PB188749

CS 148

NOTES ON AVOIDING "GO TO'" STATEMENTS

BY

D. E. KNUTH
R. W. FLOYD

TECHNICAL REPORT NO. CS 148
JANUARY 1970

Reproduced by the
CLEARINGHOUSE
tor Federal Scientific & Technigal
Information Springfisld Va. 22151

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

DDC
D anU

JAN 19 B0

iy

NOTES ON AVOIDING "GO TO" STATEMENTS

By

D. BE. Knuth and R. W. Floyd

The research reported here was supported by IBM Corporation.

NOTES ON AVOIDING "GO TO" STATEMENTS

D. E. Knuth and R. W. Floyd

During the last decade there has been a growing sentimeat that the
use of "go to" stetement: is undesirsble, or actually harmful. This
attitude is apparently inspired by the idea that programs expressed

solely in terms of conventional iterative constructions ("for", "while",

1,
~

etc.) are more readable and more easily proved correct."‘ In-this note
we-wihl make:'a few explcratory observations about the use and disuse of
\ go to)sta.tements, based on two typical programming examples (from
"gymbol table searching" and "packtracking”).
In the first place let us consider systematic ways for eliminating
go to statements. There are two apparent ways to achieve this:

(a) Recursive procedure method. Suppose that each statement of a

program is labeled. Replace each labeled statement
L: S
by
procedure L; begin S; L' end
where L' is the static successor of the statement 35 . A go to statement
becomes simply a procedure call. The program ends by calling & null
procedure. This construction shows that the mere elimination of go to

statements does not automatically make a program better or easlier to

[24

follow; "go to" is in some sense a special case of the procedure calling
mechanism. (It is instructive in fact to consider this construction in
reverse, realizing that it is sometimes more efficient to replace
procedure calls by go to statements!)

(b) Regular expression method. For convenience, imagine a program
expressed in flowchart form, as a directed graph. It is well known that
all paths through this graph can be represented by “"regular expressions™
involving the operations of concatenation, alternation, and "star"; these
latter correspond to familiar constructions in programming languages
which do not depend on go to statements. Therefore it appears that
'g> to' statements can be eliminated, although it msy be necessary to
duplicate the code for other statements in several places. This process
is essentially what John Cocke calls "node splitting".

Consider, for exsmple the following well-known programming
situation:

for i := 1 step luntiln do

_iiA[i] = x the: go to found;

not found: n := i; A{i] := x; B{i] := O3

found: B[i] := B[il]*1;
(Let us assume, for convenience, that 1 = n+l if the for loop is
exhausted.) It is not obvious that the go to statement here is all that
unsightly, but let us suppose that we are reactionary enough that we
really want to abolish them from programming languages. {See Dijkstra
Comm. ACM 11 (1968), 147-148.] Ona2 way to avoid the go t¢ is to use &

recursive procedure:

procedure find;
Af 1 >n then begin n := i; A[1] := x; B[i] := O end
else if Ali] # x then begin i := i+l; find end;
1 :=1; find; B[i] := B{i]+1;

An optimizing compiler could perhaps produce the same code for both
pPrograms, but again it is debatable which program is most readable and
simple.

Other solutions chenge the structure of the program slightly:

(a) i =13
while i <n and A[1] £ x do i := i+1;
if 1 > n then begin n := i; A[i] := x; B[i] := O end;
Bfi] := B[1]+1;

(b) 1= 1
vhile Al1] £ x do
begin 1 := i+1;
if i > n then begin n := i; A[i] := x; B[1] 1= 0 end
end;
Bl{i] := B[i]+1;

Solution (b) assumes that n > 0 . Both solutions increase the amount of
calculation that is specified: (a) tests "i > n" twice, while (b)

tests "A[i] £ x" after n has been increased.

The flowchart of the original program is:

START (*)

61 “:_] ul =1iz:=1
i‘lO T, = i>n?
T NO T, TQEA[i] =% ?
YES YES 0y = iot= i+l
, o), 0, =1 = 1; A1} == %3 B[i] := O
_' o) = Bli} := B[i}41

STOP

By & suitable extension of BNF we can write & grammar for all

flowcharts producible by a language without procedure calls or go to

statements:
<program> ::i= START
<statement>
STOP
<statemant> ::= l <basic statement>

l

<basic statement> ::= é

! I

<statement>

<conditiondl statement> | <iterative statement>

l

<conditional statement> ::=

|

YE NO

<statement> <statement>>

N/

L /\
<statement>

NO

<iterative statement> ::= <statement>

d

YES

NO ES

<statement> <gtatement>

-/

Here o denotes a "statement" and T denotes a "test".

We have not completely analyzed this grammar, although it appears to
be unambiguous; there is probably an efficient parsing algorithm which
will decide whether or not & given flowchart is derivable from the
grammar, constructing a derivation when one exists. But we can easily
prove tﬁat the above flowchart is not producible by this grammer. In fact,

&8 stronger result is true:

"heorem. No flowchart producible by the above grammar specifies

precisely the computations of the above example flowchart (*).

This theorem contradicts our observations above about regular

expressions being reducible to concatenation, alternation, and iteration;

for our flowcharts provide each of these operations, yet they cannot
reproduce the computations in (*). What went wrong? Perhaps il is
that regular expressions are nondeterministic, while computations are
inherently deterministic; but no, it is well known that regular exprussions
may be consiiered to be deterministic. The dffference really lies in
the nature of computational tests.
Thus, let us consider a special class R of regular exprecsions;

f describes all computational sequences (path:s in the flowchart)
producible by flowcharts corresponding to a language without ¢o-to
statements:

the empty sequence is in R.

geq, for all statementis o.

14 ﬂaen, for all “1 and aeea.

1
(TYRllTNRE), for all R, and RyeR and all tests T.

(TYﬁl)*TNGR, (TNRl)*TY€R, for sll R;¢R and all tests 7.

Here the subseripts Y and N denote the "YES" or "NO" branches in
the flowchart.
To prove the theorem, consider the computational seguences producible

by the flowchart (*); they may be described by the regular expression

Ul(TINTENGE)*(TlYa:S'TlNTZY)Gh . (*%)

We will show that the corresponding regular event (the sequences defined

by this regular expression) cannot be defined by any of the regular

expressions in R .

Every regular expression in R which specifies infinitely many

sequences includes some test 1 with one of the following two properties:

(1) Every occurrence of TY is followed by at least one occurrence

of TN.

or (ii) Every occurrence of T is followed by at least one occurrence

N
of Ty -
The infinitely many sequences specified by (**) dc not have any

such test since the sequences include

9Ty Ly 2 YT ey®n 2 ST 2f 1y
Hence no regular expression in R can produce the regular event (**},

and the theorem is proved. '

Perhaps the reader feels that the above proof is too "slick", or
that soemething has been concealed. In fact, this is quite true; we
have penalized the class of flowcharts too severely! Compound tests
such as "11 and 1'2" have not been allowed sufficient latitude. Our
flowchart grammar should be extended as follows: Replace

in the definitions of <conditional statement>> and <iterative statement>

by

<condition>

n}/ \{«0

and add the new definition

<cond§tion> = <condition> <condition>
YES / \1"10 YE 0 YE lNO NO YES
<condition>
YEE NO

The grammer now beccmes ambiguous in several cases, although the ambiguity
can be removed at the expense of some complications which are irrelevant
here. More important is the change to grammer @ , where we are allowved

to substitute

t 1
TY for TN , TN for TY

. byttt] (Pa
or TNTN for TN y (-tNl'rNrY for TY

*
whenever T,T',T" are tests. Thus since ol('rNoa) TyO) R 5 8O is

Gl(TlNTENG'Z) (TlY'TINTEY o) s

and this is the same as (**) with o, deleted. The theorem above is
almost false! But we can still prove it by an exhaustive case analysis,
corsidering all possible substitutions of compound tests and showing
tlet none are permissible because of the presence of € -

The theorem becomes almost false in another sense too, when compound

conditions are considered, siace the expression

»*
{
oy (T on®2) (ToylTanToy) (Tay® 5l am)%

is in R and it differs from {**) only in that 1., becomes and

Ty 1y

T J.NTE'Y becomes T The sequences are essentlally the same

W2y'iv
except that redundant tests are made. We could therefore consider
equivalence operations on regular expressions, allowing commutativity

of successive tests, and an idempotent law 7 T, » In that case

vy 'y
our theorem would become false; but we can easily find another flowchart
for which the theorem still applies: Simply put another statement box o© 5

between T 1 and T 5 ¢ Then no two tests are adjacent, and our original

"sliek™ proof immediately shows that the regular event defined by
(T o) (g,)o
9 st ale) iyl T s ey 0

is not equivalent to any regular event definable with f . (When no
two tests are adjacent compound conditions cannot appear, nor 4o any of
the equivalences apply, so none of the extensions affect the original
proof of the theorem.)

Therefore our "slick" proof is vindicated, and we have proved the

existence of programs whose go to statements cannot be eliminated

without introducing procedure calls.

Let us now consider & second example program, taken this time from
a typical "backtracking" or exhaustive enumeration application. Most

backtrack problems can be abstracted into the following form:

start: m{l] := 0; k := O3
up: k = k+l; list(k); alk] := m[k];
try: if alk] <m[k+1l] then begin move (a[k]); go to up end;
down: X := k-13
if k = O then go %o done;
unmove (alk]);
alk] := a[k]+1; go to try;
done:

Here the procedures 1list, move, unmove may be regarded as manipulating
a variable-width stack s[0],s[1],... of possible choices in this
anstracted algorithm. Procedure lis' (k) determines all possible choices
at the k-th 1level of backtracking, based on the previously made choices
a[l],...,a[k-1] . If there are c choices now possible, list(k) will
set m[k+1] := m[k]+c , and it will also set the stack entries
smlk]+1],...,s[m[k]+c] to identify the choices. (Note that ¢ can
be zero. The choices might be, for example, where to place the k-th
queen on & chessboard, given positions of k-1 other queens, if we are
trying to solve the queens' problem.) Procedure move(t) makes the
decision to choose alternative s{t] ; this usually means thet some
internal tables need to be updated. Procedure unmove(t) reverses the
decisions made by move(t) .

It is not necessary to understand the exact mechanism of this
construction, aithough people familiar with backtracking should find
the previous paragraph self-explanatory; the main point is that essentially
all backtracking programs have the form of the above program, when
appropriate sequences of code are substituted for 1list(k) , move(al[k]) ,
and unmove{a[k]) , hence the propram is worth considering from the

standpoint of go-to elimination.

10

First we can eliminate go-to's by introducing a procedure:

procedure backsrack(k); value k; integer k;
begin list(k); alk] := m[k];
while alk] < mlk+l] do
gg_gi_nmove(a[k]); backtrack(k+l); unmove(alkl);
alk] := a{k}+1
end
end backtrack;
m{1] := C; backtrack(l);

This use of recursion is rether clean, so the above program is attractive
except for the procedure-calling overhead (which is i.mporte.;nt since
backtrack programs typically involve many millions of iterations).
It is an interesting exercise to prove this program equivalent to our
first version.

Now let's try to eliminate the go to statements without introducing

a new procedure. The flowchart is:

START

Q
Q
1]

m{1] :=0; k := O

1 1
o, =k 1= k+1; list(k); elk] := m[x:
95 T, = a[k] < m[k+1]
YES 0= move(al[k])
71 93
ch = k = k=1
NO 'l'2 =k=0
%y
o5 = unmove(alk]); afk] := a[k]+1
NO
‘l'2 GS
YES
STOP

Here we have the basic flowchart structure

P

inctead of the previous situmtion when we had

NP e aro e

It twrns out that node-splitting works in tris case but not the other;

we can make two coupies of node 0, in the above flowchart and we

obtain

START

This diagram obviously satisfies the conditions of our flowchart grammar

above, so we can av>ii thr + i+ rhatementr.

12

What is the resulting program? Our flowchart grammar above allows
more general iterative statements than present-day programming languages

will admit. A general iterative construction might be written

begin loop o,; exit loop if 7,; o, end loop; {3xx)

but today's languages only consider the case that Ul is empty:

while > 1 ic_ o]

1 23

or if a5 is empty:

do o, until v

1 1}

We can always rewrite (***) in the equivalent form
95 while Ty do begin 055 0y end;

but this is quite unattractive when o. is long, 5o & programmer will

1

certainly prefer to use go to statements in that case. If we want to
teach programmers to avoid go to statements, we must provide them with
e sufficiently rich syntax of iterative statements to serve as a

substitute.

Using (#**) leads to the following program for backtracking without

go to statements:

m[1l] := 0; k := 1; list(1); a[l] := O;
begin loop
while a[k] < m[k+1] do
begin move(a[k]);
¥ = k+1l; list(k); alk] := mlk]
end;
k := k-1;
exit loop 3f X = O;
umove (alk]); alk] := afk]+1
end Loop;
13

This code, although free of "go to statemerts", involves an uncomfortable
element which may not make it very palatable: the "while a[k] < m{k+1]"

is a rather peculiar condition since k varies and the test involves
different variables each time. This is quite different in effect from

the appearance of the same clause in our recursive procedure backtrack(k) .
It is possible to think of the program in a fairly natural way nevertheless,

for example (in tree language) as follows:

start at root of search tree;

while poseible to go down and left in tree do 'soj
move up one level in the tree;
exit loop if at the root;

move to the right in the tree;

end looE;

this is a typical tree traversal algorithm. Yei it is debatsble whether
or not the elimination of go to statements was an imprcvement.

The syntax in (*¥¥) is perhaps nc the best way Lo improve
iteration statements. An alternative proposal, based on some unpublished
ideas of Wirth, has just been implemented as an extension to Stanford's
ALGOL W compiler: The statement

repeat <block>
has the effect of

L1: <block>; go to Ll; I‘Z:

and the statement
exit

hac the effect of

1k

g to L,

where I..2 is the second implicit label corresponding to the smallest

repeat block statically enclosing the exit stetement. Thus, (¥*¥*)

becomes
repeat begin al; ir 7 then exit; L end;

and we can even write our symbol table search routine without go to

statements:

i::=1

repeat begin
while 1 < n do if A[1] = x then exit else i := i+l
n :=1; A[1] := x; B[i] := 0; exit

end;

B[i] := Blil+1;

.
b

Here the "repeat loop" is never repeated, but the desired effect has
been achieved. It appears doubtful that this repeat-exit mechanism
will be able to eliminate go to statements in general, since it only

allows a "one-level exit"; further study of these issues is indicated.

15

