical computation), and to develop some of our hasic not.at ton,

3



1.2 A Motivating Example

Let us use "precision c,' computation" in a general way to mean

the accuracy of a given mathematical approximatior- together with the

precision of the arithmetic used to evaluate this approximation. It is

often said that "numerical analysis is not very interesting because

all you have to do to get more accuracy in a numerical result is in-

crease the R!ecisio~_of computation." As a broad and optimistic point

of view, the above statement is quite reasonable. But, when applied

to particular cases, it can be quite false. Increasing the precision

of computation can drastically decrease the accuracy of the result:

For example, consider an algorithm which uses

r(x,y) = (g(y) - g(x»/(y-x)

to approximate I =d~ g(t)lt=x' Fix x. For simplicity, suppose

r(x,y) ~ l monotonically as Iy-xl ~O and that f(x'Yl) is

computed in a certain form of single-precision arithmetic to give

a single-precision approximation, F(t l; x, Yl) , to l (here,

"t
l

" denotes "single-precision"). This would be the value of the

El-limit corresponding to lim f(x,y). We can increase the
y ~x

precision of computation by

yielding a more accuratE; mathematical apprOXimation,

f(x'Y2) (more accurate because of the monotonicity

assumption), and

(2) evaluating f(x'Y2) in a certain form of double-precision

arithmetic, yielding a doucle-precision approximation,

4



too close to may be much worse 1-' .E 1; x , " ,,-i. I

(e. g., see example 3.1-2, where g(x) is taken T_Q tie x + 1. '1 ~L:i:

is illustrated in rieure 1 2-1 ",5 t r.re c graphs 'Witt1 x t':x'.,j)

(a) f(x,y) versus 1/ (y-x) ,

(b) F(El; X, :/1

(c) F(E 2; x , y)

versus

ve r sus

l/(Y-x) , and

l!(y-xi I

where y varies in the interval (x, x~lJ

o
1

-

.' '~ .,'-- ....

Reproduced from
best available copy

1" v.--._'- .-',



Notice that graph (b) stays '.clUSE, t.o f fur awn.i Le , but thpn f a Ll.

off sharply to zero. Graph . c \ stays cLoue to r for awhile l.C'le':~T.,

but then it toe falls off to zero. In general, F which exhibil

such tenavior are called unstable (this is discuJsed in detail in

ch, 3). See Riesel [Rl! for a s i miLar e..;:,or::;.

The tools normally used to deal with such instabEities are

roundoff-error bounds, RF, and t.runcation-error bounds, TF. RF

bounds the error incurred by using F in place of f; 7F bounds

the error incurred by using f(x} Y) in placa of lim r(x,y) .
Y~A

And RF + TF bounds the E;rror incurred by using F in pl~ce of

lim f(x,y)
y -+ x

RF and TF are shown in figure 1.2-2, which is a

redrawing of figure 1.2-1.

1 l/(y- -x ) ""/ (Y2-X ).l

0 -1- ~..---,/ /'
./

I/~C)/(b)
/

I II
-- I /h-.........

f<,
<,

I,RFatt. 1 , y · fF at E), 'T... ,')

~- '-..j / I c:
c.

......
ITF at Yl -- /

1_ ......... J,
<, _/ I

1 -- -- -- -- -- ---rt -- --
TF at Y2

FIGURE 1. 2-2

RF· and TF

6



Of course, roundoff error is just a particular kind of' t runcat ton

error; namely, it is the truncation error caused by using F r; x , s .

in place of limo F(E; X, y) (wht ch is .0 f(x,y)),
E -t

caused by repl~~ing infinite processes by finite precesses. hUw0VeY,

it is useful to distinguish roundoff error from t r uncat t on er rcr sc'

that they can be :iealt with separately. Tr.~ mvtivation for i nr ""..;cluc;r,t'

these bounds comes from R. E· Moore's theory of interval anal.}sls

[M3, M4'j. The i:..ey iiea is that sucn bounds can be used F' g, ve

precise information about a numerical result; i.e., a~ lncerval

which contains the result

7



In section 4.2, we define E-comparison relations,

l.~ An Outline

In the next two sections we give our basic notation and we

discuss recursive natural f'unctions and recursive natural operators.

In ch~pter 2, we present the basic concept of a variable-precision

computation, including the concepts of machine numbers, real inputs,

subroutines, e-functions and e-operators. ~e give three examples

of machine-numbers: floating-point, logarithmic and rational.

And we give our main reason for introducing truncation-error bounds.

In chapter ~, we define and discuss ~umerical instability. A

geometric characterization of instability is given which leads to

the concept of "an e:-wave", to a proof that there is some desirable

behavior even in the presence of instability (thm. ~.~-l), and

finally to a (very inefficient) alg~rithm for overcoming instability

(def. 3.3-4). This motivates our definition of E-limit, given in

the first section of chapter 4 (defs. 4.1-1, 4.1-2). We prove

that, under certain conditions, the e-limit of an E-function

approaches the limit of its corresponding ideal function as E ~O

(thm. 4.1-1). This E-limit is shown to be a potentially efficient

algorithm for overcoming instabilities ~f an approximatio~ fun~tion

by using a stably convergent truncation-error bound.

< and
E e

and we pI 've that the truth-value of the e:-comparison of two real inputs

approaches the truth-value of their comparison as £ ~C These

considerations are basic to what follows, and must be understood.

In section 4.~, we use these e-comparison relations to define

I-convergence and e:-continuity (pointwise). Again we prove that

8



these [-notions approach (in a certain sense) their corresponding

notions as [-to. In section 4.5, we do the same for e-convergence

and t-continuity over intervals. In preparation for this, we prove

in section 4.4 some theorems about the kinds of discontinuities an

ideal function can have whil( there exists an £-function

corresponding to it. These latter results ar-e also made use of

when we define I-integrability in ,ection 6.2.

In chapter 5, we define £-operators for [-arithmetic, £-limit,

E-composition and E-recursion. We also define two initial E-ftIDctions,

tne identity and the constant e-functions. The choice of these

c-operators and initial E-functions was motivated by the operations

and initial functions used in Mendelson [Ml, pp. l20-1J to define the

recursive natural functions. We illustrate the use of these

I-operators and £-functions by using them to define an £-function

corresponding to eX

In chapter 6, we use the £-operators and initial E-function!;

of chapter 5 together with the t-convergence of section 4.3 to

define [-differentiability and tb. n [-derivative, t-integrability

and a-integral. In section 6.3, we prove the t-calculus Hnalog to

the fundamental theorem of calculus.

In chapter 7, we define two notions of computable real function

(based on [-functions), and we prove that one of them is equivalent

to one of the standard definitions from recursive analysis. We

also prove that the operators and initial functions of ch~pt8r 5 are

complete, in a certain sense.

The discussions of t-conyergence and E-continui t.y j n sect i '):1S

9



4.~ and 4.5 and of £-derivative and e-integral in chapter 6 are

only of definitional interest. Chapter 5 and the rest of chapter 4

are of more general interest; developments presented there should

be useful in extending our theory.

10



1.4 Notation

Next our basic notation is presented. We b"l3ir; with , lLc:

using Sand T to denote sets and m, dn in~eeer ~ 0 :

SymbOl or Expression Mer,ning

equ~l in numeric vulu~

used only in defining sets

generally indicates r epe t i ti)tl 'Jr, 8

£-precision machine number s (58':.

inclusion: S C l' ~ (x E f "" .: E

x
m

x

subscript, as in

[0, 1, 2, ... l

set merltership

the nu:l set

if m> 1, the lis: xl' x,"" •• , , x
c m

Xo is the empty list

(m-f:;1.d); .s~ i '

if m> 1, sx ... xS

is lxoJ

f is a f'unc t i on f'r-om S (t,)
j .:J 'J'

intersection

gre8't(;:st integer i.r,

union

if ,nd only if

equivalent

implies

s n (the comple~ent of T)

=

~

.-

E

U

n

c

S-T

nf't , ttl 1t

{ }

xm

sCm)

f:S(m) -T

(bar)

(x)

n

Ro( e )

11
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the set of all machi~e n~bers

(sec. 2 2)
,.,. v
I(.), I(.)

~, t, "!, ...

= , <
E E

~ I'l:I f(P)

boal [statement]

conversion functions (sec. 2.8)

roundup and raunddown rna ch i.ne ~ r ~ c f m( "Lc

(sec. 2.8)

machine neighborhocd of a (sec. 2.8)

£-comparison relations (sec. 4,2)

-y; approximates f over P (sec. 2.5:'

1 if statement is true,

o otherwise (sec. 4.2)

Note that s(O) ~ I } , since Define R and 1r by

R • Ix: y is a finite real number) ,

1f :; R U I ... , -, Q)} ;

CD stands for "undefined". Thus"x = Q)" means "x is undefined in terms

of the members of R U r· -1" .- , We will treat (J) like any other

point in 1r, except that Q) > x for all x E ~ - IQ)} , and m is

isolated from the rest of 1r (the null set is the only neighborh0cd

of Q). For example, - - • = m , % = Q) , (J) + 3 = Q) , (-1) x CD ~ Q) ,

.lim (..l)i = Q), etc. All our constants, variables and functions will
~ --f.

take values in ~.

We will use the usual neighborhood definition of limit for the

doubly extended real line, with the addition that a limit which does

not exist in the usual sense has the value (J).

To simplify inequalities, we let

12



o if a = b ,

even when a '" b E {--, ., (&)}. We do this because we use la-bl to

measure the distance between a and b. It is easy to show that this

distance function satisfies the triangle inequality,

la-bl ~ la-c\ + \c-bl

for a, b, c E ~. (In showing this, it is best to refer to the speciol

rules for arithmetic involving ~. and w given in sec. 2.8).

We will use notation of the form

B ""

A
n

otherwise,

to indicate that B = R. (1 ~ j ~ n) when j is the smallest
J

integer such that

always.

is true, and

1~

Rn is defined to be true



Inductive schemes

1·5 Recursive Functions and Qperators

Inductive schemes for defining recursive natural functions

can be found in Mendelson [Mi, pp. 120-1) and elsewhere. Let n

be the set of nonnegative integers, 0, 1, ••.. The recursive

functions from nem) .~ n (m 2: 0) are those mappings from n(m) -+ n

which obtain the image point via constructive operations on the domain

point. Recursive functions essentially characterize the input/output

of Turing machines.

By recursive operator we mean a standard recursive functional

with its integer arg~nents left unspecified. Thus a recursive

operator ~ of n function arguments constructively maps n

(m
i

)
functions, ~i: h -11'\ (i = 1, ••• , n) , into a function,

( )
(m)

ql a
l

, ... , an : n -+ t\ for some m> a

for defining recursive functionals may be found in Schoenfield

[52), Grzegorczyk [Gll, Klaua [Kll and elsewhere.

The reader does not need to know any more about recursive

functions and recursive operators than w~at we have just stated.

We w:ll not use their inductive definitions. As usual, we say a

process is "effective" or "constructive" precisely when that process

can be carried out by purely mechanical means (i.e., by a Turing

machine).

14



REMARKS: In section 1.2 we saw that Incr-aas mg the prE:.:is"·:.H:::of (~,nl"'''-''-

tion may decrease the accuracy of a numerical res:l:..t. It. s ect Lor, ),5

we show that this does not apply to pure Ly arLt nmet Lc prc·(;(,sses, I.e.,

rational function evaluation. 'I'he re , increasing precision u:"t'~matt'2-~:

leads to convergence. 'The trouble arises when limits are invo:"ve d :
n

e.g., lJLm f(x,y) in section :".2, and ~m r a. in Ries~:"'s ex~~p:~
y-x n CID i~l 1

[R2] • The root of this trouble is an interchange of limits which

not work. This merits further exp::'anation. (Keep the examp:"e of' sec-

tion 1. 2 in mind for the following.) In general, we will have

for y ~ x. This implies

lim lim F(E; x,y)
y-x £.... 0

lim f(x,y)
y-+ x

But in order to compute successive approximations to this limit, we

must define an £-limit £-operator, such that LIM F(E; X,y)
y---x

is the finitely computable £-approximation to ~ f(x,y) and suc .. t,:' ,,'

lim f(x,y)
y-x

This interchange of :Limits is investiga+.ed in chapter 3.,

15
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Chapter 2: Basic Concepts

2.1 Variable-Precisiun Computations

Before launching into a description of our model, we first

loosely describe the kinds of finit~ computations which we are

interested in modeling. These tire characterized by having the

foEowin,:; facilities:

(1) variable-precision machine numbers;

(2) the ability to make decisions based on a comparison 01' the

values of ma~hine numbers;

(;) varia~le-precision input routines for inputting the memhrs

of ~ into machine numbers (at a specified precision),

and for giving roundoff-error bounds on these inputted

values; and

(4) variable-precision arithmetic (E-arithmetic) for machint'

numcers .

We formalize (1) - (3) in this chapter; (4) iI; formalized in scctivr.

5-3·

16



2.2 Machine Numbers and Their Comparison

Let Si(i = 1,2, ... J b~ a finite subset 0f ~ with

{-<Xl, CS1, CIl} C S.. In order to formalize (1) and (2) above, we define
1.

the concept "S.
1.

is effectively generable from ".... Es sent.LaLl.y

we mean by this that there is an algorithm, with input parameter i,

which produces as output 311 the elements of S.
1.

But this is not

precise because we as yet have not said what "produces as output a

member x of' ~" means: e. g. , x may have a nonrepeating decimal

expansion, so our algorithm cannot in general produce x by

producing a decimal expansion for x We define this concept

preci sely us follows. Let n be as in section 1. 5. Define the

function, 9: h(2) ~{-eo, ... , -l, 0, 1, ... , aJ, CIl} , by

-cc if i j 1

co if i j 2
(2.2-1) e(i, j)

CIl if i j 3

i-j otherwise.

Let 0 1
and O2 be functions from n to h and define

o( . ) - 9 (0
1

( . ), O
2

( . )) We say 01' O
2

compute a E R

(or 0 computes a) precisely when

Ia - O'(n)/nl < lin for n = 1, 2, " " " ,

and we use a and < 0 > interchangeably. See Grzegorczyk

[G2, p. 61] for a similar definition. When 0'1 and O'~ are

recursive and 0'1' O2 compute a, we say ~or < 0 > is a

17



computable number. For given 0'1' 0'2: n (m+l) -. n (m::: 1) and a

fixed x E n(m), we treat O'(x, .) == 9 (O'lex , '), 0'2(x , .» likem m m m

a function of one variable, so that when O'(x, .) computes a E ~m

we use < O'(x , .) > interchangeably with a.
m

Let 81,82, ... be as described above. Let l(i) be the

number of elements in S.
1

We say 8
i

is effectively geDeraule from

i precisely when 1(') is recursive and there are recursive

functions, 0'1' 0'2: n(:~) -+h , such that, with 0'(.) == 9(0'1(·),0'2(-;1) ,

we have

3i = «O'(i, 1, .) >, <O'(i, 2, .) >, ... , <O'(i, lei), .) >} ,

< O'(i, 1, .) > = -0:., < O'(i, 2, .) > = CD, < O'(i J 3, .) > :: w .

We call the pair (O'J I) a generator of Si .

The concept of variable-precision machine numbers is formalized us

follows. We use the positive real constants, i l , £2' ..• , to denoce

the po~sible levels of precision: £, denotes single-precision, etc .
....

We use e to denote a varLa.vLe which takes values in the set

(2.2-2)

DEFINITION 2.2-1: A machine number system, (R, e) , is ! ~

of constants together with! mapping, R:

(set of subsets.£! ~), ~

(I) E _ -70
1

strictly monotonically ~ i -'CD ,

(II) U R(t.) is dense in R,
i>l 1 ----

18



(IV) R(d is finite, for each £ in e.,

(VI) R(Ei) is effectively generz~le from i

R(£)(n) represents a discretization of Euclidean n-space. Condition

I reflects the statement "decreasing £ increases the precision";

no other use of the values of the will be made in this paper.

Conditions II and VI are the only really essential restrictions; if

Rand e. satisfy them, minor modifications will produce an R'

and e.' which satisfy I-VI. (If I is violated, replace t by any
i

e.' satisfying it; if III is violated, let RI(E.); U R(E
j

) , etc.)
~ j=l

Condition II allows us to get at any number in R through the exclusive

use of machine numbers. The nesting condition, III, says that we may

reuse, at precision ii+l' any machine number that we used at

precision £i; this will be used in dealing with instability and in

the proof that our E-limit approaches limit as £ ~O. Condition

IV will simpli.fy our treatment of instability. Condition VI means

that R could really be used as the basis of a variable-precision

number system on a computer; it insures that the switching of precision

can be done automatically. (We investigate other implications of this

condition below.) That 0 and 1 are in R(t) will prove convenient

in many situations, but never will this be a necessity. However, having

~, =, ~ E R(t) greatly simplifies our model. We give three examples

to clarify these ideas and to show the vari~ty of machine number systems

which satisfy I-VI.

Example 2.2-1: Let 8 be an integer> 2. Let 0.a1 a2,,· a i
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denote a base ~ f'r-ac t i on Define EO" ',/'2 6i-l'i 1) ,i·... · -,

A base a normalized floating-point number syst~m is gi.·hll tJy

3 J

o 0 I \R (Ei) ;;; {O, -<lO J or>, Cll) u t x: >: -. ° :'1 a2

a} > 0, and e is an integer, lei < 8 i
}

e
a. X B

1

We chose these because each real number y. such that

. ai ..Ixl ~ (61 _1 ) 6 -l-~ can (in principle)

with a relative error < this

be inputted into

EXAMPLE 2.2-2: 1~t

1l
and E.

1

6
1

be some finite number

0= l-2/la
i

1"1). A base B
l

> 1. Define

10gariti"..rnic

number system is given by

Ixl - Be ,e an integer, le\ < 10
21 I

1

*We chose these E. because each real number x, wi til
1

10i t1 '01-iIxl ::: B -J. , can 'in principle) be inp'llt,:,d

witt a relative error < this

different bases, ai' approacnrng 1 as i -t "" , SlJ ~,hat. cone ito i <"m

II is met. "rite fact that some of the ai will be j r rat i cnn I ,~c ::Pc.

no difficulties

EXAMPLE 2.2-2c

Reproduced from
best available copy

Define E~ 1/(10i
+1 ) and1 .

e.* ;: {Et, E~' .}

_lXl, lXl, <»} U [x: x P/q for integers

with Ipl ' Iql < lOi}

2G

p und q



We chose these £~ because each real number x, with
1

1/(10i_1) ~ Ixl < 1Ci_l can (in principle) be inputted into

Rf(e!) with a relative error < this E~' (This last

statement is more difficult to prove thun the corresponding

statements of the other examples, so a proof ie included in the

appendix to this chapter. The other statem~nts are also proved

there as simple corollaries.)

Another important property ~hich a must possess is that the

members of a(t.) must be representable in some simple form which
J.

varies with i in a simple way. This is necessary so that the members

of aCE) can be represented simply in the computer. For example,

CD CDany x E a (e 1) - to, ~, ~,m} can be represented by a pair of

() r-i I I i I I iintegers a, e with e ~ a < a and e < a -i since

x must equal (a ~-i) ee for some such a and e . And any

* <l-X in R lEi) - to, ~, ~,m} can be represented by a pair of

integers (! i, e) with lei < 102i , since x must equal

+ 87 for some such e. A sir.ilar statement can be made about
- l.

af . In fact, any R which satisfies condition VI possesses

this representability property. Suppose (~a' 'i) is a

generator for R(Ei). Then any x in R(Ei) can be represented

by a pair of integers (i, j) , with 1 ~ j ~ 'a(i) , since x

must equal some < ~a(i, j, .) >. So much for representability. Next

we consider comparison of machine numbers.

The fact that each member of R(t.) has a unique representation
1

in terms of ~R means that, given i, j and k, ~e can effectively

decide whether < aR(i, j, .) > is > , < or = < aR(i, k, .) > ;
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when j r k we have < aR(i, j, .) > f < aR(i, k, .) > and we can

determine which is greater by computing ~R(i, j, n) and

aR(i, k, n) for some finite number of values of n. This gives us

(2) of section 2.1. Further, the following two conditions imply

the existence of a generator for 5 i :

(1) there are recursive functions ai, a2, ,' sucn that,

with at ( .) '" 9 (ai (.), a2(.)),
1 • (i)

U «a'(i,j,'»}
j=l

we have

for i = 1, 2, .. , ,

(2) the relation < a' (i, j, .) > = < a' (i, k , .) > is

effectively decidable from j and k

Thus condition VI on R is not too restrictive in (implicitly)

requiring (aR, lR) to be nonredundant .

Throughout the rest of this paper, we assume that R, t and

a corresponding generator (aR, lR) are given and fixed. All of

the following definitions are implicitly relative to these

For later use, we define the machine number set, m, by

(2.2-' )

If Rand e

m= U R(E.).
i > 1 1

are the Rf and t* of example 2.2-~, then

m is wt, the set of rationals together with ~,m and w.
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2·3 Input Routines

We h&ndle the inpu~ting of members of ~ essentially by

assuming th2t members of ~ are given by giving an input routine. To

avoid confusing a number with its input routine, we introduce a new

con~ept, that of a real input.

DEFINITION 2·3-1: A real input x == eX, RX) is ~ pair ~ mappings,

X, RX: e. ~71l , ~~

~r real

(1)

(2)

(3) limo RX(t) = 0 .
t -+

If x E (X, RX) satisfies (1) and l2), ~.£lli x

input. We call (x, RX) an input routine for x·

It follows that the numeric value corre sponding to the real

input x is just limo X (t) . When a real input x is used in a
t -+

context that c£llls for a numeric value, we let that value be

limO X Cd Thus for each e we have
E -+

(2·3-1) RX(E) ~ IX(£) - xl ,

and so RX(E) is just a roundcff-error bound, bounding the error

caused by using X(t) in place of (the numeric value of) x.

A real input can be thought of as a variable ranging not only

over ~ but also over input routines. We will find it unnecessary

to distinguish notationally between a real varioble (ranging over

~ ) and a real input, or between a real constant and a fixed real

input. When a real input is named x, its input routine will be



precisely when

This relation wil: be use f'i.L i r. defini.ng ~-com?:1.rison ~e~.Jt.i.cnSt

The following convent ions wi]: simr::'ify notat;'Q;l later;

1! known to be i~ R( i.) and (X, fIX) has ~~

explicit.ly spe c rj'Led , 1'[; ~ be assumed t,il21t X(o': = x

(in value) and RX( b) -e 0 fClr 9.:1 {)::.. ,

WE n.ean---

and

{ Ix I I- '" and f '~"IJ' all---- E] I

set P

~~ 2:E. the ~!: ill. P such ~l:at x E 1TI. (-=.r.F.er

conventic'n (2) ~).

R may denote the SEt cf

is a set of 1f.-t'..<p1.l::S Cif numcer-s.

r:-4

Reproduced from
best available copy



2.4 Multirle-Precis~onSubroutines

Let Xo denote the empty list and for m > 1 let X denote
m

For the moment, let x be m > 0 variable poor
m

real inputs and let :lI'm+a:... , xm+n
be n > 0 fixed real inputs.

A multiple-precision subr~~tine of m > 0 variables and n ~ 0 con-

stants is essentially a computer subroutine with input t and with

access to any finite number vf values of the input routines for xm+n'

say

for j 1, •.. , m+n

and with output in R(t), With the re~uirement that if any X(t)
J

or

RX
j

( £ ) is w then the output is ~. We call £ and X
m

the inp~~s.

With inputs

F by F(£; X )
m

and we denote the output value of the sUbroutine

When this happens we 'Il'ri~e F(E' X) = ID, m

fined in terms of the members of R - lID}

ther; 'Il'e allo'll' F to not halt when its inputs are x and (any) t
m

because F(E;X) is unde­
m

(see sec. 1.4).

This can be forMalized as follows. For n = 1. 2,... ::tet Pn

be the
th

n prime: p '" 2.1
etc. ~et x be a poor real i~put and

suppose that for i ~ 1,

For j ~ 1 define

)( • "'. x
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Define the jth Godel ~umber of xm (m ~ 0) ty

(2.4-2)

where the empty product is 1 (i.e., GNj(XO) ~ 1). GNM(xm) contains

complete information abo~t the numbers shown in (2.4-l). We say that

Y is m-determining (~~ 1) precise~y when V is recursive a~d,

for i 1, 2, ... ,

for 1::: k < i, and if any X.(E.) or RX.(E.)
J 1 J 1

is w

then y( i, GN. ex )). '" 3, _. ,a.m?
1 '>1 '-. ~_/

for any real Lnpur.s x there is an M > i withm

Thus y waits until ~ufficient ~nfor~~tion about x has been col­
Ili

1ected (in GNM(Xm}). and then y returns a nonzero value. WIlen

lim inf roc ,( E) > 0 for some j, GNk(xm) may never contain enough
t .... 0 J

information abcut x j for V to return a nonzero value. (Of course.

evenwhen liminfRX.(E)=C<limsi.!?RX,{E) forsome j we may
E....0 J t- 0 J

have V( i, GNk(X
m) = 0 for sone i and E k, but this will not

be due to lack of information about x .. ) We say y is O-determining
J

precisely when V is recursive and l::: y( L, 1; ::: I R( i). Let

;;: (yO· GN (x )j -! 0) be Y(i, GrJ.. C~)) where M is the least
n n m "1 m

value of n suer. that y( i, GN (x )) -! 0, or let it ~)e 3 When theren m
is no such n.
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DEFINITION 2.4-1: A muLtapLe-sprecLs Lon s...broutine of m > 0 variab:es

and n ~ 0 constants, xm+:'>'" xm+ n' ~ ~ mapping, F'

t x {floor rea: inputs} (m) - 'lJI, ~ that~~~ m+n-detcrmJ-ni ng

y which satisfies ~ following for !!!!.il poor~ inputs

~ i > 1

x Iolnd
m -

F( E.; X )
1. m < ~(i, ~ (V(i GN (x + )) 10), .) >

K n n m n

We say ~ determines F relative to (aa' fa)' We stress that so

long as the x
m

are real inputs (not just poor). the ccmputation of

F(f:' i) via ~ will always halt" Essentially the only subrcut Lnes, m

whose computation may fai i to halt are those which, with inputs f:

and xm' try to find an ~ ~ f: such that, say RXl(~) ~ t, for some

tolerance level 0 < t < m; for example, when Xl is a poor rea~

input with RXl(E) = ~ for all E, such a subroutine will fail to

halt. We will use "subroutine" as an abbreviation for "mu1tip:e-

precision subrc'..l:;ine. II An immediate consequence of the above de1'in:l-

tions is

if any X.(E) or RX.(£) is w,
J J

This convention is taken from Scott [51). Note that these definitions

have all been relative to ("ft' 'a)

THEOREM 2.4-1~ If F .!!.! subroutine relative 1£ (~, l R) ~

(ClR, 'a) is~ other generator!2f a(E
i

) then F is 'l s\.broutine

relative 1£ (~, 'a) .



This means that the concept of subrcvtine is independen~ of which

generator of R(E i ) one uses.

Proof: Let GN .(i) and GN'.';) denote the J
ot h Godel numbera

J m J' m

of xm relative to (aR, IR) and (aR, IR)' respectively. The

cc.iadde rat. ions of sect ion 2.2 show that there is an effect i ve prccedure

which, when given any generator for R(E.)
1

and any j::: 1, can order

the members of R(E.). This means that there are recursive functions
J

ll'l and ll'2 such that ll'l(i, 0) = 0 and

Ql2(i, GN:(x » = GN. (x )
1 m 1 m

for any i ~ 1 and 1::: j 5 i R( i ) Define y! by

for i ~ 1, j ~ 1 and any xm If Y det~rmines F relative to

(OR' lR) then y' determines F relative to (OR, i R' . This

~ompletes the proof.
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wIth Lne constrdlut th&~ r(-:; \
111

If ~r,y x ~ lL
l

corre SpOndll1g t,Q an lde ,,1 l\H:c t ien f' (')f m var Hlb:'es) '.v~r " Be t

P of m-tup:'es uf re.:::--.!.ll.P.u~ ~ .~ trik"..e ~l', FF. 'TF; ,?f s",b-

rOJtlnes,~~ su sss: w[n..ts xm ~~

;., '" FF( ~; - ) !F(e; - ,
1'(X

m] I\.J.) !9.! ~cn € , X > x
m m'

(2) [x E p and f~i 'I I w] t1~ RF(E; - ,
0,.. x ml andm m'

(3 ~ .ll m 0, ~ ~ TF !Ii wi otherwise, .£!2L~ £ ,

lim f:i ., y) I
rKm_:... m-.l

We call f a d<.Jm'lln set of , and we write

, AS f(F)

tc be redO. " cOIYes~cmds trJ ~ or' approxlmates) f over (or ml:a)

F This def'inltl\:m 18 iE·..lshateo in flgure 2.5-1 for the case

m = 2 and x = .., ,



'.

y

at t

....:--. .....

------

.. ".1. It •

, .

y£

,-;. (F. RF, TF)

RF + TF
•• at £

at t
" a.('F
~

\
\

/

(+-----~---+
lim f(lD. y)
y-'a>

FIGURE 2.5-1

RF is a roundoff-error bound, bounding the error incurred by using F

in place of f. TF is a truncation-error bound, bounding the error

incurred by usir~ f(x )
m in place of lim r(i l' y) .r"X

m
_

1
m- For example,

if f(x, n )
n
[ g(i), then TF(£; =, n) bounds the truncation error

i=l

<Xl

IE g(i)l·
i=n+l

F~(e; i _, Y) + TF(e; x l' Y) bounds the error incurredm-... m-_

-by using F(e; X
m

_
1

, Y) in place of lim f(i
m_l,

y) •Y"'"'X
m

_
l

graph, this bound is smallest when Y = y£ •

For the above

Conditions (1) and (3) on ~ require that the bounds RF and TF

work properly for ~ real inputs xm and any E •

requires the convergence of F to f and RF to a

Condi"':.on (2)

at x e p
m

for
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which f(i) is de f i neu , : VJE m'.;.s~ ns ve '~,F -J in order +,.:. ef'fec': l ve:'y
m

cumpute, via F, an al-pr,::xHr12l': 1.0n t c f -:h9t is ccrrec"~ t-~"ltr:Hi

scme de s i.red and a':'bitrarL~' s:n~:'l to::'erdnce.; if instead 0f \c, wt:

have

(2: Hi E P
m :(i ) I wJ ""m

f(E; i )
m

f(x )
m

we say , weaK:'y corresE~nds to ever 1-' and we wrl':;e

We ca~L P a wea~ domain set cf ,. An immediate consequence of

these deflnitions is

THEOREM 2.5-1; l! Q. C F and , A:l rep) (2E s ~ f(P)) then

S A:l f( Q) (:2!. , ~- f~ ~» .

We wi:":L use :'J(l;;; im~ to denote the triple (If v8:':~es,

For an. triple 8
3

of numcer-s , we wU:" use (3
3

) i to der.ote

a (1 < ;. < 3). I'hus we have
1 - -

('( E, F( <; " x 'ml

etc, E-Functions are finitely cump~~ab:e in ~he fol~owing sense: toere

is a Turing machine WhEh, when g iven an vbJe-:t1/ for computing the

x .(f. ) and :ra:. (f. ) f'c r any giW: n t J can out.put the triple of value & ,
J J

'(f.; x) fer any given • ,
m



Dealing with the instabilities alluded to in the introcuc~ion was

not our main reason for introducil~ the truncation-error bounds (TF)

We had to introduce them because any definition of "~E -ccnvarges

at x," which is based only on the vaL'J.es of F( E; x, y) and

RF(£; x, y) (e and x are fixed here), cannot have much to do wL}-.

"f converges at x ) (wrdch is true when lim r( x, y) ,; (J.l); rp.memte::­
y-x

chat F and RF can only take on a finite n~mber of different values

for each fixed E The truncation-error bound, TF, gives ~s tne

needed local information about f

Suppose Yl, Y2' and y.
3

determine tte s ubrout mes F, RF and

TF respectively. Then we say \'v J.' Y2' '(3 ) determines ~ e CF, 111', TF)

and (yl' Y2) partially determines ,. When we say "s i veri ~" we

mean "given (Yl, '1(2' '1(3) determining s ;:

l/we call the thing which computes (X. 1 :RX.) an"cbject" ra ther t~li.ln
a Turing machine because there may be ~o suah Turing machine; there
are only a countable number of T~ring machines, but there are an UD­
countable number of values of X See Shoenfield [81, p. 248J f0r
similar considerations. m
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2.6 An Exa~ple:
x

e

Following is an example of how one :night go about defining an

E-function corresponding to

in section 5.7.

x
e over If. This example is forma:ized

~e~ [y] denote the greatest integer in y and let sgn(x)

denote the sign function at x (Which is w if x is m, and other-

wise is -1 if x < 0, is 0 if x = 0, and is 1 if x > 0) 0

Define

if k=w, or y ~ co

f(x,k,y)

tf(x,k,y)
w

if Y < 1

other;;ise ,

if k = co and Ixl + 1 ~ y <.~

otherwise

if x = lZl

°
lim

y -+00

if x =

f( ») - sgn(x )
x,"",Y

_ co

otherwise

!Xl

tf(x,co,y) bounds the remainder term, I f (-Ixl)n;n! I
n=TyJ

The point

here is that tf can be computed using only arithmetic, [.J, I· I
and numerical comparisons. It should not surprise the reader that

there is a subroutine, F, such that F(E; x
3

) --'f(X
3

) as e ..... O

for most We can use the methods of interval analysis, or an

error analysis in the sty:e of Wilkinson [W2], to obtain a subroutine nF .
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We can use interval analysis to obtain. a subrcut ine, n', wil!..~h

satisfies

The result is ,. IE (F, RF, TF), an E-function corresponding to f over

y I ~ and lim y = ~
t £ ~o £

smallest numbers in R(t)

most of For each £, let y£ be some member of R(t) witr

Let RG(E; x) be either of the two

which are > RF(E;X,~,y ) + TF(E;X,~,y )
- £ €

We can define an £-function corresponding to

UJ if [x I > <D

g(x) x
if x < 0e

-x if x~ 0e

by

Thus -'(Ei+1;x) is computed at a higher precision of' computation

(see sec. 1.2) than is .1(£. ;x) and we will [lave .j-~ g(p) for some
1

set P c R. It is easy to get' from ~.
exp

This method of approximating eX by an alternating series has

the numerical disadvan~age of involving cancellation, but it affords

the use of the simple and rapidly convergent truncation-~rror bound,

lxln/n~ (When n> Ixl). A metl-,od based on I:lxlnjn! wou:;'d Lnvc i ve

no cancellation (so lower precision arlthmetic could be used) ~~t

we would have to use a more complicated and more slowly conver-g Lng

truncation-error bound of the form Ixl n 2,c{4[lx l+l ] / n; (va:U.:! f:Jr

any n::: 0). We use the former method here because E simp:'ifie::: th!

formalization in section 5.7.



2.7 Ope~

JFeratQIS and £-opera~0rs wi~~ be our princip~l venicles for de-

fining net rene and t-r.ctions i.n chapters 4-6. Let Sf be the set of

all ideal functions of n i;'; 00, 1,2." variables, An operator of

ideal ~un~tions over 5 C 5(n) ~s a mapping,
f

Let f
n

denote the :'ist .:;1' ide'il f'unc t i cris ,

';j ana. P
n n

f. ,. ' ., f, and lIkewise for
r.

We say;; correaponds to f over P precisely
n n n

When S". r(p,) (1 ~ 1'::: n), and we write
1. 1. 1.

., ~ f (p )
n n n

i,et S be the set of all J such that there is a 1 E S and a P
n n n

'W1th J All f (p )
n n n

Let S be the set of all weak E-functions. A
w

weak t-operator, (~,Q), correSpOndIng to ¢ over 5' C S is a

mapprng , ttl; S·

on J , f , Ii ,
n n n

Sw' together with & set filoctlon, ~, whlen depends

such that

1.f ., RoI 1 (Ii ), , E 5 I
n n n n

then

~(~ ) - ~(1 ~(Q(' , f , P )), and
n n n n n

(2) there exist rec~rSlve operators ~l and ~2 such that,

par-t i.a.lLy determines ~(J )
n

When t.hese eond i.tcns hoLd, we write
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Condition (1) requires that <I> gives E-apprux".Lfl'ations 'JO ~ an:'! ',~;6.J~

<%> ... ¢ as E .... 0 in the sense th:..+. we at :"east have

¢(- '(- \f I X 'n p '

for x E Q.(~ , f , P) at which ¢(r i(x ) I ill. Cond Lt.or. (~)
p n n n n p

requires that <%> be finitely ca~putable from its arguments; it require~

<%> to constructively map the determiners of ~ lnto a partial dete~-
n

miner of <I>(~). We have left truncation-error hounds out of (2)
n

because, for the E-operat':;rs which we ...... i11 present ~ate:r', we do "lot

believe there is an automatic war to define a good t.r-uncet.Lcr.-er-ror

bound for ~(~) from the determiners of the J (see def. 4.1-1),
n n

In general, such bounds depend on certain analytic pz-oper-t Ies of

¢(f
n

) , properties Nh~ch cannot be effe~tively recovered from tI:e

numeric information given by the determlners of j
n

vie avoid

problem in most cases by aasumi.ng such bounds to be g i ver., cV~ )
, 'I"

is a f'unct.Lon of o or 1 variatles, then the

is, by de fini-:'ion, identiCCi.l:'y ill, and this prob:er'. does no.... arise.

We will r.ave more to say abcirt thlS i.n chapter 5.

If cond~tion (~) above hcld~ with

is ali £-operator corresponding to ¢

£-operator), and we write

The "goodness" of (ill, Q) depends or: f'(;W nont.r 1vLaL tr:e rE::l3tioli

between ~ , f , P and Q(~, f , r) is, ho..... ~argp. 8' is .• and
n n n n n n

especia:::"ly on how efficient <t> zs , ir, t(;,~'rr,s of t he rrulllb~r c.f l;.Vl:<:\:~11,1C'r s



of the ,
n

required to evaluate -t>(~ jet; x ),
n m

ar.d the ac curacv

achieved (i.e" the size of I ",(:ii ')' -)' ~,*;r ,\E; X /,,"n m c.
For example, le',

and G d(~ , f , P ) ={l, the n~ll set.
"be n n n

( ~ Q) ~ ~(S) for any operator ¢ Over S and itsThen bad' load ~\

corresponding S. or course this is not a good t-operator in any

sense. The formalization of a measure of the goodness of (~, Q) is

a worthwhile and as yet unsolved problem. When this is satisfactorily

solved, the rules for £-izing a notion will be complete.

For simplicity, when we present particular [-operators, we wi:::'

give a constructive analytic definition of 4>, rather than giving

'1 ani Y2 It is a si~ple but tedious task to construct particular

'1'1 and 'f2 from such a definition.



an E-neighborhood of
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and A
2

_ can be defined as follows. (The ,(.) and Y(.) defined,
here will be used later.)

EXAMPLE 2.8-1: Define c-precision roundup and rounjdown converted
,.., v

ve Lues , 1(1,8) and I(E,a}, for the number < 8 > as followc. Let

n
J

be the least integer such that the interval [(~(nO) -l)/no'

(l'(n
O

) + l)/no] overlaps at most Ole of the intervals

[(OR(i, I, nO) -l)/no' (aR(i, 1, no) + 1)/nO](1 ~ I ~ IR(i»
.... \01

is -, tD Or ()J then Jet I and I be 1, 2 or 3, respectively.

otherwise let the intervals about OR(i, 1, n) and aR(l, J: no) be

the first ones lying completely to the right and left, respectively,

of the me abcut ~(nO). Define

(2.8-2) for * being'" and ~

Then 1(E,~) e Nc~ < ~ » and 1(1, ~) < « ~ » < I(c, ~)
+-Define ~ . k by1,J,

for n > 1

+
Then ~,j,k computes < aR(i, j, .) > ~ < OR(i. k, .) >. (See Bishop

(ni , pp, 16, 21) fbr similar definitions cr +, - , X and .;..) Let

a = < aR(i, j, .) > and b = < 0)(1, k, .) > • We can define the

A by
n,~

Ftr the rest of the paper, we assume particular A * to be given.n,

For ~, b E R(I) we will use a *c b Bnd a *c b to denote A1,*(£; a,b)

39



and A
2

*(t; a,b;:' respectively, a!lit':.ing the subscript £ whenever,
no confusion can arise. For subroutines F and G, we wiil abbr~viate

F(e' x ~ +G(£' X''m l , m' by e.c , in general, we will

factor nrt arguments SE' much as poss i b i.e , ca:ling the resulting ferm

argument facTored forffi.

In crde r to prove that "the An,* cor.ve rge t o idea: er i.t.lunet.Le

as e -- 0, we must first state exriic:.t:..y r.he st-,ecial rules for

arithmetic inYo~ving ... '" and u\. Let x,y,z E R satisfy - < Y < '"

and 0 < z < ee The specla: ruies are

General: x * w = w * x ill.

Addition: 00 -t- ~..mj

MUlti.plication: "" x 0 '" ill

Division: x.;.. 0 = 00 .;.. (D = w; y .;.. '" = 0

These, co abt.ned with the usua., de f t n i t.Lon of r ee ; aritnmetic (see, f;:r

example, Bishop [Bl, Pt-. 16, 21] I and "trle usua ; associative, ccmn.ut.at i.ve

and distributive laws, com[:lete:"] define t,he arithmetic cf It'. F,)r

example, (0 - "" =.., + (-eo; = u) and." x (-lO~ " (-11 x (0'> " 10) = ...#;

as

£ - 0

Proof: If xl' x
2

e R then x '* x f. w impl.ies that Xl ". x2 is
.L 2

finite. Xl (£) '" X ~ E" X
O

(£;, ~ X
2

( E)We have that * and are in
2

Nt(X1(c) '* X
2(

E:) and property II of R tog6ther wi~"h the continuity

of arithmetic give us convergence. If xl or x
2

is infinite t.r.en
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Xl "* x
2

,; co «nd the above spec i aL rules for arithmetic involving

yield that IXl ~ x21 is ~ne of

00 + 00, ee T y, m X ZJ Y /'X)

ConverGence is clear in these caseS. Tnis completes the proof.

Fa:' A,B E R(E ), let

.. 'J'

(2.8-4)

(2.8-5)

° if A = B

IA ~ B\ A~ B if A>B
E £

B ~ A otherwise,
£

° if A = E

IA w
t

BI max(O,A Oi£
B) if A> B

max(O, B ". A) otherwise
"£

effective ~pper and lower bounds on the distance,

This simplifies inequalities, because

A and B (see ~p.c. 1.4).
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RF:MARKS: In our model, we have as sumed that it is poas fb l.e to ,;se

arbitrary levels of precision (arbitrarily small t~
I'

we almost always use single- or double-precision, and tl;ere is a fir,i+~

upper limit on ho... high ~.he precision can be (precisions higller t~;",,,

double-precision being provided Via software). However, our mOdel does

not preclude an emphasis on single- and double-precision ~cmput6tions,

We feel it is conceptual~y correct to keep arbitrary pyecision in ffiind

in the design and ana Iys i e of algorithms; doing so helps keep a Igor i t.nms

machine independent and is kind to the occasional user who requlres

high accuracy.

In our definition of roundcff-error bounds and truncation-err::;r

bounds (sec. 2.3 and 2.5), we h~ve taken the stand that numerical

analysis should concern itself with rigorous approximation r5t~er tD~n

j",st estimation. However, it shouLd be possible to form. an ";.:-cslc.lus

of est.Lmat Lon" by defining these bounds to be statistical qc;an"tities.

In fact, it should be possible to t orr. an "t-calculus of s t abLe £-

functions" which involves !!£ error bounds, as we indicate in the remarks

~fter chapters 4 and 5. (Such an £-calculus would not have very inter-

esting e:-notions of (-comparison, £-convergence and t-ccntinu:ty.) TLe

_aSL two t-calculi should be interesting to explore. The last cne will

probably resemble current scientific computation more closely th~n t~e

e-calculus developed in this thesis.

t-f,mct-ions", a "poor real input" l< wou'-'l hE" a mapping X: t .-. '171

such that X(£) E R(t), A "real :inp'~t" x wi--vh va Lue ': E R "')',~:i 1.

a "poar real input" such that :::'0:- every 6 > 0 there is ar f ;,;i:-1.1

IX(£) - c\ < 6

"an ~". f(P)" would bE' a "aubr-cut.i ne" ; ':''':

all X
m

E P at ~hich p(x I ~ W
J. m): •
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2,A Appendix: Maximum Belative ~;;rF-, r

Here we prvre statements made :lbCJ~t '.ile examt':'es of sec iJ;,
-,
c." ..

THEOREM 2.A-l:

about 0 Let (l)( e ) and -:( c ) be the smElllest and largest~

positive numbers in R(~) and de f i r.e----

(2.A-l) sl-xJ.~
~(~) < I < ~([)

min IX-it
y E R(t) x I

Letting a<a' range~p'JsiLive finite neightors in R(t\

(2.A-2) max(a'-a)/(a'+a)
a

ProOf: By symmetry it suffices to consider only x "H.h

a( e ) :::: x :::: or( t). For a E R( e ) with (!)( e ) < a < ,( d, If,:t a 1 aer,,' c

the successor of a in R(~). We have

E( e ) m~x ( sup min l~ll
asxS 8' y E R(t), XI

max su>, min (x~a , a~ -x)a
a < x < a'

The facts that (x-a)/x is mono~one increasing and (d'-X)/X is

monot.ona decreasing for x ~ 0, and that these func ti.ons intersect

at (a + a')/2 yield (2.A-2). This campletes the pLOW!.

This theorem gives i.mmed Late results far exa'Jlp:"es 2.2-1 and 2,;;-:.'-

For
o 0

aER(t.)
1

with and ~i-l ~ b < ~i we have



",e-ia' -a = I-'

o
£ •
~

and

~e-i )

awe have

~ax . ~e-i/(2ee-~

lei <13
1

a = e~
1

o 0,
E (£.)

1

* *,
a E R (E.) with

1
For

I Q'=+~max ':I' ,I-'"lei < .l.O'_.1. .L

J<
E.

1

To prov.e this for we need more maeh:;'nery. First. we note chat it

suffices to take the maximum in \ 2.!\-;!~ ov<:r l'1, £ ; < a < - (rattler t.nan

~l E) < < ,,:(~i) for R'* ,
> ami Iqa ; s'J.f..~sse u = Pi q .1. a' p

then the successor of b q jp is II _. q/ f- and we have

b -b
b ..b

oj...! E:. - _/ a
Ja -t- ja

For n = 1, 2, .•. define '.IF:; Farey se:::-ies af ,)raer n,

be the sequence of r at i ona.;s , ,/q, with 0 < ~:::.: q::: n and G.C.D.(p,q. .1.,

written in increasing order. We stl'J:".:. requtre t ne fo:":Lowlng two we ........ kricwn

lemmas (see Niveo and Zuckerman [rJ:'-, pp , :"23-:"~J)).

LEMMA 2.A-l: 11 p/q and P 1'1 aTe c~nsecutive fractions in r
11

~ p'q - pq 1.

LEMVJA 2.A-2; If pi q and j:-! q 3re consecutive in F'
n'

tLen



We will also need the fo11Qwing two new results.

T"",n.n 2 A 3 F '> 2 Lf -./q <: p'/q' t' . F_,"","=-'u_''''_'_-,,: .2£ n:., t' are consecu 1'lE: ~ n

and p > 0, ~ pq'::: [~(n+l)J •

~: is .l. '
<: 0, 2' f >, so 1;}le bheor-em is true for F'

2:

Suppose it is t rue for F
'"\-1

Anv conseeut i.ve fractions in F will
n

be either .£ :L or :E £:!:.L or .E.:tE..:. .L wnere 1: R..:. are C:Clnsec~-q' q' q' q+q' q+q' , q' q' q'

tive fractions in F
n-1

(by lell'.ma 2.A-2). We have pq' > [n!2) In

the last two cases this implies

p(q+q') == pq + pq' ::. 1. + [n/2J ~ [~(n+l)]

(p+p' )q' == pq' + p'q' ~ (n/21 + 1:::. [~(n+l)]

and the induction step folJ..7Ns. In tile first case, if n is even -:;ien

Or, if pq' > (nj2) then[n/2] == [~( n+1) ]

1
pq' ~ ['2(n+l)] .

,
so pq ' > (~( n+1) ]

- c:

Suppose n is odd and pq I == l n/2] Then we tJ8Ve

q' <: pq' (n-1)/2

q :::: p 'q x- pq I + 1 == (n-l)/2 + 1

q + q' S n

It follows that (p+p')j(q+q')

not have been consecutive in F
n

is 1n F and so piq, p 'I q I
n

This completes the proof.
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Let n be :> 2 ~i _'.•••

F
n

C:l > (j .

Proof: Let a

max a'-a
a 9. ; +a

p/ q and ~

1

2r~(n+l,] -+ l
c:

\ve have

Furthe r , the fract ions

P 'j - pq'
r';J -+ r;:q 2pg' t

1
2pq T J.

This compIe t.es the p r oof .

-,
~

Taking n

max (8'-&)/(a'+8)
OfeEF

n
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Chapter)" Numerical Instablll~Y

'.1 A Definition

To simplify notation, we restrict this discussion to E-f"Ur.CeJ"r,::

and functions of two variables. Let x be a real input and 1311PP'_"S" t ha r.

lim rex, y) exists. Let F be a subroutine satisfyiDg
y .... x

for y E m- (x} at which rex, y) 1 ill This means ~hat, with

~!! (F, (I), (I)) , we have': ... fOx} X (m - [x] ) We do not requir~

(3.1-1) for y = x because (1) we do not need to, and (2) this ccu rd

cause problems when f'{x , y) is discontinuous at y "'- x (x fixed)
• 1

We are interested here in a computation of Li ra r(x, s : '.tJ ee',y -', x

proceeds at precision e: by sel.ec t i ng a YE E R(E) and t.her, using

FeE; x, y) to approximate lim rex, y) We call the rule used t.~
E Y ..... x

select these y 's (as a function of F, x and possibly ot.her t hLng s J a
E

stopping criterion because it tells us where to stop at precision E

We say that this stopping criterion works at x precisely when

limo FeE; x, y ) = lim rex, y)
E .... E Y .... x

This framework is quite generaL f(OI), n) might be the nth Hera's

o~ an iterative procedure for evaluating lim f(OI), n; , as in Newt0n 3n ....01)

or Bernoulli's method for finding zeros 0';' a polynomial, 0r as in numer i ca.i

integration methods for ordinary difrerenti~l equa~ions lhe assump1 j L

that lim r(w, n ) exists means that the discrete met.hod conver..e s ir. e':='n ~OI)

arithmetic, with exact starting values. (rhis is weaker than "'llVCrl' ~.'
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as defined in Halston [Rl, p. 171_,

We are now ready to discuss numerical stability. As used i'1 n-m.e r i ce .

analysis, stability deals with the way local rounding err:>rs of sume

i terati ve procedure propcgate and effect the total accumulated en'

(See Henrici (HI, pp. 11, 302, 3091 and Ralston iRl, p . 175 '.:lnder 1)

Let us consider an example

EXAMPLE 3·1-1: Lee; be defined by

At precision E ,let qo approximate qo' Qi approximate the

recurrence relation, Qi' and define ql' q2' ... , by

.th
l

The th
n local rounding error of this iterative procedure is

and the total accumulated error is Let

when n: [y) ::: 0 and x ~ Ul; otherwise let r(x, y) = (l). Suppose

we are interested in the fin5te limit, yl~m_ f(-, y) = nl~~ qn .

Let F(E; x, y) be defined in terms of the qn so that (31-1)

is satisfied for x > -. (This is easy, but tedious, to do; F'

will be effective so long as the \ are .. ) Then F'(E; CD, y) - :':'0> I Y

is the total accumulated error. Ir, as y~. through finite

values in R(E) , IF(E;., yi - r(CD, y)1 becomes large, i': w(luld

be said that "numerical instability has set in at prec i s i on E •
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If this happens for i nfLn i t eLy many values ,)f E , ~ ......".L..i t;",

said that F is unstable at ~

be some value in ,HE I -er e the t.ct a.c e r rr J bas t·!2': :frif' large

Then we would have limo L E; "', Y
E)

1- Um f':x: , ;,/1 , t' VI;:-~-l t r.». ..... r;LE --> Y ~'"

we may have E1.!:.JllO YE
z; '" and y€ f '" n,is is t.'.e tre.go:-dy ~f

numerical instability; wlJen ;; 1S ')nstable at QO, '-f,~r€ .... lll_£~

seemingly qUlte reasonable stopping criteria that ~~ D0t w0rk at '"

Cn the other hand, if F is stable at '" ~ in the sense vrsuaj.

to numerical analysis), t.hen any a icn refls')nalL", S1:~pplnf: criteria

should work at a>

This idea of stability generalizes easily to any F, x and

f satisfying the aasumptLcns at r ne beg i nn i ng .·f t n i s s ect irn , wtj('t'l~r

or not they involve iterative met hods and Loca L rcur.d i ng err :iYS

generalization, it is important that "reasone o.«: s rcpp rng CL t e r i a

choose YE's that satisfy

IX( s ) - y I » BX \ £ J
t

so that is effectively distinct from x at precisi-:m E !his

is necessary so that F is not unstable just because f:x, y, is

discontinuous at y c x eg , when fIX, yi involves divisl~ns by

(x-y) Define the set, p (E; xl , of members ·)f R,E I that are

effectively distinct from x at pr'ec i s ton E by



(3·1-4)

If RX(E) = (1) then (3.1-4) forces the choice y = (1) •
~

This cannot

happen when £ is sufficiently small.

DEFINITION 3.1-2: Suppose lim f(x, y) is finite ~y -+ x

~ - f({x} X (m - {x})). ~ say F is stable at x precisely

when any stopping criterion which is reasonable at x,~ at

x. Otherwise,!! say F is unstable at x.

Following is an example of an F unstable at O.

EXAMPLE '.1-2: Let &(~) be the smallest positive number in R(~) .

Suppose a certain form of [-arithmetic is to be used and that in this

£-arithmetic we have 0 + 1 = 1 , &(E) + 1 = 1 , 1 - 1 = 0 and

0/(0 - &(c» = 0 (see section 5.' for a detailed discussion of

E-arithmetic). Suppose a subroutine F, evaluated at (£; x, y),

approximates f(x, y) = (x + 1 - (y + l»/(x - y) by replacing x

and. y by X(E) and y(~) and by replacing arithmetic by this

~-arithmetic. (That F satisfies ('.1-1) follows from corollary

5·'-1 in chapter 5.) Define y = &(1) Then these y's satisfy
£ ~

(3.1-4) tor x being 0, but F(I; 0, y ) = 0 for all £ , while
e

y1!Fo f(O, y) = ~t (t+l) It=o =1. Hence F is unstable at O.
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3.2 A Geometric Characterization

F is unstable at x if ar.d only if there is a reasonabl~ at x

stopping criterion whose y 's
f.

satisfy

(,.2-1) limo IF(f.; x , Y ) - f (x , y ) I > 0 .f. -. f. c

Interpreting this geometrically, we find that the graph of F(E; x , t.

versus finite Y E R(E) acts like an~, 'ThIS is p i ct ured in figure

fI
I

-r
I
I

Yt;
1

, .... - ------ -- -- - - -- - - ==:-=. ---~= =~-:. ---~=.-= =, ~

'. F t " F tI a £1 • a £2
I :, ,

•• _', -;J....... :
'---. ~ ,

/

--..... ......

~ .......-.---------!-------~-------_ ....~~ Ylim f(GO,y
Y-+.

Figure ,.2-1 Instability

As f. ~o , the E-wave moves towards x. The crest of the E-~ave

stays uniformly away from lim f(x, y), (See example 3·1-2).
Y ~ x

Two usual stopping criteria are

(1) choose to be the first value of Y for which

TF(f.; x, Y) S RF(!; x, Y) , as Y ~x via some fixed

approach, and

(2) choose to be the first value of Y (as via

some fixed approach) such that 1'"(£; x, Y) and t;he previous

four values of F are equal, WIthin some tolerance.

The trouble with such stopping criteria is that they can make FIE' X v '\
\ !I ' ... f)

ride the crest; of r he E-wave cut r..: x , t,ne!''?b,r des'!'c:,yi~,tS ' ','ec'Je" "'.



3,< A Stopping Criterion That ~Grks

computable or not) which yields convergence even when F is ;lnstat L~

at x? The answer is gi ven in the aff'irmati ve by the following

definition and theorem.

DEFINITION 3-3-1: Stopping criterion selects

lh!!~ of' Y E R(t) closest.!:£ x at wh:ch (F(E; X, y) -

lim r(x, y) I assumes its minimum~ all Y E R(t) (taking
y .... x

the smaller value for y in~ £f ! lli)·
-- ----- E

We call

course

(y FIE' X y)) the base of the E-wave of F at x,E' \, , E

cannot be effectively computed from F' and x.

Jf

THEOREM j·3-1: 1! 7 "'" f( ~x} x (711 - [xl)) and

f!! nnlte, then L.f.:- works at x.

lim r:x, y
y -+ x

Note that s. c.· works whether F is stable or not. Thus there is

some desirable behavior even in the presence of instability.

~ Let I lim rex, y). For any real input y, we have
y -+ x

(~'3-l) IF(t; x, y) - 1\ ~ IF(E; x, y) - rex, y)\ + Ir(x, y) - II .

Let an ~ > 0 be given, By choosing y sufficiently close to x,

keeping y Em - [xl , the second term on the right side of (j.3-1)

becomes < ~/2. Then by making E sUfficiently small, this value

or y is in R(t) and the first term on the right side of (3·;-1)

becomes < ~/2 (the nesting proper~y III of R(t) allows this). For

such y and £ , the left side of (3,~-1) is < ~



bounds the distance of the t ,froms· c #-ofF(E; x, y )
£

This completes the proof.#s. C. worksoand so

Thus the height of the base of the £-wave of F an x appr~8Cn€s

lim f(x, y) as 1: ..... 0 .y -+ x '

5)



3·4 An Alg:>rithm for :)verccrlling ::'nstat'5lity

f'We derive an effective analog to S· C. as follows. S0PP')S'=

s IIlIlI f( [x] x ('!n. - fxl) ) and lim fix, y)
y -> x

exist.s.

DEFINITION 3·4-1: S. C ** selects Yt 1£ be the smallest val~e

of Y in R(t) for which (HF ~ 1'F) (E; x , v) assumes its mir,ir.lUfr.

~ all Y in R(£) .

This is finitely computable because R(E) is a finite set. Tt.vs s t opp i :."

criterion keeps us close enough to the base of the £-wave of F at x

that we get convergence even in the unstable cast", provided only that

there is a sequence, Yl , Y2, ... , with each Yi Em - (x} ,

(3.4-1) such that

T1''«(; x , y.)
1

o .

Then

THEOREM 3·4-1; Suppose ~~

(1) lim rex, y) f W ,
Y --+ x

(2) ~ IIlIlI f({X] )(?1t - [x])) , and

(3) TF satisfies (3. 4. 1) .

s- (~.#* works at, x·---
Proof: This proof in essentially the same as that of theorem 3-3-1.

We ",ill prove that ror every 'I) > n tl'ere is a ~ > 0 with

(l\F ~ TIl (E ~ x, y ) <. 11
e

for all £ < &,

is chosen by S· c.**
Let an 11 > 0 be given. By assumption, there is a Y in some



lim s(3P rIo'lj X, Y} < 11/4E .....

For this Y there are 6
2

, 6.3 E e with

TF(E; x, y/ < il/ 2 for all £ S 62
,

RF(e; x, y) < il/4 for all e :5 6 7
-'

There is a 64 such that R(b 4) contains an 111 and an 12 with

3Ti/4::: 111 < 1'\2 < T\. Let 6 .. min(61 , 62 , 53' ( 4) We have

(RF 1 TF) (E; x , Y
E

) ::: (RF ";.' T:I") (E; x , v) < 1'\ for all £ < 5

The first inequality makes use of the nesting property : '1::' of R j'i;p

second inequality uses the facts ttla~

(1) (RF ~ TF) (q x, y) E N ( (RF t TF') (E; X, Y! ) }e
(2) (RF" + TF) (E; x, Y)<}'T1/4 , ana

(~) 111 , 1)2 E R(e) \by property III of R )

This completes the proof.

Thus S. c.if is a (totally inefficient) algorithm fur ove rcom l r,i",

instability. It should be possible to find a more efficient a Lgor i t.hn,

for which theorem ~.4-1 holds because

(1) we do not need to find the exact minimum of (Rf ~l?)

(£; x, Y) over Y E R(E) ; we only nee d t·, s t.ay "s'lffici •.'~,tly

close" to it, and

(2) in particular cases, it should be possible to localize

the search for y£

,'m the other hand, it should be possible to shcv that any st.opp l ng

criterion, for which t.neor-em 3 4-1 holds, must require S,) many



IlYJ:,uLI1",sis, regard5ng l} ,"
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;·5 Applic~c~vns

truncation-error bounds car, be comt.i ne d .,i th an unstable Sllbr_;,~' LH"

to form a convergent algorithm fer cornputin~ the aS5ccia~eJ limit·

Here, we c ons i de r app l i cat.t cn s v.I' t.h i.s r e auLt, 1.'-' t he in;_tHl-v2.1\.c

problem for ordinary differential equations InstabilitlEs can

generally be classified as

(1) those due to the particular method or solution used, and

(rr) those due to the problem being ~olved.

We will give an example of each and we will show that the instabilities

in both of' these examples can be over-come by S. c.If Of COilrse,

the best way to overcome instablli~ies of type I is to find a :::>tabll2

method of solution.

~~LE 3·5-1: Consider solving the initial-value problem

y' = -y, y(O) ~ 1 , by the corrector formDla,

Y = Y _ E: y + 4y + y )(3·5-1) n.l n-l "n+1 n n-l'

f'r orn Milne's method (see [Rl, p. 182)). This is a well-kncwn .,~"

and

depends on

find the solutiun of the at",,,,

y (h)
n

h , let us write

, we
-h

~ e

stable formula·

ing

difference equation to be

wher~



(h) ~ -2h + 113(h~r:::, h + 3

A(h) e-h~ + 3) + 2h c 1: = 1 _ B(h)

2 3(h2 + 3) 2

For fixed h> 0 , we have Ir+(h)\ < 1 < Ir_(h)\ and B(h) f 0 ,

so that lyn(h)1 ~CD as n ~CD, whereas y(nh) ~O. He-wever,

for any finite x we have

(3.5-2) lim Y (~) ;
n ~CD n n

-x
e

n = [y) ~ 1 , and let it be wy) = y (!) when
n n

Let Fx(t; CD, y)

f (CD,
x

otherwise.

Let

approximate f (CD, y) by evaluating
x

(3·5-1) in some form of £-arithmetic (see sec. 5.3), where the

approximations used for the initial values converge to the correct

x) (x) -x/nvalues, YO(n = 1 and Yl n = e , as £ ~ 0 . It follows

from corollary 5.3-1 that F
x

satisfies!'.l-J) RFx can be defined

as in sections 5.3 and 5.6, and TF can be defined so that
x

TF (£; CD, n) > Iy (:)
x - n n

-x- e I .

It follows that s. C.ff works when it is applied to Fx

Because of its extreme lack of efficiency, S. C.ff could not be used

in practice. But the t-limit defined in section 4.1 could be applied

to this F with reasonable efficiency.x

EXAMPLE 3.5-2: Conside~ solving the system,

y' = z

z' = Y

yeo) = 1,

z(O) =-1 ,

58



by the Newton-Cotes closed j~rmula,

(3.5-4)
( :n+l). C)

nv L n

Again, we will write y (h) and z (h). The general solution
n n

(3.5-3) is y = Aex
+ B~-x , and the initial values give y ~

The general solution to :3.5-4) for Yn is

Taking YO = -zO = 1 yields A(h) = land B(h);; 0 •

-.'(
p.

nut r-ound i.tg errors in compu t i ng (3.5-4) in E-arithmetic will build

up so that lYnCh)! becom~s large as n does, even thou~h

B(h) should have been zero. We computed Y(.05) and y (L)
n n'n

for n = 20,30, ., , 1000, on an IBM360/65 computer in short and

long-precision; Yn(05) is graphed in figure 3.5-1 ~~C alt the

data is given in tables '·5-1 and '.5-2.

•5

-.5

100 ". ,
\x~5) ,

\,
I,,

-x
e

y (.05) short-precision
n

y (.05) long-pI'e,::'sionn

59

y (.05'
n
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We again have (3.5-2). The rest follows as in the last exa~ple,

except the initial values for Fx are to be YO(h) = -ZO(h) = 1

It is possible to construct examples where does

not hold, eVAn when the initial values are assumed ex&ct. The methods

of this chapter cannot be used to overcome such instabilities,

60



TABLE ).5-1

Data from example 3.5-2

n
y (.05)

doub2e-precisionn sir.gle-precisicn

1.b7BO?77B8~b62A'-OI

2.2306041671~512'-01

1.35278B841343~A'-~1

8.2042?4112028~5'-02

4.97559495041088'-02
J.;i1 7~H4?6595~, '-(,2
1.8300!764Bq45B4'-~2

1.109B582M5339' '-e2
6.7)092~31920775'-03

4.0B2099591760'5'-03
2.4756544868473,'-03
1.~0140\8.06~133'-0\

9.IOS5Z5475!1~70'-~4

5.522204171985C6·-04
~.34q01599f647A7'-04

2 h )j ' 7947683137'-"4
1,23178051697556'-04
1.47C29701142C8I'-05
4,53040796854943'-05
7.74 740637 ~18 36 7'-05
1.66I5QfJ)l)6~~5K~1·-'11j

1.0099AAI3299105'-05
6,1190)419615134'-06
3.70074696903407'-06
2.2274A450449694'-06
1. -~14t'_- 3~bQe,P,1~1'-"''''

7.564334,4856405'-07
3.62996562143'30'-J7
I.0736184068B7~9'-07

-1.40d56~0?8?6300'-07

-4.2 -;..,.. 4941 @( ·~bfh· I_.ll
-8,177726887738C9'-07
-1.41932731505055'-06
-2.383327137c517r'-06
-3.95592'40069216'-06
-1>.5 HH 1418f.4 886' -,.6
-1.07912>83474700'-05
-1.7799~.c227)'II'-05

-Z. 9 357834 39 2~272' -·,5
-~.~40IA?~~43bolql-O~

-1.9dI07177887827'-~5

-1.11600152448349'-04
-2.16995nS8747146'-n4
-3.'1Y"lq41~a~:2· I_V"

-5.39977322981009'-04
-9.72809635151949'-04
-1.h04v5QI45~47~~'-03

-2.~4497zr740~147'-01

-4.)b 11 q '\ 7....441 ~f. 7 '.' J
-7.1·114~/Z576478'-~1

-1.la574Z47043~~8'-02

-1.955Ih2S6Ib7S\2'-01
- 3. Z23R 54030044 7/' -OJ
-5. H 5 79"~2 ..2312S'·: ~

-8.765170~99~1834'-Q>

-1.44S282eR6q~162'-Q\

-2.3831\~q593'46·'-nl

-3.9Z95~507711614'-01

-6.47~33315Z6'cr"-·ll

Reproduced from
best available copy

3.6777."'-01
Z.229QI6'-01
1.349900' -01
8.154595'-(;2
4.8Q2l17'-07
2,81~845'-02

1.6005Z7 '-02
7.308926'-0)
4.797731'-('4

-6.22 Q091'-Ol

-1.452138'-02
-2,b5H06'·02
-4.531748' -07
-1.l)~b941·-,·2

-I,Z53403' -01
-7,070\41'-01
-3.411j4#'5·-~1

-5,63289)'-01
-q .l8 ~2 7&' -v I
-1.53148/'.00
-2,525\1.1'.00
- ... 163&1·1 ••1,.....

-6.865200' .00
-1.131960'.01
-1.8bb311'.Ol
-3.077 2~O' .01
-5.')73Q12'.tl
-8,366090'.01
-I. n94'o9' .02
-2.274450' .OZ
-".1'50CQ8'·02
-b. IA 32': P.f 7
-1,019509' .03
-1.6MIOll'.OJ
-Z. 771125' .03
-4.510008'.01
-1.,31j,. 27'.( 3
-1.Z42391'·04
-2. ()4 .... 50"· .04
-3.371&85' ...14
-5.569184'+04
-9.leB94'+( 4
-1.'i140Cl'''05
-Z.49031Z· .05
-4.116::'15'.1'5
-tl.7~b16f,·.05

-loIIA9'15·.Jt.
-1. ""4ItCjlQ1' tOb
-3.042017'.010
-,."lIjQl"'+\'b
-t:l.270Jj,n'.Otlt
-1. J6Jb~1' +07
-Z.Z48355·+07
-3.7070'16'+07
-~.112114'.. f 1
-1.00783'>'+08
-1.661"7"'+O~

-2.739960'+08
-4.~17h6~·+OA

61

1.6780277Q1S'o713'-CI
1.23060416'15703'-01
1.!5278B841347z~'-rl

8.20'274\IZ0~7~6'-02

4.q1~59495053A52'-0!

3.01 153042t7Q265'-C2
I.BJ003164927349'·az
1.1~9~5BZB3~7'bq'-02

6.730q29'2RI5196'-0~

4.0e2Q8q60652~7q'-03

2.47565451118244'-03
1.5014039008215D'-03
~.lr5'2b(M1G2~~1'-)4

5.52220526q08~1b'-04

3.)49Q3779775~45'-04

2.r]1~8244J38~S5·-~4

1.2317854085117Z'-04
1•• 7037766764651>'-)5
4.53054096205762'-05
2.7.762566526953'-05
l.b6634555556896'-~5

1.01058.35494416'-05
6.1288652'873795'-~6

3.71695734017579'-06
2.2S'ZI~673.0ZIA'-Ob

1.)671.72386~85I'-~6

~.2910605'214121·-07

5.0l81~A4115i5'J"'-01
3.04947510]]9075'-07
I.A49.07417~14~7'-O'
1.1216': 5417'8\48'-''1
~,A0217187326516'-08

4,12529589\B1310'-08
2.50185771124790'-08
1,517295Z9262239'-08
~.2:'l19r 22:'7"'7~ql'-"''1

;.58065424'17212"-)9
3.3B4485Z0253133'·09
2.,)5258014088820'-QQ
1.24482306/49044'-09
7,549446796447~4'-I~

4.578.93BI5'oe909'-10
2.17'707510564'Z·-10
1.683geZ1483887Z'-10
I.0212A073P451QO·-IC
6.193715344~4134'-11

3.75629893597650'-11
2.27B07307104144·-11
1.3815771868bB67'-11
~.378RI605967688'-12

~.0814191~5)~1]6'-12

3,081751830Z784I'-12
1.86B9822018S579'-12
1.13347688692316'-12
6.H7416847476ZQ6'-13
4.108'>594878019"-13
2.528]3826734703'-13
1.533]5488455461'-13
9.1'l92984nb2~or2'-14

"1. t: T f'7'1i;.': l'

~.?', ' .
1.3- :. i r) ;'l ..
8.2U&4q9B62~~q~~I_~~

4.Q1870683678640·-"2
3.iJlq73A3£.?231::!~·-U"
1. 8H 56 388 88 n4~' -0 Z
1.11189965382423' -0 2
6.1379469'1908547'-0)
4.0867714384~07'-03

Z.47~752176666~6'-0)

1.,OH39In91757' -03
9.IIA81965554516'-r4
5.,3084370147B34'-04
3.3'462627002512'-04
2.0H 6836 qOI 0644' ··0'0
1.23409804C86680·-04
7.48518298P77006·-05
4.539992971024848'-05
2.75364493497471'-05
1.67017007Q02.56'-05

1.01300935986'07'-05
1>.\44Z12353]Z827'-06
3. 7266531 7207B68'-06
2.26)32~40698106·-06

1.37095'1086384'19' -1'0
8.3152B719103S1]'-C'
5.n4~~16~2J~~3ql'-v7

].0'902320501"27'-)7
1.RC;Cil013f,'''~S=l,;,'- 0/
1,1251517471926f' r,7
6.A'~hn137bJ'4Qo·-(n

4.13QQ3711R78S1QI-0G
2.5109'1915S1'o)99'-r,~

1. ~,? lQQ1Cf1"", 7121 1 - r,~

9.2~1'4q6h~o7·~~I.­

5.1l,)?796J,17S~7?Q· -, .
'\. ~Qli.?n7~1~4qSYI·-~'

2.0'1153b224JAS7'-0Q
1.2~OlS286638h7~·-~Q

7.5a25bC42791193,-\r
4.~~~055)78652)~'-IO

Z.7qq~6eO~2R6~~~'-lr

1.~ol~97Q?'~l~~41-~~

1.O'Jhl~lqt-,117(\lQ'-~'~

b.??4144b?;9C l~Z'-ll

3.115)J4!)4c.llQL"-11
2.2A97]484~64""-11

1.3AB79438b4964!'-1:
~. 4? '\4/) 375446 'l~,9' -17.
I). P 9(H~ ~r ? :lt~61 ,£:, •- 1 "'
l.r:'~'i81("',1;~T?! ,,{.._]?
1.~1Q~IARlf'~1~n91-J~

1.1~qQql~~~\'44'~'-l?

b.q144a('ltOfI941"17~'-1"
~.lQ~7Q~6~~~7Q~6t-l~

2.'34lt)ht)647'7"'T~t-l "
1.54.'fH l;,r)"Jql~(P-l""

q.~"7t.2Zqf.~R4(,1{,-!.



TABLE ;.5-1 (con't)

Data from example ;.5-2

n
y (.05)

double-precisionn single-precision -. Djr
e

HQ
ezo
h30
1>4'
1>5,·
600
h70
680
1>90
1)J

710
72:)
HO
140
15)
11>0
110
18"
190
8~t ,
810
8ZIl
U:)

840
850
860
810
881
A90
900
'110
Q20
'I3l
'l4 .]
'150
'160
'I1Q
98,
'IQQ

1000

-1.Oo~11'8t257~C8·.OO

-1.1016~20'f25151·.·,(l

-2.9041"38512'1112"00
-".18Q6120625"8~"·.00
-1.89155821)~q8IC·.'~

-1.30ZZ22~13""lql·'OI
-2.141226)582~262·.01

-3.51005''61>'I5'1''~ll·'01

-5.831Q8Z'l1>719..C.. ·.OI
-'I.1>262~915~IC79'1·~1

-1.58125'1C700211.. ·.02
-2.1>11220501>06271>'+02
-4.3155161'1h6775.. ·.02
-7.11582580805257'.02
-1.113321591521043'.4)
-1.93468516146121'+01
-3.1'10088995981>95'.03
-5.26011568883386'.01
-5.61))0539026156'+0'
-1.4301457l1u 165"'j4
-2.358157384568~1·'04

-).'8834'l40683'l40·,0..
-6.411412"5243"32'.0"
-1.05118325971469'.05
-1.143182161451055·.r.5
-2.81103210Z335001·.05
-10.13"44806200956"05
-7.81481o)11o~34862'.J5

-1.288584C8213801·.01>
-2.1247)738361600·~'6

-~.50346418111>IC9·'01>

-5.111>8388542;04'1'.06
-;.52538'11>45r~~r~'~1>

-1.570634'11261443"07
-Z.58'150'l041851>13·.01
-4. 210318Z3271>1>5;'.01
-7. 040 12'l~20P 52P05' .07
-1.lol~341'1311>812·.l8

-1.91442224Z92436"01
-).15661759'181840'.08

Reproduced from
best available copy

-1.448~2q·.oe

-1.~2~Lq'J·+Cq

-2 • .125111'.,'1
-3.3J9055'.OQ
-5.505"50'.0'1
-'I.('17....5·~Q
-1.49b717·.10
-~."67860··10
- ...06Ql~&·'10
·1>.10911~·+10

-1.10021.''''+11
-1.823934'.11
-3.(01)70'+11
-".'I5870Q· .11
-8.11&1 H·.U
-1. ~"81('''+12
-2.122118'+12
-3.&&"98&'.11
-&.04]00"'+11
-'1.'16'0051'.11
-1.~.287q·.13

-2.10871>7'+13
-4. 4 &1>1 5 1' . 13
-7.304124'+13
-1.21'o2~5·+14-2.,'·.2, "qt.l.
-3.301066 '.1"
-5..... 28 .. 3·.1'0
-8.'17'0361'+1"
-1.'0197)4'.15
-2.43'1811'.15
- ... 0Z293~·.15
-6.&33027··1~

-1.J9361>.. ·.16
-1.803272'.11>
-2.973332'.16
- .... ;025..8·.16
-8.08\218'+16
-I. n214A·.11
-2.1'17"'52'.17

62

'.03'1121875126'18'-1'"
3. "2~ ,~nQ521 A16' -14
2.01.. 30537165C69'-I ..
I.Z51'1987116265Z·-I"
1. &2935282"''1734 7' -15
'0.62695'021;3"3'11'-15
2.80&r'l71&8"3~~"·-15

1.10180661951750'-15
1.0320'1033629137'-15
6. 2592'12n3735285'-11>
3.791>051>9)719124'-11>
2.)0218500501401'-16
1.3962002QOI912"·-11>
8.407500"2281>'030'-17
5.1352634&515~92·-ll

3.11.. 37CI85.. 99Q8·-17
1.88876"11286'05'0' -17
1.1"541'oOJ~61535·-ll

1>.9.1>°211138"81'1'-18
'o.213 A8523411>86"·-18

2. 8850'l90'l&'l8152'-la
1.5'oq58445690~09·-18

9.397125..81262A8·-19
5.&99"1"6'1323965'-19
1. ..5650'15.. &94102' -19
2.0'1& 2&056Z030n'-19
1.27131381650'166'-19
1.1le'I.....59'122 ..16·-20
... 6759275.. 511181'-20
2.8351q78968708Z·-2~

1.7198191.... 82 .. ,'1·-20
1.0..301 ..3.. 61.. 511'-20
&.3255426"591533'-21
3.81623575120210'-21
Z.3265521"825"26·-21
1."1097816964182'-21
8.557123"5282'170'-22
5.189616'117~"lq·-22

3.1"133318"97071'-22
1.90875552321595'-22

5.6756852326377.'-1"
3..... Z.. 17108..699Q·-!4
2.0A7'!&791 1&""9""-1'"
1.2&6411>55"'10"42'-14
7.68120"68520213'-1'
10.&,888&14510342'-1'
2.8Z5757ZB711~63·-15

1.11 H08.. 315 .. '02· -15
1.039538011&7023'-15
1>.3"511676014707'-16
3.8Z"2"66280911~·-16

2.~195Z283~2"35A·-16

1.401>~61712'o4615·-16

8.5330"76257"410'-17
5.175555C05801Aq·-17
3.13'113279204804'-17
1.'10398028328&'00'-17
1.15 ..82Z"1130158·-17
1.oo..3520ZI>11>867·-18
... 2"83542552916~·-11
2.57615110915"99'-18
1.56288218933500'-18
9.47'135965350419'-19
5.14q52226429359·-I~

3...A726153199....6·-19
2.1151310315'1109'-1'1
1.2828;182360819'-19
7.18113224113383'-20
... 719.. 9527152614·-ZO
2.81>25185805.. 9.. 1·-2n
1.11620528310030'-20
1.05306173575539'- 20
1>.3811 ..22'13058.... ·-21
3.87399762868720'-21
2.3"91>98331'05282'-21
1."2516"08274094'-21
8.6'0..05711303612'·22
5.2"28856&336349'-22
3.17997090019711>'-22
1.9287"91'0796393'-22



n

TABLE '.5-2

Data from example '.5-2

(Note: y(S) = e-5 = 6.7379469990855'-03)

Yn(~)
single-precision double·precision

20 6.259691'-03
3) 5.46U650'-03
40 5.009264'-03
50 5.94~681'-03

60 1.785394'-03
10 -1.430578'-03
8~ 2.5116~2"-'3

~O -9.466864"-03
100 4.781731"-04
11~ -1.192241'-02
120 -9.010211"-03
131 -1.85152"-02
140 -3.144952'-02
150 -2.433643"-OZ
16~ -z.3189~1-~2

11~ -2.624966'-OZ
180 -Z.789574'-02
190 -3.6526~S'-02

200 -4.467228"-02
21q -6.243715'-02
220 -7.411661"-OZ
230 -7.697296"-02
240 -5.590025'-OZ
250 -7.729518"-02
26') -1.126831"-01
270 -1.092184'-01
280 -8.893842'-02
290 -1.420971"-01
300 -9.0529C8"-OZ
31n -1.554155"-01
3ZJ -6.841292'-OZ
33Q -1.843618'-01
340 -Z.111134'-Gl
350 -8.065218'-02
360 -1.433600'-01
370 -1.938182'-01
3AO -2.166~46"-01

390 -1.120492'-01
400 -3.0Z1Z51'-01
41D -3.281339"-01
420 -2.661910'-01

6.56312402119648"-03
6.66008821465161'-03
6.69412021149203'-03
6.109888614499~6'-03

6.11845852303165'-03
6.12362739151639"-03
6.12698218674873'-03
6.72928349316458"-03
6.130Q2931920715"-03
6.732L471C5414G9"-o3
6.73307338681153'-03
6.7337q~2540b474'-03

6.13436628389642'-03
6.13~82114281800'-03

6.13520547117616'-03
6.13551848763161"-03
6.13518078464965'-03
6. 7360 ;J 2 8C28C9 34 ' -(\ 3
6.11619235639365'-03
6.73635541914131'-03
6.73649684680101"-03
6.13662016382665"-03
6.1367284212u946'-03
6.736821968441~8'-0)

6.73690867314930'-01
6.13698417848589'-03
6.13705112709532'-03
6.131112365Z6989'-03
6.737161Q4114330'-03
6.73121657511228'-03
6.731261~5046883'-03

6.11130241128212'-03
6.11133915111423'-03
6.13131395412379'-03
6.73740522053359'-03
6.7l143~108n49141-03

6.73746081021843'-03
6.73748531402137'-03
6.73750823211830'-03
6.13152922285242'-03
6.737549~1743251'-o3

6;

6.56312402790868"-03
6.66008821578116'-03
6.69412021Z15061"-03
6.10988861592113'-03
6.71845852888167'-03
6.12362139715014'-03
6.12698218853413'-03
6.12928350441466'-03
6.11092932815196"-03
6.13214112415119"-n3
~.13301]39919512'-03

6.73379428368321'-03
6. 1343662988360Q'-03
6.73482118138931"-03
6. 73520547163131'-a3
6.13551850753462'-03
6.13518083211416'-03
6. n6002~084923'-O3
6.73619238936501'-03
6.13t)5551095~46'-03

6.13649689923031'-03
6. 7366Z025025945'-03
6.73672850653685'-~3

6.13682403412159"-03
6.13690815302489'-03
6.73698421442461'-03
6.13705111405624'-03
6.73111244818440'-n3
6.73716115614516"-03
6.73721665691298'-03
6.13126158~43~9~'-03

6.73710249947136'-03
6.737)1985321b5~I-03

6.73117405122982'-03
6.737~0543922162'-03

6.13143431683434"-03
6.7374609441~~51'-03

6. 711485'15!3861'\(\'-n3
6.73750833465946'-03
6.13152947178680'-03
~.13154911718278'-03



43fJ
44J
450
460
410
480
49'
500
510
520
530
54f1
550
560
510
580
59")
600
610
620
630
64';
650
660
61J
683
690
700
nil
12)
130
140
750
1600
77·3
180
NO
800
810
821)
830
840
8513
860
8H
880
890
9CJ.J
'HO
920
9)0
940
950
960
970
980
990

1['0'

-3.Z16R61 1-01
-2.Z9889"I-Ol
-Z.621)43'-01
-4.Z47934'-r:l
-~.659283'-01

-4.3698981-01
-2. 154~911-(l1
-4.692361 1-01
-4.564425'-01
-5.691100'-01
-3.101094'-01
-5. 6tl56 95 ,-( 1
-4.983451'-01
-4.713043 1-01
-5. 245609R1-01
-6.700311'-01
-3.88999101-~1

-6.671Z102' -01
-4.950620' -01
-3.B403C6'-OI
-3.0335 72' -01
-2.156428 1-(,1
-3.408107'-01
-3.8524821-01
-5.8884'7'-1'1
-1.8122031-01
-3.430·'81'-{l
-6.937112 1-01
-3.669302'-01
-7.8"2510'-IH
-5.16231.10'-01
-1.016203'·00
-8.151451'-01
-7.357829'-01
-6.0822",Z'-o1
-5.016116'-01
-4.731896'-01
-1.252605'.00
-1.300113'.00
-1.3J12H'.OO
-5.401559'-01
-6.525351'-01
-8.~88494'-01

-9.59111-\'-01
-1.185460 1.(,(
-1."'2"'531'+00
-6.961568'-01
-9.581641'-('1
-1.313843'.00
-1.630921'.00
-9.81"'16')1-01
-1.385051'.00
-7.232992'-"'1
-1.191267'.00
-1.711914'.00
-1.096796'.00
-1.628775 1.00
-9.93511t7'-'1

6.1375~111392245'-(}3

6.13758422354465 1-)3
6.7376001184712BI-03
6173761493986216 1-03
6.73162889316321 1-01
6.73764202839905'-03
6.731654264357'; 3 1-..13
6.73166612594913 1- 0 1
6.737676725326801-03
6.13168716786513 1-03
6.731696941711b2 1-03
6. 1311'J594HC581 '-03
6.73111446165~131-03

6.1~7122811119~3'-O'

6.73173~1929371~'-03

6.73111792119116'-03
6.7311451~04C8161-U3

6.13115166255439'-03
6.1~115782481B51'-03

6.131764~326~S231-03

6.1~176967083937'-03

6.13177552133174 1-11'1
6.131780426~92311-03

6.137185498495701-03
6.13119~a62~35621-~3

6.13119411105821'-03
6.1371q8~2498558'-O~

6.13180350997521'-03
6.13780112959780'-03
6,73781~81512993'-Ol

6.73781432091163'-03
61737&IQ41643191'-03
6,73182126415786 1-03
6.73182467537295'-01
617318275333658CI-03
6.73183071650218'-03
6.737~3354780333'-03

6.137836529~5361"-03

6.13183944C88058'-03
6.7318414CCI36341-~3

6.1J184431144590'-03
6.13184715451264 1-03
6.137R48113792561-~3

6.73785099926120',03
6.7318536591r621'-03
6.73785540921053'-03
6.131851621854191- 0 3
6.7318595203824]'-03
6.73786126569431 1-03
6.73186333796671'-03
6.73786484051156'-03
6.7378~5e0478319'-03

6.737868559~10151-J3

6.13186999140930 1-03
6.13187132126719'-03
6.13181322673937 1-03
6.13181457394860'-03
6.13781547487356 1-Q3
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6.131561407q863S'-~3

6.131584~659Z~76'-03

6.731b0039S36977'-03
6.131bI530502086'-~3

6.731b292694IJ9~'-03

6.73764231016~32·-03

6. 737054611ry4661 1-03
6.73766625293218 1-03
6.137617154~85R3'-03

6.73768143337044 1-03
6.13769113584793 1-03
6.7377C63043~939'-"3

6.737114q1123~qR'-03
6.13712318970511'-03
6.?3713091314641'-03
6.13773835864671'-03
6.1377453112316~'-~3

6.73715203613112 1-03
6.73175831593928'-03
6,73176441146410'-03
6.13711016181205'-03
6.13711564484225'-~3

6.131780~16705Z8'-03

6.73778597256356'-03
6.71779C64b4GI15 1-r3
b.1~179521118Z0b'-03

6. 73719957893128 1-r :3
6.131803760~42651-03

6.13180176129641 1-03
6.1J1BI16n79713A'-~3

6.73781529190711 1-03
6.731818827499371-~3

6.137822222612991-03
6.73782548459333 1-03
6.13782862'31199'-(3
6.1318'1163619979'-03
6.73783453828A591-03
6.737837332229811-03
6.137A4002333290 1-03
6.73784261658259'-03
6.13184511666591 1-03
6.73184752799305'-03
6.13184985411104'-03
6.73185210075035'-03
6.73185426~779101-r3

6.73185636528441 1-03
6.13785839055333 1-03
6.73786034868853'-03
6.73786224262~171-03

6. 131864015141001-n3
6.13786584886044'-03
6.13186756621456'-03
6.73786922974096'-03
6.731870841493111-03
6.13181240365646'-03
6.137873~18242q41-03

6.131815387165151-03
6. 131A7681224056'-03



REMARKS: Our definitions of subroutine and stability (dei'. <:.:.4-: 'll,d

,.1-2) depend on the machine number system (R, e; being ~0nslj~rE:d

We can eliminate this dependence by defining an a;gorlthm a fn an

ideal function f to be a .::onstructive mapping from {t}1E: 5,:-1:, ,,~' ,,:-

(R, t)} into {the set of all subroutines}, such that F ~ aIR, e:
is a subroutine relative to (R, e.) and F' and f satisfy '3~--:';

Thus 0 is a recursive operator (see sec. 1.5), mapping any d~tE:rminE:r

(~' lR) of' CR, t) into a determinel' y of such an F!! a(R) e~.

Roughly speaking, Algol procedures and Fortr:m subroutines are Exam;.'2es

of such algorithms. We would then say a is stable relatiVE: to CR, t)

at x if OCR, e.) is stab:1.e at x, Note that x f.s &. real WP1.<t)

and therefore x depends on (R, t), We w~u:d say a is st~b:e

.!i......£ (a numeric constant) if, for any (R, t) and any rel:il In{:,..t

x = c, OCR, e.) is stable at x. If we al:ow a to take more argu-

ments, say a list of algorithms of the ab~ve type (~s well as (R, e~ j,

then we get stronger and more general concepts of stab ility, ·;;tna:og·:.'-,s

to those found in the literature on the numerical solytion of oralncry

differential equations.
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Chapter 4: I-Limit, e-Comparison, I-Convergence~

£ -Continuity

4.1 e-Limit and Truncation-Error B0unds

Define an operator, Pl i m,

of two variables, by

over the set 51' of ideal functions1m

(4.1-1) :!.im f(x,y)
y-.c

Thus Plim maps an ideal function of two variables into an ideal f'uric't Lor.

of one variable. This operator represents a notion of 1i~i~. (We con-

sider limits of the forms lim g(x, y)
- - m ll'.y .... xm m

and hex, y)
m

end of section 4.3 and in sectio~ 5.4.) Having x in the arg~ment :i~t

of f consider~bly simplifies notation because the TF p3rt of Y

depends upon where y is going; if we are interested in lim g(y),
y-'x

we will simply form f, with f(k,y) ~ g(y) when k! ill, and then

consider lim f(x,y) •
yo-+x

To for~late ~n I-notion of e-limit corresponding to

must define a set Slim of e-functions and an e-operator

we

Q-l' )1m

over Slim such that if Y e Slim

1Il1i (7) __ Pl· (f)(Ql' (', f, r) .m rm im

and , ~ f(?) then

One way to define ~..
.am

is to

select some effective stopping criterion (see en, 3) and de fme

(4.1-2) ~,. (S)(E;X) .. (F(&; x , " ,
..l~m .s £ ' ,

where YE is the value chosen by the stopping criterion when it is

given E, X and , . If we eelected the
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we would have a totally inefficient t 1i m with good accuracy, a large

Slim and a good Qlim' But its total lack of efficiency rules out

this t 1im •

Another method is suggested by the proofs of theorems }.'-l and

Roughly, this method proceeds at precision & by

finding a &.5 £ and ayE R(6) such that the truncation­

error bound, Tr(O; x, Y), is .5 £,

(2) finding an Tl:S 0 such that RF(Tl; x, r) :s £ ) and

(,) defining tlim(S)(£; x) to be (approximately)

(F(Tl; x, Y), 2£, Ul) •

Of course, these steps will have to be modified and ~im will have

to be defined so that this process halts for each S E Slim' any £

and any real input x. As we shall see, the only stability require­

_nts needed to insure that this method converges concern TF (and not

F or F ~ RF) •

DEFINITION 4.1-1: Suppose S IIW rep) !2!:.!2!!! P. !! say TF is

stably convergent at x relative to f precisely when

[~x f(x,y) ; (.I)] • t~ TF(c; x, Yc) 0,

!! l2!!i !!~ Y& 's!!:! chosen £l any reasonable.ll x stopping

criterion.

This is 8 atability requirement on TF because, if we assume that

t~TF(c; x, Y) always exists, then it is equivalent to requiring

that ~xf(X,y) ~ Ul should imply the existence of a tf such that



(i) rll1b TF(E; x, Y) tf(x,Y) for all Y E 171 at wh:i.ch

tf(x, Y) -f w ,

(i1) TF is stable at x (under def. 3.1-~)J and

(iii)

Let 8lim be the set of all £-functions J of two variables

such that for each x E R and each E,

(1) [Y E ~(E) and RF(E; x, Y) ~ w]

and

implies lim. RF(£; x, Y) = 0,
E~U

(2) [TF(E; x, Y) t w for some Y E R(E)] implies

[ ilno TF(E; x, Y£) = 0 as long as the y 's
E

are chosen

by any reasonable at x stopping criterion].

For the following, we assume that an effective, reasonable at anv

x ! (J), stopping criterion, S.c., is given. We also assume tl",'it 3.

~:t ~m is given which satisfies

(ii )

( iii)

tj.-+~ A(£) ~ 0, and

k(E.) = < yei, .) > fo~ some recursive function,
1

y •

We define ~lim in terms of S.C., ). and the I and I of section

2.8 by

DEFINITION 4.1-2: Let J E S•. ,x and e be given.
- l.lm -

Let

be ~~ se:ected.£.y S. C. ~ TF and x .

_If TF(E; x , y ) = (J,) then define ~l' (J)(E; x ) E (w, (I), ill)e ---- am

Otherwise, ~ 6 ~ ~ largest member 2! e. ~~ 6 < E

If RF(6; x) Ya' = ill ~ define



~'i (:J}(t; x) • (w, w, w). Otherwise ~ j ~ ~ smallest
~ m

integer such that e . < 6 and RF(E.; x , y .. ) < ~(t:). SupI<ose
----J-- J g- --

F(l
j

; x, Y6) .!! < OR(j, ~., .) > ~~ ~t(') be ClR(j, k,·)

Define

(4.1-3) ..... ... \" v I
t

1
, (:J)(I; x). (1(1, e ),2 X )..(t) + I(I, B ) ~ I(E, S ) , (D)
1m e E E

For , _ f(P), define

(4.1-4)
Q

1
, (', r, p) • {x: [x} x (m n (some neighborhood of x}) c P
~m

and TF is stably convergent at T relative to f).

THEOR»t 4.1-1: ~~

~: Suppose , _ rep) and , E Slim' Let x E Q1im(" f, p) be

such that I. ~xf(X,y,!Ul. Then for sUfficiently small E,

TF(E; x, Yc' i ill and we can find a 6 with TF(6; x, Y6) ~ X(I) •

Let 6 denote the largest such value ~ E. This means that

If(x, Y6; - II ~ ~(E). If 6 is sufficiently small (it will be, if

t was) then RF(6; x, Y6) ! ill ana we can find an ~ ~ 6 with

RF(~; x, Ya) ~ X(I)

that

Let E
j

be the largest such ~. This means

Thus we have

(4.1-5)



For each I, the corresponding F(!j(t);

< C1t(j ( t ), k( E ), .) > • Let ~ t; ( • ) be

(4.1-5) we know that

x y ) equals so~e, ~ (e )

ClR(j(t), k(c), .. ) From

(4.1-6)

if I = + ~ then < ~ > = I for all sufficiently small t.
E

It follows that

(4.1-7)

.. tI

because I(E, ~£) and r(t, ~E) are both in N « ~ ».
E t

Fu!·ther,

1~ the triangle inequality and (4. :'-5) we have

(4.1-8)

By (4.1-7) and -theorem 2.8-:', the right'side of (4.:!.-8; sppz-oacl.es

o as e -+ 0, which means that

This completes the proof.

I l i m overcomes instabilities in F and/~r F ~ RF ty ~sing a

stably convergent TF. First it picks a place (Y6(e)' at which

to evaluate the t-limit, and then it increases t'ne pr-ec t s ron il~til

the crest of the r.( ,.wave has moved past
.1 e

of t lim will depend on

(1) how c:'osely TF and RF appr-cx'imate the er-r or-s +'haj
•• they

bound, how diffi-::ult they are to eva luat e , s nd
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how judiciously S.C. chooses its Y 's·£ • if they are

unnecessarily close to x then j may have to be made

~ery large (an expensive enterprise) before RF(E j, x, Yb)~ A(E~,

especially when F or F ~ RF is unstable at x.

Thus we say that 11i m offers a potentiallY efficient algorithm for

overcoming instability.

We will use ~xS(£; x, y) to denote lum(S)( £; x) and we

call this the E-limit of S at x.
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4.2 e-Comparison Relations, <e and ;E

In the following sections, we will need an E-less-than relation,

<E' snd an E-equality relation,

so that

We will define these relations

(1) ~(Ej x ) < ,j( &; y) is true when, based only on the infor­mEn

mation given by ~(E; x) and ,j( £; Y ), f(x) must be less
m n m--

than g(y), and
n

(2) '(E; xm) =E ,j(E; Yn) is true when, based only on the i~forma-

tion given by ~(E; x' and .l(E; y), f(i) might bem' n m

equal to gG).
n

Essentially, the t-Iess-than relationship h~lds when the interval

[J - RF, F + RF] lies entirely to the left of the interval

[a - RG, G + RG], and I-equal!ty holds when these intervals overlap

(see figure 4.2-1). Of course =, will not be an equivalence relatio~

because it will not be transitive.

I [ I ]- I [ I lF G F G,< .It ,. = .It
E t-Comparison £

(a) FIGURE 4.2-1 (b)

DEFINITION 4.2-1: Let x ~ y be poor rm inputs. Fer E E e,

~ X =E Y 1£ l:!~ (end x 1=£ y !2l:!~' precisely

~

(4.2-1)
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~ x <. Y to be true (and x f..£ y to ~~, precisely~

x f£ y and X(t) < yea) .

For al, a2 ~ 0, 8, E R(t), when the trlple Ca}) appears in on

t-comparison (£ fixed) this triple is to be understood to denote the

poor real input a - (A, RA) defined by

(w, ill) &> t

(A(&), RA(&» •

This convention allows us to £-compare e-function values directly.

At all times precisely one of '(q Xm) =e .l(E; Yn) , "(t; Xm) \: .l(t:. Yn'

and .I( e; y ) < ,.( £; x) holds.n £ m

THEOREM 4.2-1: ~ x !!!S y .£! real inputs. Then

x = s » [x = y !2!: !ll t)
t

x<y· [x < y for all sUfficient.ly smal: e)
£

x < yf: [x <e y for ~ E)

Proof: If x =:1. then we have, for all e,

and so x =£ y for all E. If x '"' y for all £,e
then applying

theorem 2.8-1 and taking the limit of (4.2-1) as £-)0 yields

Ix - yl ~ 0, so x = y •

If x < y then, for all sufficiently small £,

(4.2-2)



the second inequality holding because, by theorem ~.8-l,

IX(e) ;. Y(t)1 -> Ix-y\ > 0 wnereas p.x(d ~ BY(e} -)0. 'Thus x <c y

for all sufficiently small t. E x <t Y (some e) then (4.2-2)

holds and so

implying x < y. This completes the praof.

Let bool[statement] be I if the stat~ment is true and 0 if

it is false. The notions of comparison gi"en by

for * being = and <, can be e-ized easily, to yi~ld weak e­

operators, (1*, Q*). The weakness of these e-operatore ia due to

the fact that

(for any e)

the information given by ~.(e: x )(i =1 . D'l

be sufficient to determine that f. (x )... m

1, 2) may never

~ equal

f
2
(X

m
, . See Bishop [BI, p. 24) and Aberth [Al, pp. 287-8) for similar

considerations.

Technique:s from interval ana Iys i.s can be for.nlilized in the E-ca:callls

to yield a weaK I-operator corresponding to the o~erator,

{

til

bool [rex)

if a or b is in {om) Ol), m}

otherwise

We leave this to the reader.
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4., E-Convergence and E-Continuity: Pointwise

In this context, we say f converges at x precisely when

~xf(X, y) ~ ill; i.e., precisely when the limit exists in the ~s~al

sense. Otherwise, we say f diverges at x.

DEFINITION 4.'-1: ~ x and I. !!! say ~ I-converges at x

precisely~

Otherwise !!! say ~ I-diverges at x.

We say r is continuous at x precisely when

Otherwise we say f is discontinuous at x. Note that (4.'-2) uses

the transitivity relation a = b ~ c • a ~ c to insure that f(x, x) ~ w

Since = and ~ do not satisfy such a transitivity relation, we
I E

must expliCitly insure this in

DEFINITION 4.'-2: !:!! x ~ E. We say ~ is (-continuou.s at x

precisely~

~(I; x, x) E ~x~(I; x, y) ~I ill and ~(I; x, x) ~I ill

Otherwise ~~ ~ is E-discontinuQus at x. We!!l ' iE

strongly E-discontinuous at x precisely~
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S(q x , x ) f. I.IM :J(E; x, y)• ~x

If we are interested in the continuity of g(y) at y = x, then we

simply form f, with f(k, y) = g(y) when k! m, and investigate

the I-continuity at x of some ,. corresponding to f Let E.
J

be as in definition 4.1-2, when a value for 'j is found (i.e., when

TF(a; x, Ya) f w); otherwise let

finite subset of m(;) given by

!. be
J

I: • Let" denote the
I:

From the definitions of t-function, of E-limit and of E-e~uality, it

follows that

(1) ~ £-converges at x when, based only on information contained

in "t' f must converge at x, and

(2) S [-diverges at x when, based on:y on information contained

in ~£' f might diverge at x

Let ". denote the finite sunset of m(;) given by
I

,..• {7(~; x, x): E. < ~ < E}
£ J - -

As above, we have

(1) S is E-continuous at x When, based on::"yon ,. U S'
E E

f might be continu~us at x, and

( 2) ,. is strongly E-discontinuous at x when, based only on

S. U ".• E'
f ~ be discontinuous at x.

These def1nitions can be ex?ressed in operat~r, !-opere~or form as

tollows. Let 8
1,

be as in sect~on 4.1.
1m
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~conv' ~cont' each over Slim' by

~conv(f)(X) '" bool l r converges at xl

~cont(f)(x) = bool [f is continuous at xl ,

so long as x ~ w. Of course, ~conv(f)(w) '" ~cont(f)(W) '" w Define

E-operators corresponding weakly to the above by equating, for x ~r. w,

(4.~-~ )

(4.,-4)

• (~)(£; x) • (bool [~ r.-con7erges at xlconv

bool [' I-diverges at xl, w)

• t(~)(£; x) • (boo1 [' is I-continuous at xlcan

1-bool [' is strongly r.-discontinuous at xl, w)

Q t(', f, p) • o-i (~, f, p) n {x: (x, x) E pJcon ~ m

Further, g f converses.!1 x- .!2!:!ll x E Qlim(~' t, p) ~

~ (') is not weak. _If f _is discontinuous _at x _and
conv ---

f(x, x) ~ w ~ lim f(x, y) ~ w for all x E Q t(" f, p),
y-x -- can

then ~ t(') is not weak.
- con ---

~: Consider E-convergence first. Suppose ~ ~ rep) and x is

If f converges at x then by theo~em 4.1-1,
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~ ~(£; X, y) ~ (~ f(x, y), 0, w) as E ~ 0 and so ~ 'CE, x, y)

must be !£ w for all sufficiently small £. If f diverges at x,

then ~ f(x, y) ~ wand so ~ '(£j X, y) ;£ w must hold for all £

This and (4.,-,) yield (4.,-6) and the first remark after (4.3-7).

Consider I-continuity. Suppose ~ _ rep) and x is in

Q t(~' e, p)con If f is continuous at x then theorems 4.1-1,

4.1-2 and the fact that (x, x) E P give us t-continui~y for all

sufficiently small I • If f is discontinuous at x then

f(x, x) = w or ~ f(x, y) =w or else f(x, x) ~ ~ f(x, y)

In the first two cases we have ~(E; x, x) ; w or ~ ~(E; x, y) = We I

for all £, and so ~ is always I-discontinuous at x. In the third

case theorems 4.1-1 and 4.2-1 imply that ~(£; x, y) ~E ~ '(tj x, y)

for all sUfficiently small E, so ~ is t-discontinuous at x for

all sufficiently small t. This and (4.,-4) yield (4.3-7) and the l&:;t

remark. This completes the proof.

Let f be an ideal function of m + 1 variables and g an idea~

function of 2m variables (m ~ 1). We can easily discretize "r

converges at (~rue if ~ f(xm, y) ~ w)
m

and " f is corrt i r.cous

at i II
m

(true if r(x, x ) = lim f(x, y) ~ w)
m m Y""Xm m

However, with our

present setup we cannot discretize "g converges at (true if

"g is continuous at (true if

g(xm, x ) ~ lim g(x, y ) ! w) because our truncation-error bounds
m - - m m

Ym~m

do not give the necessary local information about all the possible
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approaches of Ym to xm

just be dummy variables telling where Ym is to go.' We could have

done this latter discretization if we had assumed truncation-error

bounds, 'lG(l; X , Y "m m for limits of the form _li! g(xm, Ym) •
Ym"""Xm

tJ -,We wo~ld then have defined an E-limit of the form _L~ ~E; xm' Ym,
ym-xm

Of course this e-limit would not be more powerf~, computationally,

than ~ '(E; xm' y), because m successive applications of the
m

latter &-limit are essentially as good as one application of the former;

the difference between these two e-limits is th~t the latter one will

approach x along the m-dimensional axes whereas the former one may
m

take any approach. This 'follows from th~ relation,

Thus, if the limit exists, the domain set of ~ is large enough and

the truncation-error bounds involved are stably convergent, then both

these ~-limits will work. We have avoided the more complicated form

of i-limit in order to simplify notation.
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4.4 Discontinuities

In order to discretize convergence and continuity over intervals,

we must know more about the kinds of discontinuities f can havp in P

while there still exists an I-function corresponding to f over P.

Consider the ideal function t defined for finite x and y by

t(x, y) bool [x < y]

Define an £-function ~ by

~(I;X, y) • (bool [x <~ y tor some ~ ~ £], booJ LX ~~ y or

RX(~) = RY(~) ., 0 for some 'll ~ 1:], w),

so long as x and y are ~E ~, ~, w. In this case we have

~ IIW r({(x, y): x ~ y or x., y E 1l/})

However, we only have

the correspondence being weak because RX(~) ~ 0 for ~ ~ £

~(£; x, x) • (1, 1, w) and so tJ.~RF(E; x, x) ~ 0 for any

Let ~t be any I-function weakly corresponding to f over

implies

x~m.

-(2)R •

Then for x = y • m, RF'(£;x, y) cannot go to 0 with t because the

inputted values of x and y will always be inexact, and so ~t will

never have enough information to decide for sure that x = y •

Many variations on this basic theme are possible. The underlying

principle is given by
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THEOREM 4.4-:>.: Suppose , _ rep) ~

f(x ) = (j)
III

discontinuity 2f f (i.e.,

Xm E P is! 20i nt £f

or lim fCY) t f(i ))
- - - m m

Ym-<Xm

!:!22. f(Xm) t CJ.). ~.!!.1~~ x j E 111 •

Suppose " f, P and x satisfy the hypotheses, butm

and RXi(t)! 0 for all C and i ~ 1,2, ••• , m. We will prove that

this implies tj.~ RF(£; Xm) I 0, a contradiction. Suppose '11 and

V2 are the given determiners of F and RF and that F and RF

involve respectively r
1

and r 2 subroutine constants. For k = 1,2

let be the least value of n such that

and define

Let aCe) be the m-dimensional rectangle of real inputs,

cr( e) • G: GN ( )CY ) = GN ( )<i nm n £ m n £ m

All the sides of G(I) have positive length. Let 1+ and I be

the limit superior and limit inferior of r(ym) as Y
IIl
~ xm' and

define

if 1+ ~ t

K=

III - fex )I2 + III
otnerwise

for c E i\ .

K > 0 because f is discontinuous at Xm There are Ym E GeE)

arbitrarily close to the one of t+, I , r(x )
- m
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which is furthest from c. Thus we have

h(e, c) .2: K for any c E R and any c.

Fo~ any real inputs Ym we have

RF(E; Y) > \F(£; Y) - fey )\m - m m

For y E o(e) we have F(E; Y) = r(E; x) and RF{c; y) RF(£; X ) ,
m m m m m

yielding

RF(E; i ) > sup IFCE; i ) - fey )1 = h(e, F(E; X ))
m - y E 0(.) m m m

m

Thus RF(c; i ) > K> 0 for any e, the uesired contradiction. This
m -

completes the proof.

COROLLARY 4.4-1: Suppose '1-, e, P and y satisfy the hypotheses
m

.2f .!h!~ theorem. .!h!!!.!2!:~ j = :!.,2, ••• , m, either

Xj Em~ ~ function B{Y) = r(xl , •.. , xj _l ' Y, x
j
+1' ••. , xm)

i! discontinuous!i Y = x
j

•

~: Define ott by setting 'IG. (J) and

..., x )
m

Then .. ~ g(fx .} ) and g(x.) = f(x ) ~ (J). If g is discontinuous
J J m

at x
j

then, by the above theorem, x
j

E~. This completes the proof.
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CQROLLARY 4.4-2: If ,. A:f rep) I (x , x ) e P, r(i , x ) ~ (;) ana
- m m 111 m

f i! discontinuous at xm' then x E~ •
-- m

Proof: Under the given assumptions, (x , x) is a point of discon­m m

tinuity of f, so, by corollary 4.4-2, either x E~ or g(y) = f(i , y;m m

is continuous in y at y = x m ' The latter alternative is ruled out

by assumption, so we have x e 711. This completes the proof.
m

COROLLARY 4.4-3: ~ P be! set of m-tuples ss numbers~

suppose ,.".. f(P). ~ f .!! continuous II every Xm E P ~

r(i ) ; (J) and Ixil F'" (i 1, •.. , m) •
m -

The second use of P is a& a set of real inputs (see sec. 2.3). For

example, P might be trm) •

~: Suppose ", f and P satisfy the hypotheses. Assume that

i E P with f(i); (J) (and hence x. ~ ill for all i) and
m m 1

IXi I ~ at for i = 1, .•• , m • Define r. bym

for 1 = l, ••. , m and all E, where &(E) is the smallest positive

number in RCE). Then each 1s a real input and yEP .
m

From

theorem 4.4-1, we know that f cannot be discontinuous at Ym, and

hence not at xm This completes the proof.
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4.5 £-Convergence and ~-CJntinu~ty: Gver Interva:S

For simplicity, we consiaer o~en intervals.
.....
J.Je" de:1'lt.e

the open interval betwe~n a and b(a, b E R). Def~ne the open

£-interval between a and b, ~c; 8) t)} by

$(£; a, b) :i {Y: n o( a, b), Y fa, Y ~ b]
Eo £

For Y E R(t), the dec i s Lcn Y E 6(<:; a, b) is effec.tive, given real

inputs a and b, and we have

for 'ill £

(4.5-1)
U &( £. ; a, b) :i o(a, b) n771

1

i > 1

We say f converges over o(a, b) precisely "'hen f converges

at all x E o(a, b) Otherlfise J we say f diverges :in 0(8, b)

DEFINITION 4.5-1: ~ say S £-converges ave:! ~£i a, b) preciseJ.-;

~ ~ (-converges ~ ill x E 19( E, a, b). Otherwise ~ say

S £-diverges in G(t; 3, hI

We say f is continuous over o(a, b) prec16ely Whe~ f is contln~')~s

at aJ.l :x E o( a, b). Other-..ise we say f is disc.:ontinu0cls in ::>( a t b) .

DEFINITION 4. 5-2~ We say ~ is E -(;Ontinil'JuS over cs< to, a, b)

Otherwise ~ ~ '9' is £-disc';mtinu:lUs in 19( i; i lit J b)

~ is strongJ.y c:-o.iscontinu;:.us w ~ £ is, b) precise:y~~
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l!!.U x E f1( E; a, b) ~~ ,: is strongly E-d lscontinuous

We express this in operator, E-operator form by defining, for a f w

and b ~ wand f E Slim '

pccnvo(f)(a, b) bool [f converges over o(a, b)]

6 (f)(a b) uool [f is continuous over o(a, b)]. conto '

and defining, for a ~ wand b ~ W,
I E

'convo(~)(E; a, b) • (bool [~ I-converges over ~(I, a, b)], ~, 00)

'conto(~)(E; a, b) • (bool [~ l-continuo~s over &(1; a, b)]

I-bool [~ is strongly t-discontinuous in $(t; a, b)], w)

Since the evaluation of • t (~)(E; a, b) and t (S)(E:' a, b)can 0 convo '

involves the evaluation of 'lime,,) only at E:-points (£; x) for

which x e R(t), the set 8 of E-functions to Which t and
0 convo

'canto may be applied is defined as follows. Let S be the set
0

of all I-functions ~ of two variables such that for each t and

each x E R(t)

(1) [Y E R(£) and RF(c; x, Y) # w] implies t.1~RF(E; x, Y) 0,

and

(2) [TF(£; x, Y) ~ w for some Y E R(t)] implies

[ ti-'e> TF(£; x , y£) = 0 as long as the y 's
£

are chosen

by any reasonable at x stopping criterion].

85



In order for t convo and t '
ccu-.o

-II I -_ .. i.e·J~

to approximate its f UDlfor.niyover ::J("'1 b) 11171 HI,'. ScrlSEo ,

defined. Otherwise, for examp~e,

but for each it ,. may li-diveI'ge at x for each x E G~r;ij 'l, r

We 'Would t,lleo 'have

(2) ,. t-diverges in Gee; a, b) fur a:1 £.

written ,. ~ f'{a , b], precisely wher.~ l! ~ 6 > a ~~

r(x, y) f ill ~ S(t.; x, yj ~ (J), ande

~~ r(x, ~) f ill ~ TF(E; x, y) ~ (j) •

~t P be a set of p~irs of real in~ut~. We say ? cover~

o(a, b)(2) pr ecLse I y When, for each pair of numbaz-s \C, dj E ora} ·O:,i,c:.

there 15 a pa~r \x, y; E P wlth x C ':Ind y = d

set of r e aL mput a, We say Q cover's 0(a, b) n?1l I:fr.:ise:y wnen,

for each E and each number c E o(a, b) n R( .. ) there is £l rea:" lnv~"

x e Q with x(6) = c and RX(6) = 0 for 6 < E Define

Q, (", r , p)
a

b ·, .,. a f b , P e::,vers
,

j\a J b ] .

rex, y) f (J) for .. x,
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THEO~ 4.5-1: We~

Proof: Suppose ~ ... f(P), , E S
- 0

corollary 4.4-2 and the fact that

and (a, b) E Qo(', f, p). Then

f(x, y) ~ 11) for (x, y) E o(a, b)(2)

imply that f converges over o( a, b) - 7!l. Suppose f converges

over the rest of o(a, b). Then there is a 6 > 0 such that, for

esch £ ~ 6 and every (x, y) E $(£; a, b)(2), none of F, RF and

TF equals m at (ej x, y). This means that ,. ~-converges over

&(c; a, b) for all £ < a and so

b) .. (fJ (f)(a, b), (,1). (,1)convo

On the other hand, suppose there is an x E &(a, b) nm such thato

f diverges at x.' For all sufficiently small e, Xo E t!l( £; a, b)

and TF(q x , y) = 0) for all y. This means that , £-diverges
a

in &(£; a, b) for all sUfficiently small c, again imp~ying (4.5-2).

Consider continuity. Corollary 4.4-2 implies that f is con­

tinuous over o(a, b) - m. Suppose f is continuous over o(a, b) n 7!l

also. By the uniformity assumption, for all e ~ 6 we have

'(I; x, x) ~e 0), ~ ,,(£; x, Y) 1£ 11) and "(c; x, x) C c

~ '(1; x, y) for all x e &(c; a, b), i.e., that , is £-continuous

over &(t; a, b). This implies

~~ ('conto''')(£; a, b»l = fJconto(f)(a, b)
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On the other hand, suppose there is an x E o(a, b) n~ such that f
o

is discontinuous at Xo This Xo is 1n $(£; a, b) for all suf-

ficiently small I. By theorem 4.3-1, , is £-discontinuous at xo

for all sufficiently small •• Thus , is £-discontinuous in

$(£; a, b) for all sufficiently small I, again yielding (4.5-3).

This completes the proof.

It is not difficult to generalize this to half closed and closed

x E &(Ej 5, b)
m

intervals, and to a definition of ", £-converges for

- "at X
m

_
l and '., is e -cont inuous for x E $( E; a, b)

m
at i "m·l

for , of m + 1 variables.
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REMARKS: In the "e -cajcujus of stable e-functior-s" merrti oned in r;he-

remarks at the end of chapter 2, an E -:imi t ~ -operator c:,:.!',.:i be :ief~r,.e6.

oy using a particular, reasonable at any x f Ul, s topplng ('1':\ t.er L'Jt')

to define

~', (F)(E;X)
"1.a.m

f, p) =(x: lim f(x, y) i W~ F
y~x

is s"table at x}

However, it would not be possible to define "E -comparLson' relations ~

<
E

and satisfying theorem 4.2-1. It would net be possible to

model. When

define "E-convergence" for reasons mentioned in section 2.5. Due to

the lack of "E-comparison" and "E-convergence", it would not be

possible to define "e-iccntInufty' either. A better name for this

"E-calculus" would be "a mode:;' of scientific computation" because the

model would still be strong enough to do basic computation, but the

reliability of results would have to be checked outside of the medel,

by physical tests or by an error analysis.

It is interesting "that theorem 4.4-1 would no longer hold in this

'~RS :r(p)", any xm E P could be a point of discon'::inuity

of :r, provided P does not contain all "real inputs" Ym equal in

value to x orm

we would have

p does not contain a neighborhood of x
m

However,

THEOREM: Suppose ~l' ••• ' Im (m ~ 1) are intervals contained

in R . Let E\uppose •.,. "'" f(!)" and

is finite for x E I .
- -- m f is continuous in I- -

89



The second use of I is as a set, of m-tuples of "Teal i nput.s", under

the convention in section 2.~. By cont.muous in ::: "e mea': CO:J'lr, ", ,s

with respect to limits taken from the ~nterior of 1.

f!22!: For simplicity, we consider only the case m ~ 1 . Let Yl'Y2'''"

be arbjtrary numbers in I approaching x E I Let zl be a "real

input" with z '=' Yl
. Let 'Ill be the largest value of 'Il such that

1

IZ1(e:) - y11 <1 for E ~ T\ and IF(TI; Zl) - f(Y1J\ < 1 . suppoae F

uses only Z1(£1)' Z1(£2)'···' Z1 ('V 1 ) in eva.Luat.ing F('ll . \ (see, l' zl)

sec. 2.4). For i = 2, 3,·· . define zi' 11 i
and 'V. as fellows.

1

Let zi be a "real input" 'Wlth z, = Yi
and Z, (E) - z 1 (E ; for

1 1 ' 1-

'Vr-r ~ t Let 'lli be the largest value of 1\ such that

11 < "i-l' Iz i(£) - ~'·I ~ i/i fur E ~ TI, and IFIJl; z . ; f(Y)1 < l/;
1 a

Suppose F Uses only Zi (£1)' Z.(E 2 ) , · · · , z1 (v i :. ~n evaLuat i ng
l'

F('I)i; zi) Note that "i ::: 'lli < "i-1 Define W" t -> "l by 'vI,' E' Z t I

1

where i is such that 'lli+1 < £ ~ 'l)i (or, if '1)1 ~ £ then i .; 1,

For TI. '1 < E < 'll. we have
1'" - 1.

~ l/i + IY, x]
1.

As E .... 0 we have Iy~ - xl .... a and so Iw(£) - x] -> 0" Hence

W II W is a "real input" with value x We have

IF('Il. ;
1

- f(y,i I
1

< If(x) - F('I)t; z)1 + 1/1
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As i -t. we have 'TI i -t 0, yielding f(yi) -t f(x). This completes

the proof.
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Chapter 5: MeIt< t-')rerat,Ors

Our final tasks are to def~ne t -de r tvat.i ve ,

SDt(:J), and to prove the t'undemerrta'; "-,heoretr,:lf t':,e ,,-Cd.:'c'.',L Eo,

essentially that

where li n here denotes E -aubtract ion .)f E-l~nctions, and IS defln~d

below. Our definitions wl::'l be based on

~ (f(x) - f(y))/(x-y)!!"f{ x \
dx ' I

r f(t)dt
a

n
Lim .!2.:! En1 .. n

J=l

. ,
fr\a + ,\b-5,'

J n I

For this, we wil:i. need <-operators f'or t-sritmM~i,lc (~+' ~_i

~-composit.ion (t~omp), and f;-recurSlon

It is interesting to note that all tnese c-ope rat.or s excert I::un "i','

work in a fixed precision; I-e" when

only values of , at p::llnts 3~e required ty t If WE

were to define in t.erms of t.he

t I' WQ'U.ld have t.rn.e property a:80. \>Je will 115::; need til.';' irri·;l~J
1m

E-functions, and the identity and th~ constan~

As mentioned earlier \ see sec. 2";-). we "1:'1 only he atle j., C;:"VIo

partial definitions of these e-·;;p",rut,,:,:!·s becauae woe 1';8Y~ II.,) dl~\,)%;.t 1C

procedure for generating s+",bly converge n- truncativn-\:rr~r (,)",r,df:,

pr-obabLy nc such procedure ex i at.s, (E')wevf::, 1 t may b€ p :,ssitc:,.. u

generate such bounds f'rom a aei'l rn.t ion .,)1 t.he i dea L f ...nc~ 1'..', <')(t' "",~ "ec:.:
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in terms of the operatQrs and initial functions of this charter, this

is a worthWhile research proJect.) We wi:l assume truncat1on-error

bounds to be given; for completeness, unspecified t runcat.Ion-er-ror-

bounds may be taken to be identically ill. The roundoff-error bounds

which we generate will be of the per step variety (as seen in interval

analysis). Such bounds are notoriously inefficient 1n rea: situations.

If better bounds are available, they can be used in place of our auto-

matically generated bounds. (It may be possible to automatical:y im-

prove such automatically generated bounds if we are ~iven a definition

of the ideal function under c~nsideration in terms of the operators

and initial functions of this chapter,)

For the following sections, we need definition 4.1-1 for TF of

m + 1 > 2 variables (it was stated for TF of 2 variables'.

DEFINITION 5-1: Suppose S ~ f(P). We say TF is stably conver-

sent at xm relative to f (m ~ 1) precisely when

.!! 12!:lS :!!~ YE 'sm~~ !. reasonable!! xm stopping

criterion. ~ always say TF of'~ variable !!! stably convergent

II Xo relati ve ~ s ,

We wil~ use the notation,

TF • i (f) or TF. P(f)
m



to denote that TF is stably convergent at

rela.tive to f

Yo ,
m

or at u':'1- x E 1',
m

In the following, we wiLi r-eed one mapping,

given by

V[(a, h, ej] = (8, t;

v;



5.1 Identity !-~unctions

For 1 S j :::; m and X. fW (i", 1, ... , m),
1

define the identity

(ideal) functions of m variables by

.m,- )
1 . \ x '" xjJ m

For 1 S j ~ m, define

~(£; X) B (X.(E), RXj(t), TI~(E; x ))
J m J J m

where TI~ is to be defined.
J

')f ~()urseas long as no xi "'( w,

TI~ is identically ill.

For m.2: 2,

For 1 S j < m, TI~(E;
J

define Tr: by

x ) = 0m so long as

THEOREM 5.1-1:

!I2.2f: The only thing re~~:iring proof is that TIm(m > 2) is stably
m -

convergent. Eut this foll~ws immediate~ from theorem 2.8-1, completing

the proof.
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5.2 Constant E-Functions

For any real input 11". define ti,e cCTlstan~~ It idea~ fun(_"~ :Of,

of m variables (m ~ 1) by

k

so long as no x, (j) . Define E-functions C
l1

t.~i
l k

1
xl)

2 x, ), RI2 1
xl ), a..)e

k
( £; .. (I

l
(E; k, . 1\ E; k,

J.

THEOREM 5.2-1:

X I' II .f'+ ~( r : k, x ':
m 1 ' m for m> 2

This fo~lows immediately from theorem 5.:-1.



5-3 I-ArLihmetlc

FJI ... be i ng

f;~(1', g)(i ) .~ fex ) * g(i )
~ II'! m m

We define e -ope rat.cr s cor-responcn.ng to these by first defining

E-arithmetic for machine numbers ana corresponding E-arithmeti~

I::>..md:)f'f-error bcunds,

E-Arithmet;lc subroutines, F:,* fur * be i ng +, -, A, +, are

NICs) be the E-neighb::>rhood of ~ E R, as defined in section 2.8.

The F~* must satisfy

(:) for x;£ wand y ~E 00; FL.(l; x, y)

and

r·Jr examp~e, the roundang sucrout mee A it'n, of section 2.8 satisfy

these. Cond i t f cn (1) states th'it the FL. do not use the inpu.tted

error b)unds_ ConditIon (2) requires that" when F~* operates at

E-~reclS10n on members of R(E), it must fet an anSWer within two

machine numbers from the correct &nswer, unless the correct answer

IS m {- C1J, CD, oo}, in WhlCh case F::'* must get the correct answer.

DefIne a function, W~ {(l, X): E E t, X finite and In R(I)} ~~,

by

wet, X)

",hea Y. IS the second member of R( e ) be:ow X (.:Jr the first bel.Jw..
X if there is .:mly one) and Y2 is the second m.ember of' R( E) - [wi



above X (or the first above X if there is only one). gor-X E R(E) , let [x] denote IX ~ 01 and Ixl dencte IX ;; 0\ jer~rfJ-error bounds, RFL., for the FL*, by

(5·3-1) R+ (E ; x, y) (RX ~ RY)(e:)

-,. ,. '"' ,.,
(5.3-2) (E ; x , y) ( IXI IYI

... RXX RY)\E)Rx
)( RY ..- x PJC + ,

w if (I r] .;. RY)(E) :s; 0-(5·3-3) R+ (I; x , y)

otherwise,

or RY(t} ~ eo 0:'
,

x, ~~'..' +- OJ

o

and - eo < x < eo]
I Y I

We define e:-arithmetic I-operators f::-om the FD* and R?I"ll

as follows. Let Sarith be the set of pairs of' r-fun:.:ticnb bc~l1

of m> 1 v'lriables. When ,.~ f(?) , lct f(xm) dc~o":;e (-1", ~"!"'ll I:;::'

its numeric vall'.e) the poor real input., (F( • ; x)., RF(' ; x» S':)?.;;;"
m' I'!:'

Define
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F~r m > 2 , we assume the third part of 1~(~2) to be given. We will

abbreviate P*(f, g) by f*g and ,*(:1, Jt) by :1*,J1. AlsJ, we :2-et -,-

denote em ,
0-' Define

THEOREM 5.3-1: For * being +, -, x,. ~~

Proof: It suffices to prove th~t, for each c and any real inputs

x and y,

and that

1 lim ( )x * YFill. £-() RFL* .; x, Y o .

Let I, X and y be given. If RX(.) or RY(.) is = or

FL*(I; x, y) = ill or

... < Y < 00] then
I C

[FL*(,; x, y) = :: "" and ... < x < "" and
£ £

(5.3-5) holds because RFL*(C; x, y) = ill. If

RX(.) and RY(.) are finite, Ix1 = "" or Iyl ~ "" , and

FL*(c; x, y) = :: 00 then FL*(£; x, y) = X(I) * yet) = x * Y by

conditions (1) and (2) on the FL*; in this case (5.3-5) re~~ces +.~

o ~ 0 , which is true. Suppose FL*(c; x, y) , RI(.) and RY(£) are

finite. Then either x, y and x * yare finite or x * y • x + "" = 0 •

By the triangle inequality, we have

IFL*(I; x, y) - (x * y)1 5 IFL*(£; x, y) - (X(c) * Y(I»I +

Ix(£) * Y(,) - (x * y)1
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By conditions (1) and (2) on FL*, we have

For the second term on the right side of (5.3-7)~ we have

If * is and Iyl; = then ~he above ass~mptions imply that x

is finite and x';' y = 0 ; in this case, R.(€:; x, y)
T

is either

~ ... ~ ; ill or it is (some finite number) .;. ~ = 0 , taking the latter

value for all suffic::'ently small t, so (5.)-5) holds in this cs.se ,

Suppose y is finite. Then

IX(d .;. Y(e) - x';' yl = \(y)( X(r) .;. Y(e:) - x ) .;. yl

; l(y - Y(e:» X X(t) .;. yet) + X(t) - xl ... Iyl

Thus (5.3-5) holds in all cases.

As in the0rem 2.8-1, it follows ~hat! for x * y I ill

lim FT ( ) *£--+0 .....* £; x, Y = x y ,

(5.3 -8)

Ix * yl = 00 ~ [F~*(E; x, y) = x * y ~cr all sufficie~tly

sma.~cl e )
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This imp::"'u's th;;:t.} for x" y be i.ng finite,

llm ( ( ))£....-.0 w . £, FL+ £; x, Y . = 0

For such x * y J It follows ~rom theorem 2.8-::'" t,hat

lim ( )
£~O R;; e , x , y = 0

and (5.3-6) fe::cws. When Ix 11- yl = m , (5.3-6) follows fr8m (5.3-4~

and (5.3-8). This completes the proof.

We say that f is rativnal :Lf it can be defined frcm the

and
mc
k

by a finite number of arithme"ic operations. We say tha":

, is rational if it can be defined from the ~ and C~ by a finlte

number of I-arithmetic £-operations.

corresponds !£~ of the rati~na: functivn f. Then

This fellows from theorems 5.1-1, 5.2-1 a' ", 5.3-1 by a simp:'e lmi'...c... .:..vl.

arg~ment9 which we omit. For example) this meQns that

:J ;: (~ + C~ - (~ + C~)) (iJ. -~) curresponds to the f c~'

example 3.1-2 ever t 2 ) •
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5.4 £-Limit

Here we generalize the definitions 0: sec~ion 4.~. Let s, .....:m

be the set of all ideal functions c~ 2,3, ••• variables. Defi~e an

operator Pl i m over S" by...~m

Assume a ~(.) as in section 4.1 an~ an effective, reasonable at any

x I ~ , stopping criterion, S.C., have been given. Let 51' beJ.m

the set of all £-~~ncti~ns of 2,3, ••• v~riables such that if

, E ~im then for each and each

(1) [YER,(e) and RF(£; Xm, y) I ill) implies ~~~RF(£; Km, Y) 0)

and

(2) [TF(E; Km, Y) I ill for eome YER(£») implies

[lim TF( . - ) 0 ' t.'£-'0 E, xm' YE:" I as ...ong as ,ne YE 's are cncsen by

a reasonable ~t x s~Jpping criterion] •
m

Define tlim by

DEFINITION 5.4-l: Ir.!t '~s." ,-- ...J.m
:x and

m

y£ ,y , ••• ~~~ sehc~ed ~ .§.& for 'IF and
1 £2

Xm f! TF(c; xm' Y
E

) = ill , define

Otherwise, ~ ~ be ~ largest mem:ber 52.f. e. ~ tnat o:s e

and TF(o; x , Y~) < ~(E). If Rl"(o; x , y.) ~ ill , app::.y (5.4-:..).
- m v- - m o
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Otherw1se ~ j be the sm~:lest in+.ege~~~ e , < 5
J -

and RF(c j ; ~ml yo) ~ X(I). Suppose

<DR( j : kJ .». Let e3 £ ( .) be Q R( j J

V[11, (,.)(£;~ )] IE (I(I,~ ), 2 X,,(t) '+ (I(E,~ ) ~ I(£J~ )\)
am m e £ e

For m > 2 we assume the third part of t., (,.) t:J be given. ::E':fine
1.1m

Q1' (",f,P) • {X {'X J X Cm n {s·.)n1e neighborhocd Gf x} C P
am m m m

Theorem 4.1-1 generalizes immediately to

THEOREM 5.4-1: We~
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5.5 (-Composition

For n ~ 1,2, ••• , let Sn be the set of al: (n+l)comp - -'"."J.ples

(f, g ), of ideal functions, where f takes n variables ar.d each
n

8 i takes m variables (some m~ l). Define a composition operator

J,.n over s" by
~comp comp

We abbreviate pn (f, g) by f(g-). (In context, it w~l1 be ~learcomp n n

whether the g1 are functions ::lr variables.) We wi:! also use

interchangeably with pn (f + g, gn) ,comp

etc.

For the present, let g.(x) denote (together with its numeric
~ m

value) the poor real input, (G. (';x ) , ~i(';X ». Define
1 m m

n - - -V[I (S, ~ )(£iX )] • V[,(£; g (x »jcamp n m n m

Let rf be the set of aU (n + 1) - tuplescamp

£ -functions such that (', 1 ) ... (r, go )(p, p )
n n n

for some (f -)E sn
, gn comp

n - -We will abbreviate t (', ~) by ,(~) •comp n n

and some P, P , and such that the computation of '( £;g (x » vian n m

the determiners of Sand ]n halts for any real inputs xm (sec

section 2.4). We assume the third part of ,n (, 1) to be given.comp , n

Define Qn bycomp

n
Qn (,,:J, e, go , p, P ) Ii {i : it E n Pi

comp n n n m m i~l
and g (; ) € p}

n m

(Note~ Sn(xm) again denotes poor real inputs, as explained above.

And g (x) cannot be in P unless each gi (x) is a real input.)n m m
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THEOREM 5.5-1: ~~

('~omp' Q~omp) --- ~omp(~omp) •
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5.6 E-Recursion

We are int.erested in the following form of recurs Lcn, .. +
.l.o€ .

~,go and h be given ideal functions of m, m and m+: variab~.E:s

(m ~ 1). We define f by recursion as fvllcws:

if .A -= aD
m

f(i )m if x < 1m

h(i ,f(i , ,x -1)) otherwise.
m m-... m

We put this in operator form by de:fining

where f is as in (5.6-1), and defining Sree to be the correspcLd~nB

set of (gm,go,h). The following example illustrates the use of th:s

recursion. The operators of this example will be used later.

EXAMPLE 5.6-1: Define the operators and ax over the s..
.Llm

of section 5.4 by

[x -1]mI: g(i ,x -L)
1=0 m m

[x -1]
m
n g(i,x -i)

i=O m m

X J we have

aD co

Clll(x ) I and I: and n are
.J.. m i=O i=O

be m-l-l For * being + andc1

where the empty sum is defined to be c~(im)' the empty prod~ct is

;: (J). Let s; be e~+l and gl(
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~ ,n"'", JI.... ,...,
IlA""'C

.~: ...
i '

Ii:.

Butn J ana G '''iL be ilsea ~n se ct.i cn 5.'7 , wilen: "'-f ;;If'f.ln~ l ~.
~ x

c:-funct.lvn WhlCh cor-responds t.o x RE- ove r .

derio't.e ., ( .m, <II", .rrl _,.Ill en:, ,
- JIII.. Q m .r ; cJIItr.._.l ~m - 11 ' )

Le t. .J1 ,.J1,,~ be given, lind define the
co 'v

r' part

G I £'~ ) if m, -)
Jm' c ,x m ""a:\ , rn

~

Go~t;Xm) if m. - \ 1J ',C,X I <,
m ffi e

G
1

(t;Xm) if ( Jm c~j), £;x ) < it, - ')- m\E;Xm,, m .... m e

U) otherwise

'I'he thira test is needed because j of: can nappen that

bu.t

are

J\:;.:x i , 00
m rr. l

,.m em em 1Tl)' -) -J m
\~m - 1 - 1 - ••• - C1 \£;xm "f. 1 no matter h'~'" marry C'

L
"s

£-subtracted from ":. Thus the eva:'..J.ation of F( £ '~m) v i a

(5.6-2) wlth th~ third test replaced by '0therwise" (lind the f'O'o1rth

alternat.ive removed) wo1.lld not ha1t for certain £ and xm However J

F'ur the following definition of RF, we wLd need an E-C,j:Il~''''I'l~vn

at-era!;u!', We wallt S(!;x) < T(£;y )
ill - n

infurmation given by S(t,x) and 1(t;Y)
rr. n

to hold when, baseo:Jllly on

DEFINITION 5.6-1' Let x ~

x < y tc. be trt;e (and xl.. y
-£ ---- t

xC £) < Y(d , RX(r.)~ RY(f.)

:':cfinE.---
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We adopt the convention in section 4.2 concer-m.ng the use (:,!' tr-ip:"f-'>,

8
3

, with <
-t

Define the subr~~tine ER by

ER bounds the error caused by using G
j

in t':"':l.ce of gk ror

(j,k) ~ {(O,O), (0,1), (1,0), (1,1») . RF is defined by

RG
IIl

( £ ;X
m

) if ... < (£;Xm'-£

RG
O(

£ ;Xm) if .f1( £;x ) < 1
m m £

RG
1

(£ ;X
m

) if 1 < .fl( £;x ) and
-t m - m

(5.6-4) RF(I; xm)
(.f' m). -) r.£,x \- C1 · \ £;xm <m e m llJ

ER(E;X ) if (<: m\( -) < jn(£;x ~
m - C1, ,£ ;xm £ m In

otherwise •

As usua~~ we assume TF to be given. Let Nm be given by

If m= 1 , :"et S E rxo} ; otherwise let S be some s-.lbset.;~'

Let T E S )( (R - (Ill)) , where (Xo) X P is defined tv be ;>

any set P.
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For P. ;;; S x leo}
.i

and deene "tree by

S X t<

S X R -'-f ;~ ~ 'I' ... R. 3 "

f .:le- any x .ED 3.nd
T!.-",-

",ny y f- (lJ

1 )

) .
Let

and some

Srec be the set of all ~3 "'" f;.0\) .. fc>:, "OIl'Le t'3

P., , such that the ccmput.at icn 0f t (;;3)( E;X )rec m
Vl:i

determineT~ of !~ halts for any rea: in~u.t.s x m

THEOREM 5.6-:: We have

(I Q);" (s )
'rec' ree -~re~ ree

(1) If' x <.: then ...(it ) ,- ). m
~ -. m gc,xm

for an sl,ff'ic:i ently s:nal::' ~ J yie~.e.ing

T ;;; S x (R .. {=1) , ~ao R:l g..,(S X ~,",J) , ~O "'" g0(1) ,
.,

R) ) (~CD)~O~/) E Srec and (gCD,g~yh) E Sre~

SupposeProof:

J( ,.., hUT- N ) X
m

Let f" Prec(gw,gc;,n) and S ='rec/..teo'~(.,}S() . S'J.pP'J~e

xeS XR- Nand f(Xm} fm m

and V[~(t,im)j 5 vl..to(£;Xm) )

convergence. =1' )rr. ~ ~ then t(xm) ~ gw(Zm) and

V[,r £ <X' ) ] = V(~ re:'x )J fur ...J.~. cuff'L:;ient:y ilrna.:'::' £:.' aga i {j Y~ ::.:.j', fl6, , m' (1)\ , m

'Convergence. Supp';se 1 < x -; CD
m I.et J

x
III

and..t be giv~t1 by
x

m



J
x m

509: - C~ - ... - C~
f

Fer all sUfficiently small £ we have

and so

~x •.• ))(f:;x,)l
~n

We also have

(5.6-6) f(Xm) h(~,¥.. ~ h(Xm_1: x -1..•. hex ., x - ~x -1J,m' m-u ill 11:-

gO(;:: '1: x - [x ]) ... »)m- :n iT!

Successive applications of co~ollary 5.}-1 and th~o~em 5.5-1, ~0=King

i'rorr, the inside to thf' outside on (5.6-5), give us convergence.

In addH.ion to the ace.....e hY.J,')theses J liou,Jpose "~h(7)( B) an~l

go(Xrr._l,l) ~ h(Xm_l,l,y) fur ~ny x:r;l E E and an,r y I (j\. Fr'.1n

+.l:e above, we have :1 __ r(s l( R - N ). SuP?ose X
m

E S x R II N
m III

and rei) j m Define~' bym x
m

.)~ (£;Ym) 5 ('\ (£;ymL E?r~;Y"'_l:z),lll) for all e anc y~,:
ffi m

where z is the real in;mt (I ( • ;y )}RI (.;y» (linen 'Yo, ~G
X m x 'Lm m

x ,the val•.:.e ·)f z is 1.) Ec.y.c:t::.ons (;.6-5) and (5.6-6) ::,~,:>"""rr:
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v[~(£,'X )] :; V[~(.f' .' ~(.f' ,. ,,' e ffi Jtx' ••• ))(t::X:n)]m m m-u m - 1'· ••
m

r(x )
m

If xm = 1 , these last equations are

V[~(£;Xm)] =v~Jt~ (£;Xm))
m

and z is just xm• In general, we have

(Jto( a:-l' J )( It;X »,x
m

m_

the last equality follmoing f'r-om our' additiona~ hypotheses. Further ,

by theorem 5.5-1 and corolb::..y 5.3-1, we have
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lim -
ORG o( £ ;X l'Z)£-+ m-

l:::n .hU (- ) 0
£-tv 1 E;Xm_:l'z

By this and theorem 2.8-1, we have

From this and (5.6-7) and (5.6-8), it follows that

This completes the proof.

m+1
Let .1'+ be Co and.l')( be Cm+1

1 . Let .I' be an £-f'mction

of m+1 variables. For * being + and )(, aefine

~ (I.) =t (Cm+1.l' uJm+2) .. J!Ir+2)(.fl .JI1)
~-lI" - ree (.i) , *, "\ m+l m+2 m' cYm

{
s x 1r - N

Q (.I',g,p)!E m
sum ( )

if' p .. S x fir - N - lcon(2)
1

otherwise •

..
Let Ssum be the set of all .I' of m+l = 2,3~... variables such

that the computation of t..(.1')(£ ;x
m

) via the determiner wf .I' ha~ts

for any real inputs x •m
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CORfJLLARY 5.6-1.: !2.!: * being + ~ x , ~~

jl,

(~,Q.sum) -- o*(Ssum)

!!22!: Suppose ~ __ g(S X (~- N
1

- (m})(2». Then

LI .m+2) * .m+2 (m+2) * .m+2( (4'l" { } ,(2) ~
'\"-m+l clIm+2 -- g im+l lm+2 S x l\ - N1 - <II, x .1'/ and

completes the proof.
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5.7 An £-Functicn Ccrresponding to eX Over ~

First we mention that eW
: w , e- = J and :':'et

f ex) = eX as in secticn 2.6. Define two basic t-f.';;nc+,i.:;r~s,exp

P and a, by

By corollary 5.6-1, P _ (j~ (c~)(1r - N. )
..L .l-

an entier for positive rea~s, because

p(x' • f :l [x]

if x = w, co

if x < 1

other-..ise •

By theorem 5.6-1, a A:l a(rr) , where a(x) = [x \. We usc P and a

to define ~ as follows:exp

(5.7-6)

! forms terms, xn-1/(n_l): •
N ,

~ forms sums, ~(-Ixl)n-~/(n-l): .
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~ cheCKS for x = ~ J to insure that

:ensure

and

checks for x =

it cO!llpu~es

"exp

00

D -Ix I)n/n! .
n=O

00 , and otherwise

it approximates

that

reciprocates this value when x > 0 The only essential part of this

definition that is missing is a definition of the TF part 0f ",

because TF is the only t~~ncation-error bo~nd used here. ~n the

following discussion, we wil:" define TF and use our previo1..~s theorems

to prove that "exp ~ fexp<~. The only nontrivial part of this

development is the definition of a stably convergent TF.

Theorems 5.1-1, 5.5-1 "nd 5.3-1 yield that

Ji +P(~) - i~ + P(it)(~4) - N4). This and corollary 5.6-1 imply

that r ~ t(~3) - N
3

) , where

I.;
if x=w , m = w , or n>oo

t(x,m.,n) if n < 1

otherwise

Thus " Al:l f<~3) - N ) , where f is defined in section 2.6. For the
:3

next ste~, we need the TF part of " . We could define TF from

~' II 1l-Q<"i), ~,~) without making use of any special properties

of (R, e) , but a considerable derivation is required to insure that

the resulting TF is stably convergent at all (x,~) with x fi~ite.

For simplicity, we instead sketch a definition of TF for the case

where (R, e) is a floating-point number system and £-arithmetic

satisfies the usual relations needed for an error analysis in the

style of Wilkinson [W2] • We worK from the tf of section 2.6. Let

a finite x be given and let
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For integers n > Y let fl (ynjn!) denote the product
£

~ (Y!m) evaluated in floating-point

£-arithmetic, where m is the largest integer with Y < m < n such

that overflow and underflow do not occur (or m is w, if there i~

no such integer). Using this m instead of n is two-thirds of the

trick needed to define TF for an arbitrary (R, e). Assl1l11e that

the value I used in place of i in (Y/i) satisfies I = i X (:+~i(£) ,

where I~i(dl:s E Then for some \'T\jCdl:s & (j=l, ••• , 3m) ,

we have

3m
fl (yn!n~) = (yrrt;m!) x n (1 + '1l

j
' ( E»)

E j=l

Further, we have

,

so we define

if k = OIl and [x \ + 1- < Y < a:
E E

otherwise ,

where n is the largest integer < y. We prove that TF is st~b:)
£

convergent at (x,..,) for finite x as follows. Let '1£' Y
g

,. ' •••

1 c
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satisfy

we have

and For some

for all sufficiently small £. As £ -+ 0, m -+- and the right side

above goes to 0

with x finite.

ThuB TF is stably convergent at all (x,. )

Thus ,. ii (F, RF, TF) is in 8lim and tlim(")(~' () A$

~lim(f)(i~, c:)(R x 'jf(m-l» This and theorem 5.6-1 yield ~ "'" g(1{),

where g is defined in section 2.6.
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REMARKS: It is easy to define initial £-fUnctions and £-Qpera~~rc

analogous to those of this chapter for the II £-calc"J.lus of stab} c

E-f'unctions" discussed at the end of chapters 2 and 4. However,

our example in section 5.7 would have to be changed, because the

subtractions in t(-Ixl)n/n: makes F unstable at (x,ao) 1'bl.s

can be remedied by defining E' in terms of tlJ< In/n! •
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Chapter G. E-D~rivative and E-Inte~ral

6.1 E-IJifferentiabi li:y and E -.:Jeri vati VE'

Define a difference operator, d, over the set Sa ~f ;aeal

functions of one variable by

We say f is differer,t, U'le at x precisely wht::n d(f) converges

at x. ()therwise, we sav f il.' nOrldifferentiable at x Define

a difference E-operator, (::c, ~), over the set 3D of e-functicns

of one variable by

D(1) = (1(J~) - 1(J~)) .;. (J~ - J~) ,

Q.
D

(1, r, P) ;: P x P .

By theorems 5.1-1, 5·5-1 and corollary 5.3-1, we have

DEFINITION 6.1-1: We ~ 1 is E-differentiable at x precisely

when D(1) £-converges at x

e-nondifferentiable at x.

Otherwise, ~ ~ ~

Our previous analysis of t-convergence at x carries over immediately

to e-differentiability at x, so we will not bother to express this in

operator, e-operator form.

D~finp ~ derivative operator, d
dt

, over by

ddt (r) = rt. (dtf) ~J)"lim \
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Let

that

Sd/dt be the set of all f-functl~ns, 1 , of ~ne variable such

(<tt: ) E S . (D ( "D.r lim Define an f-derivat~ve £-operatc:,:r, Dt' 'did','

DWe call Dt (j;)(E; x ) the E -derivaH ve of '1 at x. By theorem

4.1-1 we have

Thus, under the usual conditions, the [-derivative at x of an

E-function approaches the derivative at x of its corresponding ideal

function as E ~ 0 •

It deserves mention here that there is a function, f, such t ha t

(1) rex) is finite for all x E R ,

(2) there is a ':J ~ feR) , and

(~) f is nondifferentiab1e at every point in R .

See Grzegorczyk lGl, pp. 199-201].
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6.2 t-Integrability and E-:ntegral

Let C deno t.e e. f i n i te closed ; nt.e r veL of numt.er s . For .P bei ng

a set of real inputs, we say P ecvers C. alrr,Js,;: everywher", prec t aeIy

when C has a subset C· of Lebeague measure zero such t.hat. for any

c E c - c there is an x E P with x '" c As is usual, we write

"a. e " 1\)1"' "almost everyvnere ." i et "oves: e" be il"lpl:"cit in the

statements 'If is cont.Lnuous a. e. bounded ur integrable. Fr om anal;\" 13 ; s ,

we know that the bounded, l·\ieman integrable runct.ions are precisely

those t~at are bou~ded 9nd continuous a·e. (See Foyden r~~, p. 70:

Suppose f is a b~unded ideal [unction and tr:<,~ 1- "'=l ~",P) In

order for the information cont.af ned in r.he set [1 ie ; X); ~ Iii e. ,
x e c n p} to determine whether f is continuous 8.. e, P will have

to cover C e.·e. tRemember that 'n gives n ; i nf'or mat.i cn uecause

of ~'s of one variablp are = ~ Similarly, the set,

If: 1 As f(P) and f is b~undt=dl ,

will contain bot.h integrable and uc..uintegrable ideal fll.nctL.-!'H;unlt::o:"~

P covers C a.e

Now, suppose we have a dE-t'initi,:n cf "1 is E'-integrable ,over

..;~ich is based unly on the values of ~ I'nen , the 'tI~&.Kest reqlli [,,'IT1U,1

on the sile of P which might make the cvnditions,

(1) 1 ... 1'(PI ,

(2) f is bounded, and

(3) ~ is £ -integrable for all .nfficiently smaLl e ,

equi valent ot If is integrable! is

(4) P covers C a.e

Reproduced from
best available copy



However, by theorem 4.4-1, we knc... that conditions 1, 2 and 11 by

themselves inply that f is integrable, i.e., that f is continuous

everywhere in C except possibly at points in ~ n C , a set of

measure zero. Hence essentially the only definition of '~ is

E-integrable", which uses only the values of ,: and for which we have

(1) - (4) hold • f is integrable,

is '~ is E-integrable precisely when 1 = 1 "

Consider basing our definition on the values of " ='(J~) ,

an t-function which may have a worthwhile truncation-error bound.

(This is reasonr.ble because it is only by a fluke of notation that

, of one variable have no worthwhile truncation-error bound.) Then

we have the additional information given by TF' , whi~h satisfies

TF' (E; X, y) > If(Y) - lim r(y) \
- y -+ x

Again, let us assume that f is bounded. Let z be a poor real input

such that, for each £ , \Z(t) - c\ ~ RZ(£) for all c E c .

If TF' (£;

all c E c

z, z) < w then we will know that lim f(y)
y -+ c

And this implies that f is integrable, by

exists for

THEOREM 6.2-1: Suppose f .!.! bounded .2:!!!: C and lim ff;;)y -+ c '

exists for all c E C ~ f E!! at !!!2!1 .! countable number of----
discontinuities in C

So far as we know, this is a new result.

Proof: (This was proved independently by Bill Glassm1re and Paul

Rosenthal.) Define
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f::r E c

FIrst we pr ove tn e t g IS corrt i nuous , y. ~ c
, 1

1 -~ w ,

there is an x ~ c wit;)
1

r(x 'I < 11 i,
1

iy -x.l<lil
1 1

~~y ,
I'

c,

In C Next we prove thatD I f urlly on & count.olble set

n .t, WE' nave

u
n=:

t x : g(x) " f(x) -'- l/nl

I f t.m s set, IS '.m::.ount3ble then a". ::'€6Sf , one of tne sets c.n t.rlf:: r l!:fnt

E == {x'
n

is.

for III
,
-) '-}'" .,



Thus we can define £-integrability s s f01:'oW8. For finite a

and b, :"et de, b] denr!t~ t.ne closed if,terval between a and ~I

For glven, finite real inputs 1 and b, let z .. z(a, b) be 8

poor real input such that

(1) fcr each e, Iz(£) - xl ~ RZ(E) for all x E c[a, b],

(2) n (x:
i > 1

Iz(£.) - xl < RZ(E,)} ~ cIa, b], and
1 1

(3) Z(·) and RZ(') ~re e~fectively cOJ~utable from a and

b .

It is easy to verify that such exist.

for some P .----Suppose S_ f(P)DEFINITION 6.2-1:

~ Z= z(a, b) be as above.---- For finite a and b,

is good relative to f, a qnd b precisely~ [f l! integrable

cj a, bJJ ,. [TF'(E j Z,
,

Z)<"(J) !2!~ sufficiently small It) •

Let TF' and z. z(a, ~) be as above. we put these results in

operator, E-operator fc.rm by defining

Sint !Ii (ideal f\;;n:tions of one var i ab Ie , bour:.ded over

P. t(f)(a, b) '" be·,)::' If is integrable over cf a , b l l
1n

provided a and bare 1 .n i te, and

o( -, Q;,)} ,

Sint(S: SlOW r(?) f0~' some r E r- and some P,"'int

and computation of TF'(Ej x" x) via tLe determiner

of TF' halts fGr allY poor rea:i input x ( see sec. 2.4)j ,
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t. t(')(E; a, b) ii (boo:" [TF"~E; x, z; < wI, bco l, ITr'(E; z , z ) W],l1;;'
1.

provided

Q. t(~' f, p) =[\a, b): TF' is good re:'ative tu f, a and o]
1n

An immediate consequence of the ab0ve analysis is

THEOREM 6" 2-2; 'de~

Further, If f is integrable~ era, b) for all---

Now for the integra:. Usmg the notation of chapter 5, we ciefinf:

a partial Sl.lm and an integral operator over Sint by

(m = 4, 5)

p (1': = hit X a (r(t))
psum +

J.. 'A ,",»),.2.2 2)( b)
~•. \~ \~ \1., 1 0, C a, I.•.1m psum .l ~ CIl

S "( ,dt\ f; a, b )
if p. t(r)(a, b) = 1

1n

otherwise
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We define E-opera~ors for these by

em = 4, 5)

~

Q. (,0, t, p) • Q (~(1 'l, r(t), Q'" (", 1, f, t, F,
llsum sum' camp

1f t. t(')(£; a, b) • (1, 0, w)
1n

(w, w, w)

Qi l{~' i, p) • Q t(~' I, p) nntegra 1n

otherwise ,

5. t 1· {,: ,. E 51 t and t (S;) E 511 }1n egra n psum m

The theorems of chapter 5 and theorem 6.2-2 yield

Further, is weak.--
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of the calculus.

THEOREM 6.2-:<': Fix &, b E R and 'l.ss:'<l'1e that------

(1) :t(f) 1! b0unded ~ integrable~ c(a, tJ, and

(2) ~r((}).

we have---

For any E-function .II of m vr.riables and any

(.II1Il:l g(f }) implies g(i) e p(.i(E' i ))J. This means tr.at.m III

b) )

The fundamerrt.aL theClrem of tne c.!l.1:.:uL1S tells 1.l8 that. A

(6.}-1). This completes the proof.
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Chapter 7: Comp1ltable Real Functions and Complet,ent:es

7.1 Computable Real Functions

Let Xl be theprecisely when

pre-

p •

'we say that a set of real inputs P covers 1{(m) (m 2: 1:

'f(m) is -taken on by some member ofcisely when each value in

We say P covers ~(O)

class of all ideal functions, f, such that there 55 a P covering

'R(m) (m:: 0) and an ,. with ~ R:l r(p). We say f is computable
l

precisely when f E Kl • K
l

depends on (R, t) and it contains many

f,.•nctions with discontinuities. We will not consider Kl f'ur t.her ,

By specialization of an ideal function f of m> 1 variab]~s,

let us mean the replacement of a variable by a numeric constant, yield-

ing an ideal function of m-l variables. Let X2 be the clas~ cf

~(m),
all ideal functions r such that there is an ,. "'" f~n . / end F and

<ire

f e K., .
L.

is co~table2 precisely when

S 11II f(i m» such that F and RF

RF are subroutines of m variables and B2 constants. Let X
2

be

the smallest class of ideal functions containing K2 and closed cmder

specialization. We say f

If f E K2 then there is an

subroutines of III variables and n > 0 constants. (We' do no': knsl>

whether the reverse is true.) As we shall see, K
2

is inde?emlerlt, ')1'

«, ei . By theorem 4.4-1, we know that any f E K
2

is cont.Lr.uc.us ,,~.

all X ER(m) with f('X)/:(J.).
m m

Let e be as in section 2.2 and n as in 1.5. Let us S5Y

°1 , °2 : n -.. n give a E r precisely when

(1) for each n::: 1, either 0l(n) = 02(n) } or

\a - e(ol(r,), 02(n»);'n\ < 1/n
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(2) if a I ill then, for all sufficiently large n, either

For m 2: 1, we say ex;;;; give xm precise1.y when Q'2i-l' (;r2i give xi

(i = 1,2, ••• , m). Also, we say 00 give xO' We say recursive

- - E ~(tn)f precisely when for any (;r2m and Xm R

give r(i)]
m

Let ~ be the class of all ideal functions f for which there exist

recursive operators .1"2 which give f. Let ~ be the smallest

class of ideal functions which contains K~ and which is closed under

specialization. We say f is computable, precisely when f E K
3

•

This is analogous to Grzegorczyk's definition of computable continuous

real functions of one variable [G2] • ~ obviously does not depend on

(a, t) and we have

f!:22!: We prove this by proving K! ;;; KI Our proof is baaed on twu
2 ~

transformation functions, t 1 and t 2 • Suppose erl, 02 give a E R

and define the poor real input tlCal, Q'2) • x by
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~ I(c, all

if X(t):o Ul ,

otherwise

If 8 ~ Ul then this x is a real inpu~. Let y be 8 poor real inp~t

and define t 2(y) · (~l' ~2) 8S follows. Let an n ~ 1 be given.

If RY{'n) ~ ill or li~~up RY(.) > 0 then define ~l(n) .. ~2(n) = 3

Otherwise let j(n) be the smallest value of j such ~hat

v
RY(£j) ~ I(&j' 'V3n) , where "3n(k) '" (k!3n] so that < "3? = 1/3c,

Then

Suppose Y(£j(n» is < cra(j(n), ken), .» and let 6n(·) be

a",( j ( n), k(n), .). If < 6 > .. - .,. or (.l) then < 6 > == Y
K n n

in this case, define ~l(n) = ~2(n) ~ 1, 2 or , respectively. Supr~s~

< 6 > is finite. For any integer i, define
n

i/3

rei) = (i-1)/3

if i .. ,[i/3J

if i .. 3[i/3J + 1

(i+1)/' otherwise

Note that rei) is always an inteser. Define

~l(n) .. !r(6n(3 n»1

~2(n) .. Ir(6 (,n»1 - r(6 (3n» •n n

In this case we bave
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Iy - r(& C3n»/n\n

Thus if y is a real input then ~l' ~2 give y. Further, if y is

a real input or if RY(·)·w then ~l and ~2 are computable from

(Y, RY) .

We prove X' C X' as follows. Suppose f E X2'. Then there is
2 3

an , ~ f(~m), such that F and RF are subroutines of no constants

(see sec. 2.4). We will construct recursive operators +1'.2 which

give f. Suppose x ,
m Define poor real inputs y by

m

Let f(Ym' denote the poor real input (F('; Ym) , RF('; Ym» and

define .1 and .2 by

Then .1 and .2 are recursive operators and they give f. Thus

~ E X, •

We prove X, c: X2 as follows. Supp':>se f' E K,' Then there are

recursive operators .1'.2 giving f. We will def'ane an , '" f'(~m»

such that F and RF are SUbroutines of no constants. Suppose xm

are poor real inputs, Define ~2m by
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Define F and RF by

and set TF -00. Then ~. eF, RF, TF) is the desired I-function.

This completes the proof.

Let X be the clus of all f: R -+ R such that t.here is an

f' E ~ (or X2) with fex) = f'ex) for all x e R X is precisely

Grzegorczyk's class of computable continuous real functions [G2]. In

[G2] Grzegorczyk proves K to be equivalent to several other classes

of computable real functions which have appeared in the :iterature.

In [G2, p. 192] he proves that the f e X are computably uniformly

continuous in any segment. He also constructs an f e X which is not

differentiable at any point [G2, p. 199].
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7.2 Completeness

which can be defined excl~-

R(m) ~ R (m ~ 0)

for all i E R(m)
m

x* be the class of all f:Let

is an f' E JL with fl(x) = rei), m m

be the class of all r: R(m) ~ R (m ~ 0)

frum

chapter 5.

THEORD-t 7.2-1: K* c: X** •

In this sense, the initial functions and operators of chapter 5 are

complete.

~: We only sketch the proof. The Stone-Wierstrau88 theorem (see

Bishop [Bl, pp. 97, 100) shows that we can construct an arbitrarily

close (in the sup norm) polynomial approximation to a continuous

function over a compact set if we are given

(1) access to any finite number of (arbitrarily close approxima­

tions to) values of the function over the compact set, and

(2) the modulus of continuity of f.

Grzegorczyk [Gl, p. 192] has shown that every f E x* of one variable

has a computable modulus of continuity, and his proof generalizes to f

of any number of variable.. Thus any f E K* can be written 8S a

TJolynom1.al in m variables:

polynomial, the sum is taken over all T
III

where Pi denotes the

coefficient of the nth

thi prime number, c(n, k) is ~lJe



such that 0 < ji ~ n (i = 1,2, ... , m), and where the nth

i di i 1 [] (m;approx mates f ~ver the m- mens ana square, -n, n ,

polynomi~.:'

witn a

maximum error less than 1/n. Further, we can assume that each c(n, k;

i.s rational. Thus, in order to show that K* c:: K** we need only show

that K** includes all computable rational functions, c(n, k) .. B.... t ,

since division is one of the closure operations of K**, we need only

show that K** contains all recursive rational functions, b(n, k) •

It is obvious that the initial functions and operations, except the

effective minimum, used to define the recursive functions in lMl, p. 120-L]

can be simulated by the operators and initial functions of K**. That tne

effec'Uve minimum operator can also be simulated in this way fo:':·)w frurn

the following:

t n • i
m
n _ i~l _ cn

l
+ r(in in _ en)

urr m-l' m 1
for n = m+l, m+d

h • J.. (m+1
,vrec COl '

im+l tm+2)(im+-l tm+l)
m ' m '

l' f ( i m ) J ,,' ." «~ .m+-l))(~ m,
~y m-l' Y F ¥) ,vlim g 1m_l, 1m+-l lm_l' c.)

This deserves some explanation. For i > j ~ 0, if i: j+l and

r(x l' j) = 0 then h(x l' i, J) = i, or otherwise h(x l' i, J: jm- m- m-

If f(xm_l , k) = 0 for k = 0, 1, ••. , 1 then g(Xm_:., t) = l+~ ;

otherwise, g(xm_l,
I) is the least value of n such that r:x ., n: ;I D.m-...

This completes the proof.
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Summary and ConcluslJns

We have d(;ve:oped a theory of numE:rica.l compu t.e t ion based on re-

cursive function theory, with a f'l<&v~r of i n t.er ved. &.l1alysis. Tni s

theory concerns ~tself with a gene-ra: class of variab:e-rrecisl,.n

computations and the finite-precuion ()r intermediatE') re-suits ari e mg

in such computations. :F'or examp:.e, the f10Cl.ting-poin";; compi.t e ti, ns ·)1

modern digital CJmpute-l'S are in t.r.i e class. JUT main g0a';. was i Q f'orn,

a realistic mode:'... of s ...ch comput.at.i.cne , This was done by deve-:'oping t.ne

concepts of

(1) a machine number system (it, el
, - . ~( sec , c. ':'11

(2) a real input x • (x, fIX) (sec. 2.,) ,

(3 ) a subroutine F I 2.4; ,\ sec.

(4) [-function , IE (F; FF, TF')
,

2·5), ",ndan \sec.

(5) [-arithmetic (sec. 2.8 and 5.3) .

If this model had been o·....r only goal, we wo'~:d pr'Jbab:y h ..ve d.iapenaed

with roundoff-error andtrtJlcati.)n-erroJr bo....nds (the RX; RF and 'I'F

indicated above) because such bounds !UE; uQueUy not computed on toe

computer. (We discuss the removal of' thest: ocunds in t.ne remarkS a'

the end of chapters 2, 4 and 5, 1 Ht:lwever, our secondary goal ne ce as i t&ted

the Lncorpor-et.ion of tnese bounds , This secondary go,\l. W':1S t,; f:nd out,

how concepts f'r om the calcu:'.l.s BLCh as convergence , cont Inu i t.y , dlffE1t:n-

tiabilityand integrabi::ity a['f.':Y, at each fixed :'..eve: of p'f:cision,

to numerics:l..ly computed f'unct.fcna Which, after ~:l:i.., car. be vlt'wed de

a fixed prt:;::islon as a discret·e set of p,~ints on a g r-aph , rna secvnde rv

goal was achieved by asscCiatlng f:he numerlcalJ..y computed t'unct.ron ,

::'~5
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use of roundoff-errOl' bounds, RF, and t:.r·.mcation-error bounds , IF.

Thus we defined an £-function ~ to be a triple '.F',:ff', lF~.

In trying to apply convergence and cO:'1tinuity to E-r~:.ncr,j~ns,

we were lead to an investigation of stopping criteria and St:ibll;ty

(ch. 3). Out of this came a new and simple definition of stabi:ity,

the concept of an I-wave, and a proof that instabiHty can be olfer­

come, given the requisite error bounds.

As presented in chapters 2 and 3, the concepts of subroutine

t-function and stability are machine dependent because they are defined

in terms of a fixed machine number system. In the remarks at the end

of chapter 3, we show how these concepts can be made machine independent.

The part of the c-calculus dealing with notions from the calculus

is of definitional interest only. Fur example, one may have wondf'red

whether there is a definition of I-continuity whlch satiSfies the

following: for each fixed precision I, many numerically computed

functions which look possibly continuous at a point x, but -...hose cor­

responding ideal function is discontinuous at x, may be acc€p~ed as

t-continuous at x; but,8S E ~O these functions should bE weed~d

out as E-discontinuous at x. We found (in sec. 4.3) that Hoell

possible to form such a definition by making use of C,)mp-l.Itable J.nf!.)~·i(:.,­

tion about (i.e" bounds on) t~lncation and roundoff errors. ~~ dl n.)t

expect such definitions to be of practica~ importance.

On the other hand, the part of the t-~alcu:us Which w.de:s SCl~~­

tifie computation should have practical imp:ications. Our ....ork or,

stopping criteria and stability tends in this direction. B~~ We ~5 J~~

have no concrete applications.
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