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Abstract

Approximate rules for evaluating linear functionals are often
obtained by requiring that the rule shall give exact value for a certain
linear class of functions. The parameters of the rule appear hence as
the solution of a system of equations. This can generally not be solved
exactly but only "rumerically". Sometimes large errors occur in the
parameters defining the rule, but the resu .tant error in the computed
value of the functicnal is smsll. In the present paper we shall develop
efficient methods of computing a strict bound for this error in the case
when the parameters of the rule are determined from a iinzar system

of equatione.
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1. Introduction

In this paper we shall analyze mechanical quadrature rules and
interpolation formulae which have been determined numerically by means
of solving a linear syatem of equations. This process can often not be
carried out exactly and we want to study the errors in the computed value
of the functional which hereby arise.

In section 2 we give a general formulation of rules which can be
found by using the method of undetermined coefficients and outline a
computational prozess which delivers a strict error bound in an economical
manner.

In the last section we treat so-called Newtonian feasible rules
(See [7]), a class of formulae which contains the Lagrangian and Hermitian
rules as special cases. These rules have the pleasant property that they
can be computed by a small number of multiplications and divisions., We
give a general theoretical result on error bounds for such rules and
illustrate with examples that it is possible to solve problems in
integration and summation of series in an efficient fashion by using the

algorithms in [7].



2. A general clsss of linear rules

We introduce some notations which will be used in this sectien.

Let [a,b) be a closed bounded intervel and let £} f1o fop veey £
be n+ 1 given functions on [a,b] . Further, let L; Ly Ly oeey L
be n+ 1 given linear functionals such that L{f), Li(f)’ Li(fr) are
all defined for 1 =1, 2, .oe, R, T =1, 2, vaey N &

Put v = L(fr) r=1, 2, ..., n and let these numbers be known.
Sometimer we chall call Y17 Yor sees Y. noments with respect to L
and the system of functions rl’ f‘2, reey fn . This terminology is
motivated by the fact that a wide class of lineer functionals have the

representetion

b
L(f) = [ £(t) da(t)

and hence
b
v, = 5[ £(t) daft) , r=1,2, ..., n.

We wani to spproximate L by L, a linear combination of
L, Lyy ---; L in such s menner thet &(fr) = L(fr) s rml, 2, vaey n.

Thus

n

(2.1) L(1) = 1):1 m.L (1)



where

n
(2.2) P: miLi(fr) =y.»Tr=12 ..umn.
=l

We must require that the linear system (2.2) has & solution. The formulation

(2.1), (2.2) spplies for many familisr problems. We give some examples.

Example 2:1 A Lagrengian integration rule: ILet Xpy Xpp seey X be

n distinct numbers snd define Li(f) = f(xi) y i=1,2, ..., n and put.

b
L(f) = [ £(t) at

Introduce further fr(t) =5t s r=1,2, «e., n . Then

‘

Example 2:2 An Hermitian quadrature rule: Let now n be an even number
and put n = 2k . Select k distinct numbers X)s x2, ceey X and put
Lysoa(0) = £(x;) , Ly (f) =£(x), 1=1,2 ...,k

Define L , £ (and yr) as in the preceding example.

Exsmple 2:3 A Lasgrangisn derivation rule: Let x be a fixed number. Define
L; and f a5 in exsmple 2:1, but put L(f) = £'(x) ., Then vy =1

ond y = (r-l)xr-2 , r>1,



It is possible to obtain general rules by appropriate selection of the
function system fl' fz, ceey fn . An cobvious generslizetion is to replace
the interval [s,b] by other types of sets. Therefore one can extend
(2.1), (2.2) to the rules treated, e.g. in [2] and [9].

If the coefficient matrix of (2.2) is regular we can replace
(2.1), (2.2) with an algebraicelly equivalent problem. Let namely A
be a reguler metrix, n by n and b, ¢, x and u n-dimensionsl column
vectors. Then {2.1), (2.2) is a2 special case of the task: Evaluate
Y = crx when Ax = b . However, we find immediately that we can also
write vy = bTu when ATu = c¢ . Using this observation we can replace

(2.1), (2.2) with the alternstive formulation

n
(2‘3) .I-‘-(f) = !glcryr
when
n
(2.&) El CrLi(ilr) = Li(f) . i= 1, 2’ cesy n
re=

In analcgy to the usege in the theory of linear progrsmming we shall call
(2.1), (2.2) e primal problem, (2.3) and (2.4) its duel.
We establish easily thet the dusls of the tasks in examples 2.1,
2.2 and 2.3 consist of the determination of certain interpolating polynomials.
We now want to derive general error bounds by using the dusl problems
introduced sbove. Assume that (2.2) has been solved numerically yielding
the spproximation ;i for m o i=1,2, «usy n « Define Ami by

m, =m +ém and let AL be the error in L(f) caused by using m

i i



instesd of m; , i=1,2, ..., n . Introduce also the residusls

€., r=1,2, «oop n given by

r
n -
€ =V - é}miLi(fr) ,T=1,2, eeepn.
Hence
n

(2.5) AL = él om,L ()
when

n
(2.6) zlAmiLi(fr) =¢_,r=1,2 .,n.

is

The dual of this problem reads:

)

(2.7) AL = rz_:l ce

when
n

(2.8) 21 e L(f) =L(f),1=1,2, ..., n.
re

The formulation (2.5), (2.6) can be used only if the residusls are known
with good relative accuracy. This often requires that they are evaluated
by means of arithmetic operations in a higher precision than that which
was vsed during the solution of (2.2). This drawback can be eliminated

if one uses (2.7), (2.8) instesd. Froam (2.7) we get the error bound



n
(2.9) \AL‘ <g . [ where ¢ zmaxler‘ , [ = 21 Icrl
re

In order to use (2.9) we need only bounds on |cr| end [ . The

latter quantity will later be referred to as the errnr "ac‘.tcr. In the next
section we will give a theorem which expresses [ in terms of the higher
derivatives of f if the rule defined by (2.1), (2.2) belongs to a
certain class.

Generally the error factor is most easily found by solving (2.8)
which can be done without too much effort. We observe namely that the
coefficient matrix of (2.8) is the transpose of that of (2.2). Therefore
if we solve the latter system by means of Geussian eliminatjon with
pivoting we cbtain a pertition of its coefficient matrix which cen be
utilized for the subsequent solution of (2.8). Hence this system can be
solved by means of about n2 operations. (We use the word "operation”
for a multiplication or a division.) Since the residuals can be evaluated
by means of n2 operstions the total number of operations to obtain a

rule of the type (2.1), (2.2) and an error bound can be written
(1 + 6/n)(?/3 + o(n®))

The error enalysis csn be carried out in an inalogour wener for the case

when (2.3), (2.4) are used instead of (2.1), (2.2).



3. Newtonian feagible rules

In this section we shall treat the case when fr is defined by

£ () et™™, r=1,2, ..o, n

Then the solution of (2.2) is the coefficients of a polynomial Q of

degree less than n . We shall also require that we can associate with
(2.1}, (2.2) n sarguments (not necessarily distinct) in such a manner

that Q can be expressed by means of Newton's formula with divided
differences with respect tc these arguments. A rule meeting these ccnditions
will be termed a Newtonian feasible rule (this definition is equivalent

with that in [7]).

Example
- = .' " [} "
n=6 L(f) mlf(o) +mf (o) + m3f (o) + mhf(l) + m5f (1) + m6f (1)
This is @ Newtonian feasible rule since we can introduce the six arguments:
0, 0 0 1, 1, 1 . If f has two continuous derivatives we can express

these in the form of confluent divided differences.

Counter-example

ne2 L) =a£(0) + mye(1)



This is not s Newtonian feassible rule since we need the three arguments
0, 1, 1 to express f(0) and £'(1l) in the form of divided differences
but n is only 2. Still (2.2) has in this case the unique solution
my = 1, m, = 1 . We now prove the gener:l theorem:
Let f have n continuous derivatives on [a,b] and let (2.1),
(2.2) define a Newtonian feasible rule., Let further the srguments associated

with the rule be x ceey X oo Define dl’ d ooy dn by

1’ ;‘—2} 2,

d_ = max \f(r'l)(t)l/(r-l)! ,r=1,2, .c.,
tel

where I is the smellest intervsl conteining X)s Xy ecep X oo If

Cys Cps +++y c 15 the solution of (2.4) then

I n r-1
(3.1) Ll e a1 s+l
r=1 j=1

r=1 j=
Proof: Define @ by

n

Q(t) = r§1 crtr'l

Since the rule is Newtonian feasible we can write Q under the form

r-l

n
t) = D 1 - X
Q(t) ri=:1 P G 5

where Dr is 8 divided difference with the r arguments Xys Xpy seep X

r
Since f has n continuous derivatives there is a number gr in I

such thet



(r-1)
D = f (gr)/(r-l)! s, T=1,2, .vay n
Therefore the sum of the absolute values of the coefficients of q 1is

less than the sum of coefficients in @ defined by

_ n r-1
At = 21 a, B (t+ x5
r= j=1
But the sum of coefficients of 6 is 6(1) . Hence the assertion follows.

We observe that equali*y holds in {3.1) e.g. if

x, <0, x

1 =Xy = oeee =X, and f(r-l)(xl)/(r-l)l =d_.

1 2 r
We conclude our analysis by discussing a few numerical examples.
All of these were run on Stanford's IBM 360/67. Its Algol W compiler

represents floating numbers in the form
x"
z=x"+16

where x' 18 allotted 24 bits in single precision, 56 bits in double.
Furthermore x" 1is (if possible) so selected that 1/16 < |x'| <1.

In all of our examples we work with Newtonian feasible rules. If
one has to evaluate an expression in order to get input data such as
abscissae and moments this is done in double precision. These data are
afterwards truncated to single precision. This procedure was adopted in
order to insure that the abscissae and moments were represented in full single

precision, independently of the manner in which they were obtained.



The quadrature rules appearing in the examples were vomputed ty means
of the algorithms given in [7]). The error bounds were estimated sccording
to (2.9).

The residuals were computed by means of double precision arithmetic.
Thus they were obtained in full relative precision.

The sccumulations to form the scalar preducts which give the coiputed
value of the functional were done in double precision. During this
computation the fact was utilized that the product of two single-precision
numbers is delivered in double precision by this particular mschine and
compiler.

It goes without seying thet a more efficient (but more difficult
to report) use could hsve been done of the available resources. The

formula

n
AL < 2;-\c € l
- Tr

derived directly from (2.7) would presumably give smaller but still
strict error bounés. The computed value of the error factor [

indicete thet the total error is bourded by a rather moderate multiple
of the largest residual. This could be brought down most efficiently by
using double-precision arithmetic during the evaluation of the weights

of the pertinent quesdrature rule.

Example 3:1. The integral
1
J 12‘“"%
O 1+t

was evaluated by means of Lagrangian quadrature rules with abscissae

10



Xy i{i=1,2, ..., n, located in the zeros of the function g defired
by g(t) = Tn(2t 4+ 1) where T, is the Xebf%ev orthogonal polynomial

of degree n . That is

x, = % [l + cos ((-i——'n—o'-é)x)]

The integrand f is given by f(t) = and hence the moments y_

1
1+t
1
- [ la=1r
d

Yr

In this case the exact values of the weights can be computed by means

of the formulae in [8], page 127. We report the following results.

Absolute
value of
Absolute differences
value of - between Absolute
observed n/4 and value of Estimated
Number of maximum error computed largest Error#* error
moments in weight result residual factor bound*
3 1.2-1077 9.2-10‘“ 1.3-10’8 1.55 1.9-10‘8
6 5.3-10'6 k.7-1o'6 2.&-10'7 3.24 7.9°1077
9 1.9-207 2.3+1077 1.9-10° 5.5 1.0°2077

*

In this and following examples "error” refers to the error in the
computed value of the functional caused by the fact that the weights
of the rule are determined numerically, not exactly.

1



The example illustrates the fact that although the weights are not very
well determined the bound for the contribution tc the error in the computed
value caused by this may bde rather smail. The circumstance that for

three maments the observed difference between the computed integral ané
n/4 is lurger than the bound must be ascribed to the influence of the

truncation error.

1
'l eEﬂ;in tln 1/t) .
Example 3:2 Compute ] e in(1/t a+
(¢} l1+¢

This example illustrates how a suitable choi:e of a weight function can
result in accurate quadrature rules. These latter are computed with

the algorithms described in [7]. 1In this case we take the integrand f

defined by

1

H(t) = e5+sin T

Hence the moments Y92 ¥ps ¢+ ¥, B8re

v = J‘l = n(1/t)

T ¢ 1-t

They are obtained by the recurrence relation
2 2
yl=“/12’yr*yr+l.l/r s T =1, 2y u.

Lagrangian rules with abscissae as in example 3:1 were used. We give the

results

12



Absolute

Computed value of °
Number of value of largest Error Error
moments integral residual factor bound
. -8 -8
2 1.04370 6.2+10 1.34 8.3410
8 \ 8
3 1.04362 5.3410° 1.39 7.4.10"
-8 -8
L 1.043%62 6.2+10 1.39 8.7-10

We cbserve that the error which cen be caused by inaccurate weights is

neglible in comparison to the working precision.

r=1

Example 3:3 Evaluate s = z (-l)r-l-(-r—zTi—)w‘_l

This series belongs to the general class of series of the form

i (_l)r-l.r
r=l

where ar admits a representation

1 r=-l
a-jt da(t) , r=1, 2, ws
a

T
and the integrator a is of bounded variation over [0,1]. « is act
dependent on r . This fact can sometimes be verified by means of a table
of Laplace transforms after making the substitution t = et . Thus

example 3:3 takes the form

13



Compute E%E do(t)
when
J‘ tr-l da(t) = 5 1 =3
0 (n® + 1)

We use again Lagrangilan rules with abscissae allocated as in example 1.

We report the results

Absoclute
value of
Number of Computed largest Error Error
moments sum residual factor bound
: -8 -8
2 0.4785 503 1.2-10 1.41 1.7.10
-8 -8
N 0.4819 880 3,2-10 2.83 9.1°10
-8 i
6 0.4821 010 5.7+10 L.o4 2.4.10
‘ I '8 ‘7
8 0.4821 032 6,010 5.65 3.4.10
10 0.4821 032 1.3-1077 6.88 9.3.1077

.-}
Example 3:4 Evaluate s = 3 (-l)r'le'/}
r=1
This series belongs to the subset of the general class discussed in the

preceding example where the numbers &, introduced there are the

moments of an nondecreasing integration o . That is we can write
1
1
s = oj’ Tog dal(t)

1k



when

1
I £7°L an(t) = T ,r=1,2, ...
0

and in addition af .

As shown in [1] the integral is bounded between the values which result
if certain quadrature rules of Gaussian type are applied to the integral
for s . These rules can be computed by algorithms given in (5], [3],
(4], and {6]. One must, however, solve a non-linear system of equations
which is unique for each series. This is avoided in the following way:

Since the derivatives of the function f defined by
£(t) = (1+¢)"F

do not change sign we can by means of Hermite-interpolation construct

two polynomials Pl and P2 such that
P,(t) < £(t) < P(t)

let n be the number of moments needed in the quadrature rules and let

X, and t, be distinct points in (0,1). The conditions defining P

and P2 must be of the form:

1

n = 2k+l
P (1) = £(1) P,(0) = £(0)
P (t,) = £(t,) P(x,) = f(x,) 1i=1,2 .co5 k
Pi(t,) = £'(¢,) PA(x) = £'(x,)

15



n=2K

Pl(ti) = f(\.i) Pe(zi) = f(xi)

pi(s,) = £'(¢,) pA(x,) = £'(x,) fe L2k
Pe(o) = £(0)
92(1) = £(1)

Thus we only heve to solve linear systems of equations {which can be done
with n° operations). Since P, and P, do not depend on the moment
sequence the same Pl and P2 applies to all series of the class
discussed here. In example 3:3 we computed upper and lower bounds by
allocating the interior touching pcints in the zeros of ::ebyse'\,r

v v
Tk(2x+1) vhere T, is a Cebysev polynomial with degree equal to the

number of such points. We give the results

’Estimated Estimated Difference
Difference error in error in between
Number of between upper lower computed bounds
moments bounds bound bound Gaussian rules®*
3 5.7.20  1.3-107 1.1.1077 2.5.1070
6 b.020”  8.0107T 320207 9.9-10°°
- -£ - -
9 3.0.1077  1.7°107" 6.9-10"7 4,0-10°°

*
For this computation double precision was used throughout.

16
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