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Abstract 

Approximate rules for evaluating l~near tunctionals are often 

obtained by requiring that the rule shall give exarot value tor a certain 

linear class of functions. The parameters ot the rule appear hence as 

the solution of a system of' eq'"ations. This can generally not be solved 

exactly but only "numerically". Sometimes large error. occur in the 

parameters def'inine the rule, but the reslL.tant error in the cOlllPUted 

value of the functicnal is small. In the present paper we shall develop 

etficient methods 01' computing a strict bound for this error in the ease 

when the parameters of the rule are determined tram a linear system 

01' equations. 
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1. Introduetion 

In this paper we shall analyze meehanieal quadrature rules and 

interpolation formulae which have been determined numerically by means 

of solving a linear system of equations. This process can often not be 

carried out exactly and we want to study the errors in the computed value 

of the functional which hereby arise. 

In section 2 we give a general formulation of rules Which can be 

found by USing the method of undetermined coefficients and outline a 

computational pro~ess which delivers a strict error bound in an economical 

manner. 

In the last sect~on we treat so-called Newtonian feasible rules 

(See [7]), a elass of formulae which contains the Lagrangian and Hermitian 

rules as special eases. These rules have the pleasant property that they 

can be eomputed by a small number of multiplications and divisions. We 

give a general theoretical result on error bounds for such rules and 

illustrate with examples that it is possible to solve problems in 

integration and summation of series in an efficient fashion by using the 

algorithms in [7]. 

1 



2. A ~neral class of linear rules 

We introduce some notations which will be used in this section. 

Let [a,b) be a closed bounded interval and let f; f l , f2, ••• , fn 

be n + 1 given functions on [a,b]. F!.lrther, let L; Ll' L
2

, ••• , Ln 

be n + 1 given linear functionals such that L(f), LiCf), LiCfr ) are 

all defined for i ~ 1, 2, ••• , n , r e 1. 2, •••• n • 

Put Y .. LCf ) r e 1, 2 •••• , n and let these numbers be known. 
r r 

Sometime~ WP ~hall call ~'l' Y2' •••• Yr llIOments with respect to L 

and the system of functions 1'1' f 2' ••• , fn This terminology is 

motivated by the fact that a wide class of lineer functlonals have the 

represF.:ntation 

and hence 

b 
L(f) .. J f(t) dcr(t) 

a 

b 
Yr k J fret) dQ(t) , r = 1, 2, ••• , n • 

8 

W:" ,a:., t-o approximate L by !!. a linear combination of 

L1, L2 , •. "' Ln in such a manner that !!(fr ) • Lefr) , r • 1, 2, ••• , n • 

Thus 

(2.1) 
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where 

(2.2) .. y , r .. 1, 2, ••• J n • 
r 

We must require that the linear system (2.2) has a solution. The formulation 

(2.1), (2.2) applies for many familiar problems. We give some examples. 

Example 2:1 A Lagrangian integration rule: Let xl' x2' ••• , xn be 

n distinct numbers and define , i .. 1, 2, 

b 
L(f) .. J fit) dt 

a 

Introduce further f (t) .. t r - l , r .. 1, 2, ••• , n. Then 
r 

... , n and put. 

Example 2:2 An Hermitian quadrature rule: Let now n be an even number 

and put n. 2k. Select k distinct numbers Xl' %2' "" ~ and put 

Define L, f (and y) as in the preceding example. 
r r 

Example 2:3 A Lagrangian derivation rule: Let x be a fixed nUlliber. Define 

Li and fr as in example 2:1, but put L(f) .. f'(x). Then Y1" 1 

and ( ) r-2 
Yr a r-l X , r > 1 • 



It is possible to obtain general rules by appropriate selection of the 

function system f
l

, f
2

, ••. , f
n

• An obvious generalization is to replace 

the interval [a,b] by other types of sets. Therefore one can extend 

(2.1), (2.2) to the rules treated, e.g. in [2] and [9]. 

If the coefficient matrix of (2.2) is regular we can replace 

(2.1), (2.2) with an elgebraically equivalent problem. Let namely A 

be a regular matrix, n by nand b, c, x and u n-dimensional column 

vectors. Then (2.1), (2.2) is 8 special case of the task: Evaluate 
... 

y '" c"'x when Ax .. b However, we find immediately that ve can alao 

write T T 
V = b u vhen A u = c. Us ing this observation we can replace 

(2.1), (2.2) with the alternative formulation 

when 

(2.4 ) 

n 
!!(f) '" r c y 

rel r r 

n 

~ c L.{1' ) 0:: Li(f) , i e 1, 2, ••• , n 
r 1 r 

r'" 

In analogy to the usage in the theory of linear progralllllling we shall call 

(2.1), (2.2) 8 primal problem, (2.,) and (2.4) its dual. 

We establish easily that the duals of the taska in examples 2.1, 

2.2 and 2.3 consist of the determination of certain interpolating polynomials. 

We now want to derive general error bounds by using the dual problems 

introduced sbove. Assume that (2.2) has been solved n\lJ!lerlcally yielding 

the approximation ;1 for mi , i = 1, 2, ••• , n. Define 6m1 by 

~. e m. + Ami and let taL be the error in L( r) caused by using iii! 
l 1 -
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instead of -i' i • 1, 2, ••• , n. Introduce also the residuals 

'r ' r • 1, 2, ••• , n given by 

Hence 

(2.6) 

The dual of this problem read.: 

(2.7) 

when 

(2.8) 

:I. 

AL=kt C
' r r 

r-

The fomulation (2.5), (2.6) can be used only if the residuals are known 

with good relative accuracy. This often requires that they are evaluated 

by means of arithmetic operat ions in a higher precision than that which 

vas used durintr the solution of (2.2). Tbis drawback can be eliminated 

if one use. (2.7), (2.8) instead. Frail (2.7) we get the error bound 
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n 
\~LI ~ E • r where ,> maxi, I , r = ) Ic I 

- r ~ r 

In order to use (2.9) we need only bounds on I, I and 
r 

r . The 

latter quantity will later be referred to as the erro~ ~'~~t-::r. In the next 

section we will give a theorem which expresaes r in terms of the higher 

derivatives of f if the rule defined by (2.1), (2.2) belongs to a 

certain class. 

Generally the error factor is most easily found by solving (2.8) 

which can be done without too much effort. We observe namely thl.lt the 

coefficient matrix of (2.8) is the transpose of that of (2.2). Therefore 

if we solve the latter system by means of Gaussian eliUJinat5.on with 

pivoting we obtain a partition of its coefficient matrix which csn be 

utilized for the subsequent solution of (2.8). Hence this system can be 

solved by means of about 2 n operations. (We use the word "operation" 

for a multiplication or a division.) Since the residuals can be evaluated 

2 by means of n operations the total number of operations to obtain a 

rule of the type (2.1), (2.2) and an error bound can be written 

The error analys is can be carried out in an 1nalogoup .... -mer for the case 

when (2.3), (2.4) are used instead of (2.1), (~~.2). 
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3. Newtonian feasible rules 

In this section we shall treat the case when f is defined by 
r 

f (t) 
r 

r-l 
~ t , r = 1, 2, ••• , n 

Then the solution of (2.2) is the coefficients of a polynomial Q. of 

degree less than n. We shall also require that we can associate with 

(2.1), (2.2) n arguments (not necessarily distinct) in such a manner 

that Q can be expressed by means of Newton's formula with divided 

differences with respect to these arguments. A rule meeting these ccnditions 

will be termed a Newtonian feasible r1l1~ (this definition is equivalent 

with that in [7]). 

Example 

n = 6 

This is a Newtonian feasible rule since we can introduce the six arguments: 

0, 0, 0, 1, 1, 1. If f has two continuous derivatives we can express 

these in the form of confluent divided differences. 

Counter-example 

~(f) = ~f(O) + ~f'(l) 
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This is not a Newtonian feasible rule since we need the three arguments 

0, 1, 1 to express f(O) and f'(l) in the form of divided uifferences 

but n is only 2. Still (2.2) has in this case the unique solution 

ml = 1 , ~ = 1. We now prove the ~nerLl theorem: 

Let f have n continuous derivatives on [a,b] end let (2.1), 

(2.2) define a Newtonian fea~ibl~ rule. Let f~rther the arguments associated 

with the rule be Xl' 4 2 , ••• , Xn 

d 
r 

, r 1, 2, ••• , I~ 

where I is the smallest interval containing Xl' x2' ••• , xn If 

cl ' c2' ••• , cn is the solution of (2.4) then 

(3.1) 

Proof: Define Q by 

n r-l r d n (1 + \Xj \) • 
r=l r j=l 

Q(t) 
n 

= ) 
!:l 

r-l c t 
r 

Since the rule is Newtonian feasible we caD write Q under the form 

Q(t) 
n r-l 

'" ) D n (t - X
j

) 
~ r j=l 

where Dr is a divided difference with the r arguments Xl' x2' "" xr 

Since f has n continuous derivatives there is 8 number ~ in I 
r 

such that 
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D '" f(r-l)(~ )/(r-l): ,r '" 1,2, "" n 
r r 

Therefore the sum of the absolute values of the coefficients of q is 

less than the sum of coefficients in Q defined by 

But the sum of coefficients of q is Q(l) He~ce the assertion follows, 

We observe that equali·y holds in (3.1) e.g. if 

xl < 0 , xl = x2 K ••• = xn and f(r-l)(xl)/(r-l)! = d
r 

• 

We conclude our analysis by discussing a few numerical examples. 

All of tnese were run on Stanford's IBM }60/67. Its Algol W compiler 

represents floating numbers in the form 

x" 
z '" x' • 16 

where x' 1S allotted 24 bits in single precision, 56 bits in double. 

Furthermore x" is (if possible) so selected that 1/16 ~ I x '\ ~ 1 

In all of our examples we work with Newtonian feasible rules. If 

one has to evaluate an expression in order to get input data such as 

abscissae and moments this is done in double precision. These data are 

afterwards truncated to single precision. This procedure was adopted in 

order to insure that the abscissae and moments were represented in full single 

precision, independently of the manner in which they were obtained. 
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The quadrature rules appearing in the examples were eomputed by means 

of the algorithms given in [7]. The error bounds were estimated according 

The residuals were computed by means of double precision arithmetic. 

Thus they were obtained in full relative precision. 

The accumulations t.o form the scalar products which give the cOi:\puted 

value of the functional were done in double precision. During this 

computation the fact was utilized that the product of two single-precisiofi 

numbers is delivered in double precision by this particular machine and 

compiler. 

It goes without saying·that a more efficient (but more difficult 

to report) use could have been done of the available resources. The 

formula 

n 

~L ~ ~ Ic £ I r r r= 

derived directly from (2.7) would presumably give smaller but still 

strict error bounds. The computed value of the error factor r 
indicate that the total error is bour.ded by a rather moderate multiple 

of the largest residual. This could be brought down most efficiently by 

using double-precision arithmetic during the evaluation of the weights 

of the pertinent quadrature rule. 

Example ,:1. The integral 

1 11 
2 dt • 1j: 

1 + t 

vas evaluated by means of Lagrangian quadrature rulea witb abacissae 
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X1 ' 1 - 1, 2, ••• , n , located in the zeroa of the function f defir.ed 

by g(t). Tn(2t + 1) where Tn 18 the '6eb1lsev orthogonal fo1ynomial 

of degree n, That is 

X - 1 [1 + c~s «1 -nO•5>->] 1 - '2 ~. - " 

The integrand f is given by ret) = -!...-
1 + t

2 and hence the moments Yr 

1 
r t r - 1 dt = l/r Yr· J o 

In this case the exact values of the weights can be computed by means 

of the formulae in [8], page 127. We report the following results. 

Absolute 
value of 

Absolute differences 
val.ue of between Absolute 
observed ~/4 and value of Estimated 

Number of maximum error computed largest Error* error 
momenta in weight result residual factor bound* 

; 1.2'10-7 9·2·10 -4 1,,'10-8 1·55 1.9'10-8 

6 ",'10-6 4.7'10.6 2.4'10 ·7 ,.24 .7 7, ')'10 ' 

9 1.9'10.3 2,,'10-7 1·9·10 -6 5.53 1.0'10.5 

* In this and follOWing examples "error" refers to the error 1n the 
computed val.ue of the functional caused by the fact that the weights 
of the rule are determ1ned numerically, DDt exactly. 
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The example illustrates the tact that although the weights are not very 

well determined the bound tor the contribution to the error in the computed 

value caused by this may be rather smail. The c: rcumstance -:!lat for 

three moments tbe observed dirterence between the computed integral anc 

n/4 is luger than the bound must be ascribed to the influence of the 

truncation error. 

1 

Example 3:2 Compute l .4+s1n tln(l/t) dt; 

o 1 + t 

This example illustrates bow a sui table choi ,~e of a weight function can 

res~t in accurate quadrature rules. These latter are computed with 

the algorithms described in [7]. In this case we take the integrand f 

defined by 

-r(t) 

Hence the moments Yl , Y
2

, ••• , Yn ar~ 

Y .. 
r 

1 --1 S t- In(l/t) 

o 1 - t 

They are obtained by the recurr~nce relation 

2 2 
Yl = n /12 , Yr + Yr+l • l/r , r • 1, 2, •••• 

La~r&ngian rules with abscissae &S in eX&IIIP1e ~:l were used. We give the 

results 
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Absolute 
<:omputed value of • 

Number of ·.ral.ue of largest Error Error 
moments integral residual factor bound 

2 1.04'70 
' 8 

6.2'10- 1.~4 e.3·10-8 

-8 
, 

-8 3 1.04362 5''''10 1.;Q 7·4.10 

4 1.04362 6.2'10-8 
l·Y) 8 -8 ·7·1U 

We observe that the error which can be caused by inaccurate weights is 

neglible in comparison to the working precision. 

Example 3:3 EVI',luate s 

This series belongs to the general class of series of the form 

• E 
r-1 

where ar admits a representation 

a .. 
r 

1 S t r - l da(t) , rei, 2, ••• 
o 

and the integrator a is of bounded variation over [0,1]. a is not 

dependent on r. This fact can sometimes be verified by means of a table 

of Laplace transforms after making the substitution t = e-u • Thus 

example ,:, takes the form 



Canpute 

when 

1 1 S 'i+t da(t) 
o 

We us~ again Lagrangian rules with abscissae allocated as in example 1. 

We report the results 

Absolute 
value of 

Number of Computed largest 
moments sum residual 

2 0.4785 503 1.2·10 -8 

4 0.4819 880 ,.2'10-8 

6 0.4821 010 5.7'10-8 

8 0.4821 032 6.0'10-8 

10 0.4821 032 1,,'10-7 

Example 3 :4 Evaluate s = t (_1)r-1e-lr 
r-1 

Error Error 
factor bound 

1.41 1. 7.10 -8 

2.83 9.1'10-8 

1 •• 24 4 -7 2 •• 10 

5.65 4 -7 ,. ·10 

6.88 -7 
9·3·10 . 

This series belongs to the subset of the general class discussed in the 

preceding example where the numbers a introduced there are the r 

moments of an nondecreasing integration a. That is we can write 

s '" 
1 1 S i+t da(t) 

o 
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when 

1 I t
r - 1 da(t) 

o 
-Ir e , r = 1, 2, ..• 

and in addition ~t • 

As shown in [1] the integral is bounded between the values which result 

if certain quadrature rules of Gaussian type are applied to the integral 

for s. These rules can be computed by algorithms given in [51, [~1, 

[41, and [6]. One must, however, solve a non-linear system of equations 

which is unique for each series. This is avoided in the following way: 

Since the derivatives of the function f defined by 

do not change sign we can by means of Hermite-interpolation construct 

two polynomials Pl and P2 such that 

Let n be the number of moments needed in the quadrature rules and let 

Xi and ti be distinct points in (0,1). The conditions defining PI 

and P 2 must. be of the form: 

n = 2k+l 

Pl(ti ) = r(t i ) 

Pi(t
i

) = fl(t
i

) 

P2(X
i

) = f(X i ) 

P2(x i ) = fl(x
i

) 

15 
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n - 2k 

Pl(t i ) '" f('l. i ) 

Pi(":.i) • fl(t i ) 

P 2(Xi ) 

p I(X ) '" 
2 i 

P2(0) 

P
2

(1) :: 

f(xi
) 

fl(x
i

) 

reo) 
1 '" 1, 2, ••. , k 

fell 

Thus we only have to solve linear systems of equations (which can be done 

2 
with n operations). Since P1 and P2 do not ~pend on the moment 

sequence the same Pl and P2 applies to all series of the class 

discussed here. In example 3:3 we computed upper and lower bcPlndS by 

" " allocating the interior touching points in the zeros of Ce~ysev 

II " Tk(2X+l) where Tk is a Cebyaev polYnomial with degree equal. to the 

number of such points. We gjve the results 

Estimated Estimated Difference 

Difference errol' in error in between 

Number of between upper lower computed bounds 

moments bounds bound bound Gaussian rul.es* 

3 5.7'10-' 1,,'10-7 1.1'10-7 2.5'10-' 

6 4.9·10 -5 8 -7 .0·10 ,.2'10.7 9.9'10.6 

-7 -{. 
6.9'10.7 4 -8 

9 ,.0·10 1.7'10 ~ .0·10 

* For this C01D(l1lt&tion double precision vas used throughout. 
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