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NOTES ON AVOIDING "GO TO" STATmENTS 

D. E. Knut.h and R. W. Floyd 

During the last decadE: '~~ere has been a growing sent:iJnent that the 

use of "go to" statement"; is undesirable, or actually harmful. This 

attitude is apparently inspired by the idea that programs expressed 

solely in terms of conventional iterative constructions ("for", "while", 
" 

etc.) &re more readable and more easily Ioroved correct. -- In--this, note 

we wiH make.< ~ few explcratory observations about the use and disuse of 

\ ) 
go to statements, based on two typical programming examples (from 

"s)'Inbol table searching" and "backtracking"). 
~ 

In the first place let us consider systematic ways for eliminating 

go to statements. There are two apparent ways to achieve this: 

(a) Recursive procedure method. Suppose that each statement of a 

program is labeled. Replace each labeled statement 

L: S 

by 

procedure L; begin S; L' end 

where L' is the static successor of the statement S. A go to statement 

becomes Rimply a procedure call. The program ends by calling a null 

procedure. This construction shows that the mere elimination of go to 

statements does not automatically make a program better or easier to 

, ... 



follow; "go to" is in some sense a special case of the procedure calling 

mechanism. (It is instructive in fact to consider this construction in 

reverse, realizing that it is sometimes more efficient to replace 

procedure calls by go to statements!) 

(b) Regular expression method.. For convenience, imagine a program 

expressed in flowchart form, as a. directed graph. It is well known that 

all paths through this graph can be represented by "regular expressions" 

involving the operations of concatenation, alternation, and "star"; these 

latter correspond to familiar constructions in programming languages 

which do not depend on go to statements. Therefore it appears that 

'g:> to' statements can be eliminated, although it may be necessary to 

duplicate the code for other statements in several places. This process 

is essentially what John Cocke calls "node splitting". 

Consider, for example the following well-known programming 

situation: 

for i :; 1 ~ 1 ~ n ~ 

g A[i] = x ~ £!2 found; 

not found: n :'" i; A[i] := x; B[i] := 0; 

found: B{i]:= :a{i]+l; 

(Let us ~ssume, for convenience, that i '" n+1 if' the for loop is 

exhausted.) It is not obvious that the go to statement here is all that 

unsightly, but let us suppose that we are reactionary enough that we 

really want to abolish them from programming languages. [See Dijkstra 

~. ~ 11 (1968), 147-148.] On,a way to avoid the go to is to use a 

recursive procedure: 



procedure find; 

.if i > n then begin n := i; A[i] :== x; B[i] :: 0 ~ 

~.!! A[i] F x ~ begin i ,- HI; find end; 

1 :'" 1; find; Bli] := B[i]+lj 

An optimizino compiler could perha.ps produ.ce the same code for both 

programs, but again it is debata.ble which program is most readable and 

simple. 

Other solutions change the structure of the program slightly: 

(a) i :,. 1; 

~ i ~ n !:!!i! A[ i] F x .!!£ i := i+l; 

if 1 > n ~ begin n .- 1; A[i] := X; Bli] :'" 0 ~; 

B{i) := B[i}+l; 

(b) i := 1; 

~A[i) ~ x do 

begin i := i+l; 

.!!. i > n ~ begin n .- i; A(i] := x; B[i] := 0 end 

~; 

B[i} := B(i]+l; 

Solution (b) assumes that n > O. Both solutions increase the amount of 

ca.lculation that is spe.::ified: (a) tests "1 > n" twice, while (b) 

tests "A[ i 1 ~ x" after n has been increased. 

The flowchart of the original program is: 



START 

STOP 

T
1

==i>n? 

1"2 == A[i] = Yo ? 

0'2 == i :== i+1 

cr 3 "" n • - i; A[ i) : = JC; B[ i] : = 0 

0'4 ~ B[i] :; B[i]+l 

By a suitable ext~nsion of BNF we can write a braJ!lrnar for all 

flowcharts producible by a language without procedure calls or go to 

statements: 

<program> SMART 

1 
<statement> 

1 
STOP 

J, 
<statement> 

! 1 -l 
<basic statement> 

! 
<statement> 

..Jr 

! 
<basic statement> 

! ¢I .L. 
<conditional statement> 

l 
J, 

<iterative statement> 

l 
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J, 
<condit1onal statement> 

~ 7\ 
<statement> <statement> 

\1 
+ <iterative statement> <stat~~ 
~ 

NO 

Here a denotes a "statement" and T denotes a "test". 

We have not canpletely analyzed this grammar, although it appears to 

be unambiguous; there is probably an efficient parsing algorithm which 

will decide whether or not a given flowchart is derivable floan the 

grammar, constructing a derivation wben one exists. But we can easily 

prove that the above flowchart is ~ producible by this grammar. In fact, 

a stronger result is true: 

~:heorem. No flowchart producible by the above grammar specifies 

precisely the computat ions of the above example flowchart (*). 

This theorem contradicts our observations above about regular 

expressions being redudblt· to cO:lcatenatjon, alternation, and iteration; 
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for our flowcharts ~rovide each of these operations, yet they cannot 

reproiuce the computations in (*). What went wrong? Perhaps it 1~ 

that regular expressions are nondeterministic, while computat~ons are 

inherently deterministic; b..lt no, it is well known that reglllar exprt;sslons 

rna:r be consiiered to be deterministic. The d~. rference really lies in 

the nature of computational tests. 

Thus, let us consider a special class R of regular expr~csions; 

R describes all computational sequences (j-:e.th;, in the flowcharl) 

producible by flowcharts corresponding to a languaEe without ~o-to 

statement s : 

the empty sequer.c~ is in R. 

crER, for all statements cr. 

Rl R2ER, for all Rl and R2ER. 

(TyR1IT~2)' for all R1 and R2ER and all tests T. 

(TyRl)*TN€R, (T~l)*TyER, for all Rlf.R and all tests T. 

Here the subscripts Y and N denote the "YES" or "NO" branches in 

the flowchart. 

To prove the theorem, consider the computational sequences producible 

by the flowchart (*); they may be described by the regular expression 

We will show that the corresponding regular event (the sequences defined 

by this regular expression) cannot be defined by any of the regular 

expressions in R • 
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Every regular expression in R which specifies infinitely many 

sequences includes some test T with one of the following two properties: 

(i) Every occurrence of Ty is followed by at least one occurrence 

of TN 

or (ii) Every occurrence of TN is followed by at least one occurrence 

of 'y . 

The infinitely many sequences specified by (**) do not have any 

such test since the sequences include 

Hence no regular expression in R can produce the regular event (-*""'). 

and the theorem is proved. 

Perl~ps the reader feels that the above proof is too "slick", or 

tM.t something has been concealed. In fact, this is quite true; we 

have penalized the class of flowcharts too severelyt Compound tests 

such as "1 1 and T 2" have not bee:\ allowed sufficient latitude. Our 

flowchart grammar should be extended as follows: Replace 

in the definitions of <conditional. statement> and <iterative statement> 

by 

~ 
<condition> 

YF~ ":0 
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and add the new definition 

<cond~tiOn> •• - ~ YEs! ~o .. - YEXO 
1 

<condition> 

lNO 
<condition> 

YEs! ~O 
The grarrmar now beccmes ambiguous in several cases, although th~ ambiguity 

can be removed at the expense of some complications which are irr(levant 

here. More important is the change to grammar R, where we are a1.1."·,,,OO 

to &ubstitute 

TI 
y for TN T I 

N 
for Ty 

or TIT" 
N N 

for TN (T I IT 'T") 
N NY 

for Ty 

* whenever T ,T' ,Tit are tests. Thus since 01(TN0 2) Ty0 4€R , so is 

and this is the same M (*"*) with (73 deleted. The theorem above is 

almost false! But we can still prove it by an exhaustive case analysis, 

co~sidering all possible substitutions of compound tests and showing 

tr e t none are permissible because of the presence of c. • 
;) 

The theorem becomes almost false in another sense too, when compound 

conditions are considered, si~ce the expression 
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is in It and it diffe2's from (**) only in that T l.Y becomes T lY't lY and 

T],BT 2Y becomes T III 'Z'f't IN' The sequences are essentla:lly the same 

elCcept that red1.U1dant tests are made. WE. c a.G.d therefore consider 

equivalence operations on regular expressions, allowing c~~utativity 

of succc.3sive tests, and an idempotent law Ty'ry = 'f y ' In that case 

our the:>rem would becO'lle false; but we can easily find another flowchart 

for which the theorem still applies: Simply put another statement box a
5 

between 'f 1 and T 2' Then no two tests are adjacent, and our original 

"sliCk" proof immediately shows that the regular event defined by 

is not equivalent to any regular event definable with R. (When no 

two tests are adjacent compound conditions cannot appear, nor do any of 

the equivalences apply, so none of the extensions affect the original 

proof of the theorem.) 

Therefore our "slick" proof is vindicated, and ~ have proved the 

existence S!! programs ~ ~ ~ statements ~ be elim~ated 

without introdUCing procedure ~. 

Let us now consider a second example program, taken this time frO'll 

a typical "backtracking" or exhaustive enumeration application. Most 

backtrack problems can be abstracted into the follolo"ing form: 
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start: 

up: 

try: 

down: 

done: 

m[l] :'" 0; k := 0; 

k := k+l; list(k)j ark] := m[k); 

if ark] < m[k+l] then begin move (a[k]); ~ to u,p ~; 

k :'" k-l; 

if k '" 0 ~ ~ ~ done; 
1.ll1lnove (a [ k]) ; 

a[k] : = a[k]+ 1; ~ .!2. try; 

Here the procedures list, move, Unll10ve may be regarded as maniIAllating 

a variable-width ntack s[O),s[l), ..• of possible choices in this 

;fD.3tracted algorithm. Procedure lis (k) determines all possible choices 

at the k-th level of backtracking, based on the previously made choices 

a[lJ, ••. ,a[k-l]. If there are c choices now possible, list(k) will 

set m[k+l] := m[k]+c , and it will also set the stack entries 

s[m[k]+l], ••• ,s[m[k]+c] to identify the choices. (Note that c can 

be zero. The cho~ces might be, for example, where to place the k-th 

queen on a chessboard, given positions of k-l other queens, if we are 

trying t.) sol ye the queens' problem.) Procedure move ( t) makes the 

decision to choose alternative s[t) this usually means that some 

internal tables need to be updated. Procedure umnove(t) reverses the 

decisions made by move(t) . 

It is not necessary to understand the exact mechanism of this 

construction, although people familiar with backtracking should find 

the previous paragraph self-explanatory; the main point is that essentially 

all backtracking programs halre the form of the above progral'l, when 

appropriate sequences of code are substituted for list(k), move(a[k) , 

and unmove(a[k]) , henl.c tilt' i."q~!·a.m is ~nrth considel'ing from tht.l 

standpoint of go-to elimination. 
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First we can eliminate go-to's by introducing a procedure: 

procedure backt;rack(k); ~ k; integer k; 

begin list(k); ark] := m[k]; 

while ark) < m[k+l] ~ 

begin move(a[kJ); backtrack(ktl); unmove(a[kJ); 

ark) := a[k)+l 

end 

~ baCktrack.; 

m[l] := C; backtrack(l); 

This use of recursion is rather clean, so the above program is attractive 

except for the procedure-calling overhead (whiCh is important since 

backtrack programs typically involve many millions of iterations). 

It is an interesting exercise to prove this program equivalent to our 

first version. 

Now letts try to eliminate the go to statements without introducing 

a new procedure. The flowchart is: 

START 

11 

0
1 

'= m[l] := 0; k := 0 

O 2 '= k := k+l; list(k); ark] :; !'i[:": 

'f l
'= ark] <m[k+l] 

0 3 '= move(a[k]) 

0"4 '= k := k-l 

T
2

,=k=0 

0 5 
= unmove(a[k]); a{k] . - a[ Ii ]+1 



Here we have the basic flowchart structure 

L~ctead of the previous situation when we had 

It turns out that node-splitting works in tr_is case but not the other; 

we can make two copies of node 02 in the above flowchart and we 

obtain 

YES 

STOP 

This diagram obviously ~atisfies the conditions of our flOWChart grammar 

above, so we can aV',i:1 the -, l' d:.RtE"nentr. 
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What is the resulting program? Our flowchart grammar above allows 

more general iterative statements than present-day programming lan~ag~s 

will admit. A general iterative const~~tion might be written 

but today's languages only consider the case that "1 is empty: 

or if 0'2 is empty: 

We can always re-.Tite (***) in the equivalent form 

but this is quite unattractive when a l is long, so a programmer will 

certainly prefer to use go to statements in that case. If we want to 

teach programmers to avoid go to statements, we must provide them with 

a suffiCiently rich syntax of iterative statements to serve as a 

substitute. 

Using (***) leads to the fonowing program for backtracking without 

go to statements: 

m[l) := 0; k := 1; list(l); a.[l) := 0; 

begin loop 

~ ark) < m[kt-l) do 

begin move(a[k]); 

11 .- ~+l; lint(k); ark] := m[k] 

~; 

k :: k-l; 

~~gk=O; 

unmove(a[k]); ark] := a[k]+l. 

~ loop; 
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This code, although free of "e;o to statemel"'ts", involves an uncomfortable 

element which may not make it very palatable: the "while a[k] < m[ktl]ft 

is a rather p~culiar condition since k varies and the test involves 

llifferent varjables each time. This is (pite different in effect from 

the appearance of the same clause in our recursive procedure backtrack(k) 

It is possible to think of the program in a fairly natural way nevertheless, 

for example (in tree language) as follows: 

start at root of search tree; 

begin loop 

~ possible to go down and left in tree uo 'so; 

move up one level in the tree; 

exit loop if at the root; 

move to the right in the tree; 

~ loop; 

this is a typical tree traversal algorithm. Ye.t, it is d~bate,ble whether 

or not. the elimination of go to statements was an imprc·.'e~ent. 

The syntax in (***) is perhaps n( the best way to improve 

iteration statements. An alternative proposal, based on some unpublished 

idea~ of Wirth, has just been implemented as an extension to stanford's 

ALGOL W compiler: The statement 

repeat <block> 

has the effect of 

and the statement 

exit 

hac the effect 0:' 
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where L2 is the second implicit label corresponding to the smallest 

repeat block staticalJ.y enclosing the ~ statement. Thus, (***) 

becomes 

repeat begin ali g '1"1 ~~; 02 ~; 

and we can even write our symbol table search routine without go to 

sta.tements : 

i := 1; 

repeat begin 

while i < n ~ if A[i] = x ~ ~ ~ i :: i+ 1.; 

n := i; A[il :'" Xj B[i] := 0; ~ 

end; 

B[i] := B[i]+lj 

Here the "repeat loop" is never repeated, but the desired effect has 

been achieved. It appears. doubtful that this repeat-exit mechanism 

will be able to eliminate go to statements in general, since it only 

allows a "one-level exit"; further study of these issues is indicated. 
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