
CS 148

NOTES ON AVOIDING "GO TO" STATEMENTS

BY

D. E. KNUTH

R. W. FLOYD

TECHN ICAl REPORT NO. CS 148
JANUARY 1970

Rep,od" cod by the
CLEARINGHOUSE

fo. Federol Sc,entific & T echni~al
Informolion Springfield Vo. 22151

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UN IVERS ITY

PB188749

NO'll:S ON AVOIDING "GO TO" STATEMENTS

By

D. E. Knuth and R. W. Floyd

Tht! r"sE'arch rpported here was supported by IBM Corporation.

NOTES ON AVOIDING "GO TO" STATmENTS

D. E. Knut.h and R. W. Floyd

During the last decadE: '~~ere has been a growing sent:iJnent that the

use of "go to" statement"; is undesirable, or actually harmful. This

attitude is apparently inspired by the idea that programs expressed

solely in terms of conventional iterative constructions ("for", "while",
"

etc.) &re more readable and more easily Ioroved correct. -- In--this, note

we wiH make.< ~ few explcratory observations about the use and disuse of

\)
go to statements, based on two typical programming examples (from

"s)'Inbol table searching" and "backtracking").
~

In the first place let us consider systematic ways for eliminating

go to statements. There are two apparent ways to achieve this:

(a) Recursive procedure method. Suppose that each statement of a

program is labeled. Replace each labeled statement

L: S

by

procedure L; begin S; L' end

where L' is the static successor of the statement S. A go to statement

becomes Rimply a procedure call. The program ends by calling a null

procedure. This construction shows that the mere elimination of go to

statements does not automatically make a program better or easier to

, ...

follow; "go to" is in some sense a special case of the procedure calling

mechanism. (It is instructive in fact to consider this construction in

reverse, realizing that it is sometimes more efficient to replace

procedure calls by go to statements!)

(b) Regular expression method.. For convenience, imagine a program

expressed in flowchart form, as a. directed graph. It is well known that

all paths through this graph can be represented by "regular expressions"

involving the operations of concatenation, alternation, and "star"; these

latter correspond to familiar constructions in programming languages

which do not depend on go to statements. Therefore it appears that

'g:> to' statements can be eliminated, although it may be necessary to

duplicate the code for other statements in several places. This process

is essentially what John Cocke calls "node splitting".

Consider, for example the following well-known programming

situation:

for i :; 1 ~ 1 ~ n ~

g A[i] = x ~ £!2 found;

not found: n :'" i; A[i] := x; B[i] := 0;

found: B{i]:= :a{i]+l;

(Let us ~ssume, for convenience, that i '" n+1 if' the for loop is

exhausted.) It is not obvious that the go to statement here is all that

unsightly, but let us suppose that we are reactionary enough that we

really want to abolish them from programming languages. [See Dijkstra

~. ~ 11 (1968), 147-148.] On,a way to avoid the go to is to use a

recursive procedure:

procedure find;

.if i > n then begin n := i; A[i] :== x; B[i] :: 0 ~

~.!! A[i] F x ~ begin i ,- HI; find end;

1 :'" 1; find; Bli] := B[i]+lj

An optimizino compiler could perha.ps produ.ce the same code for both

programs, but again it is debata.ble which program is most readable and

simple.

Other solutions change the structure of the program slightly:

(a) i :,. 1;

~ i ~ n !:!!i! A[i] F x .!!£ i := i+l;

if 1 > n ~ begin n .- 1; A[i] := X; Bli] :'" 0 ~;

B{i) := B[i}+l;

(b) i := 1;

~A[i) ~ x do

begin i := i+l;

.!!. i > n ~ begin n .- i; A(i] := x; B[i] := 0 end

~;

B[i} := B(i]+l;

Solution (b) assumes that n > O. Both solutions increase the amount of

ca.lculation that is spe.::ified: (a) tests "1 > n" twice, while (b)

tests "A[i 1 ~ x" after n has been increased.

The flowchart of the original program is:

START

STOP

T
1

==i>n?

1"2 == A[i] = Yo ?

0'2 == i :== i+1

cr 3 "" n • - i; A[i) : = JC; B[i] : = 0

0'4 ~ B[i] :; B[i]+l

By a suitable ext~nsion of BNF we can write a braJ!lrnar for all

flowcharts producible by a language without procedure calls or go to

statements:

<program> SMART

1
<statement>

1
STOP

J,
<statement>

! 1 -l
<basic statement>

!
<statement>

..Jr

!
<basic statement>

! ¢I .L.
<conditional statement>

l
J,

<iterative statement>

l

4

J,
<condit1onal statement>

~ 7\
<statement> <statement>

\1
+ <iterative statement> <stat~~
~

NO

Here a denotes a "statement" and T denotes a "test".

We have not canpletely analyzed this grammar, although it appears to

be unambiguous; there is probably an efficient parsing algorithm which

will decide whether or not a given flowchart is derivable floan the

grammar, constructing a derivation wben one exists. But we can easily

prove that the above flowchart is ~ producible by this grammar. In fact,

a stronger result is true:

~:heorem. No flowchart producible by the above grammar specifies

precisely the computat ions of the above example flowchart (*).

This theorem contradicts our observations above about regular

expressions being redudblt· to cO:lcatenatjon, alternation, and iteration;

5

for our flowcharts ~rovide each of these operations, yet they cannot

reproiuce the computations in (*). What went wrong? Perhaps it 1~

that regular expressions are nondeterministic, while computat~ons are

inherently deterministic; b..lt no, it is well known that reglllar exprt;sslons

rna:r be consiiered to be deterministic. The d~. rference really lies in

the nature of computational tests.

Thus, let us consider a special class R of regular expr~csions;

R describes all computational sequences (j-:e.th;, in the flowcharl)

producible by flowcharts corresponding to a languaEe without ~o-to

statement s :

the empty sequer.c~ is in R.

crER, for all statements cr.

Rl R2ER, for all Rl and R2ER.

(TyR1IT~2)' for all R1 and R2ER and all tests T.

(TyRl)*TN€R, (T~l)*TyER, for all Rlf.R and all tests T.

Here the subscripts Y and N denote the "YES" or "NO" branches in

the flowchart.

To prove the theorem, consider the computational sequences producible

by the flowchart (*); they may be described by the regular expression

We will show that the corresponding regular event (the sequences defined

by this regular expression) cannot be defined by any of the regular

expressions in R •

6

Every regular expression in R which specifies infinitely many

sequences includes some test T with one of the following two properties:

(i) Every occurrence of Ty is followed by at least one occurrence

of TN

or (ii) Every occurrence of TN is followed by at least one occurrence

of 'y .

The infinitely many sequences specified by (**) do not have any

such test since the sequences include

Hence no regular expression in R can produce the regular event (-*""').

and the theorem is proved.

Perl~ps the reader feels that the above proof is too "slick", or

tM.t something has been concealed. In fact, this is quite true; we

have penalized the class of flowcharts too severelyt Compound tests

such as "1 1 and T 2" have not bee:\ allowed sufficient latitude. Our

flowchart grammar should be extended as follows: Replace

in the definitions of <conditional. statement> and <iterative statement>

by

~
<condition>

YF~ ":0

7

I

and add the new definition

<cond~tiOn> •• - ~ YEs! ~o .. - YEXO
1

<condition>

lNO
<condition>

YEs! ~O
The grarrmar now beccmes ambiguous in several cases, although th~ ambiguity

can be removed at the expense of some complications which are irr(levant

here. More important is the change to grammar R, where we are a1.1."·,,,OO

to &ubstitute

TI
y for TN T I

N
for Ty

or TIT"
N N

for TN (T I IT 'T")
N NY

for Ty

* whenever T ,T' ,Tit are tests. Thus since 01(TN0 2) Ty0 4€R , so is

and this is the same M (*"*) with (73 deleted. The theorem above is

almost false! But we can still prove it by an exhaustive case analysis,

co~sidering all possible substitutions of compound tests and showing

tr e t none are permissible because of the presence of c. •
;)

The theorem becomes almost false in another sense too, when compound

conditions are considered, si~ce the expression

8

is in It and it diffe2's from (**) only in that T l.Y becomes T lY't lY and

T],BT 2Y becomes T III 'Z'f't IN' The sequences are essentla:lly the same

elCcept that red1.U1dant tests are made. WE. c a.G.d therefore consider

equivalence operations on regular expressions, allowing c~~utativity

of succc.3sive tests, and an idempotent law Ty'ry = 'f y ' In that case

our the:>rem would becO'lle false; but we can easily find another flowchart

for which the theorem still applies: Simply put another statement box a
5

between 'f 1 and T 2' Then no two tests are adjacent, and our original

"sliCk" proof immediately shows that the regular event defined by

is not equivalent to any regular event definable with R. (When no

two tests are adjacent compound conditions cannot appear, nor do any of

the equivalences apply, so none of the extensions affect the original

proof of the theorem.)

Therefore our "slick" proof is vindicated, and ~ have proved the

existence S!! programs ~ ~ ~ statements ~ be elim~ated

without introdUCing procedure ~.

Let us now consider a second example program, taken this time frO'll

a typical "backtracking" or exhaustive enumeration application. Most

backtrack problems can be abstracted into the follolo"ing form:

9

start:

up:

try:

down:

done:

m[l] :'" 0; k := 0;

k := k+l; list(k)j ark] := m[k);

if ark] < m[k+l] then begin move (a[k]); ~ to u,p ~;

k :'" k-l;

if k '" 0 ~ ~ ~ done;
1.ll1lnove (a [k]) ;

a[k] : = a[k]+ 1; ~ .!2. try;

Here the procedures list, move, Unll10ve may be regarded as maniIAllating

a variable-width ntack s[O),s[l), ..• of possible choices in this

;fD.3tracted algorithm. Procedure lis (k) determines all possible choices

at the k-th level of backtracking, based on the previously made choices

a[lJ, ••. ,a[k-l]. If there are c choices now possible, list(k) will

set m[k+l] := m[k]+c , and it will also set the stack entries

s[m[k]+l], ••• ,s[m[k]+c] to identify the choices. (Note that c can

be zero. The cho~ces might be, for example, where to place the k-th

queen on a chessboard, given positions of k-l other queens, if we are

trying t.) sol ye the queens' problem.) Procedure move (t) makes the

decision to choose alternative s[t) this usually means that some

internal tables need to be updated. Procedure umnove(t) reverses the

decisions made by move(t) .

It is not necessary to understand the exact mechanism of this

construction, although people familiar with backtracking should find

the previous paragraph self-explanatory; the main point is that essentially

all backtracking programs halre the form of the above progral'l, when

appropriate sequences of code are substituted for list(k), move(a[k) ,

and unmove(a[k]) , henl.c tilt' i."q~!·a.m is ~nrth considel'ing from tht.l

standpoint of go-to elimination.

10

First we can eliminate go-to's by introducing a procedure:

procedure backt;rack(k); ~ k; integer k;

begin list(k); ark] := m[k];

while ark) < m[k+l] ~

begin move(a[kJ); backtrack(ktl); unmove(a[kJ);

ark) := a[k)+l

end

~ baCktrack.;

m[l] := C; backtrack(l);

This use of recursion is rather clean, so the above program is attractive

except for the procedure-calling overhead (whiCh is important since

backtrack programs typically involve many millions of iterations).

It is an interesting exercise to prove this program equivalent to our

first version.

Now letts try to eliminate the go to statements without introducing

a new procedure. The flowchart is:

START

11

0
1

'= m[l] := 0; k := 0

O 2 '= k := k+l; list(k); ark] :; !'i[:":

'f l
'= ark] <m[k+l]

0 3 '= move(a[k])

0"4 '= k := k-l

T
2

,=k=0

0 5
= unmove(a[k]); a{k] . - a[Ii]+1

Here we have the basic flowchart structure

L~ctead of the previous situation when we had

It turns out that node-splitting works in tr_is case but not the other;

we can make two copies of node 02 in the above flowchart and we

obtain

YES

STOP

This diagram obviously ~atisfies the conditions of our flOWChart grammar

above, so we can aV',i:1 the -, l' d:.RtE"nentr.

12

What is the resulting program? Our flowchart grammar above allows

more general iterative statements than present-day programming lan~ag~s

will admit. A general iterative const~~tion might be written

but today's languages only consider the case that "1 is empty:

or if 0'2 is empty:

We can always re-.Tite (***) in the equivalent form

but this is quite unattractive when a l is long, so a programmer will

certainly prefer to use go to statements in that case. If we want to

teach programmers to avoid go to statements, we must provide them with

a suffiCiently rich syntax of iterative statements to serve as a

substitute.

Using (***) leads to the fonowing program for backtracking without

go to statements:

m[l) := 0; k := 1; list(l); a.[l) := 0;

begin loop

~ ark) < m[kt-l) do

begin move(a[k]);

11 .- ~+l; lint(k); ark] := m[k]

~;

k :: k-l;

~~gk=O;

unmove(a[k]); ark] := a[k]+l.

~ loop;

13

This code, although free of "e;o to statemel"'ts", involves an uncomfortable

element which may not make it very palatable: the "while a[k] < m[ktl]ft

is a rather p~culiar condition since k varies and the test involves

llifferent varjables each time. This is (pite different in effect from

the appearance of the same clause in our recursive procedure backtrack(k)

It is possible to think of the program in a fairly natural way nevertheless,

for example (in tree language) as follows:

start at root of search tree;

begin loop

~ possible to go down and left in tree uo 'so;

move up one level in the tree;

exit loop if at the root;

move to the right in the tree;

~ loop;

this is a typical tree traversal algorithm. Ye.t, it is d~bate,ble whether

or not. the elimination of go to statements was an imprc·.'e~ent.

The syntax in (***) is perhaps n(the best way to improve

iteration statements. An alternative proposal, based on some unpublished

idea~ of Wirth, has just been implemented as an extension to stanford's

ALGOL W compiler: The statement

repeat <block>

has the effect of

and the statement

exit

hac the effect 0:'

14

where L2 is the second implicit label corresponding to the smallest

repeat block staticalJ.y enclosing the ~ statement. Thus, (***)

becomes

repeat begin ali g '1"1 ~~; 02 ~;

and we can even write our symbol table search routine without go to

sta.tements :

i := 1;

repeat begin

while i < n ~ if A[i] = x ~ ~ ~ i :: i+ 1.;

n := i; A[il :'" Xj B[i] := 0; ~

end;

B[i] := B[i]+lj

Here the "repeat loop" is never repeated, but the desired effect has

been achieved. It appears. doubtful that this repeat-exit mechanism

will be able to eliminate go to statements in general, since it only

allows a "one-level exit"; further study of these issues is indicated.

15

