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PREFACE

Grammatical inference is the process of discovering an acceptable
grammar for a language, on the basis of finite samples from the
language and is an interesting form of inductive inference. One of
the principal tasks of linguists (and, it is widely believed, of
children) is inferring grammars for natural languages. Yet remarkably
little is known about either the actual methods used in grammatical
inference or the possibilities and limitations of various inference
techniques.

The grammatical inference problem was stated formally by Chomsky
in 1957. Context-free grammars, which Chomsky introduced at the same
time, were quickly adopted by computer scientists for the formal
definition of programming languages, and by now their uses are legion.
But the computing community (with the exception of Solomonoff) seems
to have generally ignored grammatical inference for the next ten years,
perhaps because of Chomsky's negative views on its solvability
(reinforced by those of Shamir and Bar-Hillel). In 1967, Feldman and
Gold proposed radically different solutions to the problem, and it is
now starting te receive some of the attention that it deserves.

The present study has been motivated by the twin goals of devising
useful inference procedures and of demonstrating a sound formal basis
for such procedures. - The forr:r has led to the rejection of formally
simple sclutions involving restrictions which are unreasonable in
practice; the latter, to the rejection of heuristic "bags of tricks"

whose performance is in general imponderable., Part I states the general



grammatical inference problem for formal languages, reviews previous
work, establishes definitions and notation, and states ﬁy’position on
evaluation measures. Part II is deﬁoted t6 a solution for a particular
class of grammatical inference problems, based on an assumed prcbabilistic
structure. The fundamental results are contained in Chapter V; the
remaining ch;pters discuss extensions and removal of restrictions.

Part III covers a variety of related topics, none of which are treated

in any depth.

I was originally introduced to the grammatical inference problem
by Professor Jerome Feldman, and the present study was begun at his
suggestion. Many of my results were derived to confirm or deny his
conjectures,and I owe a great deal to his suggestions, his prodding,
and his continuing interest. Thanks are alsc due to Professors David
Huffman, William McKeeman, and William Miller for balanced doses of
criticism and encouragement; to Rod Fredrickson and the Stanford
Computation Center, Campus Facility, for financial support, computer
time, and freedom to pursue the research reported here; to Stephen Reder
for many stimulating discussions; to my wife for her patience; and

especially to Phyllis Winkler for typing above and beyond the call of

duty.
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PART I

PRELIMINARIES



I. STATEMENT OF THE PROBLEM

Introduction

The strongest requirement that could be placed
on the relation between a theory of linguistic
structure and particular grammars is that the
theory must provide a practical and mechanical .
method for actually constructing the grammar,
given a corpus of utterances. Let us say that
such a theory provides us with a discovery
procedure for grammars.

[Chomsky 1957]

This study considers solutions to the problem of inferring a
grammar for a language on the basis of finite samples from the

language. For example, Feldman [1967], from the sample

b - baba
bb abba
aa bbaba
baa bbaa s
aba aabb

inferred the grammar

S 1:=Db I bs | ah

A ::=18 I DA l as A

This grammar generates all the strings of the sample (and an infinite
number of other strings), but it is not the only, nor e&en the shortest,
grammar with this property. Finite samples do not uniquely deg;fmine
particular grammars (or even particular languages) from the infinite
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classes studied here; we cannot prove that any particular grammar is
correct. Thus we are led from mathematical (demonstrative) reasoning
to what has been called "plausible reasoning" [Polya 1954] or
"non-demonstrative reasoning” [Nagel 1963]. Such methods will not
yield answers which are certainly correct; all will sometimes infer
grammars which further evidence might prove to be incorrect.
Nevertheléss, we are interested in developing and justifying particular
methods as adequate and, under some conditions, optimal solutions to
the problem of grammatical inference.

Since individual answers cannot be proven correct, it is important
in each case to understand clearly and explicitly what problem is being
solved, what is required of a sclution to that problem, the assumptions
under which a proposed solution is valid, and the relation of these
assumptions to conditions which will obtain in potential applications.
By making sufficiently strong assumptions we can make the grammatical
inference problem formally trivial -- although perhaps still computationally
laborious. Conversely, the problem can be formulated in such a fashion
as to make the very existence of solutions doubtful. Potential
applications lie at various points between these extremes, and no
single solution is likely to satisfy all of them. Much of this study is
devoted to identifying forms of the grammatical inference problem which
are both solvable and useful; in a few cases we have "solutions
looking for problems,"

The classes of grammars treated in this study are subsets of the
context-free grammars, In even the simplest case (finite-state

grammars), however, we are dealing with an infinite set of grammars.



Furthermore, the set of possible samples is infinite. This means

that formally simple operaticns which require the enumeration of all grammars
or all samples must be excluded from computationally acceptable

solutions. But it is not sufficient merely to show that each computation

is finite. We cannot, for example, reascnably consider using
algorithms;/which require NNN or ].OloN computations at the N-th step.
Thus, an important part of this study is the consideration of practical

bounds of applicability of the methods developed. In addition, we

present the results of a computer implementation of one algorithm

for grarmatical inference.

Related Problems

The grand aim of all science is to cover the greatest
number of empirical facts by logical deduction from
the smallest possible number of hypotheses or axioms.

[Einstein]

Many aspects of intelligent behavior, whether "artificial"
or "natural," involve plausible reasoning. One large class of
problems stresses the reccgnition of regularities in data, and
solutions are variously called "pattern classification,” "concept
formation," "data reduction,” "learning," "explanation," or even
"understanding." Another class is aimed at prediction of future
observations or determination of the true state of nature, based on

observational data; solutions may be called "extrapolation,”

1/

In accord with Church's thesis, we make no distinction among the
terms algorithm, effective procedure, device, and computer progran.
Similarly, we use effective and computable as synonyms. LET.

Davis 1958.]




"generalization," "statistical estimation," or "inductive inference."
This division is based more upon divergence of viewpoint and emphasis
than upon difference of technique -- we will later show that a certain
inference technique can be justified either on the grounds of most
efficient encodings of data or most probable estimates of the true
grammar -- and there is no necessary conflict between them. They will
lead, however, to rather different statements of the problem, and to
rather different criteria for judging the results. In the first case,
the concern is for the relation of the answer to the observed data:
how well does it fit? how much can it explain? how efficient a
representation does it provide? In the second, primary concern is

for the expected relation of the answer to the true state; the
observational data is important to the degree that it conveys
infarmation about that state.

Grammatiéal inference may be viewed either way. An inferred
grammar is both a description of observed strings and a prediction of
which other strings are of the same ﬁature. This study incorporates
approaches used by both schools of thought. Most of the borrowed results
are not deep mathematically, since the principal difficulties in
grammatical inference spring directly from the infinite, non-parametric
hypothesis space, rather than from any mathematical complexities. We
have most often used the following paradigm for insight into the
inference problem: The inference device is confronted with a state
of nature which is known (believed) to be represented by some one
hypothesis out of a given set; the state of nature is not directly

observable, but data which depends in some known fashion on the state



is available as an infinite sequence of observations; after each
observation +the device is to guess the state of nature.

We would certainly hope that our inference strategy would
ultimately have an arbitrarily high probability of settling on the
true state of nature. An optimal strategy is one that picks the true
state more often than any other with the same information does. It
never makes sense to infer at any time a hypothesis which can be
deductively falsified by observations already made. We will later
develop the viewpoint that an inductive inference device should
generally be coupled to a deductive device which pre-screens the
hypotheses for adequacy. Such tests could be built directly into the
inductive device, but a separation appears desirable on two grounds:
deductive inference, with corresponding search-limiting and pruning
techniques is a well-developed field in itself, and as much as possible
should be carried over intact; advanced deductive methods may be
orders of magnitude more efficient than simple screening as an adjunct

to inductive methods.

Why Infer Context-Free Grammars?

Furthermore it [constituent-structiwwe] is the only
theory of grammar with any linzuistic motivation
which is sufficiently simple to permit serious
abstract study.

[Chomsky 1963]
There are two general justifications for studying the application
of inductive methods to a particular problem: either the problem needs
to be solved, i.e., some practical application is envisioned, or the

solution appears formally interesting, i.e., some insight into either



the problem itself or into inductive methods is sought. In the case
of grammatical inference, both apply. This study represents a step
(certainly not the final one) in the development of pr;Eedures for
currently known applications; these procedures appear to be
applicable to more general problem areas. §
Grammars are an interesting and powerful class of concepts. In
the last dozen years context-free grammars have shown themselves
useful in computer science, linguistics, and logic as definitionslof
formal languages, as hypotheses about -- or as generalizations of
observations on -- natural languages, and as representations of complex
structures. There are many situations in which grammars are
known to be useful, but in which the relevant grammar is not known
a priori, and consequently must be inferred from observations of the

language. We present here two to which our study appears relevant.

Picture grammars: Two-dimensional pictures can be mapped into

strings of picture elements, representing line segments, and picture
operators, representing connectivity. Classes of pictures are thus
mapped into sets of strings (i.e., languages) which are representable
by grammars. Particular attention has been devoted to photographs of
nuclear events recorded in bubble chambers; a direct correlation can
be made between the reactions creating sets of pictures and the
grammars representing them. A considerable amount of tedious analysis
of these photographs could be avoided if there were a satisfactory

program for inferring picture grammars. [Shaw 1968] [Miller and Shaw
1968] [George 1968].



Speech recognition: Some computerized speech recognition systems

operate within the constraints of a fixed context-free grammar at the
morpheme (or word) level. Nevertheless, they must adjust to the
phonetic performance of individual speakers. Systems allowing
sufficient a priori variation to handle all users generally do rather
poorly for particular users. One reasocnable representation for an
individual speaker would be a set of low-level grammars representing
his pronunciations of the words or phonemes occurring in the main
grammar. For such a representation to be practical, there must be a
means for the computer to learn these low-level grammars. [Reddy 1966]
[Vicens 1969].

Grammatical inference also seems to be of about the right
difficulty to be formally interesting.l/ It is a non-trivial problem
which forces us to realistically deal with infinite hypothesis and
observation spaces for which we do not have any convenient finite
parameterization. Yet we have enough structure to make the problem
formally tractable. Grammars provide a well-defined characterization
of sets of strings, and the notion of deductive consistency between
hypothesis and data is precise and readily testable. A well-developed
meta-theory is available, and many important properties of grammars

have already been established. For experimental work we have at least

E/'I'he task of the linguist attempting to discover grammars for natural
languages is of course incredibly more complex than the one we have set
ourselves., In the first place, the natural languages are much larger
(richer) structures than those studied here; in the second, it is
doubtful that context-free grammars (to which we limit ourselves), even
of great size, are adequate models of natural language [Chomsky 1963];
finally, natural language learning is certainly complicated (although
perhaps assisted) by questions of meaning (semantics) which we do not
treat at all. It should be noted, however, that at least one important
paper on which this study relies [Gold 1967] was motivated by an interest
in the problems of a child (or a linguist) learning a language.

8



three controls on the magnitude of the problem: the class of grammars
(e.g., from the hierarchy of finite state, linear, context-free),

and the numbers of terminal and non-terminal symbols. We tend

to feel that experience using grammars in a computer science context
has led to a certain amount of insight into the subject matter which

we could not bring to bear on an arbitrary form of inference. Humans
perform reasonably well in simple forms of the grammatical inference
problemél and some heuristic programs have been written [Feldman, et al.

1969]; thus, there are at least rough standards of comparison available.

Criteria for a Solution

«..There are three main tasks in the kind of program
for linguistic theory that we have suggested. First,
it is necessary to state precisely (if possible, with
operational, behavioral tests) the external criteria
of adequacy for grammars. Second, we must characterize
the form of grammars in a general and explicit way so
that we can actually propose grammars of this form for
particular languages. Third, we must analyze and
define the notion of simplicity that we intend to use
in choosing among grammars all of which are of the
proper form.

[Chomsky 1957]

So far we have left open the question of what constitutes a
solution to the grammatical inference problem., In fact we have suggested
that there is no single solution to the problem, since there are
actually many forms of the problem. Most people probably approach the

question with an implicit criterion something like

The device always guesses the answer which I believe
is the best answer based on its data.

Such a criterion poses what John McCarthy has called an "ill-formed

problem,” since it is difficult to determine when (or if) you have

y Cf. Chapter XI, pp. 156-160.



solved it. Artificial intelligence research often depends on finding

well-formed approximations to ill-formed problems. In the present

case, we have a well-formed problem when we have specified:

1)

2)

3)

%)

The hypothesis space, i.e., the class of grammars to be
inferred.

The observation space, i.e., the form of the data and
anything which is known about its structure.

The evaluation measure, i.e., an objective means of
specifying the best hypothesis in a given situation.
The required performance, i.e., t1e criterion an

acceptable solution must satisfy.

Having specified the first three items, we generally cannot set the

fourth arbitrarily and still have a solution. Often we will have a

fixed requirement, and vary some of the first items so that a solution

is obtainable., Typical requirements are

a)

b)

The device must be able to infer a correct grammar for any
language generated by a grammar in the clas .

The device must (infer/approach) the correct grammar for
(all/virtually all) valid sequences of observations and
(stop at a finite time with the correct answer / settle on
the correct answer at a finite time / reject each incorrect
answer at a finite time / approach unit probability for the

correct answer).

E/It is generally neither possible nor desirable to strengthen this to
the requirement that the same grammar from which the cobservations
were derived be inferred. '

10




¢) The device must ultimately yield the best grammar for each
language.
d) The device must (make a best guess / must minimize the

probability of guessing an incorrect grammar) at each time.

Several investigations involving various combinations of the above
alternatives have been reported and are summarized in the next chapter;

we present results for other combinations in later chapters.

11



II. PREVIOUS WORK AND RESULIS

One may arrive at a grammar by intuition, guess-work,
all sorts of partial methodological hints, reliance
on past experience, etec. It is no doubt possible to
give an organized account of many useful procedures
of analysis, but it is questionable whether these
can be formulated rigorously, exhaustively and simply
enough to qualify as a practical and mechanical
discovery algorithm.

[Chomsky 1957]

Constructive Methods

From the time that phrase structure grammars were proposed as
models for natural languages there has been interest in the.problem
of discovering grammars for languages., Not surprisingly, the
principal generalization that can be drawn from these studies
is that the power of the inference device depends mostly on the
assumptions that can be made about its environment.

Several methods have been proposed which can be classed as

constructive, since sample strings are used systematically to

construct the rules of a grammar., These present interesting heuristic
approaches to grammatical inference, which may be useful in situations
where a quick approximate (or reasonable) inference is more useful than
a computationally laborious best inference. Some of them have been
programmed with "subjectively reasonable" results [Feldman, et al. 1969].
However, they are not generally presented as solutions to well-formed
problems, and it is not even clear that well-formed problems can be

devised for which they would be optimal solutions. Since this approach



differs so substantially from our own, we will merely sketch two
of the methods, without attempting proofs or a general development.

A method originally developed for finite-state grammars [Chomsky
and Miller 1957] was generalized by Solomeonoff [1959] for context-free
grammars. It is based on the observation that most of the interesting
structure of a grammar (and most of the difficulty in discovering the
grammar) involves the recursive Bymbolaéf and the rules involved in

the recursions. Consider some recursive symbol A , where

A" aAB , with oB eV

Now if we have

[N

s 8ay 5 89y , with 8%y e V)

we must also have
s o saep™y

for any n >0 . Solomonoff calls (a,B) a cycle, since the generation
process can loop to place an arbitrary number of them in a sentence., His
method depends on the determination of all the cycles in a language.

Solomonoff states the problem as follows:

ilcw suppose that we are given a large [enough to contain
examples of all cycles] set of acceptable sentences from
some ... language, and we are asked to discover a set of

grammar rules that could generate the set. We are also

E/fhroughout this chapter we rely on the reader's prior knowledge of
context~free grammars and related terminology. Some readers may
wish to return to this chapter after reading our formal definitions
in Chapter III.

13



given a teacher. If we have any idea of what the grammar
is, we are permitted to devise a trial string.of symbols,
and ask the teacher if it is an acceptable setitence,

This is the only permissable type of question. [Emvhasis

added. ] :
This corresponds to a finite amount of text presentation followed by
a responsive informant. Solomonoff does not mention a measure on
the inferred grammar, but it appears that he wishes to infer a grammar
which generates precisely the unknown language. For each partitioning
of each string o 1in the sample as o = 5088y with OB £ A he |
questions the teacher about the validity of 89y . If it is also an
acceptable sentence, he hypothesizes (@,B) as a cycle, which he
checks by asking about the validity of 6&29527 9 6639ﬁ57 s etc,
"for enough tases of repetition to be reasonably certain that an arbitrary
number of such repetitions would leave the sentence acceptable."
Sentences without detectable cycles are basic, and are retained unchanged;

cycle markers are inserted in the others at the points where cycles

have been detected; the whole process is then repeated until no more

cycles are detected. The cycles which have been obtained are analyzed

in a similar manner.

When, finally, cycles are found from which it is impossible
to extract more cycles, we will have obtained what we call
"basic cycles." We will be able to generate all the
sentences in the language, when we have obtained an adequate
set of basic sentences with all the cycle markers and basic
cycles that may be attached to them, along with an adequate
set of basic cycles with all of the cycle markers and basic
cycles which may be attached to them.... It can ... be
shown that there always exists at léast one finite set of
sentences with their cycle markers, and associated cycles
with their cycle markers, etc., such that this finite set
can generate the entire language.

1k



As a last step, the basic cycle form can be converted to the more

conventional form of context-free grammar, if it is desired.

There is no mention of a computer implementation of Solomonoff’'s
method. A direct application of the procedure as described would
encounter a number of problems. If the sample set were too small,
not all recursions would be detected. However, large sample sets
would result in an incredible barrage of questions to the teacher,
many of which could have been answered by reference to strings already
in the sample. Although Solomonoff does not touch on the issue of
complexity in this paper, it appears that, in general, large, highly
redundant grammars would be inferred; simplification procedures like
those of Feldman and Gips (discussed below) may be in order. Finally,
Shamir and Bar-Hillel [1962] challenge the adequacy of the method in
principle for non-sequential context-free languages, or grammars
with double cycles (e.g. A =" AR and A o BAy ).

A rather different method for inferring finite-state grammars is
proposed by Feldmen [1967] who states the problem as

Suppose we are given the problem of finding a non-trivial
finite-state grammar for [a set of strings] .... A
non-trivial solution to a grammatical inference problem
must generate an infinite number of strings and must not
generate all the strings over the alphabet of the problem.

Feldman's method involves constructing an ad hoc non-recursive
grammar which generates precisely the sample, then using residue
analysis and merging to form a recursive grammar that generates the

same strings plus an infinite number of others. The method is closely

related to the covering grammars of Reynolds [1968]. Consider any

grammar which generates all the strings in a finite sample, We can

15
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construct a related non-recursive grammar, which also generates the
sample, by replacing recursive occurrences of ﬁonpterminals by new
non-terminals whose definitions are copies of the old, except that
recursive occurrences are replaced by still other non-terminals,
etc. Since all derivations are of finite length, this splitting
process need only be repeated a finite number of times to produce a
grammar which generates the complete sample. Furthermore, if any
right part in the original grammar was used to derive the sample,
either it or one of its copies will be used in the non-recursive
grammar.

Reversing our viewpoint, any grammar which generates the sample
covers an ad hoc grammar for the sample, and (if it has no unused
right parts) can be constructed from the ad hoc grammar by repeatedly
merging non-terminals, i.e., by replacing all occurrences of one
non-terminal by the other and combining their definitions. But it
is straightforward to construct the standard-form finite-state ad hoc
grammar for any given sample, Feldman's strategy is to 1) construct
the non-recursive grammar for the sample, 2) make the grammar recursive

by merging each residue non-terminal (a non-terminal which produces only

strings of length one or two) with the non-residue non-terminal which
produces all the same strings “plus as few new (short) strings as
possible," 3) simplify the grammar without further changing the

language by merging equivalent non-terminals  (non-terminals which have

identical definitions if one is substituted for the other).
Gips has programmed Feldman's strategy, and sample computer runs

are given by Feldman, et al [1969]. The method does not generalize well

16



beyond finite-state grammars, because even linear langweges are not
uniquely deconcatenable -- thus, instead of one non-recursive grammar
to be merged, there are many ad hoc grammars. Even if a deterministic
merging algorithm is retained (and its rationale weakens as we get away
from finite-state), the grammars derived from the various non-recursive
grammars must be compared somehow. Feldman has proposed modifications
of his strategy to meet these cobjections.

When Gips generalized his program to pivot grammars (a special

form of operator grammars which lie between linear and general context-
free grammars in power), he chose not to extend Feldman's method, but
rather to use a simplification of Solomcnoff's methed, which would work
without a teacher. He makes the following assumptions: all cycles

are on a single non-terminal (which is the distinguished non-terminal
unless all strings start or end with the same symbol); all cycles
appear in the sample with both n =0 and n =1 ; and no fortuitous
embeddings occur, i.e., n =0 and n =1 are sufficient evidence

for a cycle. After cycle detection, he simplifies as before by merging
equivalent non-terminals. Computer runs, a more complete discussion,

and suggestions for improvement are given by Feldman, et al.[1969].

Enumerative Methods

The methods of the previous section are effective -- they can be
programmed and they infer grammars. However, it is difficult to say
in what (if any) sense they are optimal or produce a best grammar.
Solomonoff's method is careful, by checking with the teacher, not to

infer a grammar that generates too large a language, but if its sample

17



is too small it will not produce a grammar that generates the language
that it is being taught. No weight is attached to the size of the
grammar itself, and it will -- especially if the sample is large -=-
generally be very large and have many more rules than are necessary.
Feldman's method, on the other hand, attempts to substantially reduce
the number of rules without enlarging the language too much, but the
trade-off is ill-defined. 1In neither case are we assured that their
behavior will improve (i.e., that their answers will approach a

grammar for the language, or that the probability of answering correctly
grows) as the sample size increases.,

Basically, the problem is that for a grammar to be best, it must
be better than all other possible grammars. But the constructive
methods have no way to compare the grammars they produce with all of

those that they don't -- even if we were to supply them with a goodness
measure. Thus there is no reason to believe that they can be easily
modified to infer best grammars, by any reasonable criterion.

The most careful study related to grammatical inference which
we have found in the literature is Gold's "language Identification in
the Limit" [1967]. Gold uses Turing machine programs rather than
grammars as names for languages, and studies a somewhat different class
of inference problems. The power of his results comes both from his
precise statement of the problem and his use of enumerative methods
which guarantee that no relevant answer will be missed. Even though we
have studied different forms of the problem, we are indebted to him
both as a model of clarity and a source of methods.

Gold is interested in languages, not grammars (or Turing machines),

Consequently he uses a binary goodness measure: either a machine

18



generates the correct (although unknown) language or it does not.

He also has a fixed requirement on performance, which he terms
identifiability in the limit -- for any language [machine] in the
hypothesis space, and any allowed presentation of that language in the
observation space, there must be a finite time after which the inference
device always yields the same answer, which is correct. Under these
conditions, he is interested in the effect of varying the hypothesis
space and the observation space on the solvability of the inference
problem, i.e., determining the (language class, presentation method)
pairs for which the inference problem is solvable.

Gold's principal result is the strong effect of text presentation

(in which only valid strings are given) vs. informant presentation

(in which both valid and invalid strings are identified) on the
learnable classes of languages. With complete text presentation not
even the finite-state languages are identifiable in the limit, while
with complete informant presentation even the context-sensitive
languages are identifiable.l/ As an illustration that the order,
as well as the form, of presentation is important, he proves that
presentation by means of a primitive recursive function (anomalous
EEEE) is not only more powerful than complete text, but more powerful
than any of the informant presentations considered.

Many of Gold's proofs involve a special form of guessing rule

which he terms identification by enumeration, and defines as follows:

Yy In the sequel when we prove identifiability in the limit with text
presentation, it is with a different performance requirement, and a
different condition on the presentaticn.
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"Enumerate the class of objects [grammars] in any way, perhaps with
repetitions.... At time t guess the unknown object to be the first
object of the enumeration which agrees with the information received so
far." He shows that for his definition of learnability there can be no
other guessing rule which is uniformly better than any identification
by enumeration rule. He does not discuss learning rate or the best
choice at a particular time, except to note that this could only be
meaningful if an a priori probability distribution were defined.

Several of Gold's results are extended in "Grammatical Complexity
and Inference" [Feldman, et al. 1969]. The focus is on text presentation.
By weakening the performance requirement from identifiability in the

limit to approachability in the limit (each incorrect grammar is rejected

at a finite time), a form of the grammatical inference problem is
obtained which is solvable with text presentation for any admissable
class of grammars (including context-sensitive, context-free, etec.).
Feldman, et al., also consider the question of learning a best
grammar for a language, and early forms of some of our results occur
in that paper. Goodness is equated with "least complex" and measures
of complexity are developed both for grammars, and for sets of strings,
given grammars. It is argued that a reasonable measure of the best
grammar in a situation must involve both of these complexities. Effective
identification in the limit of the best grammar from any complete
informant presentation is proved for a restricted form of goodness

measure. In accordance with Gold's result (text presentation is
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inadequate to learn a correct grammar) it is shown that complete text
presentation is inadequate to learn a best correct grammar with the
goodness measure used (which will rate some incorrect grammars as better
than any correct grammar).

The success of all the enumerative methods depends on the fact
that each class of grammars in which we are likely to be interested
(e.g., finite-state, context-free) is denumerable; the procedures are
constructed so that at any finite time only a finite number of grammars

(forming a prefix of the enumeration) need to be considered.

Inductive Methods

As Gold notes, to judge among hypotheses which are all consistent
with a given sample requires at least an a priori probability distribution
on the hypotheses and, to make this judgement a plausible function of
the sample, conditional probabilities as well. 1In this study we use
Bayesean methods presented by Watanabe [1960] and Solomonoff [1964] for
inductive inference without necessarily sharing either of their world
views or endorsing all of their conclusions.

"Information-Theoretical Aspects of Inductive and Deductive
Inference" [Watanabe 1960] is motivated by the belief that

A practical need will be felt more and more acutely in the
future for a well-founded mathematical method of executing
as much as possible of what is called inductive inference,

including hypcthesis testing.

The presentation begins with

«.. ten important features of inductive inference which any
adequate theory of inductive inference should incorporate in
some way or another, and which the present mathematical
model indeed does. Admittedly, these ten conditions may not
be sufficient but they are certainly necessary.
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The bulk of the paper is devoted to the demonstration that Bayes'
theorem -- with a priori and a posteriori "credibility" substituted

for "probability" and "deductive probability"” substituted for
"conditional probability” -- actually meets Watanabe's ten conéitions.z/'

Although he requires "(7) Existence of law with objective validity"

he seem reluctant to assign an 6b3ective meaning to the "deductive
probabilities." He is also rather casual about the assignment of
"u priori credibilities” (which "can even be altered in the middle of
a series of experiments“) since Bayes' theorem guarantees that "the
ultimate conclusion will be free from the subjective pre-judgement.”
Watanabe's results cannot be directly applied to the problem of
grammatical inference, since he explicitly limits himself to finite
hypothesis and cbservation spaces, and these limitations are essential
to his development., However, his detailed discussion of the reasonableness
of using Bayes' theorem for the assignment of "credibilities™ to
hypotheses -- even when objective probabilities are noi assumed -- lends
some support to the usefulness of this rule in inductive inference
generally.
"A Formal Theory of Inductive Inference" [Solomonoff 1964] is a more
ambitious treatise, and includes a discussion of grammatical inference.
The problem dealt with is the extrapolation of a very long
sequence of symbols -- presumably containing all of the
information to be used in the induction. Almost all, if not
all, problems in induction can be put in this form.
§;é‘.;;é;;;;;';esults are presented.
éﬁé'iéi;&.;ééiication, using phrase structure grammars, is
least exact of the three. First a formal solution is presented.
Though it appears to have certain deficiencies, it is hoped

that presentation of this admittedly inadequate model will
suggest acceptable improvements in it.

l7-Tht=:$e are plausible conditions, but not important to our development.
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Solomonoff's viewpoint -- that inductive inference is merely a
form of sequence extrapolation, and that a priori probabilities of
sequences are determined by their likelihood of generation by an
arbitrary universal (Turing) machine -- are not shared by this

author. The acceptability of his reasoning depends on the acceptability

of his premises:

Suppose that all of the sensory observations of a human being
since his birth were coded in some sort of uniform digital
notation and written down as a long sequence of symbols.

Then a model that accounts in an optimum manner for the
creation of this string, including the interaction of the
man with his environment, can be formed by supposing that

the string was created as the output of a universal machine
of random input.

Here "random input" means that the input sequence is a
Markov chain with the probability of each symbol being a
function of only previous symbols in the finite past. The
input alphabet may be any finite alphabet.

LA I I I I

By "optimum manner" it is meant that the model we are
discussing is at least as good as any other model of the
universe in accounting for the sequence in question.

[Emphasis Solomonoff's]

However, we do share his conviction that

It is possible to devise a complete theory of inductive

inference using Bayes' theorem, if we are able to assign

an a priori probability to every conceivable sequence of

symbols.
We are also indebted to him for a number of key 1deas, including the
notions that stochastic grammars provide the appropriate means for
associating conditional probabilities with strings, that the derivations
of a grammar have an essentially simpler structure than their strings (and

provide a useful encoding of the strings), that a priori probabilities may

be assigned to grammars by determining the probabilities of their
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irredundant written forms, and that ordinary grammars can be considered

as stochastic grammars with the probabilities left as free parameters.
Solomonoff equates the problem of finding a grammar which "best

fits" a given set of strings with the problem of finding the grammar

which provides the best encoding in the following sense: the total

probability of strings consisting of the grammar followed by derivations
of the given set is maximal for that grammar. The probabilities of
(grammar, derivation) strings are evaluated by considering each string
as a set of interleaved Bernoulli sequences and applying approximations
developed on the basis of three-tape Turing machines.
In the previous section we had shown how to obtain a
probability from a given set of strings, a PSG [grammar]
that could have produced those strings, and a set of legal
derivations of the strings from the grammar rules.
From a formal point of view, this solves the problem of
obtaining a PSG of optimum fit (i.e., highest probability),
since we can order all PSG's and their derivations (if any)
of the set of strings. ...
This is not, however, a practical solution. The problem of
finding a set of PSG's that "fits well" cannot be solved in
any reasonable length of time by ordering all PSG's and sets
of derivations, and testing each PSG in turn.
To remedy this problem, Sclomonoff proposes "a method of digital
'Hill climbing'" starting from an ad hoc grammar and proceeding by a
set of "mutations."
At the present time, a set of mutation types has been
devised that makes it possible to discover certain grammar
types, but the effectiveness of these mutation types for
more general kinds of grammars is uncertain.
Without knowing Solomonoff's "mutations," of course, it is

difficult to judge their effectiveness; we conjecture that the merging

and splitting rules mentioned in the section on constructive methods
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would provide an adequate base. Of more serious consequence is the
fact thgt Solomonoff ignores the question of how likely his measure
is to prefer a grammar which is objectively correct. He also omits
any consideration of whether the sequence of grammars selected by his
measure will converge, and if so, whether the limiting choice will
be correct.

In many ways Gold's work and Solomonoff's are complementary.
Gold states a precise problem, and judges a botentiax solution on its
limiting behavior -- requiring some correct answer but not discriminating
among the correct ansﬁérs nor worrying about how soon they are found.
Solomenoff, in an ill-defined problem space, is concerned with the best
answer on the basis of the current evidence -- that is, the most
probable explanation, including both the likelihood of the explanation
and its fit to the sample -- but does not worry about correctness (in
any absolute sense) or limiting behavior. In succeeding sections we
shall attempt to combine the strengths of both these approaches.

Unfortunately, this is somewhat at the cost of adopting the complexities

involved in each.
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III. DEFINITIONS AND NOTATION

Rewriting Systems and Context-Free Grammars

In this chapter we establish definitions and notation which will
be used throughout the sequel. Since the significance of some definition%
will become apparent only in later chapters, the reader is urged to
refer back here as he reads on. Although we establish basic results
from the literature, nothing new is developed in this chapter. Where
notations vary in the literature, we generally follow McKeeman [1966]
or McKeeman, Horning, and Wortman [1970].

We assume familiarity with basic set theory. We denote sets by
one or more capital letters, possibly subscripted (A,...,Z,Vi,PR,.fﬁ)f;“"'
or by explicitly naming the elements within braces ( (}) with fﬁ
conditions following the vertical bar ( | ) ; P denotes the empﬁy
set; e denotes set membership; < denotes set containment; U d;notes
set union; N denotes set intersection; - denotes set difference;x
and x denotes set product.

We also use the notation of predicate calculus. We denote iogical
"and" by A ; logical "or" by V ; logical negation by - ; logical
equivalence by = ; and logical implication by O . (¥x) denotes

"for all x " and (dx) denotes "there exists an x ."

Def. III.1. A vocabulary (or alphabet) is a finite set of elements

called symbols. We denote symbols by letters (relying on context

to distinguish them from sets).
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Def. ITT.2. A string is a finite sequence of symbols from a vocabulary.
We denote strings either by lower case Greek letters (,B,...,w)
or by the juxtaposition of their symbols (e.g., if b, C, and d

are symbols, bbb , bCd , and bCbCbC ere strings).

Def, IIT.3. The empty string, denoted A , is the sequence containing

no symbols.

Def. III.4. The operation of catenation, denoted by the juxtaposition
of strings or symbols, forms the string which consists of the
successive sequences on which it operates (e.g., if & = bed and

B

dcb, then PAB = dcbbeddcb;and OA = NX = O ).E/ 4 4

T=@%¥ , then @ is a head of 1 and V¥ is a tail of 71 .
- ¢

We use o to denote n-fold catenation of @ . Thus a° = A

o™l for n>o0 "

2

Lef. III.5. The length of a string 71 , denoted |v| , is the number

of symbols in the sequence. For any symbol b

M=o [o] =1
ilb'rl = || = |]+1
and ’
lov| = lof + |¥]

If ¢ isa head of 1 and |p| =n, then ¢ is the n-head

of

[v]

-

, denoted hn(f) . Likewise, if ¥ is a tail of 1 and

m , then ¥ is the m-tail of 1 , denoted tm(r) .

lTIsIo‘ce that catenation is associative (although not commutative). This
is the justification for not requiring an explicit catenation symbol
or scope delimiter.
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Def. III.6. For each vocabulary V , the set of strings over V,

is denoted by V¥ ,&/

v* = {ple = A v (IeV) (AveV*)p = ¥X] .

Def. III.7. The set of non-empty strings over V is denoted by V* ,g/

v o= {ploev v (EXeV) (TveV ) = ¥X} .

Def. TII.8. A rewriting system is an ordered pair (V,~) where V is

a vocabulary and - is a relation on V¥XV¥ , For g, TeV* ,

g -1 is read as o directly produces Tt and T directly

reduces to o .

Def. III.9. If there exist strings Poreees®y such that

for n>1, then P produces ?, and P, reduces to P,

This relation, denoted - , is the transitive completion of =,

. +
and we write Py P,

l/ V#* is the free monoid generated by elements of V under the
operation of catenation with A as the identity.

2
2/ Note that V¥ =V' U {A} . V" is the free semigroup without

jdentity generated by the symbols of V under the operation of
catenation.
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Def. III.10. The reflexive transitive completion of — is denoted

by - .

»*
[0 = 1] = [0 tevoe= ] .

Def, ITI.11. A contextual rewriting system is a rewriting system in

which the relation - can be applied to substrings without

regard for other symbols in the string, i.e., one for which
(VoeV*) (V1ev¥) ([0 = 1] D (VoeV*) (VVev*)[pov - o1¥]) .

This is a strong restriction on - ; each pair of strings for
which it is true implies arbitrarily many other pairs for which

it is true.

Def, III.12. A context-free rewriting system is a contextual

rewriting system for which = is completely specified by its

values with a single symbol on the left, i.e., one for which

(Voev*) (Vrev*) ([0 = 1] D (FAeV) (FweV#*) (FpeV*) (TyeV*)

{G:qﬂ\yi\'r:m\]ff\ﬂ*w]) »

Note that this further restriction on - again makes the rewriting

system easier to specify.

Def. ITI.13. A string o is terminal when it does not directly

produce any string

—(d1)[o - 1] .

In a context-free rewriting system, this implies that no symbol in
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the string directly produces anything. Thus - partitions V

into two subsets: the non-terminal vocabulary, dencted Vn #

consists of symbols which can be rewritten; the terminal vocabulary,

denoted Vt , of those which cannot.

v

o = (A (3wev¥)[A ~ w]]

v

g =VV, = {a]aev A (Ywev*) —[a = w]} .

V% is the set of terminal strings. Note that, by definition,

Def. III.14. A context-free grammar;/ is an ordered quadruple

G = (Vn,V' -,8) g/ where (Vn U Vt’“) is a context-free

ti

rewriting system with Vn as its non-terminal vocabulary

and Vt as its terminal vocabulary, and SeVn . S 1is the

sentence symbol or distinguished non-terminal, and is the symbol

which produces the language described by the grammar.

The following table summarizes notational conventions which we will

use (possibly with subscripts) when referring to grammars:

Items Symbols
members of Vt 8,D,C5404,2
members of Vn A,B,Cy..

Y We often abbreviate "context-free grammar" to "grammar," where no
confusion can result.

g/ We will write g rather than just - when G may not

be clear from the context.
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Items (continued) Symbols (continued)

sentence symbol S
arbitrary members of V PO . 4/
members of Vt QyByYgene
members of V¥ s suyPy¥ath
empty string A

Def. III.15. The sentential set of G , denoted SS(G) is the set

of strings (sentential forms) produced by the sentence symbol.

sS(6) = {w|s ~ w}

Def. III.16. The language of G , denoted L(G) , is the set of its

terminal sentential forms (sentences).
L(G) = s8(G) N v

Grammars are weakly equivalent if they have the same language.

A language is context-free iff it is the language of some

context-free grammar.

' Def. III.17. A derivation for a sentential form ¢ is a finite

n

sequence <10,...,7n> such that = B ; T, =Ty and

0

) is

Ty = Ty, for 1= 0,1,...,n-1 . Each pair (Ti,T

i+l

a derivation step. By definition, every sentential form has

at least one derivation.

Def. III.18. A derivation step is canonical iff it is of the form

(pAc,qua) , where AeV —and @eV¥ and A ~o . A derivation

is canonical iff each of its steps is canonical.
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Every sentence has at least one canonical derivation. In fact,
we can, without loss of generality, restrict our attention to
canonical derivations, since for every derivation there is an equivalent
canonical derivation which involves rewriting the same non-terminal

symbols in the same way, but possibly in a different order [Ginsburg

1966].

Def. IIT.19. A sentential form is ambiguous with respect to G if it

has more than one canonical derivation, unambiguous otherwise.

G is ambiguous iff some sentential form is ambiguous with

respect to G .

Ambiguity is one of the most intensively studied properties of
context-free grammars. 1In most applications it is an undesirable
property: an ambiguous sentence is assigned two distinct structures

by the grammar, making interpretation unsure;;/ when the grammar is

used to assign codes to strings, ambiguous strings do not have unique
codes. But ambiguity is an undecidable property. There is no effective
procedure for determining whether an arbitrary context~freeg/ grammar

is ambiguous [Chomsky 1963] [Ginsburg 1966]. The ambiguity of any string
(hence any finite set of strings) with respect to a grammar is,

however, decidable. In the sequel, we assume -- except where specifically

Y Note, however, that natural languages are inherently ambiguous,
and an adequate grammar for a natural language must reflect this
ambiguity.

E/ Or meta-linear, or linear, or any other "interesting" subset of
context-free except finite-state.
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noted -- that unambiguous grammars are desired, and will reject

grammars which make any sample string ambiguous.

Def. III.20. The set of productions of G , denoted PR(G) , is the

set of ordered pairs of strings related by - where the left

member is a single symbol.
PR(G) = {(A,0) A = w,AeV_,wev¥} .
Alternatively, we may consider the set of productions as basic,

and derive G(PR,S) = (Vn(PR),Vt(PR),I;-R,S) from PR and S by

the following definitions:

{a](3w) (A,0)ePR] .

Def., III.21. Vn(PR)

Def. III.22. Vt(PR)

{a](2a)(20) (2¥) (A,pa¥)ePR} - V.

Def. ITI.23.. [o R ] = (3p) (BA) (V) (Iw)[o = AV A T = quw¥ A (A,w)ePR] .

Various well-known classes of grammars are defined by restrictions

on the forms of productions:

Def. III.24. A production is terminating iff it is of the form

(A, @) for QeV¥ 5 it is erasing iff it is of the form (A,A) .

Grammars with no erasing productions are M-free.

Any context-free language not containing A 1is generated by a A-free
grammar [Chomsky 1963] [Ginsburg 1966]. A-free grammars are generally
more convenient to handle. We restrict ourselves to M-free grammars in

the sequel.

Z3Z
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Def, II1.25. A production is linear iff it is of the form (A,C0BB)
for a,sev§ and Bth . A linear production is left-linear

iff B = A, right-linear iff O =X . A grammar is

(linear / left-linear / right-linear) iff all its productions are

terminating or (linear / left-linear / right-linear). It is

finite-state (regular) iff it is either left- or right-linear.

The languages generated by linear grammars are linear languages

those generated by finite-state grammars are finite-state languages

(regular sets).

Def. III.26. A production is in (Greibach) standard (£-) form iff it is
of the form (A,aw) for aeV, , weV¥ (and |o| <2 ). A grammar
is (2-) standard iff all its productions are in (Z-) standard form.

A standard grammar is an S-grammar iff for each pair of productions

(A,ap) (A,a¥) either @ =V or ¢=X or ¥ =A.

Def. IIT.27. A production is in (Chomsky) normal form iff it is of

the form (A,a) for aeV, , or (A,BC) for B,CeV_ . A grammar

is normal iff all its productions are in normal form.

Def. III1.28. The non-terminal symbol A is recursive iff A ~F QAY
for some o,yeV¥* . A grammar is recursive iff at least one of

its non-terminal symbols is recursive.

Def. III.29. A grammar is connected if each non-terminal symbol occurs

in some sentential form

(VAEVH)(EQEV*)(Evev*) § o PAY

A grammar is non-blocking if each non-terminal symbol produces
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some terminal string
(VAeV_)(doev¥) A =" a .

A grammar is reduced if it is connected and non-blocking.

For every non-reduced grammar there is an equivalent (in the sense
of producing the same sentences with the same derivations) reduced
grammar which can be formed merely by removing all productions involving
disconnected or blocking non-terminal symbols. Since the reduced
grammar has all the generative power of the non-reduced grammar, and
is simple: by any reasonable measure, we will further restrict our

attention to reduced grammars.

Def. III1.30. A meta-language is a language, each of whose sentences

(written grammars) specifies a grammar.

1We use a variant of the BNF meta-language [Naur 1960] for our written
grammars. Each grammar takes the form of a sequence of rules, each of
which consists of a non-terminal symbol (the left part), followed

by the meta-symbol ::= followed by the right part, which is a

sequence of strings (alternatives) separated by the mets-symbol .

Each rule indicates that the relation = holds between the left

part and each of its &1ternatives,l/ e.g., we interpret

Aczi=g |V l —

as

1 . ; c g .
Y It is implicit that A - @ is true for those pairs
indicated by the written grammar, and for no others.
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(A,p)ePR , (A,¥)ePR, ... , (A,0)ePR .

A written grammar directly defines PR and, if we impose the convention
that the left part of the first rule is the sentence symbol, defines
G(PR,S) . Thus each written grammar specifies a particular context-free
grammar., However, a single grammar may be specified by many distinct
written grammars, since PR is an unordered set, but the rules and
alternatives are necessarily written in some order. We will use
written grammars extensively, without further remark, but we regard
the underlying rewriting system as the more basic entity.

As usually interpreted, the rewriting systems defined by the
context-free grammars of this section are permissive. Each defines a

set of valid derivations (and thus a set of valid strings) without

*
making any distinction among them. The predicate fG(a) = (s 3 a) = aeL(G)

is a characteristic function [Davis 1958] of its language. Such a system

fails to provide a direct counterpart to the intuitive notion that some
sentences are more likely than others. In the next section we will
develop an extension of context-free grammars (called stochastic
grammars) to meet this difficulty. When we wish to distinguish the
customary, permissive grammars developed in this section from those

of the next, we will refer to them as characteristic grammars.

Stochastic Grammars and Probabilities of Sentences

We will now define a class of grammars and rewriting systems which
not only specify languages but also provide probability distributions
over the strings in their languages. These definitions are natural

extensions of those in the previous section, and we will use the
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same notation and conventions. In particular, we restrict derivations
to canonical derivations and we specify grammars in terms of their
productions.

Informally, at each step in a canonical derivation the rightmost
non-terminal symbol is rewritten as one of the alternatives in the
rule of which it is the left part. We may specify a derivation (and
hence a string) in terms of the sequence of alternatives gselected at
successive steps. If the alternatives of each rule are numbered, the
sequence of alternatives used in its derivation serves as a convenient

digital encoding of a string. For example, consider the grammar Gl :

The string a¥*(a*a + a) has the binary code 0111000100000 , which

may be seen as follows:

sentential form rightmost non-terminal code digit alternative

S S 0 ¢
T T 1 T*P
T*P P 1 (s)
T*#(S) S L S+T
T*(S+T) T 0 P
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sentential form rightmost non-terminal code digit alternative

T*(S+P) P 0 a
T%(S+a ) s o) ' T
T*(T+a) T 1 T*P
T#(T*P+a) P 0 a
T#(T*a+a) T 0 P
T*(P*a+a) P 0 a
T*(a*a+a) T 0 P
P*(a*a+a) 2 0 a
a¥(a¥%a+a) noneé/

In this example we have used only 13 bits of information to encode é
G-symbol string over a 5-character alphabet, whereas the obvious
technique of using a unique binary code for each character would require
at least 19 bits (plus some means of indicating its length) to encode
the same string. In either case, of course, additional information
is required to specify the grammar or the character codes, respectively.
This is a question of some importance, which we treat at length in the
sequel.

When sets of strings (e.g., arithmetic expressions in programs)
are collected from users of a language, the valid sentences do not 'all

occur with the same frequency. Although this result is tautological

l7’Note that we can unambiguously run together (catenate) these digital
codes for strings and later separate (deconcatenate) them, since the
end of a code is signalled by the derivation of a terminal string.
The strings themselves, however, will not generally have this
property of unique deconcatenability.
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?or infinite languasges and finite samples, it is instructive to consider
*ﬁﬁiigs;ﬂke pattern of the frequencies. In general, although the number of

sentences of a given length is an increasing function of length, their

frequency of occurrence is a decreasing function of length (and of

length of derivation). This behavior may be modelled by assuming that

each alternative has a fixed probability of selection whenever its

rule is applied. The probability of a derivation is then just the

product of the probabilities associated with the sequence of alternatives

selected. Individuali long derivations will generally be less probable

than short cnes, since each factor in the probability is less than

one, and they have more factors.

We may extend our meta-language to indicate these probabilities
by following each n-alternative rule with the n-tuple of its alternative

probabilities, e.g., G

2:
S::=T | 8+7T (2/3 , 1/3)
T::=P‘T*P (1/2 , 1/€)
P::=a ] (5) (3/4 , /%)

The string a¥*(a%a+a) has probability

W
bTe
PO s
x
1
Pl

\N]
>
MOf bt
b4
F\x
x
WM
>
M|+
>
i
]

2 -

N

Def. ITI.31l. A stochastic production is an ordered triple, (A,w,p) ,

t

where A 1is a symbol, @ 1is a string and p is a number
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0<p<1l. A stochastic rule for A 1is a set of stochastic

productions, {(A,mi,pi)ii =1,...} , all having A (the left part)

as the first element, distinct second elements (alternatives), and

with the property ~hat the third elements (alternative probabilities

sum to unity. A stochastic grammar is a union of stochastic rules

with distinct left parts, together with a sentence symbcl which is

the left part of s me rule.

pef. III.32. For each stochastic grammar G , the corresponding

characteristic grammar, denoted G , is the grammer formed by

deleting the alternative probabilities from each production.
Defs. III.15-19, 2:-29 extend to stochastic grammars in terms
of their corresponding characteristic grammars (e.g., G is

ambiguous iff G -s ambiguous, linear iff G is linear).

Note that G? = G1 "

Def. II1I.33. If (A,w,») is a stochastic production of G and @eV¥ ,

QeV¥ then @Aa d- rectly produces qud with probability p,

denoted @AC g-mﬁa . Every string produces itself with

*
T ¥ . If - N produces P, with probability

12 and ml produces Ps with probability Ps s then @0

probability unity v

produces Ps with probability pl'p2 .

* *
Vo (Vo) (Vo )lp. - o. A9, - o]l2[e - o9, .
o] L 2 o 1 1 1 1 2 o) D,°Dp 2

If S5 produces Tt with probability p , then the probability

of 1t with respec. to G, denoted P(r|G) , is p ; if S does

not produce - , the probability of =t with respect to G 1is zero.
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Since every sentence has a unique%{ canonical derivation, it is produced
with a definite, non-zero probability. It should be clear that

(for non-blocking grammars) the probabilities of its sentences sum

to unity, since each non-terminal sentential form directly produces a
set of sentential forms which has an aggregate probability equal to

its own probebility, and the sentence symbol has probability one.

Def. ITI.3L. Stochastic grammars are stochastically equivalent if

they are weakly equivalent and assign the same probability to

every string in their common language.

In at least some applications, the normative properties of
stochastic grammars are advantageous. The nuclear physicist wishes
to know not only which events are observed in pictures, but how
probable (frequent) the various alternatives are. Similarly, a speech
recognition system attempting to resolve phonetic ambiguities requires
discrimination between probable and improbable (but still possible)
interpretations of a sound. 1In any case, there seems to be no objection
to inferring stochastic (rather than characteristic) grammars, provided
that this assists in the inference. It is trivial to drop the alternative
probabilities and obtain the corresponding characteristic grammar as a
final step, if probabilities are not desired.

It is not always necessary or desirable to allow complete

generality in the values of alternative probabilities. If we allow

Ef_éecall that we are restricting ourselves to unambiguous (over the
sample) grammars,
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them to be arbitrary real numbers, our hypothesis space is enlarged
from the countably infinite set of characteristic grammars to an
uncountably infinite set. We will see in the sequel that countability
is important for our inference techniques. A more immediate problem
is that we have nc way to write arbitrary real numbers. ‘However, the
rational numbers are dense in the reals and we can write any rational
rumber as a fraction. We lose nothing in practice by restricting
¢ lternative probabilities to rational numbers, and we shall do so in
tne sequel when we require a countable hypothesis space.

It is often convenient to establish a one-to-one correspondence
between the characteristic grammars and a subset of the stochastic
¢ rammars. The simplest assumption leading to such a correspondence
-3 that all alternative probabilities in a rule are equal. This
assumption works well for finite-state or linear grammars, and is the
cae implicit in most calculations of limiting entropy. We might expect
tnat it would generalize well to context-free grammars. Pohl [1967],
however, has shown that this is false; pathclogical results are obtained
for simple recursive grammars of the sort used for arithmetic
expressions in programming larguages. For example, consider @1 obtained

from G, by application cf this rule:

1
S ::=T |.S + T (/2 , 1/2)
T ::=P | T*p (1/2 , 1/2)
P::z=a | (8) (/2 , 1/2)

Let A denote the weighted average length of strings produced from A .

Ye see
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>

SN N Ty =T+ 154+ 1
S=3T+5 (S +1+T)="T4+ 55+ 3
A_la -};h -~ _J\ 1A 1
T—§P+2(T+1+P)-P+-§T+§

A | 1 - ~
P=5(1)+5(1+8+1)= % S + % .

We can solve these equations successively

S—T+§S+§=2T+l
- ~ 1A 1 ~
T_P+§'T+-2-=2P+l
=S+ 4

or
é=2é+9

~

There are no non-infinite positive solutions for & . This corresponds
to the fact that (with these probabilities) unboundedly long

derivations do not have vanishing probabilities. For & ; however,

2

S =23
% = 15
P=7

An analysis similar to Pohl's shows that no method of assigning
probabilities based solely on the form of the rules will yield only
well-vehaved (i.e., with finite expected length) stochastic grammars.

If this result were limited to obscure or isolated instances, we could
perhaps live with it; after all, no restriction based solely on the form

of rules will yield only reduced grammars. The power of Pohl's result
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springs from the fact that it applies directly to the best understood
application of context-free grammars: grammars for arithmetic
expressions in programming languages. A correspondence which fails
in this context must surely be suspect in general.

A quite different approach which retains a one-to-one correspondence
is to assume that the probabilities are not supplied with the grammar at
all, but are parameters which must be learned after (or as) we
identify the correct grammar, i.e., that each characteristic grammar
is just a stochastic grammar form with the alternative probabilities
missing. Parameter estimation is, of course, a well-known topic in
statistical inference. We will show in Chapter VII that an inference
procedure based on this assumption is not substantially more difficult
than one in which the probabilities are assumed to be known a priori

(e.g., equi-probable alternatives in a rule).
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Enumerations and Orderings

In the sequel it will often be necessary to (at least formally)
list the elements (i.e., grammars) of our hypothesis spaces in some

order. This is possible for all finite sets and for countably infinite

sets,

Def. III.35. Let X be a set. The sequence E = <el,e2,e},,..>

is an enumeration of X iff every element of X occurs in E )

Ta€sy LET
(Vxex) (3x > 0)ek =X .

X 1is denumerable (countable) iff there is an enumeration

for X .

Def. II1I.36. Lét f(k) be a function of one integer argument. f is

a monotonic function if, for r some one of the relations

<>, <,2,and for each j and k, Jj >k implies

£(j) r f(k) ; if r is < or >, f is strictly monotonic.

Def. III1.37. Let E be an enumeration and g(le) a function over

its elements. E 1is (strictly) ordered by g iff f(k) = g{ek)

is (strictly) monotonic.

Def. III.38. Let f(k) be a function of one integer argument.

f 1is effectively approximately monotonic if for r some one

of the relations <, >, <, > , there is a computable function

T(k) such that for any k and any j > T(k)

£(j) r £(k) ¥
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Def. III.39. Let E be an enumeration and g(e) a function over

its elements. E 1is effectively approximately ordered (EAO)

by g if f(k) = g(ek) is effectively approximately monotonic.

We will use the FAO property extensively. From an EAO enumeration
we can always effectively construct an ordered enumeration [Feldman 1969],
but in practice this conversion is not usually required. The EAO
property is often much easier to establish than ordering.

As an example, suppose that we are given some A-free grammar

and wish to enumerate its language. We may proceed as follows:

1) Let 88, = <8>, and k=0.
2) For i=0,1,2,... do step 3).
5) Set SSi to the empty sequence. For each successive

reSSi_ do step L),

1
4) Let A be the rightmost non-terminal symbol of 71 . For
each alternative w in the rule for A , do step 5).

5) Let o be the result of substituting w for A in 71 .

If o 1is terminal do step 6), otherwise do step 7).

6) Enumerate o , i.e., set k to k+l and e, to o.

7) Add ¢ to 88, -

The 1i-th repetition of step 3 will cause all sentences derivable
through 1 derivation steps to be enumerated,.and all other
sentential forms resulting from 1 derivation steps to be

placed in SSi . Let N be the number of rules in the grammar, M,

the maximum number of alternatives in a rule, and L , the length of
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the longest alternative. Then a string enumerated on the i-th
repetition cannot be longer than i-L 3 if the grammar is A-free,
reduced, and unambiguous it cannot be shorter than i/N .E/ At

most Mi strings will be enumerated on the i-th repetition. This
enumeration is effectively approximately ordered by length, for

if lekl - !k » all strings of that length must be enumerated on or

before i = tk'N . Thus at most

d Ik-N+l

Mi & E___:_M
{ M-1
i=l

strings will be enumerated before the last string of length S-tk

.

But Ik is computable, and M and N are constants, so we may set

L "N+1
T(k) =

This is not generally the best ~T(k) that could be computed, but it

is adequate to establish that the enumeration is FAQ by length.

Ef’For a standard grammar the length is precisely i , for a normal
grammar (i+1)/2 for odd i only. In these cases, the procedure
results in an enumeration ordered by length.
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Presentations

We turn now from the hypothesis space to the observation space.
It is necessary to define precisely the allowable classes of observations.
In much of the sequel we also need probability distributions over our
observatiou spaces. The raw data of grammatical inference are strings,

either indicated to be part of the unknown language or not.

Def. ITI.LO. A positive instance of L(G) is an ordered pair (+,0d) ,

where o0eL(G) . A negative instance of L(G) is an ordered

pair (-,0) , where oeVZ-L(G) . An instance is a positive or

negative instance.

Def. III.41. An information sequence of a language is a sequence

I = <11,12,...> of instances of the language. If each Ik is

a positive instance, I 1is a positive information sequence. If

Ik = (f,s ) and the sequence <ol,02,...> is an enumeration of

V: P I 1is a complete information sequence. If the

sequence <0,,0,,...> 1is an enumeration of L(G) , I isa

complete positive information sequence. If no instance is

repeated, I 1is irredundant.

Def. III.hk2. A presentation of a language is a set of information

sequences of the language. A presentation method is a mapping

from languages into their presentations. A text presentation

is restricted to complete positive information sequences; an

informant presentation to complete information sequences; and

an irredundant presentation to irredundant information sequences.
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We have previously remarked [Chapter II] on the striking difference
between text and informant presentations which was found by Gold.
In the absence of probabilistic information, the requirement of
completeness seems to be necessary for reliable inference., Consider,
for example, the problem of inferring a grammar when strings of even
length are systematically excluded from the information seéuence.

We can not, of course, deal directly with infinite information
sequences. But we can consider limiting behavior as successively

larger subsequences are used.

Def. III.43. If I 1is the information sequence <I,,I5,...> then

2
SR(I) = <I,,I5...,1,> is a sample of size k .

For stochastic grammars and languages, we can impose a

probabilistic structure on presentations.

Def, III.hL, The stochastic text presentation of G is the infinite

sequence X = <X1,X2,...> of independent and identically
distributed random variables (iidrv) with the distribution

given by G , i.e.,

UIX) = P(G‘G) :

]

g
(Vcevt)P(xi

A stochastic sample of size k from a presentation consists of

values for the first k random variables and has probability

equal to the product of their individual probabilities, If

S, =<0

K 1’02""’0 >

4
then

K
P(s,|G) s'n;P(ciIG) .



We denote the set of all stochastic samples of size k for G

by Sk(G) 5

Individual stochastic samples may of course vary widely in their
properties. We can show, however, that as k — o the relative

frequencies of strings converge to the same limit for almost all samples.

Def. III.45. The frequency of 1 in sk denoted f(T,Sk) is the

number of times which 1 occurs in the sequence <bl.02,...,ok> .l/

The relative frequency is f(T,Sk)/k :

We have the formal identity

Y (1,5,)

k- f(1,S

5 k
P(s, [6) = | lp(cila) = T1 P(z|c)
; +
i=1l TEV
. t
Fct‘%gg finite k , the infinite product is effectively computable, since
—— .

only a finite number of factors differ from one. The stochastic
presentation also corresponds formally to the infinite multincmial
expansion

( E: P(7|G) x 1')k
v+

TEt

where the coefficient associated with each product of strings is the

Yy Formally, f(T,Sk) = f(T,Sk,k) where f(T,Sk,O) = 0 and
0 if
f(T,Sk,j‘f’l) = f(T:Sij) +

J
Gygy P ¥

i 4f Gj+l = T

for k>0, Jj<k.
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probability of that collection of strings as a stochastic sample.

We make use of this form to compute expectations over & presentation.
particular, if we can distinguish some 7, and are concerned only
with functions involving it, the multinomial reduces to a binomial.

For example, the expected value of f(r,Sk) is
Lk £ k-f
E(£(7,8,)|6] = i}:_:o £+ (5)-P(x|6) [1-P(7|G)] :

We may evaluate this sum by formally differentiating the identity
k

;Eé (%)Pka-f = (p+q)® with respect to >

k
& (3 0" = 5 "
s ky f-1 k-T k-1
L £ (e a = ke (p+a)

i

ky [ k-f k-1
3 fr(glpa = p-k* (p+q) i
=0

Now setting p = P(t]G) , a=1-p
E[£(7,8,)|G] = B(z|G)-kx .

Dividing by k we find the expected relative frequency
E[£(1,5,)/k|G] = p(t|c) .

This says that, on the average, each string occurs with relative
frequency equal to its probability. We can sharpen this result

somewhnat.
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Lemma III.46. As k — o the relative frequencies of strings in

stochastic samples Sk converge to their probabilities, with
probability one (wpl). More precisely, given any € >0,

5 >0, there is a T(d,e) such that for any k >T the total
probability of samples of size k such that

|£(<,8,)/k - P(t|G)| >& is less than ¢ .

Proof. We use a method which will be important in the sequel. The
total probability of a set is simply the expectation of its
characteristic function, and we may bound this probability
by taking the expectation of any function ﬁhich is uniformly
greater than or equal to the characteristic function. In the

present case define

1 if |£(1,8 )/k - p(t]|G)| > ®

C (5’3 ) = {
sTR 1 0 otherwise

D_(8,k) = E[C_(5,5,){6]

fg}57(5,31{)(1;-)P(T‘G)f[1-P(T]G}}k-f .

It is not easy to place this sum in closed form. However, we

can readily bound CT -
2,.2
c (8,8,) < {f('r,Sk)/k-P(zlG)} /8 .

Thus

Be



2 . _
b (8,5) & E[(f(7,8,)"|G] ) 2°E[£(r,8, ) P(r|G)|q) . E[P(Tlg)elGl

i e Ke5" )

E{f(-r,.sk)2 | G}/RQ-P(TIG)E
-7

e}

But, by a repetition of our formal differentiation, we find
2 2
E[£(1,8,)°]6] = (k-k)P(1|6)® + k-B(x|0)

§0

[(k2-k)-P(7]|@)% + k-P(1]G)]/K>-P(x|G)°

D_r(a,k) < 52
_ P(tlG) -'_P{TIG)Q
k.62
< Pgrlgz .
kb

Now the aggregate probability of a union of sets is bounded by

the sum of their aggregate probabilities.

D(8,k) < I: DT(5,k} < i: P(Tigj = 1

+ » e
Tﬁvt erI k5 k*d

2

Finally, D(&,k} is less than € whenever k 1is greater

than 12 . Thus we may set T(d,¢) = -

c+B €5

2 .

Q.E.D,
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Def. III.k7. An information sequence I is convergent iff each

string has a limiting relative frequency equal to'its probability,

- .

+

(V're'\ft) lim f(T,sk(I))/k = P(r|G@) .

k= o
In view of Lemma III.46, "almost all” information sequences in a
stochastic presentation are convergent. Thus we can form a fair
prediction of the effects of stochastic presentation by studying those

of convergent information sequences.
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IV. EVAIUATION MEASURES

"The most simple relations are the most common, and
this is the foundation upon which induction rests.”

[1aplace]
"Nevertheless, it should be fairly clear that under
any reasonable definition of 'simplicity of grammar, '

most of the decisions about relative complexity that
we reach below will stand.”

[Chomsky 1957]

Complexity and Probability

We now turn to measures for determining the best grammar in a
situation. We have previously noted that a deductively falsifiable
hypothesis should never be inferred. In the case of grammatical
inference this means that only grammars which generate (at least)
all the positive instances and none of the negative instances in the
current sample are reasonable answers. We call such grammars

deductively acceptable (DA). For stochastic grammars and presentations

this condition is equivalent to the requirement that the grammar
assign a non-zero probability to the current sample.

We present two motivations for the class of measures we use, one
based on complexity and the other on probability. Either seems to
provide an adequate basis for our methods, and the sequel does not
depend on their conjectured equivalence, but some readers will probably

find one or the other interpretation more satisfying.
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The classical measure used to evaluate an inductive inference
or generalization is its "simplicity." Of all the hypotheses which
are consistent with our observations, the simplest is the preferred
explanation. Practical application of this principle requires some
effective means of evaluating simplicity (or complexity). But the
complexity of an object is not independent of the context in which
1t is viewed. A single computer-generated display might be seen
either as & simple algebraic equation, or as a complex series of
vectors and arcs produced by the display hardware. Similarly the

complexity attributed to

<list op> ::= c <seg>

<seq> ::= a <seq> | d <seq> | r

will &épend on whether one views it (as a typist might) as an arbitrary
sequencé of characters or (as the reader probably does) as a grammar.
In the latter case, the complexity will also be a function cf one's
familiarity with (and attitude towards) the BNF meta-language, on the
class of grammars with which this grammar is being compared, and on the
use for which the grammar is intended. We do not believe that it is
meaningful to define an absolute complexity measure for grammars
independent of these factors. When the ungualified phrase "the
complexity of ..." is used, the qualifier "in the context ..." should
always be implicit.

The measure of the complexity of an object in a context which

we nave chosen for this study ic the minimum amount of information

required to specify (or select) that particular cbject in the given
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context. For example, the complexity of a derivation (in the context
of a particular stochastic grammar) is the total amount of information
required to specify the alternatives selected at each step. When
applied in various situations this measure yields plausible results
(e.g., it meets the requirements set by Feldman [1969] for a complexity
measure); we conjecture that it corresponds closely to the intuitive
notion of complexity. In this thesis we formally equate complexi?y and
amount of information for a very specific reason: Shannon's definition
of a precise measure corresponding to the intuitive use of "information"
has led to a well-developed information theory, whose insights and
methods we wish to apply.

The selection of an object in a context corresponds to the
information-theoretic operation of transmitting a message from an
ensemble of possible messages. The amount of information used to
trensmit the message depends on the encoding which is used. In the
abstract, without knowing the use to which it will be put, we have
very few grounds for judging any particular encoding method. We can
require that it be complete (provide a code for each message in the
ensemble), distinct (provide unique codes for each object), and
irredundant (no code can be shortened without lengthening some other).
But these constraints do not determine the minimum information
required to transmit a particular message.

How much information is required to encode "the number one"'?
Twelve letters? Perhaps "the number" can be understood from context
and three letters will suffice. If our code includes digits, e

would be more compact. In the IBM System/360 the message is variously
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transmitted using 4, 8, 12, 16, 24, 32, or 64 bits, depending on
whether it is to be used as a register number, an operation code,
a displacement, a half-word integer, an address, a full word or a
double word number. No one of these answers is absolutely correct,
independent of context.

A bvasic result of information theory is that the optimum -- in the
sense of requiring the transmission of the smallest average amoun£ of
information -- encoding method for an ensemble of independently selected
messages depends only on the probabilities with which the individual
messages are transmitted. In addition, the information involved in
optimally coding a particular message is the negative of the logarithml/
of its probability. Thus highly probable messages have short codes,
improbable ones, long codes. Since we have equated complexity with
information, we interpret this to mean that objects (hypotheses, grammars)
which are probable in a context should be considered less complex (in
#at context) than ones which are improbable. This ié a sort of converse
to Occam's Razor, which says that simple hypotheses should be considered
more probable than complex ones. In the sequel we will implicitly assume
that this relationship is valid and that complexity measures and

probability measures are intercanvertableg/. This is mostly a matter

l/ Strictly speaking, is proportional to the logarithm to scme fixed
base. However, both the constant of proportionality and the base are
customarily absorbed into the unit of information (the bit).

2/ In many real-life situations, of course, we do not have any effective
means for assigning either probabilities or complexities to
hypotheses. Consider the hypotheses "There is life on Mars," "There
is 1ife after death," and "There is life after 30." How complex are
they? How probable? "The credence that we place in a conjecture is
bound to depend on our whole background, on the whole scientific
atmosphere of our time." [Polyz 1954]. One advantage of using
grammatical inference to study induction is that our hypothesis
space can be defined objectively and we can jefine and study inference
where objectively correct results are known.
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of convenience, allowing us to use whichever terminology seems more
natural to describe a situation, and our development is not dependent

on this relationship.

Bayes' Theorem and Inference

It might seem that, given a complexity measure for hypotheses, a
general solution to the inference problem would be to order the hypotheses
by complexity and then, at each step, pick the first (i.e., simplest)
deductively acceptable hypothesis. This simple rule is inadequate for
some forms of grammatical inference, in particular, when text presentationé/
is used [cf. Gold 1967, Feldman et al.1969]. All the "interesting"
infinite classes of grammars (including the finite-state grammars)
generate all the finite 1anggages,as well some infinite languages. Let
L(G,) be an infinite language and {L(Gi)li = 1,2,...} be the (infinite)
set of finite subsets of L(G ) . Now G_ must occur at some finite
point in the enumeration, hence only a finite number of grammars can
precede (i.e., be simpler than) it. Let Jj be such that L(Gj) has
no grammar before Go in the enumeration (there must be an infinite
number of such j's ). Now L(Gj) =] L(GO) so G, 1is DA whenever GJ.
is. Since Go is simpler‘than Gj y Gj can never be inferred, even
when it is correct (i.e., I = I(Gj) ) and G is incorrect.

The method of the previous paragraﬁh fails because it assumes
that the complexity measure is independent of the sample. For positive
samples there are two types of triviel DA grammars which represent
opposite extremes. An ad hoc grammar produces precisely the current
sample; a universal grammar produces every string over the terminal

vocabulary. In general, these grammars do not represent acceptable

l'/7A11:hcn.1gh we do not limit ourselves to text presentation (positive
samples), we are particularly interested in conditions under which
it is adequate for inference.
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generalizations or inductions, and we would expect a satisfactory |
measure to rule them out. Informally, we see that ad hoc grammars fit
the data very well, but at the expense of considerable complexity in
éhe grammar; universal grammars can be quite simple, but will generally
be a poor fit to the sample. To exclude these (and other similarly
inappropriate) grammars a measure must be a function of both the
grammar and its degree of fit. If it neglects the former it will
sometimes select overly complex grammars which precduce languages that
are "too small' (insufficient generalization); if the latter, it will
sometimes infer overly simple grammars which produce languages that
are "too large" (excessive generalization).

The relation between complexity and probability suggests a method
based on Bayes' theorem to refine probability estimates on the
basis of observations. This "theorem" is actually an elementary
consistency requirement on conditional probabilities [Savage 1962].

Suppose we have an exhaustive set of mutually exclusive hypotheses Hi ’

i=1,2,3,... and a similar set of observable samples Sj R
J = 1524Fpwcae . Deno?g thé:probability that the i-th hypothesis is
true in context C..bﬁg P(Hiic) , the probability that the j-th
sample is observed in context C by P(SJIC) , and their joint
probability by P(Hi,SjIC) . Also denote the conditional probability
of the j-th $ample given that the i-th hypothesis is true by
P(SjLHi,C) and the converse by ?(Hilsj,c) . For these measures to

make sense we require

I

P(Hi,sjic) P(HiIC)'P(SjIHi,C)

p(Hi,sjlc) P(Sle)'P(HiiSj,C} .
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We can eliminate P(Hi,sjlc) and solve for one of the conditional

probabilities, e.g.,

P(Hilc)'P(SélHi,C)
P(Sj!c) *

P(Hilsj,c) -

But it must also be the case that exactly one hypothesis is true so
P(sjic) = 2 P(Hi,SjiC) :Zl: P(Hilc)'P(Slei,C) .

Thus we have

P(HilC)'P(Sle.l,C)

}z: P(H“C)-P(Sjlﬂt,c) '

P(HilSj,C) =

This rule may be used to compute the a posteriori conditional probability
of H, when Sj is observed. It requires only the a priori

probabilities of the hypcthesesl/ and the conditional probabilities of

*

Y Bayésean techniques are sometimes criticized on the grounds that the
required a priori probabilities are, in general, unknown, and the
reader may feel that our suggestions for determination of a priori
probabilities of grammars (given in the next section) are somewhat
artificial. These criticisms have some merit, but we feel that the
Bayesean viewpoint permits the most direct understanding of our
methods, by providing intuitive meaning to what would otherwise be
arbitrary formal operations. Thus much of the presentation will have
a Bayesean flavor. The reader who finds this distasteful may take
comfort in one or more of the following rationalizations:

1. We can obviously construct, for test purposes, situations in
which both the a priori and conditional probabilities are
precisely controlled.

2. TIn some of the envisioned applications (e.g., speech recognition,
bubble chamber pictures) the a priori probabilities may
actually be known from prior experience.

3, Each inference procedure will actually be presented with some
(frequency) distribution. If the Bayesean procedure incorporates
all the advance knowledge that we have about this distribution,
then no other procedure can be constructed which will uniformly
(or even on average) do better.

L, We show in Part II that our procedure will ultimately learn a
correct grammar independent of the particular (non-zero)

a priori probability assigned to the grammar. The worst that
an incorrect assignment can do is delay the learning. However,
without some assignment our procedure is not effective.
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the observed sample, given the various hypotheses. If we must select
one hypothesis on the basis of the sample S3 , we minimize our risk
of error by choosing an H_ such that P(HRISJ,C) is a maximum,l/
For purposes of maximization, the value of the denominator
P(s jlc) is irrelevant. What is important is to maximize the
product P(Hi|C)'P(SJ[Hi,C) . The minimum risk requirement, plus a
knowledge of the probabilities involved leads to a precise
identificationg/ of the best hypothesis -- in our case the best

grammar -- to be guessed on the basis of a sample.

We may interpret this solution in terms of complexity measures by
taking logarithms. If M(HiIC) is the complexity of H, in the
context C and M(Slei,C) is the complexity of the sample in the

further context of Hi , then we are to minimize the sum
M(Hiisj,c) = M(H,[c) + M(sjlni,c) .

This indicates that complexity of explanation has two components, which

we may call the intrinsic complexity of the hypothesis and the relative

complexity of the sample, given the hypothesis. In information-theoretic
terms, we may express this as looking for that representation of the
—sample (i.e., hypothesis) which minimizes the combined information
requirement of the representation and the encoded sample., The

"representation problem" is a classical problem of artificial intelligence;

Yy This risk, precisely 1-P(Hlej,C) , is known as the Bayes' risk in
statistical decision theory.

gf Except, of course, when there is no unique maximum. We than have
a set of equally good guesses.
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here we give it a precise operational meaning by specifying the class
of hypotheses over which we are to minimize.

Going one step further, we can treat this result as suggestivé,
even for complexity measures which are not motivated by information-
theoretic or probabistic considerations. Feldman [1969] requires a
complexity measure to be an unboundedly increasing function of two
megsures, one which indicates how complex the hypothesis is in the
context (independent of the sample), and another which indicates how
complex the sample is in terms of the hypothesis. He shows that these
restrictions are sufficient for a number of decidability results. We

do not further pursue that approach here.

Crammar-Grammars and A Priori Measures

It should now be clear why we have devoted so much attention to
stochastic grammars and stochastic presentations. We propose to use
Baves' theorem to incorporate information from the sample. Stochastic
grammars provide the conditional probabilities which Bayes' theorem
requires. Part II is entirely devoted to procedures which use such
measures. No particular form is assumed for the a priori measure on
the grammars -- if an enumeration of the hypothesis space (EAO by
probability or complexity) is provided in the problem statement, the
procedure will work effectively. It remains to be shown that problems
can be stated reasonably, i.e., that there is a finite means for
specifying the probability distribution of an infinite class of grammars.

Before treating any specific measure we note that the complexity

attributed to a grammar by any reascnable measure should increase when



we unboundedly increase any of

-- the number of rules (non-terminals) in the grammar,

-- the number of alternatives in any particular rule, or

-- the length of any particular alternative,
while holding all other factors fixed. Disagreement about complexity
measures will involve the form and weights of these elements, not
their existence.

Written grammars are strings; any particular class of written

grammars is a subset of all the strings over a vocabulary, i.e., is

a language. In fact, it is easy to write grammar-grammars [Schorre 1964] which

generate only written finite-state, or linear, or context-free, or
even context-sensitive grammars. We can inelude restrictions on the
form of productions (e.g., standard form or normal form) if we wish.
We could have formally defined written grammars in terms of grammar-
grammars, but we wished to avoid an appearance of circularity.

A class of grammars may be specified to an inference procedure by
means of & grammar-grammar. If the grammar-grammar is a stochastic
grammar, it also imposes a probability distribution over its sentences
(grammars). We may take as the a priori probability of a grammar its
probability with respect to the grammar-grammar.

For example, consider the simple grammar-grammar G l/°

-
S ::=R | RR (1/2, 1/2)

R it=N"::="P (1)

p::=A | P"|"A (1/2, 1/2)

1?r-We have an immediate problem in distinguishing symbols of the grammar-
grammar from those of the grammars it is to generate, which we

resolve by "quoting" all symbols of the terminal vocabulary of the
grammar-grammar.
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A::=T | TN (1/2, 1/2)
2= "g" | "DB" (1/2, 1/2)

T
N ::= g0 | "A" (1/2, 1/2)

65 generates finite-state grammars with one or two rules and a terminal

vocabulary of (at most) "a" and "p" , To the universal grammar Gh
S::=a| bl as| vs

it assigns probability P(Ghiéi) =27 | or complexity M(Ghléj) = 15 .

To the grammar 65

S ::=b| vS | A

A ::=18 l bA | asS

n

which appeared at the start of Chapter I, it assigns probability

P(GEIGB) - 1”5 , or complexity M(Gsiéﬁ) = 23 . Now we may compare

Gh and G5 on the basis of Feldman's sample Slo
b baba
bb abba
aa bbaba
baa bbaa
aba aabb

which they both generate. Under the assumption of equal probabilities
for all the alternatives in a rulei/ the complexity of each derivation

step with respect to G, 1is -lo (1/4) = 2 , and with respect to G
4 & 5

177‘.-1?11{:11, we have previously noted, is reasonable (and customary) for
finite-state grammars.



is -log2(1/5) = 1032(5);3 1.58 . Since each derivation step adds
precisely one terminal symbol, the length of a string is equal to the
number of steps in which it was derived. Thus, for either grammar,

%2 steps are required to derive SlO

M(smlch) =32 x 2 = 64

M(slo.lss) =32 x 1.58 = 50.56 .

Finally,
M(Gy, 18, 5) = M(Ghlﬁi) " M(slolsh)
- 15 + 64 = 79
M(G lsm, 5) = M(Gs|G§) + M(leEGB)

23 + 50.56 = 73.56

Or, in terms of probability,

P(G lslopé) _ 2"75-56 _ 25.’-&6 o "
ZCERENNS 2~12

That is, in the context of the grammar-grammar 53 and our assumption
of equi-probable alternatives, the grammar which Feldmen inferred,
65 , is about ULk times as probable as the universal grammar, G, .
We leave it as an exercise for the reader to show that under these
conditions C—5 is in fact more probable than any other grammar
generated by G3

The point of this example has not been that 53 is a particularly

good grammar-grammar ( better ones are available) nor that

M(Gla5) is the correct complexity measure, nor even that Feldman
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inferred the right grammar. Rether, it is that stochastic grammar-
grammars provide an adequate means for specifying a priori probabilities
of grammars. By varying the probabilities associated with the
alternatives of §5 we can control the weight attached to various
components of the complexity measure (e.g., by increasing the second
probability in the third rule we decrease the bias against rules with
many alternatives, by increasing the first probability of the fcurth'
rule we indicate that terminating rules are less complex, etc.)
Several grammar-grammars and their associated complexity measures are
given by Feldman, et al [1049].

There are still two minor points to be cleared up. First, we
have restricted ourselves (cf. Chapter III) to reduced, unambiguous
grammars. But our grammar-grammars cannot, in general, enforce this
restriction. Thus only a subset of the language of the grammar-grammar
will be allowable, and the probabilities of the allowable grammars will
not sum to unity. They will sum to a finite value, however, which
(if known) could be used to normalize their probabilities. But when
we compare the probabilities of grammars this normalization constant
cancels, so we do not really need to know its value.

Second, we require our grammar-grammars (1ike all grammars) to
be finite. Yet they must generate grammars with an unbounded number of
non-terminal symbols.l/ There are two ways to resolve this ccnflict:
in Feldman, et al [1969] a collection (roughly equivalent to the
language of a grammar-gr&mmar-grammar) is defined as an infinite set

of grammar-grammars differing only in the number of non-terminal

l/ We assume that the terminal vocabulary is known for any given
applicatign.

N
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symbols allowed in the grammars they generate; alternatively, we

may note that only a finite set of characters will be used in written
grammars, and non-terminals may be denoted by certain strings of these
characters (i.e., that non-terminal names themselves form a language).
We may then add rules to the grammar-grammar to generate, e.g.,

BNF-like, non-terminal names:

N s:="<" M ™"
M:=L| M
L ::= "A" l "Ry i nen l s

Either means of handling an infinite non-terminal vocabulary is
formally adequate. The two are not equivalent, however, and the
method chosen will have some effect on the a priori distribution

obtained.
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PART II

THE ENUMERATIVE BAYESEAN PROCEDURE

FOR GRAMMATICAL INFERENCE
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V. BASIC PROPERTIES OF THE PROCEDURE EB

T+ should be noted of course that proving the
existence of a finite algorithm is only a first
step toward finding a practical algorithm. 1In
particular, we look at the "finite" algorithm for
testing structural equivalence as presented here
as such a first step. Nevertheless, in an area
replete with theorems beginning 'there is no
finite procedure for ... ,' it is gratifying

to be able to present some more encouraging
results.

[Paull and Unger 1968]

Assumptions

In this chapter we state a restricted form of the grammatical
inference problem (we assume that all relevant probability distributions
are known), present a solution, and show that this solution has desirable
properties. Iater chapters discuss means for improving efficiency and
for relaxing various restrictions.

We state the problem as follows:

1) The hypothesis space is a denumerable class of stochastic
grammars; each grammar has a known (computable) a prior{
probability of being correct (i.e., of being the source of
the observations); an enumeration effectively approximately
ordered by probability is available.

2) The observation space is the stochastic text presentation

of a grammar in the hypothesis space.
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%)  The best hypothesis is the (a priori) most probablel-/
of the grammars which are stochastically equivalent to
the grammar which is the source of the observations.

4) At each step of any presentatlon, an acceptable procedure
must minimize the probability of guessing other than the

best hypothesis.

These assumptions provide a well-defined problem in the sense
of Chapter I. In the next section we show that it is solvable,
under the assumption that the given a priori prcbabili%}es are
objectively correct.g/ we do not specify the form of the a priori
probability function. If it is derived from a grammar-grammar, as
suggested in Chapter IV, any enumeration which is EAO by length will
also be FAO by probability. To incorporate other probability or
complexity measures we.would have to produce EAO enumerations.

Assumption 2) is the really strong condition, since it requires
that successive strings in the samples be independent and identically
distributed randoﬁ variables. For scme applications (e.g., bubble
chamber pictures) this is almost certainly a valid assumption; for
others (e.g., speech recognition) it may be a good approximation.

But there are certainly applications [ef. Feldman 1967] for which

Yy Fer definiteness, if there is no unique maximum, arbitrarily
define the first occurrence of the maximum to be the best.

E/ If they are not, our procedure will not be optimal in the sense
of requirement L), but will still be effective, and will sthill
jdentify the best grammar in the limit.



it does not hold at all -- a topic to which we return in Chapter XI.
The third assumption should not be controversial. We would
certainly require that the best grammar at least be weakly equivalent
to the grammar which generated the sample. We have no means for
. discriminating among stochastically equivalent grammars except a priori
probability, and we in general prefer the most probable (or simplest)
grammar.
The final requirement is also natural (although we will suggest
in Chapter XI that it might perhaps be improved). It merely repeats
our informal suggestion that the optimal procedure is the one which
guesses right most often. Minimizing the probability of guessing wrong
is equivalent to maximizing the probability of guessing right. The
only information (other than the probability distributions themselves)
available is the current sample, so we wish to determine the grammar
with maximum a posteriori probability, given the sample. From

Chapter IV we recall that we are to maximize

P(Gi|c)-P(sk}Gi,c)
(s, [C)

p(c, |s,,C) =

or, equivalently
P (g, |8,,C) = P(Gilc)'P(Slei,C)

which, by our results in Chapter III, may be re-written

K
P'(G,|s,,C) = P(G|C) - 1T P(Glei)
j=1

£(t,8,)
P(Gilc) * T_r P(TlGi) & .
TEV';




The Prccedure EB

Def, V.1.

The enumerative Bayesean procedure. Let the hypothesis

space be ot I« HPPEN, with T(8) a computable function

Ll

such that i >T(8) implies P(G;|C) <& , and let S_ be the

current sample. The procedure EB consists of the following

four steps:

1)

2)

3)

Lemma V.2.

Proof.

1)

2)

3)

L)

Let tk be the least integer such that Gt is DA with
k
respect to S _ .

k
Let 8 =P'(G, [5,C) .
K
Let T, = T(&k) "
For each G, , % <1<T, compute P‘(GiISk,C) . Let

EB(k) be the first i in this range for which P‘(Gi[Sk,C)

1§ maximum. Guess GEB(k) .

The procedure EB is effective.

Each step is effective:

By assumption the sample is generated by some grammar in the
hypothesis space, which has a finite index. Therefore the
first DA grammar has a finite index.

P(G|c) and P(Sk|G) are computable and non-zero; so is
their product.

By hypothesis T is computable, and since 5k >0,

Tk is finite.
The maximization is over a finite set of computable values.

Q.E.D.
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Theorem V.3. Of 8ll the grammars in <G1,62,...> , the procedure

EB guesses a grammar with maximum a posteriori probability, given

the sample S

K

Proof. Assume not. Then there must be some Gi such that

P'(Gi\Sk,C) S P'(GEB(k)ISk,C) ;

We show that assuming any value for i leads to a contradiction:

1)

2)

3)

i< tk . This contradicts the fact that tk
index of a DA grammar.

t, < i < T This contradicts the fact that

k k °

is the maximum value of P' over this range.

i >Tk . From

¥ ¥
P (Gilsk,c) > P (GEB(k)\sk,c)
we have a fortiori
P‘(Gilsk,c) > By
[ .
p(c, [c)-P(5, |G,) > B
and, since 0 < P(Sk‘Gi) <1y

p{Gilc) >8, -

is the least

P! (GEB(k)lsk,c)

But this contradicts the hypothesis that 1 > T(Bk) implies

P(Gilc) <5 .

7h

Ql E-D-



Taken together, Lemma V.2 and Theorem V.3 show that the procedure
EB is an effective solution to the grammatical inference problem
stated in the previous section. We now turn to the gquestion of its
limiting behavior. We would like to show that in the limit it always
identifies the best grammar, but this is not possible. A stochastic
presentation contains all sorts of perverse information sequences; we
content ourselves with a proof that their aggregate probability is

infinitesimal.

Lemma V.4, If {aj‘j = 1,2,...} 1is a set of stochastically equivalent

grammars, the procedure EB will guess at most one of them.

Proof. Any sample will have the same conditional probability—with
respect to all the %j . The P' are thus proportional to the
a priori probabilities of the grammars. Thus, at most, the
first &5 with maximum a priori probability can ever be guessed

by EB.

Corollary V.5. The procedure EB will never guess any grammar that

is stochastically equivalent to the best grammar, except the

best grammar itself.

Proof. This is immediate from our definition of the best grammar

and Lemma V.L.

This result does not require that stochastic equivalence be
decidable, or that EB make any special tests for equivalence. Its
practical advantage comes from the fact that we must exclude stocuastically

equivalent grammars from the next theorem.
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For a variety of reasons (including the fact that it computes P’
rather than P) the procedure EB need not approach a limiting
probability of one for the best grammar. However, a weaker condition

is sufficient to assure that the best grammar will be guessed consistently.

Def. V.6. A grammar G is N-preferred over the set {Gi‘i = 1,Byuws)

with the sample Sk iff its a posteriori probability is at least

N times that of any element in the set, i.e.,

(vi)P' (G]s,,C) > N-P' (G, |5,,C) .

Theorem V.7. Let GB be the best grammar for the stochastic presentation

of G. Iet G = {Glej is stochastically inequivalent to G} .
For any N>0, € >0 there isa T(GB,N,E} such that the

total probability of samples Sk for which GB is not N-preferred
over G 1is less than e , whenever k > T(GB,N,E) .

Proof. For each j , let Cj(N’Sk) be the characteristic function of
samples Sk with the property that GB is not N-preferred over
{G.} . We may readily bound cj :
J

N'P'(Gilsk,c)
P (Gg[5,,C) ’

Cj(N,Sk) < a>0 ,

and thus its expectation Dj

Dj(N,k) = E[CJ(N,SR)‘G]

a

N-P'(G.|S,,C)

< El P (G5 [5,,C)
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(o4

Y. 254601 » | N-P'(G, |8,,C)
i sk(G)P( (59 | TR0

BB ICRN [=es, le) ]
- | e ‘SE(:G)P(Sle) ' W

k

N-p(a,|c) | @
—,76—3}5)—1 . S%(})P(skl%)}""a P(Slej)a .

Now we partition G into two sets: a finite set of "probable"
grammars, and an infinite set with low total a priori probability,

and show that the contribution due to each can be bounded.

1) Improbable grammars: There is a finite M = M(GB,E/EN)

such that

M
;lp(c;i[c) >1 - 5= - P(Gg|C)

or
z (G, |C) < 5y - P(Gg|C)

Setting a = 1 , we have

N-P(G.|C) z
Dj(m,k) < —P@ja— . p(s, |6;)

5,(6)

N-P(G.|C)

< .
- P GB c

Now we can define DIm(N,k) as the aggregate probability



over the improbable grammars.

1 =M+
[¢=]
e |
= . P(G, |C)
P{GiC il

2) Probable grammars: Set a = 1/2

ERCAD kA I
Dé(N,k) < _—E(G—B'i'(—:)—_ . S}’Z{E})[P(SkIGB).P(Sk]GJ)] /
“yep(c.|c) Y2 12 5
| [ el
ABICAN A
= | TP(G,C " Ry

where

B 2. (p(x]og)-Plx|o,)) Y < 1 Y

27 The inequality follows from stochastic inequivalence, and is the
reason we have treated separately the case of grammars which are

stochastically equivalent to GB .
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Now let

. P(Gy|C) 1/2
18 | 5% * \ ¥-¥(G,]C)

7, (Gg M) = “Tog (K;)

Ir k>Tj(GB,N,e) then

€
Dj(N,k) < 55

and if
T(G ’N,E) = max [T (G ,N,ﬁ)]
o i=1,...,M P
G.ea‘r
i

then for k > T(GB,N,e)

€
DS"DIBI+ DPI‘ < 3

Q.E.D.
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Def. V.8. An inference procedure converges to a grammar G under a
stochastic presentation iff for any ¢ >0 there is a T(z)
such that for any k > T(z) the total probability of semples S

k
such tha*t the procedure does not guess G 1is less than € .

Corollary V.9. The procedure EB converges to the best grammar under

any stochastic presentation.

Proof. By Corollary V.5 it never guesses a non-best grammar
stochastically equivalert tc the test grammar, so we need only
consider inequivalent grammars. But, by Theorem V.7, the best
grammar will ultimately be N-preferred over all the inequivalent
grammars, with probability greater than 1l-¢ . We can, for

] hY
2;€)

example, set T(e) = T(Gy,

Corollary V.9 assures us that with stochastic presentation the
procedure EB ultimately has arbitarily small probability of guessing
other then the best grammar. Its procf does not involve any properties
of the a priori probability measure other than that the enumeration
ig EAO by probability. However, the procedure is not effective without
some probability measure -- it cannot be certain when it is safe to
stop enumerating. If we are given an enumeration but no a priori
probabilities, we can assign them almost arbitrarily (e.g., let
P(GiIC) " ) without jeopardizing limiting behavior.

Strictly speaking, we do not need the existence of a stochastic
presentation. A virtually identical proof of Theorem V.7 can be based

on convergence of the information sequence rather than on stochastic

presentation. In the limit, therefore, the successive strings of the
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sample need not be independent, so long as the relative frequencies

converge properly.

Improvements

The procedure EB is deliberately simple, to make its essential
characteristics apparent. Our statement of the problem has uniquely
defined (except for ties) the guesses it must make, but the method
by which it obtains them is not unique. 1In this section we consider
a variety of changes to EB which leave its guesses unchanged, but

improve its efficiency.

Lemma V.10. The guess EB(k) is unchanged if, at each time k,

EB considers only grammars which are DA with respect to Sk .

]

Proof. If a grammar G, is non-DA, 9(sklei) =0 and P'(Gilsk,c)

“x

80 Gi does not have the maximum a posteriori probability.

But G (at least) has a posteriori probability & >0,

But by Lemma V.3, EB guesses a grammar which does have maximum
a posteriori probability. Therefore Gi is not the guess
EB(kx) and dropping it from consideration will not change EB's

guess.

This lemma is important in the next chapter, where we consider

efficient enumerations of DA grammars.

Theorem V.11. The guess EB(k) is unchanged if in step 2)

"8, = P'{Gtklsk’c)“ is replaced by "9, = P'(Gtk{Sk,C)/Ak y

_ £(1,8,)
where & = T‘&L [f(-z,Sk)/k] L
"t
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Proof. We first-show that A  is the maximum value of P(s, |G,,C)
for any i . Let tpT1T€V€} be the set of probabilities
P(1|Gi,c) which maximize P(Sk]Gi,C) . We use the method of
IaGrange to maximize

II+P

TéVt

f(T,Sk)
T

subject to the constraint

}: p_=1 .
rev; x
Let
£(t,S, )
k
TE % Tevt
L h £(7,5, ) T £(1,5, )
", - P
T Py revz
f(T,Sk)
=N + (L—*?\)
T g _
¥
A-L
p-—f(T,Sk)'T *

We can determine A from

§:+ PT =1 ) E:_+ f(T:Sk} =k ,

Tth Tth
yielding
A=L
L=k ¢

p_ = £(,8)/k .
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Substituting this value into P(SkiGi,C) we have

£(t,S, )
LA

max [P(S, |G,,C)] < |
i ki * - TEV; 2
£(7,8, )
=TT te(es w7k
1€V{
-_-Ak »

But this implies

P'(Gi|8k,c) P(Gilc)-P(SkQGi,c)

< P(Gilc)'ﬂk i
Thus if P(G,|C) < P'(Gtklsk,c)/%
P'(G,|s,,C) < P‘(Gtk|Sk,C)

and G, cannot be the guess EB(k) .

Q.E.D.

This theorem permits a significant reduction in the number of
grammars .considered by EB at each step. For example, if the information

sequence is convergent

f(T,Sk)/k - P(7|G)
and ( )
£L1,5
f-‘k = -IV-+ [f(T;Sk)/k] .
€

eV

=38 P(Tla)P(TiG)-k

1'€,t

. [W P(TIG)P(’riG)]k

TEt
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A typical value for the bracketed factor is 1/2 , indicating that a

factor of 2k in the cutoff point is likely.

Lemma V.12. The guess EB(k) is unchanged if, in step 4) of EB,
vhenever a G, is found such that P‘(Gilsk,c) > P‘(GERISR,C)

t, is replaced by i and steps 2) through 4) are repeated.

Proof. Obvious. No grammar better than Gi can occur after
T(P‘(Gilsk,c)) , 50 the enumeration on out to the old T,

is superfluous.

Lemma V.13. The grammars up to GT need not be re-enumerated at
k

time k+1 if P‘(Gilsk,c) has been recorded for each DA grammax,

Proof. If a grammar is DA at time k+1 , it must have been DA at
time k . The new conditional probabilities can be computed

by the recursive relation

P'(Gilsk+1,c) - P'(Gi!Sk,C)-P(Gk+1|Gi) .

Bounding A Posteriori Probabilities

In some situations it would be desirable for the procedure EB to
not only guess a grammar, but to estimate the a posteriori probability
that it is the best grammar. To compute P(Gi‘Sk,C) rather than
P'(Gilsk,cj we require the denominator P(Sklc) which is defined

by an infinite sum

P(s,|c) = i; iP(GiIC)'P(Sk\Gi) = 5; P*(Giisk,c) .
3 1
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This sum can be bounded in terms of quantities which EB computes

anyhow,
Lemma V.13. In the procedure EB
T T

K K
L P'(Gy|8,,C) < (s c) < }:1 P' (G |8,,C) + A (1 - ): (G, |c)) .
= i= l=l

[~1ﬁ;—3

Proof. All terms of the sum P(SRIC) = EP‘(Gi]Sk,C) are non-negative.
i
The lower bound is simply the first Tk terms of the sum. The
upper bound is attainable iff all the remaining terms have

P(Sk](':i) = A, which Theorenm V.11 demonstrated to be maximal.

Both of these bounds will be fairly loose until the best grammar

is enumerated, and fairly tight thereafter.
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VI. DEDUCTIVE CONSIDERATIONS

To imagine that an adequate grammar could be
gselected from the infinitude of conceivable
alternatives by some process of pure induction
on a finite corpus of utterances is to misjudge
completely the magnitude of the problem.

L] - . L] .

Too much faith should not be put in the powers
of induction, even when aided by intelligent
heuristics, to discover the right grammar.
After all, stupid people learn to talk, but
even the brightest apes do not.

[Chomsky 1963 ]

Reasons for Deductive Preprocessing

We have shown in Lemma V.10 that the procedure EB will make the
same guess independent of whether the enumeration contains all grammars
or merely the deductively adequate (DA) grammars, since non-DA grammars
are assigned a posteriori probabilities of zero. Thus, formally,
there is no need to augment the inductive procedure with a deductive
procedure: all grammars which can be ruled out deductively are
automatically rejected by Bayes' theorem. In practice, however, there
may be substantial advantage to a procedure that eliminates as many
grammars as it can deductively, using the procedure EB only to
discriminate among DA grammars.

The need for deductive preprocessing arises from the large number

of grammars with similar complexities. Lemma V.2 shows that only a
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finite number of grammars are considered at each step, but does not
bound that number. Informally, we can see that this number is the
number of grammars "not too much" more complex than the grammar
selected at that step. Before the correcﬁ grammar can be guessed,
the procedure must at least have considerzd all other grammars of
equal or lower complexity. We can use the number of such grammars as
a lower bound on the number considered in the inference. But this
number grows exponentially with complexity.

We have repeatedly used the grammar Gh 3

S:i=b | vs | aa

A ::=1a | bA [ asS

as an example. Depending on the precise complexity measure used, there
are from several hundred to a few thousand finite-state grammars with
two terminal symbols which are no more complex than this one, and
therefore must be considered by the procedure. Only about 20 of these

are DA, however, given the sample Slo -

b baba
bb abba
ag bbaba
baa bbaa
aba aabb

Only the DA grammars actually contribute in any way to the solution; the
others merely absorb computat ion, and (ideally) should be rejected as

soon as possible. The reason that the constructive methods of Chapter II



involve less computation than enumerative methods is that only DA
grammars are ever considered. Although this relatively small sample
has yielded an orders of magnitude reduction in the hypothesis space,
it might not appear necessary, since a thousand grammars may be
managed directly (but slowly); however, the million or billion
grammars involved in inferring grammars only two or three times as
complex are clearly unmanageable.;/

The principal goal of this study has been to develop adequate
and effective methods for evaluating the DA grammars, once they are
enumerated, leaving the development of deductive techniques and tree-
searching procedures to others [cf. Pohl 1969, Sandewall 1969,
Feldman, et al 1969]. For at least some interesting applications
(e.g., bubble chamber picture grammars), the enumeration can be greatly
restricted by application-dependent, extra-grammatical criteria.
However, in the course of programming and testing the general procedure
we have found that some deductive preprocessing is required to make
grammars that we consider at least marginally "interesting," (three or
more non-terminals) inferrable with computational effort which we
consider reasonable (a few minutes of 360/67 CPU time in LISP/360).

The balance of this chapter is devoted to such metheds.

y In any case, given any finite amount of computation it is easy to
construct a grammar which will not be enumerated directly with that
amount of computation. Our further results will show that
this need not even be a particularly large grammar.



Restricting Productions

One method of restricting our hypothesis space (reducing our
enumeration) is to consider only grammars whose productions have some
particular form, e.g., the standard grammafs or normal grammars of
Defs. III.26 and III.27. The following theorems assure us that such

restrictions do not reduce the power of our inference procedure.

Theorem [Greibach 1965]. Each context-free language is generated

by a 2-standard grammar.

Theorem [Chomsky 1963]. Each context-free language is generated by

a normal grammar.

The latter theorem can be extended to show that every stochastic
grammar is stochastically equivalent to a normal stochastic grammar.
For each grammar which is not normal (or standard) we can construct an
equivalent grammar which is. Unfortunately, these transformations do
not preserve complexity of grammars. These methods will not generally
yield the simplest equivalent grammar in the given form. In fact,
since weak equivalence is undecidable, it is not decidable which is
the simplest weakly equivalent grammar in a given form; the problem is
general, and not a fault of any particular construction used.

Consider the grammar
S ::=a | bSS
which is 2-standard., By Chomsky's construction (which we do not detail

here) this grammar can be transformed to a normal grammar by adding two

89



new non-terminal symbols.

S t:=a i AB
A ::=Db
B ::= SS

The new rules have only one alternative;é/ all derivations involving
them are forced. Thus the original probabilistic structure on its
language can be preserved by using the same alternative probabilities
in the first rule. The complexity (or a priori probability) of this
grammar -- by any reasonable measure -- has clearly not been preserved
by the transformation. Finally, Greibach's construction can be

applied to re-transform this grammar to a 2-standard grammar, yielding

S ::=a l ©B
A::=D

B ::=aS | bBS

Some languages have very simple grammars in one form, but only
more complex grammars in a second; for other languages the situation
is reversed. Thus the behavior of the inference procedure may be
strongly influenced by the form selected. If a grammar in a particular
form is required by the application, it is generally inefficient to use
another form for the inference and transform afterwards. Although it

is thus inappropriate to pick a single form for the general inference

l/ This is generally true for the Chomsky construction.



procedure, we can reward (through improved performance) problem statements

which contain a restriction to a particular form.

A similar restriction which is more generally applicable involves
the use of canonical written grammars. Grammars which differ only by
the systematic substitution of names for the non-terminals are completely
equivalent and cannot conceivably be distinguished by an inference
procedure, We have implicitly utilized this equivalence by considering
only grammars involving a standard set of non-terminal names (e.g., in
air grammar-gramm&rs). However, we can further restrict our class of
written grammars without loss of generality.é/

Although the productions of a grammar are an unordered set, they
are of necessity placed in some order in the written grammar. Written
grammars which differ only in the order of their productions represent
precisely the same grammar. We are thus free to order the productions
for our convenience, e.g., by collecting all productions for a given
non-terminal into a single rule. We can reduce to one the number of
written grammars which represent any grammar by introducing a canonical
ordering on productions, and requiring that productions be written in
canonical order. For example, we might order our vocabulary by
placing the distinguished non-terminal first, followed by the other
non-terminals in alphabetical order, and finally by the terminal
symbols in alphabetical order. Strings could be ordered by placing

short strings before long, and ordering strings of equal length by the

é7‘1‘1‘1& ideal would be to establish a canonical written form such that
each set of completely equivalent grammars corresponds to precisely
one written grammar in canonical form, but we have been unable to
achieve this goal.
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first symbol in which they differ. Finally, productions could be
ordered by left part, and by right part for equal left parts. Thus,

the productions of the grammar Gh would be ordered
(S,b)(S,aA) (S,bS)(A,&)(A,&S)(A,hA)
and the canonical form of the written grammar would be

S ::=b | aA | bS

A ::==8 | as | bA

Note that if we have restricted ourselves to particular names
(e.g., S, A, B...) for the non-terminals (to reduce the number of
completely equivalent grammars that we consider) the left parts of
the rules are now redundant in the written form, and can be omitted

without ambiguity

b | aa | b8

a l asS | bA

(although with some loss in readability). This irredundant canonical

written form is the internal form adopted for use in our inference

program; grammars are converted to more conventional form for output.
Also note that a finite context-free grammar-grammar cannot enforce
canonical ordering of the productions within a rule. Thus if we
measure the probability (or complexity) of a canonical rule with k
alternatives relative to a stochastic grammar-grammar we should
multiply the value by k! (or subtract log(k!) from the complexity)
to account for the k!-1 other equi-probable written rules which it

also represents.
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Our restrictions on written grammars have reduced the number of
completely equivalent grammars which will be considered, without
eliminating all representatives of any equivalence classigj We can
now calculate precisely the number of different canonical written
grammars in a standard form with given numbers (N and T) of
terminal and non-terminal symbols. Let RF denocte the number of

distinct right parts in form F , theu the number of distinct rules is

RRF = 2
and the number of distinct grammars in form F is

Ne
GFz(RRF)H=2 PF .

Now for standard finite-state grammars

T+ N+« T

Res
Ky ™ &

N+T+ (1+N) % 2N2*T

For (Chomsky) normal grammars

R =T + N2

ce2

6oy = SN ) e 21@

For (Greibach) 2-standard grammars

Y pach cless will now have (N-1)! canonical written grammars, where
N is the number of non-terminals.
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Ryp = T(1L+ N+ NE)
¥
Gop = EH'T(3.+N+N2) 5 o T i

However, if we restrict ourselves to G2 grammars which are

also S-grammars

T . (1)

RRaog

NeT | (WNEHP) W
Gops = 2 T >T

Since T < 2T , this represenﬁs a substantial reduction.

Simple Restrictions

Our restriction (imposed in Chapter III) to reduced grammars may
be thought of as a sample-independent reduction of the space of
grammars, There are other restrictions using information from the
sample which further reduce the space.

Up to this point we have tacitly assumed that the appropriate
terminal alphabet for the grammar is known & priori. We can relax
this requirement by the following cbservations: (1) If a grammar
contains a terminal symbol which has not yet appeared in the sample,
there is a better grammar for the sampleé/ not containing that symbol;
(2) 1If a grammar does not contain some terminal symbol which has
appeared in the sample, it is not DA for that sample. From this we
conclude that at each step it is only necessary to consider grammars

whose terminal vocabulary is precisely that of the current sample.

EJ—We know that the grammar obtained by deleting all productions
involving the unused symbol will be simpler. It will also have
simpler (or, at least, no more complex) derivations.
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It is often poésible to rule out whole classes of grammars as
non-DA on the form of individual rules, i.e., to restrict ourselves
to grammars contaiming particular rules. The simplest case of this
sort involves strings of length 1 , which (in either a standard
or a normal grammar) must be produced by the rule for the distinguished
non-terminal. Thus if there are k distinct strings of length 1 in
the sample, the number of grammars enumerated can be reduced by a

factor of Ek merely by considering only grammars of the form

S 1= alia2|...1ak|...

Similarly, in standard grammars, each symbol a; which is the first
symbol of a sentence of length greater than one must occur in a
production of the form (S,ai@) for some @ . This analysis can be
extended to rules beyond the distinguished rule, but at substantial
complication, and with marginal utility. However, in its simple form
it can contribute substantially to the effectiveness of the method
discussed in the next section, for which the distinguished rule is of

particular concern.

Splitting Grammars

As we showed in an earlier section, the number of grammars with N
non-terminals becomes huge for fairly small values of N . Merely
enumerating them (preparatory to determining which few of them are
deductively adequate) is a sizable computational task. It is desirable

to eliminate as many as possible "by class" (e.g., by requiring certain




productions, as in the previous section) before enumerating them.

In this section we develop a method of enumerating the grammars
with N+1 non-terminals by "splitting" the grammars with N
non-terminals and show that all DA grammars with N+1 non-terminals
result from splits of DA grammars with N non-terminals. Thus we
can exclude (without enumerating them) the grammars resulting from

splits of non-DA‘grammars.

Def. VI.l. A grammar G 1is a split of G' on Ai and G' is a

merge of G on Ai and Aj iff replacing every occurrence

of Aj in PR(G) by A, yields PR(G') .y
Lemma VI.2. Any merge of a DA grammar is DA.

Proof. If G is DA, every string in the sample has a derivation
in G . But every derivation in G has an image in G'
(obtained by substituting Ai for each occurrence of A3 )
which produces the same terminal string. Therefore G’

produces every string in the sample and is DA.

Corollary VI.3. Every DA grammar is the split of a DA grammar.

Corollary VI.4. Every split of a non-DA grammar is non-DA.

Remark VI.S5. Merging preserves the form of productions. Thus any

(standard/normal) DA grammar is the split of a (standard/normal)

DA grammar. Similarly for reduced grammars. However, the

Yy This is a special case of grammatical covering [Reynolds 1968].
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S-grammar property is not preserved; we will have to split

non-S-grammars to obtain some S-grammars.

Def. VI.6. A split or merge is canonical if A, =S and Aj is
the canonically last non-terminal of G , i.e., if the distinguished

non-terminal is split into the distinguished and last non-terminals.

Lemma VI.7. Each (¥) grammar with N+l non-terminals, N>0, is
the canonical split of precisely one (#) grammar with N

non-terminals.

Proof. The requirement that the distinguished and last non-terminals
be combined uniquely determines the canonical merge of any given
grammar; this is the unique grammar which can be canonically

split to form the given grammar.

Corollary VI.8. The (*) grammars with IN+1 non-terminals can be

enumerated without repetition by performing all possible canonical

splits of (%) grammars with N non-terminals.

Remark VI.9. By Remark VI.5 "DA," "standard," "normal," and/or
"peduced” can be substituted for (¥) in Lemma VI.7 and

Corollary VI.8.

We have shown that by splitting the (comparatively few) DA
grammars with N non-terminals we obtain all of (but not only) the
DA grammars with N+1 non-terminals. The number of splits can be

quite large (although it will not entail a complete enumeration) and



many of the resulting grammars will not be DA. We wish to rule out
classes of non-DA grammars as efficiently as possible. For this
purpose the required production test on the distinguished rule,

given in the previous section, is fairly effective.

Def. VI.10. The canonical grammar splitting procedure. Let PES

be the subset of PR(G) with S as left part, let PRy be
the required subset of PRS , and let N Dbe the non-terminal
to be added. The procedure CGS consists of the following

steps.

1) For each T C PRg-PRy do step 2).

2) ILet D=TU PRy and L = PR,-T . For each subset
Ec D do step 3).

3) Let M be the result of replacing S as a left part by
N in EUL, and let PR, =MU (PR-PRS) . If P is
a production let P be any production obtained from P
by substituting N for zero or more occurrences of 8 in
the right part of P . Enumerate each G(éﬁm) , where §RM
is obtained from PRM by replacing each PEPRM by one or

~

more P 's.

If the grammar to be split has a distinguished rule with k
necessary and f 'unnecessary" productions and the distinguished

non-terminal occurs m times, there will be at least

sk, 2,n) = 2% & 3t
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canonical splits of the grammar; if the distinguished non-terminal
occurs in the distinguished rule, or more than once in a single
production, there will be somewhat more splits.

Finally, the notion of splitting permits us to organize the
space of grammars as a tree, where the branches from each node
represent splits, and each level represents an additional non-terminal.
When a node is eliminated (non-DA), so are all its dependent nodes.
Branches can be "grown" independently; we need not enumerate all
grammars with N non-terminals before starting on those with N+1 .
In particular, there is a minimum "cost" in complexity involved in
any split, so at any given time we need only perform splits which

could result in grammars which are not more complex than the current

bound, 6k .
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VII. INFERRING PARAMETERIZED GRAMMARS

Those who believe that "probability" refers
to a state of things, a property of a system
(as proposed by von Mises), might well
consider how they would prove to a skeptic
that just because a coin comes up heads
twice in a row he should not believe that it
is loaded., If he persists in this belief,
will you insist that he is irrational?
Stupid? If you take this point of view, you
must admit we are talking about states of
knowledge. (The coin could be loaded, you
know! )

[Savage 1962]

Succinctly, how does one go about stating
the distribution of the parameter from
available information? And, what if no

a priori information is available, then
what?

[Aigner 1968]

When the probability of a simple event is
unknown, we may suppose all values of this
probability between O and 1 as equally
likely.

[Laplace]

Estimation of Parameters

The deductive methods of Chapter VI (e.g., grammar splitting)
were stated in terms of characteristic grammars rather than stochastic
grammars. A one-to-one correspondence between the two kinds of grammars
is required to combine these methods with those of Chapter V, which
assume stochastic grammars. Chapter III mentioned two means for
establishing this correspondence: all alternatives of a rule may be
considered equi-probable, or the probabilities of alternatives may be

treated as free parameters which must also be learned. There we noted
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inadequacies of the former approach; now we turn to development of the
latter. The proofs in Chapter V in general have analogs for parameterized
grammars. The notation becomes substantially more cumbersome and we

do not believe that a formal development is particularly enlightening.
Therefore, the presentation in this chapter is mostly informal.

In this section we treat the case where the grammar is fixed and
the probabilities are to be learned. The next section addresses the
more general problem of simultaneously learning both the grammar and
the parameters. Although the application is new, the statistical
methodology is not particularly novel [Tribus 1962] [Savage 1962]
[Aigner 1968]; we sketch it here because we have not found it
Bfesented anywhere in quite this form.

We may treat the hypothesis Hi(g) with the free parameter ©
as a set of compound hypotheses Hi(D} = [(Hi,Gj)]j =1,2,3,00.}

It P(Qj]Hi,C) and P(Sklgj,ﬁi,C) are known for each j , Bayes'

theorem can be used just as before to compute a posteriori probabilities

P(sklaj,ni,c)

P(e.]|s, ,H.,C) = P(o |H,,C) -
TR J 1 .
.};. (e, |H,,C) p(s, |,,H,,C)

In the continuous case, © becomes a real variable, P(leﬁi,C) is
replaced by p(QlHi,C) where p 1is a probability density function
(pdf), Ip(QlHi,C)dQ =1, and the summation over £ turns intc

integration over © .

| P(s, |9,H,,C)
o(6]8,,H;,C) = p(8]H,,C) - .
j‘p(o'lni,c) . P(Sk10‘,Hi,C)dQ‘
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This is the general rule for determining the a posteriori density
function from the a priori density and the sample. In the case of a
parameterized stochastic grammar, with which we are concerned, ©
corresponds to the probability of a particular alternative (or to a
vector of such probabilities), let it be the n-th production.

Now P must have the form

F.(p_,S, )
iv*n? 'k
P(Skiﬁn,(}i,c) =0, . g(sk,ci,c)

where
F,(p,,8y) = ) Sl08) u, (pys 7)
Tevt
and ui(pn,r) is the number of uses of p_ in the
derivation of 1  through Gi 5

Since g is independent of Qn , it comes out of the integral and

then cancels; leaving

F-(P 35 )
° iMn?Tk

p(gnisk’gi’c) = p(gnlsi’c) ) : ,Fi(Pn:Sk) '
[ p(on\c;i,c) .0 e
As usual, the Bayesean denominator is merely a normalizing constant,

and the form of the result is determined by the numerator. Hence thé

effect of the sample Sk on the form of the pdf is to multiply it by
Fi(Pn’ Sk)
Gn . Similarly, if we have not one free parameter, but a

vector of free parameters, the multi-dimensional pdf will be multiplied

102



by Ol

m

-

In the absence of any knowledge of

the form of p , this is about all we can say.

To simplify the sequel, we will assume that op

itself takes

the particularly simple form of a constant times a power of © .L/

This assumption admits a large class of pdf's (the multi-variate

Beta distributions), which includes some important special cases to

be discussed later, and has two convenient properties: o is

completely specified by the exponent for each On (the constant

multiplier is determined by the requirement that p be a pdf); and

the class is closed under Bayesean inference -- the new exponents

again determine the function. If we write Fn for Fi(pn’sk) we

find
F F
B B ell...o m
p{'gl’.'.’gm‘sk’gi’c) =K gl ' ,Qm ) 151 ;ﬁm ,Fl tTm 1
IK*Q o Mol t,..0 T-de,...do
1 m 1
B +F B +F
o 1 1".9 m m
= m
- B.+F B _+F ‘ ’
[ ol 171l o' ™ Mgo!.. .40
1 1 m

To obtain the value of the normalizing constant, we must supply limits

for the integration. If

factor the integral into the product of m

only one Qn .

i

g'lig
m

were all independent, we could

integrals, each involving

Because of the constraint that for each rule the sum

Y The generalization to linear combinations of such functions (and
hence to analytic functions) is straightforward; we do not pursue

it here.
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of the probabilities of the alternatives must be unity, we obtain
instead one factor for each rule

Lyasesk BevBy B_+F

r I
91 LR gr 6 (Ql+- - -+Qr'—l)dclo . udgr -
0’ - 8 & ’O

In the simple case r = 2 this is the familiar Beta integral

1,1 B.+F. B+F
s ik W - -
6, 9 8 (91+92-1)d91d02
0,0
1 B.+F BA+F
i 1 2772
= j o, (1-6,) de,
0
(31+Fl)£ (82+F2) !

B(B.+F +1,B +F +1) = - .
171 7?2 "2 (51+32+F1+F2+1).

In the general case we have

B +F
1 nn
0(8,,...,9_|8,,G,,C) = . ] l )
1 ri"k?i B(Bl+Fl+1,...,ﬁr+Fr+1) L e

B +F

r o B
= (T (B +F +1))-1]! -« T—Tn ‘
ngl A n=1 ﬁn+Fn '

for each rule, independently.

It might appear that we have strayed somewha® from our original
quest, which was to estimate the @ 's. But now that we have a
convenient form for the pdf, we can easily estimate Gn by taking

its expected value under the a posteriori distribution,
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(e |s,] = Ie, - p(ol,...,orq.sk,ei,c)dol.,.dar

BlfFl 5n+Fn+l Br+F

r
i j' o, LA LS 6(01+.‘.+0r-1)d01...d0_r
B( Bl-!.F}_, L ,Br'l'Fr)

_ :-3151-!-5‘1, ceesBHF 41, ,f3r+Fr)
B(Bf?y - ,5n+Fn, Fo ,ar+Fr)

ﬁn+an1 6n+Fn+1

r = TB+F+r

;ﬁ; (B_+F +1)

where

r
B=1 B, F= 3 F :

m=1 m=1

Similarly we can compute the variance of the density function

2
? B +F +1
5 (5ann+1)(6n§Fn+2) n n

= T(B+Far) (B+IeT+1) B+F+T

E[Oi] Sk]‘E[inSk]

(8n+Fn+l)(B+F+r) - (Bn+Fn-+1)2

"

(ﬁ+F+r}2(B+F+r+1)
2
lim r[ogis ] - E[e_|s 12 = 1im F—Eﬂ =0
K= n''k n'"k K=o é

Thus the estimated values for the probability parameters have a

very simple form in terms of the exponents in the a priori density
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function (the B's ) and the observed frequencies of the alternatives
(the F's ). Furthermore, the variance becomes_small as the frequencies
increase (i.e., the distribution peaks ever more shaffly around the
estimate). Note that the result involves only the sums ﬁn+Fn , not
their individual values. We may interpret this as saying that
a priori bias (B‘sj an& observations (F's) affect the anéwer in
precisely analogous fashions; at any time we can move observations
into the bias and work from a "new" a priori distribution, without
affecting later results. |

We have not yet discussed how the B's are to be selected. In
general, we might expect "by symmetry" that the ﬁn should all have
the same value within a rule (a;though this might not be the case if
we had some reason for distinguishing among alternatives, e.g., by
length). Two particular choices are popular in the statistical
literature: If each Bn = 0 , corresponding to a uniform (independent
of the Qn} a priori density, we obtain the famous Laplace rule of
succession

£

F +1

‘ n Vo g
E[Onlskl T F4r =

Most "subjectivist" statisticians support this view. If, however, each

Em = -1 , we obtain

F

con
(e |5, ] =+

the "maximum likelihood" estimate; most "frequentist” statisticians
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would support this result (since it is an unbiased estimate of @ )
but deny the validity of our derivation.

In the limit, of course, any choice of finite values for the
B's will have only infinitesimal effect on the estimate; our earlier
proof that relative frequencies of strings in a stochastic presentation
converge wpl to their probabilities can be carried over directly to
show that Efﬁnlsk] converges wpl to the probability of its alternative,
independent of the B's .}/ Thus we shall not be dogmatic in insisting
that any particular values must be used for the B's . We might hope
that in each application, experience would indicate appriopriate
values; we conjecture that small positive values are generally best
and that O will not usually be far wrong.

These results can be made more concrete by means of an example.

Consider the grammar
S ::= t|hsS

with probabilities -Ot and Gh , where Qt+9h =1 ‘2/ Assume that

we have no a priori reason for preferring either alternative, so

Yy This is what Ba&éseans mean by the statement that "you can always
overwhelm a poor choice of the prior by sufficient evidence.”

2/ The reader who easily relates statistics to coin flipping may

interpret t as '"tails," h as "heads," a string n't as a
"trial" which obtained a run of n "heads" and then terminated
on appearance of "tails." The expected length of a string is

the expected length of a trial, Gt and Qh are the probabilities

of "tails" and "heads" on each toss.

107



Bt = Bh . We will compare the answers resulting from three different

choices for the PB's :

fn L3 " s - .
(a) the "frequentist" -- By = ﬁh = =1
(b) the "indifferentist" -- Bt = 8h =0
(c) the "experienced" person who from earlier evidence thinks

a "fair" division is highly probable -- ﬁt = 5h = 50 ,

At the start: With S = p , before seeing any strings, each choice

i 1 )
yields E{gtiso] = E[Gn|SO] =5 (although for (a) we require

L'Hospital's rule to compute the value).

After one t : If S, =<t>, F, =1

1 t » By
(a) (v) (e)
Ft F, +1 Ft+50
__t ( i . i
El6,8,] = El6,15,) = 553 E[6,|8,] = w100
-1 _ _2 _ 21
=1 = =% 30T

On the evidence of a single string, the "frequentist" estimates the
probability of t at unity, the "indifferentist" estimates a 2:1

bias for t and the "experienced" estimates only a slight shift.

After another t : If 32 =<t;t>, F., =2, F, =0, F=2:

t h
(a) (o) (c)
F F +1 F _+50
t t t
Bloyls) = 7 Blog15;] = ez El3;15,] = wmye0
-2, . . -
=g=d = % 102 = 51
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After some h's : If S, = <t,t,hhht>, F =3, F =3, F= 6 1

3 h
(a) (b) (e)
F F,+1 F,+50
B[0,|S;] = — ICHES — 5(0, |s;] = —
5 1 L1 1
86" 2 =BT 2 = i’g% -2

Everyone agrees at this point.

After 1000 observations: If F, = 600 , F, = 400 , F = 1000 :
(a) (v) (c)
F, F +1 F,+50
E[0,|8,000! = F E[0,18,000) = iz B[O [8,000) = T100
_ 600 , _ 601 _ 650
= 1000 = 7002 = 1100
= ,6000 = .5998 = .5909

All three pretty well agree on the amount of bias for t .

Evaluation of Hypotheses with Free Parameters

We have shown how to estimate the values of the parameters for
a fixed hypothesis. We turn now to the question of picking the best
hypothesis when the parameters are not yet fixed. The general approach
is based on the observation that for the hypothesis to be correct, it
must be correct for some values of its free parameters; in the last

section we developed estimates for the pdf of the values.
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If © 1is a free real parameter of Hi(G)

P(H, (0)|C)

1

] »(y;[c) - o(o]H,,C)a0

P(Hiic}

and

I

p(s, 11, (0),¢) = [ B(s,|0,H,,C) - o(olH,,C) - a0

so, by Bayes' theorem

p(s, |H,(0),C)
P(SkiC) :

P(#, (0)s,,C) = P(H,(9)lC) -

Dropping (as usual) the normalizing denominator

P (1, (0)1s,,C) = P(H(0)|C) - B(s,|H, (8),C)

P(Hfc) - [ P(skIG,Hi,c) . p(OlHi,C)dG ;
~ Now specializing to stochastic grammars, recall

m
P(Sk 91,.s.,gm,Gi,C) = n—lgn

The integral again can be factored into independent integrals for

each rule. Recalling

r B
Te,"
, n=1 .
0(9y-++50,16;,C) = 6(0;+...46,-1) BB 1, B +)

we have for each rule
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r F.(p ,S )+B
i**n’ "k n
[ I 6, 8(0 +...40 -1)d60,...d0

n=1
3p(0,...50,]6,,0) = B(B,+1,...,B_+1)

R

1

B(Bl+Fi(p1’Sk)+l’""Sr+Fi(pr’Sk)+1)
B(Bl+1,.,.,8r+1)

_ (Bl+Fi(Pl§Sk))I "‘(Br+Fi(Pr$Sk)): * (B"‘I"'l)f
- B l...B T+ (B+Frr-1)!

where (as before)
T r
B= 3B, F= L F(p,S) -
n=1 =1

This result (with all B's set to O ) was derived by
Solomonoff [196L4] using a completely different method based on
substantially different assumptions. His method suggests both an
information-theoretic interpretation for the result and an incremental
method for its computation. Suppose that with each alternative we
store the current value of 7y = Bn+Fi(pn,Sk)+l and that every time

that alternative is used in a derivation we use the current estimate

of @
n

‘n
7

E[o_|s,]

to compute the minimum information (complexity) involved in that step

?1’1
I =-log (5) = log 7 - log 7
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and then increment both s and 7 by one. Now, after Sk has
been completely derived, we find that (for each rule) 7y has taken
on each value from PB+r to PpB+F+r-1 precisely once, and each 7n
has taken on the values B +1 to 6n+Fi(pn,Sk) . The sum will be
independent of the order in which alternatives were used, depending
only on their final frequencies, and is the negative of the logarithm

of the integral computed previously

p+F+r-1 r 6n+F‘(pn’Sk)
-log(ig) = Y les(d) - ) 108(3) -
j:ﬁ—i‘r n=1 j:: ﬂ+1

We note that negative values for the PB's (e.g., the
"frequentist” Bn = -1 ) will in general cause this value to become
infinite. Intuitively, we may see why as follows: if any Ya is
zero (or negative) when 7y 1is positive, then E[Qnisn} is zero
(negative) and an infinite amount of information is required to specify
that alternative. We note this in case (a) of the example in the
previous section, where, on the basis of one observation E[gtisll =1,
E[thsl] - 0 . No additional complexity is involved in further t's ,
but there is infinite complexity in the first h following these t's .
The a priori probability density function has equal pcles at Qt =0
and Qt =1, (recall L'Hospital's rule was required to evaluate
E[Otiso} before the first observation). The first observation cancels

one of these poles with a zero, leaving the other to completely dominate.
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Limiting Behavior

In Chapter V we proved that the procedure EB was not only optimal
at each step, but also converged to the best grammar. The proof
involved the fact that each stochastic grammar in the enumeration
had fixed values for each of its alternative probabilities. It can
be shown that the evaluation measure of the previous section also
converges to a correct grammar. But we require a different measure
of best for parameterized grammars.

A characteristic (parameterized) grammar is stochastically

compatible with a stochastic grammar if there is some assignment of

its alternative probabilities © which will make it stochastically
equivalent.;/ The degree of a grammar is the number of productions
minus the number of rules, i.e., the number of alternative'probabilities
which can be adjusted independently. We state the following result,

and then sketch its derivation in the case of convergent information
sequences: Using the evaluation measure of the previous section,

the procedure EB will converge to a stochastically compatible grammar

of minimum degree.

For a convergent information sequence of the stochastic

grammar G

1im £(t,8, )/k = p(t|G) .
k=

Let

Y Recall that we showed in a previous section that © will converge
to © in the limit. Thus any grammar stochastically compatible
with the true grammar will approach stochastic equivalence with
the true grammar.
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Q
I

lim F,(p,,8, )/k

n-— o

lim i: f(T,Sk) - u,(p,t)/k
g
k= o TEV'{

E p(t|G) * ui(pn,'r)

'ret

and

m
o = a .
EEA 2

Now considery

(By+F, (p),5,)) - - (B#F; (08 )t (B-r+1):

T5(05+++50,164,C) = BT .. .B I (BrFer-1)!
Tt
f+r-1)!
K, = A& : i
R l“ LR 3 .6r.
Now let

y Recall that JR is the contribution to the a posteriori
probability made by a single rule.
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R =3

JR(Ql, ces ,Qr|Gi,C)

lim Jp(6,,.. .,srlsi,c)

k=

I
TTe ¥ (2,5)):

g . n=1
b I (5O

r
H (B +a_*k)!
. pal n n

=Ky (B+a« k+r-1)! :

By Stirling's approximation

_ X
X! as ¥Y2nx (3;5)

[+=]

JR(GI., e ,QrIG}'_’C) :

+H
r . [ﬁn_i_an,k I n
TVt - |
~ K —

Kr * — ‘ Br0 krr-1
‘ VQn-(ﬁm-k-i-r-l) % {@.ﬁﬁ*ﬂ]

After considerable simplification, this reduces to

oo
33(054++50,1G;,C) ~ Cp - Dp(k) Pg
where .
1 1
r-1 O:Bl+ 2 aﬁr * 2
2 (B+r-1)! 1 s
Sp= AB%) " BT AT 1
1‘6.. ri &—"r- 5
a
l-r
DR(k) =k

115



The factor Pg is precisely the contribution that this rule
would make to the derivational probability if the a priori alternative
probabilities were fixed at their optimum values, e.g., if the grammar is

stochastically compatible then | | P& will be the derivational probability
R

of the stochastically equivalent form. As k-« this factor
dominates, and in analogy with Theorem V.7 any grammar which is
stochastically compatible to the true grammar will be preferred over
any grammar which is not.

Among stochastically equivalent grammars, the contributions of

the Pg factors will be equal, so the DR(k) factors will dominate;

- z (1-r)/2

]_rDr(k) sk T . But d =§: (r-1) 1is precisely the degree
R R

of the grammar. k-d’/2 is maximum for minimum degree, so, out of
a set of stochasstically equivalent grammars, one of lowest degree

will ultimately be preferred, in fact, the one with maximum
P(Giic) . IRI Cq :

The constants CR are sensitive to the B's , and are a function
of the "distance" between the initial approximations Bn/ﬁ and the
limiting values an/a 8

It may seem surprising that the evaluation method of the previous
section ultimately prefers grammars of minimum degree, independent of

the apparent complexity of their rules. This may perhaps seem more
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reasonable in light of the remarki/ that the rules are finite and
discrete, and therefore have bounded complexity, whereas the
parameters may converge to any real number in the open interval

zero to one. To specify any one of these parameters exactly would
require an infinite amount of information. We do not do this,

but rather use the samples to refine the estimates ever more closely.
The more independent estimates which are made (i.e., the higher the

degree) the mcre complexity involved, and this consideration ultimately

outweighs any fixed complexity of rules.

;/ This argument is admittedly a posteriori, as the author was
surprised by the result when he first derived it.
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VIII. IMPLEMENTATION AND RESULTS

We cannot live and we cannot solve problems
without a modicum of optimism.

[Polya 195k]

Of course, we would have to supply the
language-learning device with some sort

of heuristic principles that would enable
it, given its input data and a range of
possible grammars, to make a rapid
selection of a few promising alternatives,
which could then be submitted to a process
of evaluation, or that would enable it to
evaluate certain characteristics of the
grammar before others. The necessary
heuristic procedures could be simplified,
however, by providing in advance a narrower
specification of the class of potential
grammars. The proper division of labor
between heuristic methods and specification
of form remains to be decided.

[Chomsky 1963]

Reasons for Implementation

For a variety of reasons, several of the procedures discussed in
the last three chapters have been implemented as running computer
programs. The discipline involved in actually stating these procedures
as programs has led to greater precision of definition in a number of
cases. The insights gained through running the procedures have
strongly influenced the direction of our research -- the methods of

Chapter VI were developed only after preliminary computer runs indicated
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the essential role of deductive preprocessing. Finally, we felt that
it was desirable to demonstrate that our formally optimal methods
were practically implementable.

The programs have been successful in the sense that they have
verified our methods and contributed to our understanding of the
problem. They have, however, been disappointing in terms of
computational efficiency, and it is not claimed that in their present
form they are economically justifiable for practical applications.

Tt seems clear that various heuristics could greatly speed the inference
process, probably at small cost in terms of optimality. It is also
evident that in many applications the restrictions on the hypothesis
space are quite stringent, much more so than any general restrictions
that we have proposed for our methods. Economics would probably
dictate the use of both heuristics and extra-grammatical constraints

to prune the hypothesis space in any real application. These topics

are beyond the scope of what was attempted here.

All the programs were written in LISP/360 and run under the
ORVYL time-sharing monitor on the Stanford University Computation
Center, Campus Facility, IBM System 360/67 computer. LISP was chosen
as the only sufficiently powerful language available under that
monitor, rather t@an for any appropriateness to the problem. Due to
the slowness of the programs, the original goal of extensive
interaction with running programs was never fully realized, but the
interactive capabilities greatly facilitated debugging. The programs

were slow due to a combination of unfavorable circumstances: as
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indicated in Chapter VI, the enumerative problem is immense, even
with our improvements; LISP is not the optimal language for this
application; the LISP compiler was not available in the time-shared
system, so all programs were run interpretively; the problem of
garbage-collecting list structures on secondary stérage greatly slowed
the sys‘cem.y In short, the programs pushed the ORVYL-LISP/360
system far beyond its appropriate operating range.

The important procedures used in the programs have been given
in the preceding three chapters; we do not repeat them here. Neither
do we give program listings, although ﬁhey are available from the
author on request. The programs exhibit the characteristic
incomprehensibility of large LISP programs, and little point would be
served by repeating them here. We would advise anyone planning
another implementation to work directly from the algorithms previously

given.

Effects of Deductive Preprocessing

The initial portion of the enumerative Bayesean procedure
selected for implementation was the enumeration itself. Although it
was straightforward to write a program which enumerated the grammars
in a given form, it socn became apparent that the enumeration process
represented a serious problem. The first program quickly consumed the

available memory for list structure and then began interminable

z?_This final problem was further complicated by the necessity of
utilizing the structure-modifying pseudo-functions RPIACA and
RPLACD which defeated the LISP system's attempts to concentrate
lists on single pages.
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garbage collections. It had to be abandoned in favor of a more
complicated program which enumerated grammars one at a time and
then immediately tested them, releasing the ;torége assigned to
unsatisfactory grammars.

Even when restricted to reduced grammars, however, the procedure
was rather slow, due to the voluminous nature of the enumeration.

It was tested on two-non-terminal standard finite-state grammars

with a two-symbol terminal alphabet.éf By our results of Chapter VI,
there are 212 such grammars, and a large number of them are reduced.
To progress, it was necessary to eliminate even more grammars. This
was done by introducing the DA test based on a fixed sample. In a

t ypical run using two minutes of CPU time about a tenth of the
grammars (LLO) were enumerated.g/ of tﬁese, 363 were either not
reduced or not DA with respect to the one-string sample <b> . None
of the 77 remaining grammars would have been DA with respect to the
two-string sample <b,bb> .

This procedure (GRAMMARLIST) was transferred to the batch-
processing system which provided more memory and a compiler, resulting
in at least a factor of six speedup for short enumerations (and
presumably more for longer ones). In the longest run, using the

eleven-string sample

Yy With an eye to inferring Feldman's [1967] example grammar with
which we began Chapter I. '

8/ This figure cannot be linearly extrapolated to the full 4000
grammars, however, since the enumeration slowed down noticeably
as more memory was consumed by the list of acceptable grammars
and as lists became increasingly "serambled" across page boundaries.
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b bbb

bb bbbb ‘
aa abab ’

baa baba

aba abba

aab

it determined in one minute's computation that there were 304 reduced

DA grammars. Feldman's grammar, Gh 3

S:t=b | bS | aa

A::=a | bA | as

was not among the first 1000 grammars enumerated, but was the firgt
reduced DA grammar to be enumerated -- the only such among the first
1800 grammars. Four grammars which were simpler than Gk were:
reduced and DA, but they were all ambiguous. In this case, thé
reqpiremeﬁts that a grammar be both reduced and DA cut the hypothesis
space by more than an order of magnitude. Had the additional requirement
of unambiguity over the sample (implemented later) been in effect,
it would have provided another order of magnitude.

A similar test was performed with (Chomsky) normal grammars
rather than finite-state grammars. The run was terminated after one

minute of CPU time, during which 3100 grammars were enumerated and
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360 found to be reduced and Eﬂ.éj The larger number of DA grammars
can be largely attributed to a greater density of universal grammars
among normal grammars than among finite-state grammars.

By this time,~tha\author was convinced that the computational
cost of enumerating and\tesfing all grammars was excessive. This
led directly to the developmeﬁt'of the splitting methods of
Chapter VI, which were incorporated into the inference procedure
discussed in the next section.

Although the importance (and effectiveness) of the restrictions
to reduced and to DA grammars grows with the size of the grammars
being enumerated, the following simple example is illustrative:
Consider the standard finite-state grammars with one non-terminal
symbol and two-terminal symbols. Eliminating the null grammar, we

have a set of 15 grammars over these vocabularies:

1) S ::=a
2) S ::=D)
3) S::=albd /

LY S ::= a8

5) S ::=a | a8

I

E/As an interesting sidelight, it is worth mentioning that the sample
was intended to represent the language with an even number of a's
in each string. The suthor had inferred the following simple (but
ambiguous) normal grammar

S::=b | ss | aa i
A ::=a | AS i SA

but the enumeration procedure quickly found two simpler grammars
for the same language.

123



6) S ::=Db | aS

7) S::=a | bl as
8) 8 ::=Db8

9) S ::=a| bS

10) S ::=b| bS

11) S::=a| b | bs
12) S ::=aS| bs

13) S::=a| as | bs
14) S ::=bl as | vs

15) S ::=1=& { bVJ aS | bs

We can immediately eliminate 1), 2), 4), 5), 8), and 10) because they
do not have the correct terminal vocabulary, Vt = {a,b} . Nine
grammarg remain; of these, 12) is not reduced. If the information
sequence is <b,bb,aa,baa,...> , the first sample eliminates 9) and
13); the second, 3), 6), and 7); and the third, 11) and 1), leaving
only 15) (the universal grammar) as DA. Three strings reduced the
hypothesis space from eight grammars to one. Further strings can not
lead to further deductive learning. Our general observation is that
+he restriction to DA grammars is most effective when (for N
non-terminal grammars) the sample contains the strings of the language

up to length 2N .

A Complete Inference Procedure

GRAMMARLIST was followed by EVAIUATER, a program which would
evaluate any fixed list of grammars on the basis of samples input

from the terminal. The results were as predicted, and the only
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particular interest of the program is that it ran very fast (a few
' secén&s for the largest test case), confirming our belief that the
Bayesean portion of our procedure is not a limiting factor; if the
problem of efficiently enumerating only the DA grammars is solved
our method should be quite practical.

The final implementation was a complete inference procedure,
INFER, which incorporated grammar splitting, tests for ambiguity, and
parameter learning. It is a rather large (550 lines of LISP) program,
and thus consumes a substantial fraction of the available free
storage itself, further slowing the system. We were able to verify
correct operation of all its components on small grammars, but each
attempt to infer more interesting (i.e., larger) grammars had to be
terminated because of excessive time.

INFER is given an initial hypothesis space (generally the one
non-terminal universal grammar) as a parameter. It accepts sample
strings from the terminal, evaluates the active grammars, determines
which (if any) of them should be split, splits them, and finally
prints out the number of active grammars, the minimum value of
complexity and the value of B, (the split level). If its guess has
changed, it also prints its new guess. We present below a typical
(3 mingte) computer run. Input from the terminal is lower case,
and follows the compﬁter prompts (!), computer output is upper
casel/ and should be largely self-explanatory. The language consisted

of odd-length strings of A's , the information sequence being

y Due to LISP restrictions we were forced to modify our convention
that tesminal symbols are lower case, non-terminal, upper. For
this run, V, = {A}, V_= [5,XY,...}.

t n
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<A, AAA,AAAAA A, A,AAA,AAAAAAA A, A, A, AAA A AAA ABAAA, . ..> .

la _ :
(A)
1 ACTIVE GRAMMARS. BEST VALUE: 5.0. SPLIT IEVEL: 5.0
TOTAL COMPLEXITY: 5.0, INTRINSIC: 4.0 UNSPLIT 6.0%
S ::= AlAas (3:21)

! aaa
(A AA)
SPLITTING

TOTAL COMPLEXITY: 8.9, INTRINSIC: L.0 UNSPLIT 6.0
S ::= A|lAS (6:33)

- -

S ::= A|lAX (b:22)

X ::= AlAX (b:22)

TOTAL COMPLEXITY: 16.9, INTRINSIC: 10.3 UNSPLIT 13.2
S ::= AlAX]|AS (7 :313)

X ::= AX (1:1)

TOTAL COMPLEXITY: 12.6, INTRINSIC: 9.0 UNSPLIT 11.2
S ::= A|AX (5 :32)

X ::= AS (2 : 2)

TOTAL COMPLEXITY: 1k4.6, INTRINSIC: 10.0 UNSPLIT 12.2
S 3= A|AX (5 : 3 2)

X Alas (:12)

]

TOTAL COMPLEXITY: 15.6, INTRINSIC: 11.0 UNSPLIT 13.9
S 2= AJAX (5:32)
X ::= AX|AX (3 :12)

;/ The number following UNSPLIT is the minimum intrinsic complexity of
a split of this grammar, i.e., the value the SPLIT LEVEL must exceed
to justify splitting this grammar.
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(5 . NEW ACTIVES)
6 ACTIVE GRAMMARS. BEST VALUE: 8.9. SPLIT LEVEL: 6.9
! aasaa
(AAAAR) -
5 ACTIVE GRAMMARS. BEST VAIUE: 13.7. SPLIT IEVEL: 8.7
! a a aaa caaaasa

a)y —

5 ACTIVE GRAMMARS. BEST VALUE: 15.2. SPLIT LEVEL: 9.2

(4)

5 ACTIVE GRAMMARS. BEST VAIUE: 16.5. SPLIT LEVEL: 9.7

(A AA)

5 ACTIVE GRAMMARS. BEST VAIUE: 19.5. SPLIT IEVEL: 10.6

(AAAAAAR)

SPLITTING

- TOTAL COMPLEXTITY: 24.8, INTRINSIC: 9.0 UNSPLIT 11.2

s ::= A|lAX (16 : 8 8)
X ::= AS (8 : 8)

TOTAL COMPLEXITY: 32.2, INTRINSIC: 15.9 UNSPLIT 18.0
S ::= AJAX (9:L45)
¥ 2= AY (8 : 8)

(1 . NEW ACTIVES)
SPLITTING
TOTAL COMPLEXITY: 9.3, Y InTRINSIC: 9.3 UNSPLIT 11.6
Alax|las (3:111)
X ::= A (1: 1)

Le2]
[l

TOTAL COMPLEXITY: 40.6, INTRINSIC: 16.2 UNSPLIT 18.3
s ::= AlAaY]lAaXx (10:451)

X ::= A (1 : 1)

y ::= AlAY (16 :511)

y The TOTAL COMPLEXITY of an ambiguous grammar is invalid.
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TOTAL COMPLEXITY: 35.4, INTRINSIC: 15.9 UNSPLIT 18.0
S ::= AlAY (9 : 4 5)

X :1:= A (5 :5)

AY|AXx (12:75)

-
1}

- -

TOTAL COMPLEXITY: 39.5, INTRINSIC: 17.9 UNSPLIT 20.3

S ::=A | AY[AX (10 : 4 51)
X 1= A (5 : 5)
Y ::= AY|AX  (12:75)

-

TOTAL COMPLEXITY: 34.0, INTRINSIC: 15.2 UNSPLIT 17.3

S ::= AlAY|AX (17 : 8 8 1)
X ::= A (1 : 1)
Y = AS (8 : 8)

TOTAL COMPLEXITY: 38.0, INTRINSIC: 16.2 UNSPLIT 18.3

S ::= AlAY|AX (17 : 881)
X = A (1: 1)
Y ::= A | AS (9 :18)

(5 . NEW ACTIVES)

11 ACT
TOTAL

m
1l

(&)
11 ACT
(&)
11 ACT
(A)
11 ACT
(A AA
11 ACT

IVE GRAMMARS. BEST VALUE: 24.8. SPLIT LEVEL: 12.0
COMPLEXITY: 24.8, INTRINSIC: 9.0 SPLIT

AlAX (16 : 8 8)

4 S (8 : 8)

‘;-;aa aaaaa

IVE GRAMMARS. BEST VAIUE: 25.8. SPLIT LEVEL: 11.8
IVE GRAMMARS. BEST VAIUE: 26.8. SPLIT LEVEL: 11.9
IVE GRAMMARS. BEST VALUE: 27.6. SPLIT LEVEL: 12.0

)

IVE GRAMMARS. BEST VALUE: 29.7. SPLIT LEVEL: 1l.7
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(A)
11 ACTIVE GRAMYARS. BEST VAIUE: 30.5. SPLIT LEVEL: 11.5
(A AA)
11 ACTIVE GRAMMARS. BEST VAIUE: 32.7. SPLIT LEVEL: 11.9
(AAAARA) ‘
SPLITTING
TOTAL COMPLEXITY: 47.9, INTRINSIC: 10.0 UNSPLIT 12.2
s ::= AlAX (16 : 8 8)
X ::= A|AX (24 : 816)
(0 . NEW ACTIVES)
SPLITTING
TOTAL, COMPLEXITY: 40.7, INTRINSIC: 10.0 UNSPLIT 12.2
Alax (27 :1512)
Alas (13 : 1 12)

-
] Il

-

TOTAL COMPLEXITY: 48.2, INTRINSIC: 16.9 UNSPLIT 19.0

S ::= A|AX (16 : 8 8)
X ::= AJAY (13 : 1 12)
Y ::= A|AX (13 : 8 5)

(1 . NEW ACTIVES)
12 ACTIVE GRAMMARS. BEST VALUE: 36.0 SPLIT LEVEL: 12.3

The longest computer run (45 minutes) with INFER involved an
attempt to "force" it to infer a finite-state grammar with three
non-terminals, using an information sequence of the language {A5n+1in >0} .
On the basis of the sample <A,AAAA,A,AAAAAAA,A,A,A> the procedure

enumerated the desired grammar
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S ::= A l AX
X :1:= AY
Y -:= AS

but found that it was still 3.7 ©bits more complex than the
universal grammar. About two more strings would have reversed this
evaluation, but the next string (AAAA) initiated further splitting
which consumed the last two thirds of the run without further
evaluation of the desired grammar.

There are two major flaws in the current splitting algorithm.
First, whenever a grammar is split, all of its splits are immediately
enumerated; if only the probable ones were initially enumerated the
procedure would be much faster. Second, grammars are split "too
soon.”"” By splitting whenever it is possible that a split could be the
best grammar, we frequently split when the sample is too smal; for
the DA test to be fully effective. In practice, we have observed
that it is always some time after a grammar is added to the hypothesis
space before it becomes the guess. We conjecture that a good

splitting heuristic would markedly improve performance.
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PART III

FURTHER CONSIDERATIONS



IX. LEARNING RATES AND OPTIMAL PRESENTATION

External and Internal Measures

There are many reasons why we might wish to measure how much an
inference procedure has learned at a particular time: so we could
measure the effect of various modes of presentation or various hypothesis
spaces; so a procedure could evaluate its performance; or so that we
could demonstrate that one procedure was better than another. A measure
based solely on the guesses made by the procedure (%ts external
behavior) is of necessity gross -- it cannot reflect how close the
procedure is to guessing the right answer; nor how sure the procedure
is of its guess, once it has made the right guess. With Bayesean
procedures, at least, we can do better by basing the measure on the
a posteriori probabilities within the procedure.

Watanabe [1960] has proposed that an "entropy" measure be applied
to hypothesis spaces, and indicates that the expected decrease of this
measure results from learning by the inference procedure. We regard
the suggestion as valid, and present here a generalization which seems
to provide an adequate measure for learning. Its general utility
remains to be evaluated in terms of practical results following from

its use.
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Def. IX.1l. The ignorance of a Bayesean procedure after seeing the
sample S, , denoted m(sk,c) , is the amount of information
which would be required to specify the best hypothesis to the

procedure.

IG(S,,C) = -log[P(Hyls,,C)] .

Def. IX.2. The effective learning of & Bayesean procedure on the

basis of the sample S denoted EL(Sk,C) , 1 the reduction

k 2

in its ignorance.

EL(Sk,C) 16(p,C) - IG(sk,c)

Log[ (1], ,C)/P(H[C)]

]

log[ (s, |H,,C)/P(s, [C)] .

The procedure cannot, of course, evaluate its own ignorance or
effective learning without knowing the correct answer, so this measure
must be evaluated externally.

Effective learning is additive, i.e., if Sk = SiSj then

EL(Sk,C) = EL(Si,C) + EL(SJ,SiC) »

However, effective learning need not have a positive value. This

corresponds to the common sense notion that a valid observation

may be misleading.l/

Yy Consider, for example, a "fair" coin that comes up "heads" on the
first three flips, or an information sequence for (nt|n > 0}
which begins with the string hhht .
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A procedure may introspectively estimate the values of its
ignorance and effective learning, on the basis of the a posteriori

probabilities of hypotheses.

Def. IX.3. The uncertaintxb of a Bayesean procedure after seeing
————————

the sample S denoted U(Sk,c) , ic the expected value of

k 3

its ignorance.

U(S,,C) = - & P(, [8,,C) - loglB(, [5,,0)]
1

Def. IX.4. The apperent learning of a Bayesean procedure on the

basis of the sample S denoted AL(Sk,C) , is the expected

k 3

value of effective learning.

AL(S,,C) = }:: p(, |5, ,C)- 10g[P(H, 5,,C)]

- zi:P(HilSk,C)'log[P(HiiC)] )

In contrast to effective learning, apparent learning is always
non-negative. Regardless of what its observations are, the procedure
will never estimate that those observations have been misleading.

Apparent learning is also non-additive and not even monotonic. The

E]This is Watanabe's [1960] "entropy"' measure.
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value of apparent learning can return to zero after having been
positive.z/

The values of ignorance and uncertainty depend on whether we
"lump" together stochastically equivalent hypotheses or treat them
as separate., Fortunately, however, the values of both effective and
apparent learning are independent of this choice. Such partitioning
affects only the origin of the ignorance and uncertainty scales, and
the learning measures are based on differences.

For any procedure ﬁhich converges to the correct answer in the
limit, both effective and apparent learning will converge to the initial
value of ignorance (with stochastically equivalent hypotheses lumped).

Not all hypothesis spaces have finite uncertainties. We have,

of course,

zP(xilc) -1
and |

1lim x * log x =0
x=0

but these are not sufficient to guarantee that

L p(H, |c) + 10g[P(H,|C)]
i

é/_k simple example of this occurs when testing a coin which is
known a priori to be biased 2/3 to 1/3 . The hypothesis space
consists of H ("heads" favored) and H ("tails" favored).

A run of n "heads’ causes apparent learning. A run of n "tails"
causes apparent learning. But a run of n "heads" followed by a
run of n "tails" causes no apparent learning.
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converges.z/ Convergence will, in general, depend on the particular
probability distribution. In some important cases, é.g., a distribution
defined by an ordered (or a linear) stochastic grammar-grammar)
convergence is assured. The conditions for finite uncertainty of the

language of a stochastic grammar and finite expected length of strings
in the language are closely related [cf. Pohl 1967]. For an unambiguous
stochastic grammar, the uncertainty of the language of any non-terminal
symbol is the sum of the uncertainty of its alternatives and the
weighted sum of the uncertainties of their languages.

Consider the grammar-grammar G, from Chapter IV:

3
S ::=R | RR (1/2, 1/2)
Roagys N et P (1)
P::=A | P"["A (12, 1/2)
A::=T | TN (1/2, 1/2)
T ::= "a" | "B (1/2, 1/2)
N ::="s" | ma" (1/2, 1/2)

L Consider the case where for each, n therg are precisely
n y
2(2 -n) hypotheses with probability 2 (2%) . Now

o n n ©
22(2 “n).z'(e)-:Ze'n-_-l ,
n=1 n=1

so this is a valid distribution, but

- ii E(EH-D) . [2—(2n) . 10g2(2-(2n))] = ji g - gt if 1
n=1 n=1 n=1

which diverges rapidly.
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If we use X to denote U(L(X),ﬁs) , we have the system of equations

l : l l.n 1' -~ -~
5+ log[1/2] - 5 - log[l/2] + 5 R+ 3 (R + R)

t?
n
'

]
Pt

éh
+ 5 R

e >
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=
+
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>
]
-
-+
23
+

o+
g*

=R =
i n ]
- bt kY
+ +

32
> B

noj -

=0

=y
1}
'._J

In 53 the non-terminal symbols are ordered in the sense that no
non-terminal symbol produces any non-terminal symbol defined by an
earlier rule. For any such grammaré/the matrix of coefficients is
éssentially triangular and the (positive) solution of the equations

is readily obtained by back substitution, e.g.,

if We need another condition which almost always holds in practice. If
P, = (A,w,@n) let R(pn) be the number of times A occurs in w .

3
Now we require that, for each rule, ):la(pn)-c;n <1 . If this
Ii=
condition does not hold, each A is expected to produce at least
one more A , and there will not be non-infinite positive solutions

for A .
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=
n
!.—I

T=1

A=2

A =%

P=7

R=8 -
S =13

The initial uncertainty of the hypothesis space generated by 53
is 13 , and the average amount of information which an inference
procedure must obtain from a sample in order to infer the correct

grammar is 13 bits.l/

Optimum Samples and Learning Rates

There are several potential applications for the measures
introducgd in the previous section, ncne of which have been explored
to any depth.

An optimum sample of size x for a best grammar GB may be

defined as the Sk which maximizes effective learning

ELOPt(k,C) max [EL(Sk,C)]

SR€SR(GB)

Il

10g [ max  [P(s lc,,C)/B(S, |c)11 .
5,€8,(Gg)  © ° %

l/_-’l‘his may be compared with the values for G1+ and G5 , that is, 15

and 23 bits respectively. Both these grammars are somewhat more
complex than average. Note, however, that this average is computed
on the basis of L(G3) which contains many simple non-reduced

grammars that are not really part of the hypothesis space.
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Informally, this indicates that the optimum sample contains those
strings which the best grammar is much more likely to produce in

combination than is the average grammar in the hypothesis space.

There are actually two components in this computation: deductive
learning springs from the elimination of non-DA grammars from the
hypothesis space

DL(SK:C) = -log [ Z P(Gilc)]

Gi is DA

and pure inductive learning is the balance of the effective learning,

i.e., the learning due to the use of frequency information in Bayes'

theorem to refine a posteriori probabilities
PIL(sk,c) = EL(Sk,C) - DL(sk,c) ;

Initially, we would expect that most of the probable grammars will
not generate L(GB) and deductive learning will be the predominant
element. Iater, however, when all the remaining probable DA grammars
generate L(GB) , most of the learning will of necessity be pure
inductive 1earning.éj

Any of our learning measures can pe divided by k to obtain

learning rate per string. Perhaps of more interest would be the

rate per symbol, obtaining by dividing by the total length of the

sample. It seems likely that for the former measure, optimum samples
will contain mostly long strings, while for the latter they will

almost certainly contain mostly short strings.

y Universal grammars, for example, are only rejected on the basis
of pure inductive learning, since they are always DA.
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An interesting open question is whether there exists an effective
procedure for constructing an optimumlsample. Another open question
is whether an optimum sample of size k+1 always contains an optimum
sample of size k . If so, we are assured of the existence of
optimum information sequences. If not, the construction of a
sequence will be affected by the size of sample which we wish to be
optimum.

We are also interested in the expected value of learning,
given a grammar (or class of grammars) and stochastic presentation.
These expected values are easy to define, but cannot generally be

placed in a closed form for easy evaluation.

E[EL(SR,CHGB] s;; )P(SRIGB,C) + EL(S,,C)
k‘\“B

]

P(GBISk,C) |

Z P(SkiGB,C) « log W

]

5, (Gg) L
Z ?(skIGB,c)
= sk(GB)P(SleB,C) * log 1;:P(GIIC5' P(Sklgl’c):

-

2,

Z P(SRIGB,C) . log[P(SleB,C)]
8, (Gp)

- Sl;}B)p(skIGB,c) . 1og[§:P(Gzlc) . P(Slez,C)}
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E[EL(S,,C)|c] gp(-(}iic) - E[EL(S,,C)[G,)

P(sklsi,c)

I

Y . le) & B(s,lc,,C)-1og
y = 5, (G,) k1 gP(GIIC)-P(SleI,C);

L #(e,l0) L B0, - 108[P(5,/G;,C)]

Sk

- ?—P(Giic)s X P(Slei,C)'log{ );: P(GIIC)-P(Sk]Gz,C)} .

(6

In both cases, it is the log{f: ] +term that is intractable.
)
It depends in a very delicate fashion on how close the languages of
the various grammars are, and not much can be said in general. The

other term may be interpreted as follows

L »(slo,,c) * 1oglP(s,ley,C))

G,)

5y (G4

f(T: Sk)]

¥ rsle,c) - L, 10sle(slay,cC)

G ) TE

5, (G; t

I

x p(s, lG,,c) - Y. #(z,8.) - 10glB(<lc,,C)]
Sk(Gi)(k i it 1,8, ) * og[P(7iGy,C)

1l

T 1oglp(rle,0)] + L £(r,8,)  P(sle;,0)
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TE%; 10g[p(xlc,,C)] * P(rl6,,C) - K

n

k * U(L(Gi),c)

where

u(1(6,),¢) = L B(xle,,¢) + toglP(rle;,c)]
T

TEt

which we recognize as the uncertainty of Gi's language. This

term in the expected value of learning is therefore a constant

per strigg.
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X. NOISE

Simple Stochastic Noise

To this point, we have assumed (in common with previous studies of
grammatical inference) that the information sequence is completely
reliable. This is a highly suspect assumption for real applications,
where noise of some sort is almost always present: keypunchers make
Errors, microphones pick up background, stray tracks show up in
bubble chambers. Humans can perform at least some inference in the
presence of such noise, rejecting some strings as special cases and
inferring a hypothesis which covers the others. This chapt;r is
devoted to conditions under which our procedures can function correctly,
even with an information sequence containing errors.

Probably the simplest assumption about noise which models a
realistic situation is that each string in the information sequence
has a known fixed probability of being incorrect, and that the

distribution of noise strings is known a priori (perhaps itself

specified by a stochastic grammar). If Py denotes the probability
of noise and P(GRIGN’C) is the probability of o, as a noise string,
then

P(cklﬂi,PN,c) = (1-Py) - P(aklai,c) + By P(GRIGN,C) .

143



When P(leGi,PN,C) is substituted for P(clei,C), stochastically
inequivalent grammars remain stochastically inequivalent if Pﬁ <1l.
All of our previous results about the procedure EB (Chapters V and
VII) still hold (e.g., the procedure is still effective, still
converges to the best grammar, ete.). As PN increases, the
conditional probabilities of strings for the various grammars become
progressively more similar (identical when PN = 1 ) and the learning
rate will be correspondingly reduced.

If all strings can occur as errors -- and this is generally a
realistic assumption -- the noise grammar will be universal. Furthermore,
we might expect that the probebility of noise strings would decrease with
length at least as rapidly as for grammatical strings (e.g.,
geometrically). The simple one non-terminal finite-state universal
grammar may provide an adequate model for many situations.

1t PN is sufficiently small, there will be very little error

introduced by the approximation

(l-PN) . P(ak|si,c) if P(ck‘Gi,C) >0
B (o, |Gy, C) if P(o,}G;,C) =0 .

This corresponds to encoding a string by means of the grammar being
.
considered if that is possible, and using the universal grammar only
for the exceptional strings.
Allowance for noise strings almost completely defeats the

deductive preprocessing of Chapter VI, since we can no longer require

that a grammar be DA with respect to the sample. In general, different
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grammars will identify different subsets of the sample as the error
strings; without knowing the correct grammar the deductive preprocessor
cannot determine which subset to use in testing deductive adequacy.
It might perhaps reject grammars which failed to genera;erégme fraction
of the sample, but this is no longer a sharp criterion; it will not
reject grammars as quickly (and not nearly as safely) as the DA
requirement.

The efficiency lost by failure of the DA criterion arises as
soon as we admit the possibility of noise, independent of the magnitude
of PN . In other respects, however, our procedure will functicn
nearly as well as before, if PN <<1 . It will learn at nearly the same
rate, converge to the best grammar almost as quickly, etc. This is
probably typical of the noisy situations we envision as.applications.
Bat what of the extreme situations with low signal-to-noise ratios
(i.e., PN -1 )? In the limit (provided the noise distribution is
known precisely) the relatively small deviations from the noise
distribution due to the valid strings will become significant; by the
results of Chapter V, the correct grammar will ultimately be chosen.
However, it would be futile to place confidence in guesses based on a
small sample. It may be more efficient to first collect a statistically
significant sample, and then merely infer a grammar for those strings

which occur significantly more often than explained by the noise

distribution.
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Estimating the Error Rate

In the previous section we required both the frequency and
distribution of incorrect strings. This is a strong requirement,
which may be difficult to meet in practice. For small samples and low
error rates, of course, the precise value used for PN will have
little effect on our computation; we may choose to replace it with
a bound (e.g., "less than one percent error strings").

As the sample size grows large, an incorrect value for PN
will introduce a systematic stochastic inequivalence between our
estimated distribution for the best grammar and the sample, ultimately
significant enough to cause the selection of another grammar. But
the large samples also provide us with the means to refine our
estimate for PN , much as we estimated parameters in Chapter VII.

An exact method can be constructed. However, here we merely sketch
an approximation.

Assume that the noise grammar GN is known and universal, and
that it is known that the best grammar is not universal. Then for
any allowable candidate grammar there will be some strings generated
by the noise grammar and not by the candidate. If PN is non-zero,

these will occur in sufficiently large samples. If m of these have

occurred by time k , denote them by GN....Gﬂ , their joint frequency

1 m
m
by FN(k) = Z f(e‘N ,sk) and their joint probability by
J=1 J
P(N,k) = }: P(oy | Now the expected value of Fy(k) is

J.—
PN'k'P(N,k) , and we could use ?ﬁ(k)/(k'P(N,k)) as a maximum

likelihood estimator for PN . However, we do have someé & priori
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knowledge about PN -- we know it should be small and wish to reject
grammars which require it to be large (e.g., .99 ) -- so we instead
use Fﬁ(k)/P(N,k) as an estimator for the total number of error

strings in the current sample, and use this value in the generalized

Iaplace rule developed in Chapter VII

B, + 1+ FN(R)]P(N,}:)

51 + 32 + 2+ Kk

1

E{Py[C] =
51 and 82 will generally be chosen on tne basis of prior experience
in a particular application: B1 =0, ﬁz = 100 is a somewhat more
precise formulation of "less than one percent error strings."” As
k - this estimate will (for the best grammar) converge to PN ;
by the assumption that no candidate grammar is universal, all
stochastically inequivalent grammars remain inequivalent, independent
of their particular estimates of PN 3 therefore the results of
Chapters V and VII still hold and the inference procedure will converge
to the best grammar.

In any given applicaticn, statistics can be kept on the final
value of E[PN|C] for the selected grammar in each run and used to
refine the values of 51 and 62 . Finally, the strings identified
as error strings over a large number of runs, together with their
frequencies, can be themselves the subject of grammatical inference,
to determine if there is a better noise grammar than the one previously

assumed.
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Implications of Noise

We have seen that noise of known distribution presents no formal
difficulty to the enumerative Bayesean procednre.‘ On the other hand,
by eliminating the DA criterion, it represents a substantial practical
obstacle. We believe that this is a reflection of the difficulty of
the problem, rather than of any particular inadequacy of the procedure.
In fact, we would argue that the ease with which this procedure may
be extended to handle noise is evidence for its general validity.
Neither the constructive methods of Solomonoff [1959] and Feldman [1967]
nor the enumerative method of Gold [1967] will work in the presence
of noise. Furthermore, since they do not incorporate frequency
information or probabilistic estimates, it is doubtful that they
could be generalized to handle noise realistically. Noise .inescapably

complicates inference, but it seems to complicate our procedure less

than most.
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XI. CONCLUSIONS AND DIRECTIONS

FOR FURTHER RESEARCH

It is probably no accident that a theory of
grammatical structure can-.be so readily and
naturally generalized as a schema for theories
of other kinds of complicated human behavior.
An organism that is intricate and highly
structured enough to perform the operations
that we have seen to be involved in linguistic
communication does not suddenly lose its
intricacy and structure when it turns to
nonlinguistic activities.

[Miller and Chomsky, 1963]

Summary

The burden of proof falls squarely on those
who champion a quantitative application of
the calculus of probability to plausible
reasoning. All that they have to do is to
produce a class of non-trivial conjectures
A for which the credibility Pr{A} can be
computed by a clear method that leads to
acceptable results in at least some cases.

[Polya 1954]

There are few areas of science in which one
would seriously consider the possibility of
developing a general, practical, mechanical
method for choosing among several theories,
each compatible with the available data.

[Chomsky 1957]

We have stated the grammatical inference problem in a very general

form (Chapter I). By specializing to stochastic grammars and
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presentations we have established a number of new effectiveness and
decidability results (Part II). The procedure EB provides a complete
formal solution to that grammatical inference problem: it is effective,
it makes the optimal choice at each step, converges to the best
grammar, and tolerates noise of known distribution. The procedure

has been implemented and operates as predicted, although it is
computationally expensive, even with the improvements we have
developed.

The principal obstacle to practical utilization of our results
is the amount of computation involved in enumerating and rejecting
the vast number of grammars which are not deductively acceptable., If
an efficient deductive preprocessor can be devised, evaluation of the
DA grammars by the procedure EB should not prove unduly expensive.
Additionally, the enumerative Bayesean procedure serves aé a yardstick
against which heuristic procedures should be judged -- such a measure
being notably absent from previous proposals for heuristic inference
procedures.

The procedure in its present form (as a LISP program) is too slow
fér all but very small grammars; without further search limiting
techniques and recoding into a more efficient language it is probably
not economic for any of the envisioned applications. Yet some
(e.g., grammars for spoken words, or for bubble chamber pictures)
are not completely beyond its reach. Inference of grammars on the
order of ALGOL 60 will require substantially different techniques,

probably involving the learning of subgrammars for sublanguages.
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Qur results not only provide a sound basis for the solution of
an interesting class of grammatical inference problems, but are more
generally applicable. Our general procedure does not rely on unique
properties of grammars. Rather, it is based on the probability
structure which they impose on the observations. Its requirements
are merely an enumeration of the hypothesis space which is
effectively approximately ordered by a priori probability, conditional
probabilities of observations with respect to hypotheses, and
convergence of the samples with probability one. Any inference
problem which meets these conditions can be solved by such a
procedure, and our proof that optimal choices from infinite,
non-parameterized hypothesis spaces can be made effectively should
make our procedure attractive in a wide variety of applications.

This study has treated only a few of the many valid formulations
of the grammatical inference problem, and has not exhausted the
interesting questions there. In the balance of this chapter we
discuss a variety of extensions, conjectures, and open questions

which we believe deserve further attention.

Strategy and Efficiency Considerations

We cannot seriously propose that a child learns
the values of 109 parameters in a childhood
lasting only 108 seconds.

[Miller and Chomsky, 1963 ]

Although the enumerative Bayesean procedure presented in Chapter v

and refined in later chapters is formally optimal, its Achilles' heel
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is efficiency. As we indicate in Chapter VI, the enumerative problem
is immense; our implementation in Chapter VIII can infer only
grammars of extremely modest proportions within reasonable bounds
on computation. A more realistic theory of inference should include
computational cost in its definition of optimality, reflecting the
fact that in most applications there are trade-offs among the cost of
computation, the cost of further sampling, and the cost of guessing
incorrectly.

Short of developing a general theory of the cost of inference,
one might test various heuristics which lead to nearly optimal solutions
at substantially lower cost. The constructive methods of Chapter II,
for example, may provide a starting point. The residue analysis
method could certainly be refined to base its merging decisions on a
goodness measure, and -- where two choices have similar measures --
to be non-deterministic and produce a small set of grammars for
evaluation. The question of how often these heuristic methods yield
optimal grammars, and how close they average, should be carefully
studied.

Heuristic methods may be supplemented by enumerative methods if
they work well often enough to be attractive, but fail too often to
be completely acceptable. This could be achieved either by enumerating
and testing a few grammars at each step, or by using some criterion to
determine when the heuristic method is not working well enough. We
conjecture that the X2 test provides an adequate criterion: if the
presentation is stochastically equivalent to the candidate grammar, the

expected value cof KE is the number of distinct strings in the sample,
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minus one; however, if it is inequivalent, the expected value of xz
is proportional to the total number of strings in the sample (k) ,
so, for any confidence level, an incorrect grammar would finally be '
rejected by this test.

More work is needed on efficient enumeration techniques, particularly
on techniques for enumerating only DA grammars. Additionally,
restrictions of the classes of grammars appropriate to particular
applications should ve determined, so that grammars of practical
importance may be inferred.

Hypotheses can be arranged in hierarchies. Rather than constructing
an inference procedure strictly for finite-state grammars, or for linear
grammars, etc. (or for normal grammars, 1-standard grammars,
2-standard grammars, etc,),it is reasonable to think of constructing
an inference procedure for context-free grammars, whose meta-hypotheses
are finite-state, linear, etc. (or normal, l-standard, 2-standard), or
even a general inference procedure whose meta-meta-hypotheses are
context-free grammar, Turing machine, etc, This generalization can
be easily incorporated into our formal structure if we are given
a priori probabilities for each of the meta-hypotheses (and if their
dependent hypotheses all meet our general conditions). But this involves
searching all the hypothesis spaces in parallel to find the best
nhypothesis in any of them. It would be of interest to develop a
procedure which searched only the most probable space (e.g., finite-state)
until it concluded that it wasn't doing very well (e.g., if the sample

contained only balanced parentheses) and then switched to another space.
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Again, such a procedure would not generally locate the optimum answer

at a given time, but might well be preferable on a total cost basis.

Variations of Presentation

From Chapter V onward, we have considered only stochastic text
presentation. Most of the other forms of presentation discussed in
Chapter III can be justified for some applications, and results
analogous to those for stochastic text would be interesting. Both
Gold [1967] and Feldman, EE‘Eir[l969} discuss presentations without
an underlying probability structure. Although our results are not
precisely comparable, the situation is roughly that complete text
is much weaker than stochastic text, which is about as powerful as
complete informant presentation.

A stochastic informant presentation could be incorporated
directly into our enumerative Bayesean scheme. Negative instances
reduce the class of DA grammars, positive instances are treated as
before. There does not seem to be any reasonable way to utilize the
frequencies of negative instances, except in the case of noise
(Chapter X), where frequencies play an important role.

Gold [1967] discusses a reactive informant, which classifies

strings proposed by the inference procedure as either sentences or
non-sentences. Such an informant does not impose a frequency
distribution on strings, and it seems hard to improve much on Gold's
results for guessing by enumeration; ordering the enumeration of
grammars by a priori probability (Feldman [1969] terms this occam's

enumeration) should improve average behavior, however. An unreliable
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(noisy) informant would seem to indicate a Bayesean analysis. Either
form of reactive informant raises the question of an optimum inquiry

strategy. Probably the best strategy is to maximize at each step

the expected value of apparent learning (Chapter IX) but we have

not found an effective method for this maximization; simplifications

or approximations are called for.

The discovery procedure of Solomonoff [1959] involves both text
and reactive informant presentation. Many different combinations might
be studied. One which we conjecture would be of practical interest
allows the alternation of text-like and reactive informant presentations,
i.e., the informant gives a string and its category, then the procedure
proposes a string which the informant categorizes, etc.

The heuristic constructive inference techniques which have been
proposed all assume -- explicitly or implicitly -- that their samples
are in some sense representative, e.g., that they contain all (or most)
of the shortest strings in the language. This intuitively reasonable
assumption can be made precise in terms of an underlying probability
distribution (i.e., a stochastic grammar). However, in cases where
the sample is deliberately constructed, rather than resulting from a
random process, a human is more likely to create & (nearly) irredundant
text, probable strings first, than to repeat strings with frequency
proportional to their probability. This is somewhat analogous to an
urn problem without replacement -- though of a funny sort, since when
a string is drawn, all copies of that string are removed. The statistics

for irredundant samples are formally identical to the Fermi-Dirac
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statistics of statistical mechanics which apply to particles obeying
the Pauli exclusion principle.l/ Thus, although the formulae are
more complex, they do relate to an intensively studied class, and it
may be that the relevant transformations or approximations have
already been developed. We present the following conjectures:

(1) a modified enumerative Bayesean procedure will converge to the
best grammar for irredundant (Fermi-Dirac) text, (2) the expected
learning rate per string will be higher for irredundant text than for
stochastic text, (3) an approximate solution, which will converge
to the best grammar, can be obtained by estimating the frequencies
for strings on the basis of their position in the information sequence
and/or their length, and then applying the method of Chapter VII

(grammars with free parameters).

Learning Partial Grammars

Students of infants and of language have long
wondered over the fact that a structure of such
enormous formal complexity as language is SO
readily learned by organisms whose available
intellectual resources appear in other respects
quite limited.

[Braine 1963]

1'/It is tempting, but probably fruitless, to pursue such analogies:
stochastic presentation obeys Maxwell-Boltzmann statistics (can
we find Bose-Einstein presentations?), complexity is analogous to
E/XT (how do we interpret the "temperature" of a presentation?),
we have already discussed the entropy of hypothesis spaces and
presentations (should we, with Watanabe [1960], regard the decrease
in entropy of the hypothesis space during inference as & profound
violation of the Second Iaw of Thermodynamics, or should we relate
it to the increased entropy of the sample?), etc.
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We noted in Chapter VI that the number of N non-terminal
grammars grows roughly as 2“3. We have hopes that plausible improvements
in deductive methods, restrictions on the form of grammars considered,
etc., will make grammars with several non-terminals (and several
terminal symbols, for that matter) inferrable with reasonable effort.
Tt is clear, however, that grammars as large as the ALGOL 60 grammar
(i.e., grammars involving scores of non-terminals and scores of terminal
symbols) will not be made attainable simply by improving the deductive
processing. There are too many plausible (and deductively acceptable)
grammars which are simpler, to expect that the ALGOL 60 grammar would
ever be reached in the enumeration; the sample size required to make
that particular grammar preferable is staggering.

On the other side of the coin, there is no reason to believe that
any human ever has (or ever will) successfully inferred a complete
correct grammar for ALGOL 60 solely on the basis of a set of ALGOL 60
programs. Unless we wish to join the White Queen in "believing
impossible things before breakfast,”" we need not set such difficult
goals for our inference procedures. Miller [1963, 1966] has given
some evidence that people do rather poorly at inferring even rather
simple grammars. The reader may wish to verify this by seeing how
long it takes him to infer a context-free grammar for the following
sample (numbers in parentheses indicate frequency of occurrence of

the corresponding strings):
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ab (256)

babaa (64)
ababbb (16)
bbabaaaa (16)
abababba (8)
bababbbaa (4)
abbabaabb (W)
babaaabbb (&)
abababbbbb (1)
ababbbabbb (1)
babaaababba (2)
abbabaaabba (2)
ababbabaaba (2)
bbbabaaasaa (&)
babababbaaa (2)

For definiteness we provide the following hint, which would not
normally be given to an inference procedure: There 1s an unambiguous
one non-terminal stochastic grammar whose language up to strings of
length 11 is precisely this sample, with probabilities proportional
to the given frequencies. It is instructive to consider how much the
hint simplifies the problem (in particular, it provides a large number
of negative strings), how one would procede in the absence of the
information in the hint, and how large a sample is needed to justify
selection of this grammar.

Nevertheless, children do acquire natural languages, and it is
widely assumed that they do so by inferring a grammar [Chomsky 19571
[Gold 1967]. But adequate grammars (ve they context-free or

transformational) for natural languages are certainly more complex than
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the AIGOL 60 grammar, and the range of observed natural languages is
sufficiently large to require a rather rich hypothesis space --
probably much richer than anything we have considered in this study.

How are we to account for language acquisition by children?
Or, more to the point, does language acquisition by children suggest
means for improving our grammatical inference procedures? We believe
that it does, and we conjecture that an important distinction betweén
the child's experience and that we have assumed for our procedures is
this: The child is not initially presented the full adult language he
is ultimately expected to learn. Rather, he is confronted with a very
limited subset, both in syntax and vocabulary, which is gradually
(albeit haphazardly) expanded as his competence grows. There is
evidence that children's early utterances are representable by very
simple context-free grammars with few non-terminal symbols [Braine
1963] and a small terminal vocabulary.

| Foreign languages are not normally taught by confronting the

beginning student with the work of a great prose sty%;st. Nor is the
student introduced to a programming language by presenting him with
a representative sample of the programs for which that language is
used. On the contrary, particularfy simple constructs are introduced
first. A portion of the vocabulary is established and then used in
simple sentences (or program fragments). After these are firmly
acquired, both vocabulary and syntax are enlarged, hopefully until the
student is fluent in the entire language.

The point of this discourse is that we should not expect our

inference procedures to perform well when confronted directly with complex
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languages. We do not know how humans acquire languages, but human
performance suggests the desirebility of progressing from simple
subsets to more complete presentations of a language. There are at
jeast three ways in which we might simplify the task of the inference
procedure: we could give it some rules which must be incorporated
in its grammar (e.g. subgrammars for <identifier> and <arithmetic
expression> which are common to many programming languages, Or for
<electron track> and <proton track> which are common to many bubble
chamber events); we could expose it to sublanguages (e.g., spoken
repetitions of a particular word), let it build grammars for them
separately and then incorporate them into a larger grammar for the
whole language; or we could incorporate non-terminals into sample
strings (e.g., "He hit <direct object>"). Similarly, a responsive
jnformant could answer questions involving non-terminals, or instead

of responding "no" could give the closest valid string.
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